EP1697329A1 - Optisch aktive carboxamide und deren verwendung zur bekämpfung von unerwünschten mikroorganismen - Google Patents

Optisch aktive carboxamide und deren verwendung zur bekämpfung von unerwünschten mikroorganismen

Info

Publication number
EP1697329A1
EP1697329A1 EP04803543A EP04803543A EP1697329A1 EP 1697329 A1 EP1697329 A1 EP 1697329A1 EP 04803543 A EP04803543 A EP 04803543A EP 04803543 A EP04803543 A EP 04803543A EP 1697329 A1 EP1697329 A1 EP 1697329A1
Authority
EP
European Patent Office
Prior art keywords
formula
optically active
methyl
trifluoromethyl
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04803543A
Other languages
English (en)
French (fr)
Inventor
Ralf Dunkel
Hans-Ludwig Elbe
Heiko Rieck
Benoit Hartmann
Jörg Nico GREUL
Ulrike Wachendorff-Neumann
Peter Dahmen
Karl-Heinz Kuck
Anne Suty-Heinze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer CropScience AG
Original Assignee
Bayer CropScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102004005317A external-priority patent/DE102004005317A1/de
Application filed by Bayer CropScience AG filed Critical Bayer CropScience AG
Publication of EP1697329A1 publication Critical patent/EP1697329A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/18Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing the group —CO—N<, e.g. carboxylic acid amides or imides; Thio analogues thereof
    • A01N37/22Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing the group —CO—N<, e.g. carboxylic acid amides or imides; Thio analogues thereof the nitrogen atom being directly attached to an aromatic ring system, e.g. anilides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D231/16Halogen atoms or nitro radicals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/36Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/561,2-Diazoles; Hydrogenated 1,2-diazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/64Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
    • C07C233/65Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/34Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Definitions

  • the present invention relates to new optically active carboxamides, several processes for their preparation and their use for controlling unwanted microorganisms.
  • R represents hydrogen, fluorine, chlorine, methyl, ethyl or trifluoromethyl
  • R 1 represents hydrogen, fluorine, chlorine, methyl or trifluoromethyl
  • a for the rest of the formula (AI) (AI) is in which R 2 represents methyl, trifluoromethyl or difluoromethyl, R 3 represents hydrogen, fluorine or chlorine, or A represents the rest of the formula (A2)
  • R 4 represents trifluoromethyl, chlorine, bromine or iodine, or
  • (A3) stands in which R 5 represents methyl, trifluoromethyl or difluoromethyl.
  • the compounds of formula (I) have the S configuration [S atom labeled C in formula (I)].
  • optically active carboxamides of the formula (I) are obtained by a) carboxylic acid derivatives of the formula (H) O ⁇ . ⁇ - -x, 'W in which A has the meanings given above and X 1 for Halogen or hydroxy, with an amine of the formula (Hl)
  • R, M and A have the meanings given above, or mixtures of both compounds in the presence of an optically active catalyst or a catalyst with optically active ligand.
  • the new optically active carboxamides of the formula (I) have very good microbicidal properties and can be used to combat unwanted microorganisms both in crop protection and in material protection.
  • the new optically active carboxamides of the formula (I) are notable in particular for their improved action or lower application rate and thus lower environmental impact and reduced toxicity.
  • optically active carboxamides according to the invention are generally defined by the formula (I).
  • Preferred radical definitions of the formulas above and below are given in Given below. These definitions apply equally to the end products of the formula (I) and to all intermediates.
  • R preferably represents hydrogen, methyl or ethyl.
  • R particularly preferably represents hydrogen or methyl.
  • M preferably stands for M-1.
  • M also preferably represents M-2.
  • M also preferably stands for M-3.
  • M also preferably represents M-4.
  • M particularly preferably represents Ml, where R 1 represents hydrogen.
  • M is also particularly preferably M-2, where R 1 is hydrogen.
  • R 1 preferably represents hydrogen.
  • R 1 also preferably represents fluorine, fluorine being particularly preferably in the 4-, 5- or 6-position, very particularly preferably in the 4- or 6-position, in particular in the 4-position of the anilide residue [cf. formula (I) above].
  • A preferably represents the radical A 1.
  • A also preferably represents the radical A2.
  • A also preferably stands for the rest A3.
  • R 2 preferably represents methyl or trifluoromethyl.
  • R 3 preferably represents hydrogen or fluorine.
  • R 4 preferably represents trifluoromethyl or iodine.
  • R 5 preferably represents trifluoromethyl.
  • Preferred, particularly preferred or very particularly preferred are compounds of the formula (T) which each carry the substituents mentioned under preferred, particularly preferred or very particularly preferred.
  • Formula (H) provides a general definition of the carboxylic acid derivatives required as starting materials for carrying out process (a) according to the invention.
  • A has preferred, particularly preferred or very particularly preferred those meanings which have already been given as preferred, particularly preferred or very particularly preferred for A in connection with the description of the compounds of the formula (I) according to the invention.
  • X 1 preferably represents chlorine, bromine or hydroxy, particularly preferably chlorine.
  • the carboxylic acid derivatives of the formula (H) are known (cf. WO 93/11117, EP-A 0 545 099, EP-A 0 589 301 and EP-A 0 589 313).
  • Formula (IH) provides a general definition of the amines which are further required as starting materials for carrying out process (a) according to the invention.
  • R and M have preferred, particularly preferably or very particularly preferably those meanings which, in connection with the description of the compounds of the formula (I) according to the invention, are preferred, particularly preferred or very particularly preferred for these radicals were specified.
  • M 1 represents Ml can be prepared, for example, by d) in a first step an aniline derivative of the formula (VI)
  • the hydrogenation of compounds of the formula (VIH) can, if appropriate, also take place in the presence of an optically active catalyst or in the presence of a catalyst and an optically active ligand and thus provide optically active compounds of the formula (Hl-a).
  • optically active acids can also be fractionally crystallized in the presence of optically active acids with salt formation, after which enantiomerically pure or enriched compounds of the formula (HI-a) are released.
  • All optically active acids are generally suitable as acids for the formation of diastereomeric salts. Examples include: (IS) - (+) - camphor-10-sulfonic acid, (1R) - (-) - camphor-10-sulfonic acid, S, S - (-) - tartaric acid, R, R - (+) - Tartaric acid, R-lactic acid, S-lactic acid or optically active amino acids, preferably naturally occurring optically active amino acids.
  • Formula (VI) provides a general definition of the aniline derivatives required as starting materials for carrying out process (d) according to the invention.
  • R 1 has preferred, particularly preferably or very particularly preferably those meanings which, in connection with the description of the compounds of the formula (I) according to the invention, are preferred, particularly preferred or very particularly for these radicals were given preferably.
  • Formula (VH) provides a general definition of the alkenes still required as starting materials for carrying out process (d) according to the invention.
  • R preferably, particularly preferably or very particularly preferably those meanings which have already been given as preferred, particularly preferred or very particularly preferred for this radical in connection with the description of the compounds of the formula (I) according to the invention ,
  • Alkenes of the formula (VH) are known or can be obtained by known methods.
  • the formula (VuT) generally defines the alkenanilines which have passed through as intermediates when carrying out process (d) according to the invention.
  • R and R 1 have preferred, particularly preferably or very particularly preferably those meanings which, in connection with the description of the compounds of the formula (I) according to the invention, are preferred, particularly preferred or very particularly for these radicals were given preferably.
  • Alkenanilines of the formula (VEIT) are known and / or can be obtained by known processes.
  • M 2 stands for M-2, M-3 or M-4, can be prepared, for example, by e) racemic amines of the formula (Hl-b-rac)
  • racemic amines of the formula (Hl-b-rac) are known and / or can be obtained by known processes (cf. e.g. WO 02/38542, EP-A 1 036793 and EP-A 0 737 682).
  • the formula (I-rac) provides a general definition of the racemic compounds required as starting materials when carrying out process (b) according to the invention.
  • R, M and A are preferably, particularly preferably or very particularly preferably those meanings which, in connection with the description of the compounds of the formula (I) according to the invention, are preferred, particularly preferred or very particularly preferred for these radicals were called.
  • the racemic compounds of the formula (I-rac) used in carrying out process (b) according to the invention are known and can be prepared by known processes (cf., for example, WO 03/010149, WO 02/38542 and DE-A 10229 595).
  • Racemic compounds of the formula (I-rac) can be obtained, for example, by comparing carboxylic acid derivatives of the formula (H) with racemic compounds of the formulas (IH-a-rac) or (Hl-b-rac) in analogy to that implementing method (a) according to the invention.
  • the method (b) according to the invention is carried out by preparative chromatography methods, preferably by the high performance liquid chromatography (HPLC) method.
  • HPLC high performance liquid chromatography
  • a chiral stationary silica gel phase is used.
  • Chiracel OD ® has proven to be particularly suitable for the separation of the compounds of the formula (I-rac) into the two enantiomers. This separation material is commercially available. However, other stationary phases can also be used as the chromatography material.
  • optically active acids are generally suitable for the formation of diastereomeric salts.
  • examples include: (IS) - (+) - camphor-10-sulfonic acid, (IR) - (-) - camphor-10-sulfonic acid, S, S - (-) - tartaric acid, R, R - (+) - Tartaric acid, R-lactic acid, S-lactic acid or optically active amino acids, preferably naturally occurring optically active amino acids.
  • process (c) can be illustrated by the following formula:
  • Formula (IV) and (V) provide a general definition of the compounds required as starting materials when carrying out process (c) according to the invention.
  • R, M and A have preferably, particularly preferably or very particularly preferably those meanings which have already been mentioned as preferred, particularly preferred or very particularly preferred for these radicals in connection with the description of the compounds of the formula (I) according to the invention were.
  • Compounds of the formula (TV) and (V) (or mixtures of these compounds) are obtained by f) carboxylic acid derivatives of the formula H) in which A has the meanings given above and X 1 represents halogen or hydroxy, either with an alkenaniline of the formula (VTfl)
  • Formula (TX) provides a general definition of the alkenanilines which are alternatively required as starting materials for carrying out process (f) according to the invention.
  • R and R ! preferred, particularly preferred or very particularly preferred those meanings which are already in connection with the description of the compounds of the formula according to the invention
  • Alkenanilines of the formula (IX) are known and / or can be obtained by known processes.
  • Formula (X) provides a general definition of the carboxamides required as starting materials for carrying out process (g) according to the invention.
  • M and A have preferred, particularly preferably or very particularly preferably those meanings which, in connection with the description of the compounds of the formula (I) according to the invention, are preferred, particularly preferred or very particularly preferred for these radicals were specified.
  • Carboxamides of the formula (X) are known and / or can be obtained by known methods (cf. WO 03/010149).
  • Alkenes of the formula (XT) are known or can be obtained by known methods.
  • Suitable diluents for carrying out processes (a) and (f) according to the invention are all inert organic solvents. These preferably include aliphatic, alicyclic or aromatic hydrocarbons, such as e.g. Petroleum ether, hexane, heptane, cyclohexane, methylcyclohexane, benzene, toluene, xylene or decalin; halogenated hydrocarbons, e.g.
  • Chlorobenzene dichlorobenzene, dichloromethane, chloroform, carbon tetrachloride, dichloroethane or trichloroethane; Ethers, such as diethyl ether, diisopropyl ether, methyl tert-butyl ether, methyl tert-amyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethane, 1,2-diethoxyethane or anisole or amides, such as N, N-dimethylformamide, N, N- Dimethylacetamide, N-methylformanilide, N-methylpyrrolidone or hexamethylphosphoric triamide.
  • Ethers such as diethyl ether, diisopropyl ether, methyl tert-butyl ether, methyl tert-amyl ether, dioxane, tetrahydrofuran, 1,2-dimethoxyethan
  • Processes (a) and (f) according to the invention are optionally carried out in the presence of a suitable acid acceptor.
  • a suitable acid acceptor All conventional inorganic or organic bases are suitable as such. These preferably include alkaline earth metal or alkali metal hydrides, hydroxides, amides, alcoholates, acetates, carbonates or hydrogen carbonates, such as e.g.
  • DABCO diazabicyclooctane
  • DBN diazabicyclonones
  • DBU diazabicyclound
  • Processes (a) and (f) according to the invention are optionally carried out in the presence of a suitable condensing agent.
  • a suitable condensing agent All condensation agents that can normally be used for such amidation reactions are suitable as such.
  • Acid halide formers such as phosgene, phosphorus tribromide, phosphorus trichloride, phosphorus pentachloride, phosphorus oxychloride or thionyl chloride may be mentioned as examples;
  • Anhydride formers such as ethyl chloroformate, methyl chloroformate, isopropyl chloroformate, isobutyl chloroformate or methanesulfate fonylchlorid;
  • Carbodiimides such as N, N'-dicyclohexylcarbodiimide (DCC) or other customary condensing agents, such as phosphorus pentoxide, polyphosphoric acid, N, N'-carbonyldiimid
  • Processes (a) and (f) according to the invention are optionally carried out in the presence of a catalyst.
  • a catalyst examples include 4-dimethylaminopyridine, 1-hydroxy-benzotriazole or dimethylformamide.
  • reaction temperatures can be varied within a substantial range when carrying out processes (a) and (f) according to the invention. In general, temperatures from 0 ° C to 150 ° C, preferably at temperatures from 0 ° C to 80 ° C.
  • Suitable eluents for carrying out process (b) according to the invention are all customary inert, organic solvents and mixtures of these, or else mixtures of these with water.
  • Halogenated aliphatic, alicyclic or aromatic hydrocarbons such as petroleum ether, hexane, heptane, cyclohexane, can preferably be used; Dichloromethane, chloroform; Alcohols, such as methanol, ethanol, propanol; Nitriles such as acetonitrile; Esters such as methyl acetate or ethyl acetate.
  • aliphatic hydrocarbons such as hexane or heptane
  • alcohols such as methanol or propanol, very particularly preferably n-heptane and isopropanol or mixtures of these.
  • reaction temperatures can be varied within a substantial range when carrying out process (b) according to the invention. In general, temperatures between 10 ° C and 60 ° C, preferably between 10 ° C and 40 ° C, particularly preferably at room temperature.
  • n-hexane or cyclohexane and ethyl acetate are used as eluents, the composition of which must be adapted to the particular compound to be purified.
  • Suitable diluents for carrying out the first step of process (d) according to the invention and of process (g) according to the invention are all inert organic solvents. These preferably include nitriles, such as acetonitrile, propionitrile, n- or i-butyronitrile or benzonitrile or amides, such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylformanilide, N-methylpyrrolidone or hexamethylphosphoric acid triamide.
  • nitriles such as acetonitrile, propionitrile, n- or i-butyronitrile or benzonitrile
  • amides such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methylformanilide, N-methylpyrrolidone or hexamethylphosphoric acid triamide.
  • the first step of process (d) according to the invention and process (g) according to the invention are optionally carried out in the presence of a suitable acid acceptor.
  • a suitable acid acceptor All conventional inorganic or organic bases are suitable as such. These preferably include alkaline earth metal or alkali metal hydrides, hydroxides, amides, alcoholates, acetates, carbonates or hydrogen carbonates, such as e.g.
  • DABCO diazabicyclooctane
  • DBU diazabicyclonones
  • DBU diazabic
  • the first step of process (d) according to the invention and process (g) according to the invention are carried out in the presence of one or more catalysts.
  • Palladium salts or complexes are particularly suitable for this.
  • Palladium chloride, palladium acetate, tetrakis (1riphenylphosphine) palladium or bis (triphenylphosphine) palladium dichloride are preferably used for this purpose.
  • a palladium complex can also be generated in the reaction mixture if a palladium salt and a complex ligand are added separately to the reaction.
  • Organophosphorus compounds are preferred as ligands.
  • Examples include: triphenylphosphine, tri-o-tolylphosphine, 2,2'-bis (diphenylphosphino) -l, r-binaphthyl, dicyclohexylphosphine biphenyl, 1,4-bis (diphenylphosphino) butane, bisdiphenylphosphinoferrocene, di (tert- butylphosphino) biphenyl, di (cyclo- hexylphosphino) biphenyl, 2-dicyclohexylphosphino-2 '-N, N-dimethylaminobiphenyl, tricyclohexylphosphine, tri-tert-butylphosphine.
  • ligands can also be dispensed with.
  • the first step of process (d) according to the invention and process (g) according to the invention are also optionally carried out in the presence of a further metal salt, such as copper salts, for example copper (I) iodide.
  • a further metal salt such as copper salts, for example copper (I) iodide.
  • reaction temperatures can be varied within a substantial range. In general, temperatures from 20 ° C to 180 ° C, preferably at temperatures from 50 ° C to 150 ° C.
  • Suitable diluents for carrying out process (c) according to the invention and the second step (hydrogenation) of process (d) according to the invention are all inert organic solvents. These preferably include aliphatic or alicyclic hydrocarbons, e.g.
  • Ethers such as diethyl ether, diisopropyl ether, methyl tert-butyl ether,
  • the second step (hydrogenation) of process (d) according to the invention is carried out in the presence of a catalyst.
  • catalysts which are usually used for hydrogenations are suitable as such. Examples include: Raney nickel, palladium, ruthenium or platinum, optionally on a carrier material, such as e.g. Activated carbon.
  • the hydrogenation in the second step of process (d) according to the invention can also be carried out in the presence of triethylsilane instead of in the presence of hydrogen in combination with a catalyst.
  • reaction temperatures can be varied within a substantial range when carrying out process (c) according to the invention and the second step of process (d) according to the invention. In general, temperatures from 0 ° C to 150 ° C, preferably at temperatures from 20 ° C to 100 ° C.
  • Process (c) according to the invention and the second step of process (d) according to the invention are carried out under a hydrogen pressure between 0.5 and 200 bar, preferably between 2 and 50 bar, particularly preferably between 3 and 10 bar.
  • Suitable eluents for carrying out the third step of process (d) according to the invention or of process (e) according to the invention are all customary inert, organic solvents and mixtures of these or, if appropriate, mixtures with water.
  • Halogenated aliphatic, alicyclic or aromatic hydrocarbons such as petroleum ether, hexane, heptane, cyclohexane, can preferably be used; Dichloromethane, chloroform; Alcohols, such as methanol, ethanol, propanol; Nitriles such as acetonitrile; Esters such as methyl acetate or ethyl acetate.
  • aliphatic hydrocarbons such as hexane or heptane
  • alcohols such as methanol or propanol, very particularly preferably n-heptane and isopropanol or mixtures of these.
  • reaction temperatures can be varied over a wide range when carrying out the third step of process (d) or process (e) according to the invention.
  • temperatures between 10 ° C and 60 ° C, preferably between 10 ° C and 40 ° C, particularly preferably at room temperature.
  • an approximately 1% strength solution of the racemic compound (IH-a-rac) or (Hl-b-rac) is generally used for the chromatographic separation is used.
  • concentrations it is also possible to use other concentrations.
  • the processing takes place according to usual Methods. In general, the procedure is such that the eluate is largely concentrated, solid constituents are filtered off and dried after washing with n-heptane. If necessary, the residue is chromatographically freed of any impurities still present. Mixtures of n-hexane or cyclohexane and ethyl acetate are used as eluents, the composition of which must be adapted to the particular compound to be purified.
  • the substances according to the invention have a strong microbicidal action and can be used to control unwanted microorganisms, such as fungi and bacteria, in crop protection and in material protection.
  • Fungicides can be used to protect plants against Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes and Deuteromycetes.
  • Bactericides can be used in crop protection to combat Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae and Streptomycetaceae.
  • Xanthomonas species e.g. Xanthomonas campestris pv. Oryzae;
  • Pseudomonas species e.g. Pseudomonas syringae pv. Lachrymans;
  • Erwinia species e.g. Erwinia amylovora
  • Pythium species e.g. Pythium ultimum
  • Phytophthora species e.g. Phytophthora infestans
  • Pseudoperonospora species e.g. Pseudoperonospora humuli or
  • Plasmopara species e.g. Plasmopara viticola
  • Bremia species e.g. Bremia lactucae
  • Peronospora species e.g. Peronospora pisi or P. brassicae;
  • Erysiphe species e.g. Erysiphe graminis
  • Sphaerotheca species e.g. Sphaerotheca fuliginea
  • Podosphaera species e.g. Podosphaera leucotricha
  • Venturia species such as Venturia inaequalis
  • Pyrenophora species such as, for example, Pyrenophora teres or P. graminea (Conidial form: Drechslera, Syn: Helminthosporium);
  • Cochliobolus species e.g. Cochliobolus sativus
  • Drechslera (Conidial form: Drechslera, Syn: Helminthosporium);
  • Uromyces species e.g. Uromyces appendiculatus
  • Puccinia species e.g. Puccinia recondita
  • Sclerotinia species e.g. Sclerotinia sclerotiorum
  • Tilletia species such as Tilletia caries
  • Ustilago species e.g. Ustilago nuda or Ustilago avenae;
  • Pellicularia species such as e.g. Pellicularia sasakii; Pyricularia species, e.g. Pyricularia oryzae;
  • Fusarium species e.g. Fusarium culmorum
  • Botrytis species e.g. Botrytis cinerea
  • Septoria species e.g. Septoria nodorum
  • Leptosphaeria species e.g. Leptosphaeria nodorum
  • Cercospora species e.g. Cercospora canescens
  • Alternaria species e.g. Alternaria brassicae
  • Pseudocercosporella species e.g. Pseudocercosporella herpotrichoides
  • Rhizoctonia species e.g. Rhizoctonia solani.
  • the active compounds according to the invention also have a strong strengthening effect in plants. They are therefore suitable for mobilizing the plant's own defenses against attack by unwanted microorganisms.
  • Plant-strengthening (resistance-inducing) substances are to be understood in the present context as substances which are able to stimulate the defense system of plants in such a way that the treated plants develop extensive resistance to these microorganisms when subsequently inoculated with undesired microorganisms.
  • Undesired microorganisms are to be understood in the present case as phytopathogenic fungi, bacteria and viruses.
  • the substances according to the invention can thus be used to protect plants against attack by the pests mentioned within a certain period of time after the treatment.
  • the period of time within which protection is brought about generally extends from 1 to 10 days, preferably 1 to 7 days, after the treatment of the plants with the active compounds.
  • the good plant tolerance of the active ingredients in the fight against plant diseases necessary concentrations allow a treatment of above-ground parts of plants, of plant and seed, and the soil.
  • the active compounds according to the invention can be used with particularly good results in combating cereal diseases, such as e.g. against Puccinia species and diseases in wine, fruit and vegetable growing, e.g. against Botrytis, Venturia or Alternaria species.
  • cereal diseases such as e.g. against Puccinia species and diseases in wine, fruit and vegetable growing, e.g. against Botrytis, Venturia or Alternaria species.
  • the active compounds according to the invention are also suitable for increasing the crop yield. They are also less toxic and have good plant tolerance.
  • the active compounds according to the invention can also be used in certain concentrations and application rates as herbicides, for influencing plant growth and for controlling animal pests. If appropriate, they can also be used as intermediates and precursors for the synthesis of further active compounds.
  • Plants are understood here to mean all plants and plant populations, such as desired and undesired wild plants or crop plants (including naturally occurring crop plants).
  • Crop plants can be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including the transgenic plants and including the plant cultivars which can or cannot be protected by plant breeders' rights.
  • Plant parts are to be understood to mean all above-ground and underground parts and organs of the plants, such as shoots, leaves, flowers and roots, examples being leaves, needles, stems, stems, flowers, fruiting bodies, fruits and seeds as well as roots, tubers and rhizomes.
  • the plant parts also include crops and vegetative and generative propagation material, for example cuttings, tubers, rhizomes, offshoots and seeds.
  • the treatment of the plants and parts of plants with the active compounds according to the invention is carried out directly or by acting on their surroundings, living space or storage space using the customary treatment methods, e.g. by dipping, spraying, vaporizing, atomizing, scattering, spreading and, in the case of propagation material, in particular in the case of seeds, furthermore by coating in one or more layers.
  • the substances according to the invention can be used to protect technical materials against attack and destruction by undesired microorganisms.
  • technical materials are understood to mean non-living materials that have been prepared for use in technology.
  • technical materials which are to be protected against microbial change or destruction by active substances according to the invention can be adhesives, glues, paper and cardboard, textiles, leather, wood, paint and plastic articles, cooling lubricants and other materials which can be attacked or decomposed by microorganisms .
  • parts of production systems for example cooling water circuits, are also mentioned which can be impaired by the multiplication of microorganisms.
  • technical materials are preferably adhesives, glues, papers and cartons, leather, wood, paints, cooling lubricants and heat transfer liquids, particularly preferably wood.
  • Bacteria, fungi, yeasts, algae and mucilaginous organisms may be mentioned as microorganisms which can cause degradation or a change in the technical materials.
  • the active compounds according to the invention preferably act against fungi, in particular mold, wood-discoloring and wood-destroying fungi (Basidiomycetes) and against slime organisms and algae.
  • Microorganisms of the following genera may be mentioned, for example:
  • Alternaria such as Alternaria tenuis, Aspergillus, such as Aspergillus niger,
  • Chaetomium like Chaetomium globosum
  • Coniophora such as Coniophora puetana
  • Lentinus such as Lentinus tigrinus
  • Penicillium such as Penicillium glaucum
  • Polyporus such as Polyporus versicolor
  • Aureobasidium such as Aureobasidium pullulans
  • Sclerophoma such as Sclerophoma pityophila
  • Trichoderma like Trichoderma viride
  • Escherichia such as Escherichia coli
  • Pseudomonas such as Pseudomonas aeruginosa
  • Staphylococcus such as Staphylococcus aureus.
  • the active ingredients can be converted into the customary formulations, such as solutions, emulsions, suspensions, powders, foams, pastes, granules, aerosols, very fine encapsulations in polymeric substances and in coating compositions for seeds, and ULV Cold and warm fog formulations.
  • These formulations are prepared in a known manner, for example by mixing the active ingredients with extenders, that is to say liquid solvents, pressurized liquefied gases and / or solid carriers, optionally using surface-active agents, that is to say emulsifiers and / or dispersants and / or foam-generating agents.
  • extenders that is to say liquid solvents, pressurized liquefied gases and / or solid carriers, optionally using surface-active agents, that is to say emulsifiers and / or dispersants and / or foam-generating agents.
  • organic solvents can, for example, also be used as auxiliary solvents.
  • aromatics such as xylene, toluene or alkylnaphthalenes
  • chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chlorethylenes or methylene chloride
  • aliphatic hydrocarbons such as cyclohexane or paraffins, for example petroleum fractions
  • alcohols such as butanol or glycol
  • Ethers and esters ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone
  • strongly polar solvents such as dimethylformamide and dimethyl sulfoxide, and water.
  • Liquefied gaseous extenders or carriers mean those liquids which are gaseous at normal temperature and under normal pressure, for example aerosol propellants such as halogenated hydrocarbons and butane, propane, nitrogen and carbon dioxide.
  • Solid carrier materials come into question: for example natural rock powders such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and synthetic rock powders such as highly disperse silica, aluminum oxide and silicates.
  • Solid carriers for granules are possible: e.g.
  • emulsifiers and / or foaming agents are: for example nonionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkyl sulfonates, alkyl sulfates, aryl sulfonates and protein hydrolyzates.
  • Possible dispersants are: eg lignin sulfite waste liquor and methyl cellulose.
  • Adhesives such as carboxymethyl cellulose, natural and synthetic powdery, granular or latex-shaped polymers, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids can be used in the formulations.
  • Other additives can be mineral and vegetable oils.
  • Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc can be used.
  • the formulations generally contain between 0.1 and 95 percent by weight of active compound, preferably between 0.5 and 90%.
  • the active compounds according to the invention can also be used in a mixture with known fungicides, bactericides, acaricides, nematicides or insecticides, in order, for example, to broaden the activity spectrum or to prevent the development of resistance. In many cases, synergistic effects are obtained, ie the effectiveness of the mixture is greater than the effectiveness of the individual components.
  • 2-Phenyl ⁇ henol 8-hydroxyquinoline sulfate; Acibenzolar-S-methyl; aldimorph; amidoflumet; Ampropylfos; Ampropylfos-potassium; andoprim; anilazine; azaconazole; azoxystrobin; benalaxyl; Benodanil; benomyl; Benthiavalicarb-isopropyl; Benzamacril; Benzamacril-isobutyl; bilanafos; binapacryl;
  • epoxiconazole ethaboxam; ethirimol; etridiazole; famoxadone; fenamidone; Fenapanil; fenarimol; Fenbuconazole; fenfuram; fenhexamid; Fenitropan; fenoxanil; fenpiclonil; fenpropidin; Fenpropimorph; ferbam; fluazinam; Flubenzimine; fludioxonil; flumetover; flumorph; fluoromides; Fluoxastrobin; fluquinconazole; flurprimidol; flusilazole; flusulfamide; flutolanil; flutriafol; folpet; fosetyl
  • isoprothiolane Isovaledione; kasugamycin; Kresoxim-methyl; mancozeb; maneb; Meferimzone;
  • mepanipyrim mepronil; metalaxyl; Metalaxyl-M; metconazole; methasulfocarb; Methfuroxam;
  • metiram metiram
  • metominostrobin Metsulfovax
  • mildiomycin myclobutanil
  • myclozoline myclozoline
  • natamycin metiram
  • nicobifen Nitro Thal-isopropyl; Noviflumuron; nuarimol; ofurace; orysastrobin; oxadixyl; Oxolinic acid; Oxpoconazole; oxycarboxin; Oxyfenthiin; paclobutrazol; Pefurazoate; penconazole; pencycuron;
  • phosdiphen phthalides; picoxystrobin; piperalin; Polyoxins; Polyoxorim; Probenazole; prochloraz; Procymidones; propamocarb; Propanosine-sodium; propiconazole; propineb; proquinazid; prothioconazole;
  • pyraclostrobin Pyrazohos; pyrifenox; pyrimethanil; pyroquilon; Pyroxyfur; Pyrrolnitrine; Quinconazole; quinoxyfen; quintozene; Simeconazole; Sp oxamine; Sulfur; tebuconazole; tecloftalam; Tecnazene; Tetcyclacis; tetraconazole; thiabendazole; Thicyofen; Thifluzamide; Thiophanate-methyl;
  • Acetylcholinesterase (AChE) inhibitors 1.1 carbamates (for example alanycarb, aldicarb, aldoxycarb, Allyxycarb, aminocarb, azamethiphos, benzyl diocarb, Ben Positionacarb, Bufencarb, Butacarb, Butocarboxim, Butoxycarboxim, carbaryl, carbofuran, carbosulfan, Chloethocarb, coumaphos, Cyanofenphos, Cyanophos , Dimetilan, Ethiofencarb, Fenobarb, Fenothiocarb, Formetanate, Furathiocarb, Isoprocarb, Metam-sodium, Methiocarb, Methomyl, Metolcarb, Oxamyl, Pirimicarb, Promecarb, Propoxur, Thiodicarb, Thiofanox, Triazamate, Tri ethacarbylCarb
  • Organophosphates e.g. acephate, azamethiphos, azinphos (-methyl, -ethyl), bromophos-ethyl, bromfenvinfos (-methyl), butathiofos, cadusafos, carbophenothion, chlorethoxyfos, chlorfenvinphos, chlormephos, chlorpyrifos (-maphos-ethyl) , Cyanofenphos, Cyanophos, Chlorfenvinphos, Demeton-S-methyl, Demeton-S-methylsulphon, Dialifos, Diazinon, Dichlofenthion, Dichlorvos / DDVP, Dicrotophos, Dimethoate, Dimethylvinphos, Dioxabenzofos, Disulfoton, EPN, Ethi- on , Etrimfos, Famphur, Fenamiphos, Fenitrothion, Fensulfothion
  • Pyrethroids e.g. acrinathrin, allethrin (d-cis-trans, d-trans), beta-cyfluthrin, bifenthrin, bioallethrin, bioallethrin-S-cyclopentyl isomer, bioemanomethrin, biopermethrin, bioresmethrin, chlova-porthrin, cis , Cis-resmethrin, cis-permethrin, clocythrin, cycloprothrin, cyfluthrin, cyhalothrin, cypermethrin (alpha, beta, theta, zeta), cyphenothrin, DDT, deltamethrin, empenetrin (lR-isomer), esfenproxerate , Fenfluthrin, Fenpropathrin, Fenpyrithrin,
  • Oxadiazines e.g. indoxacarb
  • Acetylcholine receptor agonist antagonists e.g. indoxacarb
  • Chloronicotinyls / neonicotinoids e.g. acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, nithiazine, thiacloprid, thiamethoxam
  • Fiprole e.g. Acetoprole, Ethiprole, Fipronil, Vaniliprole
  • Chloride channel activators e.g. Acetoprole, Ethiprole, Fipronil, Vaniliprole
  • Mectins e.g. abamectin, avermectin, emamectin, emamectin-benzoate, ivermectin, mitemectin, milbemycin
  • Diacylhydrazine e.g. chromafenozide, halofenozide, methoxyfenozide, tebufenozide
  • Benzoyl ureas e.g. bistrifluron, chlofluazuron, diflubenzuron, fluazuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, penfluron, teflubenzuron, tri-flumuron
  • Buprofezin e.g. bistrifluron, chlofluazuron, diflubenzuron, fluazuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, penfluron, teflubenzuron, tri-flumuron
  • METI's e.g. fenazaquin, fenpyroximate, pyrimidifen, pyridaben, tebufenpyrad, tolfenpyrad
  • Inhibitors of fat synthesis 16.1 tetronic acids (e.g. spirodiclofen, spiromesifen)
  • 16.2 tetramic acids [e.g. 3- (2,5-Dimethylphenyl) -8-methoxy-2-oxo-l-azaspiro [4.5] dec-3-en-4-yl ethyl carbonate (alias: Carbonic acid, 3- (2,5-dimethylphenyl) -8-methoxy-2-oxo-l-azaspiro [4.5] dec-3-en-4-yl ethyl ester, CAS Reg.-No .: 382608-10-8) and Carbonic acid, cis-3- ( 2,5-dimethylphenyl) -8-methoxy-2-oxo-l-azaspiro [4.5] dec-3-en-4-yl ethyl ester (CAS Reg.No .: 203313-25-1)] 17.
  • Carboxamides e.g. flonicamide
  • Octopaminergic agonists e.g. Amitraz
  • Bios, hormones or pheromones e.g. Azadirachtin, Bacillus spec, Beauveria spec, Codlemone, Metarrhician spec, Paecilomyces spec, Thuringiensin, Verticillium spec.
  • Fumigants e.g. aluminum phosphide, methyl bromide, sulfuryl fluoride
  • Selective feeding inhibitors e.g. cryolite, flonicamide, pymetrozine
  • mite growth inhibitors e.g. clofentezine, etoxazole, hexythiazox
  • the compounds of the formula (I) according to the invention also have very good antimycotic effects. They have a very broad spectrum of antifungal effects, in particular against dermatophytes and shoot fungi, mold and diphasic fungi (e.g. against Candida species such as Candida albicans, Candida glabrata) as well as Epidermophyton floccosum, Aspergillus species such as Aspergillus niger and Aspergillophytonophytonyspecytonyspecyspecific trichomes mentagrophytes, microsporon species such as microsporon canis and audouinii.
  • Candida species such as Candida albicans, Candida glabrata
  • Epidermophyton floccosum Aspergillus species such as Aspergillus niger and Aspergillophytonophytonyspecytonyspecyspecific trichomes mentagrophytes
  • microsporon species such as microsporon canis and audouinii.
  • the list of these fungi is in no way
  • the active compounds can be used as such, in the form of their formulations or the use forms prepared therefrom, such as ready-to-use solutions, suspensions, wettable powders, pastes, soluble powders, dusts and granules. They are used in the customary manner, for example by watering, spraying, atomizing, scattering, dusting, foaming, brushing, etc. It is also possible to apply the active ingredients by the ultra-low-volume process or to prepare the active ingredient or the active ingredient itself Inject soil. It can also be the seed of the plants are treated.
  • the application rates can be varied within a relatively wide range, depending on the type of application.
  • the active compound application rates are generally between 0.1 and 10,000 g / ha, preferably between 10 and 1,000 gha.
  • the active compound application rates are generally between 0.001 and 50 g per kilogram of seed, preferably between 0.01 and 10 g per kilogram of seed.
  • the active compound application rates are generally between 0.1 and 10,000 g / ha, preferably between 1 and 5,000 g / ha.
  • plants and their parts can be treated.
  • plant species and plant varieties and their parts occurring wildly or obtained by conventional biological breeding methods, such as crossing or protoplast fusion, are treated.
  • transgenic plants and plant cultivars which have been obtained by genetic engineering methods, if appropriate in combination with conventional methods (genetically modified organisms) and their parts are treated.
  • the term “parts” or “parts of plants” or “parts of plants” was explained above.
  • Plants of the plant varieties which are in each case commercially available or in use are particularly preferably treated according to the invention.
  • Plant cultivars are understood to mean plants with new properties (“traits”) which have been cultivated by conventional breeding, by mutagenesis or by recombinant DNA techniques. These can be cultivars, breeds, bio- and genotypes.
  • the treatment according to the invention can also cause superadditive (“synergistic”) effects.
  • superadditive for example, reduced application rates and / or widening of the activity spectrum and / or one Enhancing the effect of the substances and agents which can be used according to the invention, better plant growth, increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering performance, easier harvesting, acceleration of ripeness, higher crop yields, higher quality and / or higher Nutritional value of the crop products, higher shelf life and / or workability of the crop products possible, which go beyond the effects that are actually to be expected.
  • the preferred transgenic plants or plant cultivars to be treated according to the invention include all plants which have received genetic material through the genetic engineering modification, which gives these plants particularly advantageous valuable properties (“traits”). Examples of such properties are better plant growth, Increased tolerance to high or low temperatures, increased tolerance to drought or to water or soil salt content, increased flowering performance, easier harvesting, acceleration of ripeness, higher harvest yields, higher quality and / or higher nutritional value of the harvest products, longer shelf life and / or Processability of the crop products Further and particularly highlighted examples of such properties are an increased defense of the plants against animal and microbial pests, such as against insects, mites, phytopathogenic fungi, bacteria and / or vire n and an increased tolerance of the plants to certain herbicidal active ingredients.
  • transgenic plants are the important crop plants, such as cereals (wheat, rice), corn, soybeans, potatoes, cotton, tobacco, rapeseed and fruit plants (with the fruits apples, pears, citrus fruits and grapes), with corn, soybeans, potatoes , Cotton, tobacco and rapeseed.
  • plants The properties (“traits”) which are particularly emphasized are the plants' increased defense against insects, arachnids, nematodes and snails due to toxins which arise in the plants, in particular those which are caused by the genetic material from Bacillus thuringiensis (for example by the genes CryIA (a) , CryIA (b), Cry ⁇ A (c), CryHA, CryHIA, CryIHB2, Cry9c Cry2Ab, Cry3Bb and CrylF as well as their combinations) are produced in the plants (hereinafter, "plants").
  • the increased defense of plants against fungi, bacteria and viruses by systemic acquired resistance (SAR), systemin, phytotoxins, elicitors and resistance genes and correspondingly expressed proteins and toxins are also particularly emphasized as traits.
  • Traits are also particularly emphasized the increased tolerance of the plants to certain herbicidal active ingredients, for example imidazolinones, sulfonylureas, glyphosate or phosphinotricin (for example” PAT "gene).
  • the genes imparting the desired properties (“traits”) can also be found in combinations with one another in the transgenic plants.
  • Examples of “Bt plants” are corn varieties, cotton varieties, soy varieties and potato varieties that are marketed under the trade names YTJELD GARD® (eg corn , Cotton, soy), KnockOut® (e.g. maize), StarLink® (e.g. maize), Bollgard® (cotton), Nucoton® (cotton) and NewLeaf® (potato).
  • Examples of herbicide-tolerant plants are corn varieties, cotton varieties and soy varieties that are sold under the trade names Roundup Ready® (tolerance to glyphosate e.g. corn, cotton, soy), Liberty Link® (tolerance to phosphinotricin, e.g.
  • rapeseed rapeseed
  • HVH® tolerance to Imidazolinone
  • STS® tolerance to sulfonylureas such as maize
  • the herbicide-resistant plants include the varieties marketed under the name Clearf ⁇ eld® (eg maize).
  • plants listed can be treated particularly advantageously according to the invention with the compounds of the general formula (I) or the active compound mixtures according to the invention.
  • the preferred ranges given above for the active substances or mixtures also apply to the treatment of these plants. Plant treatment with the compounds or mixtures specifically listed in the present text should be particularly emphasized.
  • the solution is then chromatographed on the Chiralcel OD ® silica gel phase [manufacturer: Daicel (Japan), column dimension: 500 mm ⁇ 40 mm (ID), particle size: 20 ⁇ m, flow rate: 40 ml / min] with n-heptane / Isopropanol 9: 1 (v / v) as an eluent according to the principle of high performance liquid chromatography (HPLC). To separate the entire amount, 5 ml (corresponding to 40 mg of the racemate) are applied to the column every 30 minutes. The compounds are detected with a UV detector at a wavelength of 210 nm.
  • logP values specified in the tables and manufacturing examples above are determined in accordance with EEC Directive 79/831 Annex V.A8 by HPLC (High Performance Liquid Chromatography) on a phase reversal column (C 18). Temperature: 43 ° C.
  • the determination is carried out in the acidic range at pH 2.3 with 0.1% aqueous phosphoric acid and acetonitrile as eluents; linear gradient from 10% acetonitrile to 90% acetonitrile.
  • the calibration is carried out with unbranched alkan-2-ones (with 3 to 16 carbon atoms) whose logP values are known (determination of the logP values on the basis of the retention times by linear interpolation between two successive alkanones).
  • the lambda max values were determined using the UV spectra from 200 nm to 400 nm in the maxima of the chromatographic signals. applications
  • Solvent 24.5 parts by weight of acetone 24.5 parts by weight of dimethylacetamide emulsifier: 1 part by weight of alkyl aryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with water to the desired concentration.
  • Evaluation is carried out 10 days after the inoculation. 0% means an efficiency that corresponds to that of the control, while an efficiency of 100% means that no infection is observed.
  • Solvent 24.5 parts by weight of acetone 24.5 parts by weight of dimethylacetamide emulsifier: 1 part by weight of alkylaryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with water to the desired concentration.
  • Evaluation is carried out 7 days after the inoculation. 0% means an efficiency that corresponds to that of the control, while an efficiency of 100% means that no infection is observed.
  • Solvent 24.5 parts by weight of acetone 24.5 parts by weight of dimethylacetamide emulsifier: 1 part by weight of alkyl aryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with water to the desired concentration.
  • the plants are then placed in the greenhouse at approximately 21.degree. C. and a relative atmospheric humidity of approximately 90%.
  • Evaluation is carried out 10 days after the inoculation. 0% means an efficiency that corresponds to that of the control, while an efficiency of 100% means that no infection is observed.
  • Botrytis test (bean) / protective
  • Solvent 24.5 parts by weight of acetone 24.5 parts by weight of dimethylacetamide emulsifier: 1 part by weight of alkyl aryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with water to the desired concentration.
  • Solvent 24.5 parts by weight of acetone 24.5 parts by weight of dimethylacetamide emulsifier: 1 part by weight of alkyl aryl polyglycol ether
  • active compound 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier and the concentrate is diluted with water to the desired concentration.
  • Evaluation is carried out 3 days after the inoculation. 0% means an efficiency that corresponds to that of the control, while an efficiency of 100% means that no infection is observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pyrrole Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Neue optisch aktive Carboxamide der Formel (I) in welcher R, M und A die in der Beschreibung angegebenen Bedeutungen haben, mehrere Verfahren zum Herstellen dieser Stoffe und deren Verwendung zum Bekämpfen von unerwünschten Mikroorganismen, sowie neue Zwischenprodukte und deren Herstellung.

Description

OPTISCH AKTIVE CARBOXAMIDE UND DEREN VERWENDUNG ZUR BEKÄMPFUNG VON UNERWÜNSCHTEN MIKROORGANISMEN
Die vorliegende Erfindung betrifft neue optisch aktive Carboxamide, mehrere Verfahren zu deren Herstellung und deren Verwendung zur Bekämpfung von unerwünschten Mikroorganismen.
Es ist bereits bekannt, dass zahlreiche Carboxamide fungizide Eigenschaften besitzen (vgl. z.B. WO 03/010149, WO 02/059086, WO 02/38542, WO 00/09482, DE-A 10229595, EP-A 0 591 699, EP-A 0 589 301 und EP-A 0 545 099). So sind z.B. die acemate von 5-Fluor-l,3-dimethyl-N-[2-(l,3,3- trimethylbutyl)phenyl]-lH-pyrazol-4-carboxarrιid aus WO 03/010149 und N-[2-(l,3-Dimethylbutyl)- phenyl]-2-iodbenza id aus DE-A 10229 595 bekannt. Die Wirksamkeit dieser Stoffe ist gut, lässt aber bei niedrigen Aufwandmengen in manchen Fällen zu wünschen übrig.
Wegen der vielfältigen Anforderungen an moderne Schädlingsbekämpfungsmittel, beispielsweise was Wirkhöhe, Wirkdauer, Wirkspektrum, Anwendungsspektrum, Toxizität, Kombination mit ande- ren Wirkstoffen, Kombination mit Formulierungshilfsmitteln oder die Synthese angeht, und wegen des möglichen Auftretens von Resistenzen kann die Entwicklung solcher Stoffe jedoch nie als abgeschlossen betrachtet werden, und es besteht beständig ein hoher Bedarf an neuen Verbindungen, die zumindest in Teilaspekten Vorteile gegenüber den bekannten Verbindungen bringen.
Es wurden nun neue optisch aktive Carboxamide der Formel (I)
gefunden, in welcher
R für Wasserstoff, Fluor, Chlor, Methyl, Ethyl oder Trifluormethyl steht,
wobei die mit * markierte Bindung mit dem Amid verbunden ist, während die mit # markierte Bindung mit der Alkylseitenkette verknüpft ist, R1 für Wasserstoff, Fluor, Chlor, Methyl oder Trifluormethyl steht,
A für den Rest der Formel (AI) (AI) steht, in welcher R2 für Methyl, Trifluormethyl oder Difluormethyl steht, R3 für Wasserstoff, Fluor oder Chlor steht, oder A für den Rest der Formel (A2)
(A2) steht, in welcher R4 für Trifluormethyl, Chlor, Brom oder Iod steht, oder
A für den Rest der Formel (A3)
(A3) steht, in welcher R5 für Methyl, Trifluormethyl oder Difluormethyl steht.
Die Verbindungen der Formel (I) besitzen S-Konfiguration [mit S markiertes C-Atom in Formel (I)].
Weiterhin wurde gefunden, dass man optisch aktive Carboxamide der Formel (I) erhält, indem man a) Carbonsäure-Derivate der Formel (H) O Λ .Λ- -x, ' W in welcher A die oben angegebenen Bedeutungen hat und X1 für Halogen oder Hydroxy steht, mit einem Amin der Formel (Hl)
in welcher R und M die oben angegebenen Bedeutungen haben, gegebenenfalls in Gegenwart eines Katalysators, gegebenenfalls in Gegenwart eines Konden- sationsmittels, gegebenenfalls in Gegenwart eines Säurebindemittels und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt, oder b) racemische Verbindungen der Formel (I-rac)
in welcher R, M und A die oben angegebenen Bedeutungen haben, an einer chiralen stationären Kieselgelphase in Gegenwart eines Eluenten oder eines Eluenten-Gemisches als flüssiger Phase chromatographiert, oder mit optisch aktiven Säuren unter Salzbildung fraktioniert kristallisiert und anschließend die enantiomerenreinen oder angereicherten Verbindungen der Formel (I) freisetzt, oder c) Verbindungen der Formel (IV)
in welcher R, M und A die oben angegebenen Bedeutungen haben, oder Verbindungen der Formel (V)
in welcher R, M und A die oben angegebenen Bedeutungen haben, oder Gemische beider Verbindungen in Gegenwart eines optisch aktiven Katalysators bzw. eines Katalysators mit optisch aktivem Liganden hydriert.
Schließlich wurde gefunden, dass die neuen optisch aktiven Carboxamide der Formel (I) sehr gute mikrobizide Eigenschaften besitzen und zur Bekämpfung unerwünschter Mikroorganismen sowohl im Pflanzenschutz als auch im Materialschutz verwendbar sind.
Die neuen optisch aktiven Carboxamide der Formel (I) zeichnen sich gegenüber bekannten Carboxamide vor allem durch verbesserte Wirkung, bzw. geringere Aufwandmenge und somit geringere Umweltbelastung und verminderte Toxizität aus.
Die erfindungsgemäßen optisch aktive Carboxamide sind durch die Formel (I) allgemein definiert. Bevorzugte Restedefinitionen der vorstehenden und nachfolgend genannten Formeln sind im Folgenden angegeben. Diese Definitionen gelten für die Endprodukte der Formel (I) wie für alle Zwischenprodukte gleichermaßen.
R steht bevorzugt für Wasserstoff, Methyl oder Ethyl. R steht besonders bevorzugt für Wasserstoff oder Methyl.
M steht bevorzugt für M-l .
M steht außerdem bevorzugt für M-2.
M steht außerdem bevorzugt für M-3. M steht außerdem bevorzugt für M-4.
M steht besonders bevorzugt für M-l , wobei R1 für Wasserstoff steht.
M steht außerdem besonders bevorzugt für M-2, wobei R1 für Wasserstoff steht.
R1 steht bevorzugt für Wasserstoff. R1 steht außerdem bevorzugt für Fluor, wobei Fluor besonders bevorzugt in 4-, 5- oder 6- Position, ganz besonders bevorzugt in 4- oder 6-Position, insbesondere in 4-Position des Anilidrestes steht [vgl. oben Formel (I)].
A steht bevorzugt für den Rest A 1. A steht besonders bevorzugt für AI mit der Bedeutung 5-Fluor-l,3-dimethyl-lH-pyrazol-4-yl, 3 -Trifluormethyl- 1 -methyl- 1 H-pyrazol-4-yl oder 3 -Difluormethyl- 1 -methyl- 1 H-pyrazol-4-yl . A steht ganz besonders bevorzugt für AI mit der Bedeutung 5-Fluor-l,3-dimethyl-lH-pyrazol- 4-yl.
A steht außerdem bevorzugt für den Rest A2.
A steht besonders bevorzugt für A2 mit der Bedeutung 2-Trifluormethylphenyl oder 2-Iod- phenyl.
A steht außerdem bevorzugt für den Rest A3. A steht besonders bevorzugt für A3 mit der Bedeutung l,4-Dimethyl-pyrazol-3"-yl, l-Methyl-4- trifluormethyl-pyrazol-3-yl oder l-Methyl-4-difluormethyl-pyrazol-3-yl. A steht ganz besonders bevorzugt für A3 mit der Bedeutung l-Methyl-4-trifluormethyl-pyrazol- 3-yl.
R2 steht bevorzugt für Methyl oder Trifluormethyl. R3 steht bevorzugt für Wasserstoff oder Fluor. R4 steht bevorzugt für Trifluormethyl oder Iod.
R5 steht bevorzugt für Trifluormethyl.
Die oben aufgeführten allgemeinen oder in Vorzugsbereichen aufgeführten Restedefmitionen bzw. Erläuterungen können jedoch auch untereinander, also zwischen den jeweiligen Bereichen und Vorzugsbereichen beliebig kombiniert werden. Sie gelten für die Endprodukte sowie für die Vor- und Zwischenprodukte entsprechend.
Die genannten Definitionen können untereinander in beliebiger Weise kombiniert werden. Außerdem können auch einzelne Definitionen entfallen.
Bevorzugt, besonders bevorzugt oder ganz besonders bevorzugt sind Verbindungen der Formel (T), welche jeweils die unter bevorzugt, besonders bevorzugt oder ganz besonders bevorzugt genannten Substituenten tragen.
Erläuterung der Verfahren und Zwischenprodukte Verfahren (a)
Verwendet man l-Methyl-4-(trifluormethyl)-lH-pyrrol-3-carbonyl-chlorid und {2-[(lS)-l,3,3-Trime- thylbutyl]phenyl}amin als Ausgangsstoffe, so kann das erfindungsgemäße Verfahren (a) durch das folgende Formelschema veranschaulicht werden:
Die zur Durchführung des erfindungsgemäßen Verfahrens (a) als Ausgangsstoffe benötigten Carbonsäure-Derivate sind durch die Formel (H) allgemein definiert. In dieser Formel (H) hat A bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt für A angegeben wurden. X1 steht bevorzugt für Chlor, Brom oder Hydroxy, besonders bevorzugt für Chlor.
Die Carbonsäure-Derivate der Formel (H) sind bekannt (vgl. WO 93/11117, EP-A 0 545 099, EP-A 0 589 301 und EP-A 0 589 313). Die zur Durchführung des erfindungsgemäßen Verfahrens (a) als Ausgangsstoffe weiterhin benötigten Amine sind durch die Formel (IH) allgemein definiert. In dieser Formel (HT) haben R und M bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diese Reste als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt angegeben wurden.
Die Amine der Formel (IH) sind neu.
Amine der Formel (Tü-a)
in welcher
R die oben angegebenen Bedeutungen hat,
M1 für M-l steht, lassen sich beispielsweise herstellen, indem man d) in einem ersten Schritt ein Anilin-Derivat der Formel (VI)
in welcher R1 die oben angegebenen Bedeutungen hat, mit einem Alken der Formel (VH) in welcher R die oben angegebenen Bedeutungen hat, in Gegenwart eines Katalysators, gegebenenfalls in Gegenwart einer Base und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt, und das so erhaltene Alkenanilin der Formel (VTH)
in welcher R und R1 die oben angegebenen Bedeutungen haben, in einem zweiten Schritt gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators hydriert, und das so erhaltene racemische Anilin-Derivat der Formel (HI-a-rac)
in welcher R und R1 die oben angegebenen Bedeutungen haben, in einem dritten Schritt an einer chiralen stationären Kieselgelphase in Gegenwart eines Elu- enten oder eines Eluenten-Gemisches als flüssiger Phase chromatographiert.
Die Hydrierung von Verbindungen der Formel (VIH) kann gegebenenfalls auch in Gegenwart eines optisch aktiven Katalysators, bzw. in Gegenwart eines Katalysators und eines optisch aktiven Liganden erfolgen und somit optisch aktive Verbindungen der Formel (Hl-a) liefern.
Verbindungen der Formel (Tü-a-rac) können auch in Anwesenheit von optisch aktiven Säuren unter Salzbildung fraktioniert kristallisiert werden, wonach man enantiomerenreine oder angereicherte Verbindungen der Formel (HI-a) freisetzt. Als Säuren zur Bildung diastereomerer Salze eignen sich generell alle optisch aktiven Säuren. Beispielhaft seien genannt: (lS)-(+)-Campher-10-sulfonsäure, (1R)- (-)-Campher-10-sulfonsäure, S,S-(-)-Weinsäure, R,R-(+)-Weinsäure, R-Milchsäure, S-Milchsäure oder optisch aktive Aminosäuren, bevorzugt natürlich vorkommende optisch aktive Aminosäuren.
Die zur Durchführung des erfindungsgemäßen Verfahrens (d) als Ausgangsstoffe benötigten Anilin- Derivate sind durch die Formel (VI) allgemein definiert. In dieser Formel (VI) hat R1 bevorzugt, be- sonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diese Reste als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt angegeben wurden.
Anilin-Derivate der Formel (VI) sind bekannt.
Die zur Durchführung des erfindungsgemäßen Verfahrens (d) als Ausgangsstoffe weiterhin benötigten Alkene sind durch die Formel (VH) allgemein definiert. In dieser Formel (VH) hat R bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diesen Rest als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt angegeben wurden.
Alkene der Formel (VH) sind bekannt oder können nach bekannten Methoden erhalten werden. Die bei der Durchführung des erfindungsgemäßen Verfahrens (d) als Zwischenprodukte durchlaufenen Alkenaniline sind durch die Formel (VuT) allgemein definiert. In dieser Formel (VΩΣ) haben R und R1 bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diese Reste als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt angegeben wurden.
Alkenaniline der Formel (VEIT) sind bekannt und/oder können nach bekannten Verfahren erhalten werden.
Die Amine der Formel (Hi-b)
H CH3 CH3 in welcher
R die oben angegebenen Bedeutungen hat,
M2 für M-2, M-3 oder M-4 steht, lassen sich beispielsweise herstellen, indem man e) racemische Amine der Formel (Hl-b-rac)
in welcher R und M2 die oben angegebenen Bedeutungen haben, an einer chiralen stationären Kieselgelphase in Gegenwart eines Eluenten oder eines Eluenten-Gemisches als flüssiger Phase chromatographiert.
Die racemischen Amine der Formel (Hl-b-rac) sind bekannt und/oder können nach bekannten Verfahren erhalten werden (vgl. z.B. WO 02/38542, EP-A 1 036793 und EP-A 0 737 682).
Verfahren (b)
Die bei der Durchführung des erfϊndungsgemäßen Verfahrens (b) als Ausgangsstoffe benötigten racemischen Verbindungen sind durch die Formel (I-rac) allgemein definiert. In dieser Formel stehen R, M und A bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt für diejenigen Bedeutungen, die bereits in Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diese Reste als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt genannt wurden. Die bei der Durchführung des erfmdungsgemäßen Verfahrens (b) eingesetzten racemischen Verbindungen der Formel (I-rac) sind bekannt und lassen sich nach bekannten Verfahren herstellen (vgl. z.B. WO 03/010149, WO 02/38542 und DE-A 10229 595). Racemische Verbindungen der Formel (I-rac) können z.B. erhalten werden, indem man Carbonsäure-Derivate der Formel (H) mit racemi- sehen Verbindungen der Formeln (IH-a-rac) oder (Hl-b-rac) in Analogie zu dem erfindungsgemäßen Verfahren (a) umsetzt.
Bei der Durchführung des erfindungsgemäßen Verfahrens (b) arbeitet man nach Methoden der präpa- rativen Chromatographie, vorzugsweise nach der Methode der High Performance Liquid Chromato- graphy (HPLC). Dabei wird eine chirale stationäre Kieselgelphase verwendet. Als besonders geeignet für die Trennung der Verbindungen der Formel (I-rac) in die beiden Enantiomere hat sich Chiracel OD® erwiesen. Dieses Trennmaterial ist kommerziell erhältlich. Es können aber auch andere stationäre Phasen als Chromatographiematerial verwendet werden.
Sollen Verbindungen der Formel (I-rac) mittels fraktionierter Kristallisation in die einzelnen optisch aktiven Verbindungen getrennt werden, eignen sich zur Bildung diastereomerer Salze generell alle optisch aktiven Säuren. Beispielhaft seien genannt: (lS)-(+)-Campher-10-sulfonsäure, (lR)-(-)- Campher-10-sulfonsäure, S,S-(-)-Weinsäure, R,R-(+)-Weinsäure, R-Milchsäure, S-Milchsäure oder optisch aktive Aminosäuren, bevorzugt natürlich vorkommende optisch aktive Aminosäuren.
Verfahren (c)
Verwendet man N-[2-(l,3-Dimethylbut-l-en-l-yl)phenyl]-5-fluor-l,3-dimethyl-lH-pyrazol-4-carbox- amid, Wasserstoff und einen optisch aktiven Katalysator als Ausgangsstoffe, so kann das erfindungsgemäße Verfahren (c) durch das folgende Formelschema veranschaulicht werden:
Die bei der Durchführung des erfindungsgemäßen Verfahrens (c) als Ausgangsstoffe benötigten Verbindungen sind durch die Formel (IV) und (V) allgemein definiert. In diesen Formeln haben R, M und A bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits in Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diese Reste als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt genannt wurden. Verbindungen der Formel (TV) und (V) (oder Gemische dieser Verbindungen) werden erhalten, indem man f) Carbonsäure-Derivate der Formel H) in welcher A die oben angegebenen Bedeutungen hat und X1 für Halogen oder Hydroxy steht, entweder mit einem Alkenanilin der Formel (VTfl)
in welcher R und R1 die oben angegebenen Bedeutungen haben, oder mit einem Alkenanilin der Formel (TX)
in welcher R und R1 die oben angegebenen Bedeutungen haben, gegebenenfalls in Gegenwart eines Katalysators, gegebenenfalls in Gegenwart eines Konden- sationsmittels, gegebenenfalls in Gegenwart eines Säurebindemittels und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt, oder g) Carboxamide der Formel (X)
in welcher M und A die oben angegebenen Bedeutungen haben, und Y für Brom oder Iod steht, mit einem Alken der Formel (Vπ) in welcher R die oben angegebenen Bedeutungen hat, oder einem Alken der Formel (XI) in welcher R die oben angegebenen Bedeutungen hat, in Gegenwart eines Katalysators, gegebenenfalls in Gegenwart einer Base und gegebenen- falls in Gegenwart eines Verdünnungsmittels umsetzt.
Die zur Durchführung des erfindungsgemäßen Verfahrens (f) als Ausgangsstoffe benötigten Carbonsäure-Derivate der Formel (H) sind bereits in Zusammenhang mit Verfahren (a) beschrieben worden.
Die zur Durchführung des erfϊndungsgemäßen Verfahrens (f) weiterhin als Ausgangsstoffe benötigten Alkenaniline der Formel (VIII) sind bereits in Zusammenhang mit Verfahren (d) beschrieben worden.
Die zur Durchführung des erfindungsgemäßen Verfahrens (f) alternativ als Ausgangsstoffe benö- tigten Alkenaniline sind durch die Formel (TX) allgemein definiert. In dieser Formel (DC) haben R und R! bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel
(I) für diese Reste als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt angegeben wurden.
Alkenaniline der Formel (IX) sind bekannt und/oder können nach bekannten Verfahren erhalten werden.
Die zur Durchführung des erfindungsgemäßen Verfahrens (g) als Ausgangsstoffe benötigten Carbox- amide sind durch die Formel (X) allgemein definiert. In dieser Formel (X) haben M und A bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diese Reste als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt angegeben wurden.
Carboxamide der Formel (X) sind bekannt und/oder können nach bekannten Methoden erhalten werden (vgl. WO 03/010149).
Die zur Durchführung des erfindungsgemäßen Verfahrens (g) weiterhin als Ausgangsstoffe benötigten Alkene der Formel (VH) sind bereits in Zusammenhang mit Verfahren (d) beschrieben worden. Die zur Durchführung des erfindungsgemäßen Verfahrens (g) alternativ als Ausgangsstoffe benötigten Alkene sind durch die Formel (XI) allgemein definiert. In dieser Formel (XT) hat R bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Verbindungen der Formel (I) für diesen Rest als bevorzugt, besonders bevorzugt bzw. ganz besonders bevorzugt angegeben wurden.
Alkene der Formel (XT) sind bekannt oder können nach bekannten Methoden erhalten werden.
Reaktionsbedingungen Als Verdünnungsmittel zur Durchführung der erfindungsgemäßen Verfahren (a) und (f) kommen alle inerten organischen Lösungsmittel in Betracht. Hierzu gehören vorzugsweise aliphatische, alicycli- sche oder aromatische Kohlenwasserstoffe, wie z.B. Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan, Benzol, Toluol, Xylol oder Decalin; halogenierte Kohlenwasserstoffe, wie z.B. Chlorbenzol, Dichlorbenzol, Dichlormethan, Chloroform, Tetrachlormethan, Dichlorethan oder Tri- chlorethan; Ether, wie Diethylether, Diisopropylether, Methyl-tert-butylether, Methyl-tert-amylether, Dioxan, Tetrahydrofuran, 1,2-Dimethoxyethan, 1,2-Diethoxyethan oder Anisol oder Amide, wie N,N- Dimethylformamid, N,N-Dimethylacetamid, N-Methylformanilid, N-Methylpyrrolidon oder Hexame- thylphosphorsäuretriamid.
Die erfindungsgemäßen Verfahren (a) und (f) werden gegebenenfalls in Gegenwart eines geeigneten Säureakzeptors durchgeführt. Als solche kommen alle üblichen anorganischen oder organischen Basen infrage. Hierzu gehören vorzugsweise Erdalkalimetall- oder Alkalimetallhydride, -hydroxide, -amide, -alkoholate, -acetate, -carbonate oder -hydrogencarbonate, wie z.B. Natriumhydrid, Natrium- amid, Natrium-methylat, Natrium-ethylat, Kalium-tert.-butylat, Natriumhydroxid, Kaliumhydroxid, Ammoniumhydroxid, Natriumacetat, Kaliumacetat, Calciumacetat, Ammoniumacetat, Natriumcarbo- nat, Kaliumcarbonat, Kaliumhydrogencarbonat, Natriumhydrogencarbonat oder Ammoniumcarbonat, sowie tertiäre Amine, wie Trimethylamin, Triethylamin, Tributylamin, N,N-Dimethylanilin, N,N- Dimethyl-benzylamin, Pyridin, N-Methylpiperidin, N-Methylmo holin, N,N-Dimethylaminopyridin, Diazabicyclooctan (DABCO), Diazabicyclononen (DBN) oder Diazabicycloundecen (DBU).
Die erfindungsgemäßen Verfahren (a) und (f) werden gegebenenfalls in Gegenwart eines geeigneten Kondensationsmittels durchgeführt. Als solche kommen alle üblicherweise für derartige Amidie- rungsreaktionen verwendbaren Kondensationsmittel infrage. Beispielhaft genannt seien Säurehaloge- nidbildner wie Phosgen, Phosphortribromid, Phosphortrichlorid, Phosphorpentachlorid, Phosphor- oxychlorid oder Thionylchlorid; Anhydridbildner wie Chlorameisensäureethylester, Chlorameisensäuremethylester, Chlorameisensäureisopropylester, Chlorameisensäureisobutylester oder Methansul- fonylchlorid; Carbodiimide, wie N,N'-Dicyclohexylcarbodiimid (DCC) oder andere übliche Kondensationsmittel, wie Phosphorpentoxid, Polyphosphorsäure, N,N'-Carbonyldiimidazol, 2-Ethoxy-N- ethoxycarbonyl-l,2-dihydrochinolin (EEDQ), Triphenylphosphin/Tetrachlorkohlenstoff oder Brom- tripyrrolidinophosphonium-hexafluorophosphat.
Die erfindungsgemäßen Verfahren (a) und (f) werden gegebenenfalls in Gegenwart eines Katalysators durchgeführt. Beispielsweise genannt seien 4-Dimethylaminopyridin, 1-Hydroxy-benzotriazol oder Dimethylformamid.
Die Reaktionstemperaturen können bei der Durchführung der erfindungsgemäßen Verfahren (a) und (f) in einem größeren Bereich variiert werden. Im Allgemeinen arbeitet man bei Temperaturen von 0°C bis 150°C, vorzugsweise bei Temperaturen von 0°C bis 80°C.
Zur Durchführung des erfindungsgemäßen Verfahrens (a) zur Herstellung der Verbindungen der Formel (I) setzt man pro Mol des Carbonsäure-Derivates der Formel (H) im Allgemeinen 0,2 bis 5 Mol, vorzugsweise 0,5 bis 2 Mol an Anilin-Derivat der Formel (IH) ein.
Zur Durchführung des erfindungsgemäßen Verfahrens (f) zur Herstellung der Verbindungen der Formeln (IV) und (V) setzt man pro Mol des Carbonsäure-Derivates der Formel (H) im Allgemeinen 0,2 bis 5 Mol, vorzugsweise 0,5 bis 2 Mol an Alkenanilin der Formel (VTH) oder (TX) ein.
Als Eluenten kommen bei der Durchführung des erfmdungsgemäßen Verfahren (b) jeweils alle üblichen inerten, organischen Solventien sowie Gemische von diesen, oder auch Gemische von diesen mit Wasser infrage. Vorzugsweise verwendbar sind gegebenenfalls halogenierte aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie Petrolether, Hexan, Heptan, Cyclohexan; Di- chlormethan, Chloroform; Alkohole, wie Methanol, Ethanol, Propanol; Nitrile, wie Acetonitril; Ester wie Essigsäuremethylester oder Essigsäureethylester. Besonders bevorzugt verwendet man aliphatische Kohlenwasserstoffe, wie Hexan oder Heptan, und Alkohole, wie Methanol oder Propanol, ganz besonders bevorzugt n-Heptan und Isopropanol bzw. Gemische von diesen.
Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (b) jeweils in einem größeren Bereich variiert werden. Im Allgemeinen arbeitet man bei Temperaturen zwischen 10°C und 60°C, vorzugsweise zwischen 10°C und 40°C, besonders bevorzugt bei Raumtemperatur.
Bei der Durchführung des erfmdungsgemäßen Verfahrens (b) wird im Allgemeinen eine ca. l%ige Lösung der racemischen Verbindung (I-rac) für die chro atographische Trennung eingesetzt. Es ist jedoch auch möglich, andere Konzentrationen zu verwenden. Die Aufarbeitung erfolgt nach üblichen
Methoden. Im Allgemeinen verfährt man in der Weise, dass man das Eluat weitgehend einengt, feste
Bestandteile abfiltriert und nach dem Waschen mit n-Heptan trocknet. Der Rückstand wird gegebe- nenfalls chromatographisch von eventuell noch vorhandenen Verunreinigungen befreit. Dabei werden als Eluenten Gemische aus n-Hexan bzw. Cyclohexan und Essigsäureethylester verwendet, deren Zusammensetzung der jeweils zu reinigenden Verbindung angepasst werden müssen.
Als Verdünnungsmittel zur Durchführung des ersten Schrittes des erfindungsgemäßen Verfahrens (d) sowie des erfindungsgemäßen Verfahrens (g) kommen alle inerten organischen Lösungsmittel in Betracht. Hierzu gehören vorzugsweise Nitrile, wie Acetonitril, Propionitril, n- oder i-Butyronitril oder Benzonitril oder Amide, wie N,N-Dimethylformamid, N,N-Dimethylacetamid, N-Methylform- anilid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid.
Der erste Schritt des erfmdungsgemäßen Verfahrens (d) sowie das erfindungsgemäßen Verfahren (g) werden gegebenenfalls in Gegenwart eines geeigneten Säureakzeptors durchgeführt. Als solche kommen alle üblichen anorganischen oder organischen Basen infrage. Hierzu gehören vorzugsweise Erdalkalimetall- oder Alkalimetallhydride, -hydroxide, -amide, -alkoholate, -acetate, -carbonate oder-hy- drogencarbonate, wie z.B. Natriumhydrid, Natriumamid, Natrium-methylat, Natrium-ethylat, Kalium- tert.-butylat, Natriumhydroxid, Kaliumhydroxid, Ammoniumhydroxid, Natriumacetat, Kaliumacetat, Calciumacetat, Ammoniumacetat, Natriumcarbonat, Kaliumcarbonat, Kaliumhydrogencarbonat, Na- triumhydrogencarbonat oder Ammoniumcarbonat, sowie tertiäre Amine, wie Trimethylamin, Tri- ethylamin, Tributylamin, N,N-Dimethylanilin, N,N-Dimethyl-benzylamin, Pyridin, N-Methylpiperi- din, N-Methylmorpholin, N,N-Dimethylaminopyridin, Diazabicyclooctan (DABCO), Diazabicyclo- nonen (DBN) oder Diazabicycloundecen (DBU).
Der erste Schritt des erfindungsgemäßen Verfahrens (d) sowie das erfindungsgemäße Verfahren (g) werden in Gegenwart eines oder mehrerer Katalysatoren durchgeführt. Dazu eignen sich besonders Palladiumsalze oder -komplexe. Hierzu kommen vorzugsweise Palladiumchlorid, Palladiumacetat, Tetrakis-(1riphenylphosphin)-Palladium oder Bis-(triphenylphosphin)-Palladiumdichlorid infrage. Es kann auch ein Palladiumkomplex in der Reaktionsmischung erzeugt werden, wenn man ein Palladiumsalz und ein Komplexligand getrennt zur Reaktion zugibt. Als Liganden kommen vorzugsweise Organophosphorverbindungen infrage. Beispielhaft seien genannt: Triphenylphosphin, tri-o-Tolyl- phosphin, 2,2'-Bis(diphenylphosphino)-l,r-binaphthyl, Dicyclohexylphosphinebiphenyl, 1,4-Bis(di- phenylphosphino)butan, Bisdiphenylphosphinoferrocen, Di(tert-butylphosphino)biphenyl, Di(cyclo- hexylphosphino)biphenyl, 2-Dicyclohexylphosphino-2 ' -N,N-dimethylaminobiphenyl, Tricyclohexyl- phosphin, Tri-tert-butylphosphin. Es kann aber auch auf Liganden verzichtet werden.
Der erste Schritt des erfindungsgemäßen Verfahrens (d) sowie das erfindungsgemäße Verfahren (g) werden ferner gegebenenfalls in Gegenwart eines weiteren Metallsalzes, wie Kupfersalzen, beispielsweise Kupfer-(I)-iodid durchgeführt.
Die Reaktionstemperaturen können bei der Durchführung des ersten Schrittes des erfindungsgemäßen Verfahrens (d) sowie des erfindungsgemäßen Verfahrens (g) in einem größeren Bereich variiert werden. Im Allgemeinen arbeitet man bei Temperaturen von 20°C bis 180°C, vorzugsweise bei Temperaturen von 50°C bis 150°C.
Zur Durchführung des ersten Schrittes des erfindungsgemäßen Verfahrens (d) zur Herstellung der Alkenaniline der Formel (VIH) setzt man pro Mol des Anilin-Derivates der Formel (VI) im Allgemeinen 1 bis 5 Mol, vorzugsweise 1 bis 3 Mol an Alken der Formel (VH) ein.
Zur Dirrchführung des erfindungsgemäßen Verfahrens (g) zur Herstellung der Verbindungen der Formeln (IV) und (V) setzt man pro Mol Carboxamid der Formel (X) im Allgemeinen 1 bis 5 Mol, vorzugsweise 1 bis 3 Mol an Alken der Formel (VH) oder (XI) ein.
Als Verdünnungsmittel zur Durchführung des erfindungsgemäßen Verfahrens (c) sowie des zweiten Schrittes (Hydrierung) des erfindungsgemäßen Verfahrens (d) kommen alle inerten organischen Lösungsmittel in Betracht. Hierzu gehören vorzugsweise aliphatische oder alicyclische Kohlenwasserstoffe, wie z.B. Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclohexan oder Decalin; Ether, wie Diethylether, Diisopropylether, Methyl-tert-butylether, Methyl-tert-amylether, Dioxan, Tetra- hydrofuran, 1,2-Dimethoxyethan oder 1,2-Diethoxyethan; Alkohole, wie Methanol, Ethanol, n- oder iso-Propanol, n-, iso-, sec- oder tert-Butanol, Ethandiol, Propan-l,2-diol, Ethoxyethanol, Meth- oxyethanol, Diethylenglykolmonomethylether, Diethylenglykolmonoethylether, deren Gemische mit Wasser oder reines Wasser.
Der zweite Schritt (Hydrierung) des erfindungsgemäßen Verfahrens (d) wird in Gegenwart eines Katalysators durchgeführt. Als solche kommen alle Katalysatoren infrage, die für Hydrierungen üblicherweise verwendet werden. Beispielhaft seien genannt: Raney-Nickel, Palladium, Ruthenium oder Platin, gegebenenfalls auf einem Trägermaterial, wie z.B. Aktivkohle.
Die chirale Hydrierung bei der Durchführung des erfmdungsgemäßen Verfahrens (c) sowie bei dem Verfahren (d) wird in Gegenwart eines optisch aktiven Liganden durchgeführt. Beispielhaft seien die
Kombination (R,R)-Me-DuPhos/RuCl2 ® oder (S,S)-Me-DuPhos/RuCl2 ® (je nach gewünschtem Enan- tiomer).
Die Hydrierung im zweiten Schritt des erfindungsgemäßen Verfahrens (d) kann statt in Gegenwart von Wasserstoff in Kombination mit einem Katalysator auch in Anwesenheit von Triethylsilan durchgeführt werden.
Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (c) sowie des zweiten Schrittes des erfindungsgemäßen Verfahrens (d) in einem größeren Bereich variiert werden. Im Allgemeinen arbeitet man bei Temperaturen von 0°C bis 150°C, vorzugsweise bei Temperaturen von 20°C bis 100°C.
Das erfindungsgemäße Verfahren (c) sowie der zweite Schritt des erfindungsgemäßen Verfahrens (d) wird unter einem Wasserstoffdruck zwischen 0.5 and 200 bar, bevorzugt zwischen 2 und 50 bar, besonders bevorzugt zwischen 3 und 10 bar durchgeführt.
Als Eluenten kommen bei der Durchführung des dritten Schrittes des erfindungsgemäßen Verfahren (d) bzw. des erfindungsgemäßen Verfahrens (e) jeweils alle üblichen inerten, organischen Solventien sowie Gemische von diesen oder auch ggf. Gemische mit Wasser infrage. Vorzugsweise verwendbar sind gegebenenfalls halogenierte aliphatische, alicyclische oder aromatische Kohlenwasserstoffe, wie Petrolether, Hexan, Heptan, Cyclohexan; Dichlormethan, Chloroform; Alkohole, wie Methanol, Ethanol, Propanol; Nitrile, wie Acetonitril; Ester wie Essigsäuremethylester oder Essigsäure- ethylester. Besonders bevorzugt verwendet man aliphatische Kohlenwasserstoffe, wie Hexan oder Heptan, und Alkohole, wie Methanol oder Propanol, ganz besonders bevorzugt n-Heptan und Isopropanol bzw. Gemische von diesen.
Die Reaktionstemperaturen können bei der Durchführung des dritten Schrittes des erfindungsgemäßen Verfahren (d) bzw. des erfindungsgemäßen Verfahrens (e) jeweils in einem größeren Be- reich variiert werden. Im Allgemeinen arbeitet man bei Temperaturen zwischen 10°C und 60°C, vorzugsweise zwischen 10°C und 40°C, besonders bevorzugt bei Raumtemperatur.
Bei der Durchführung des dritten Schrittes des erfindungsgemäßen Verfahren (d) bzw. des erfindungsgemäßen Verfahrens (e) wird im Allgemeinen eine ca. l%ige Lösung der racemischen Verbindung (IH-a-rac) bzw. (Hl-b-rac) für die chromatographische Trennung eingesetzt. Es ist jedoch auch möglich, andere Konzentrationen zu verwenden. Die Aufarbeitung erfolgt nach üblichen Methoden. Im Allgemeinen verfährt man in der Weise, dass man das Eluat weitgehend einengt, feste Bestandteile abfiltriert und nach dem Waschen mit n-Heptan trocknet. Der Rückstand wird gegebenenfalls chromatographisch von eventuell noch vorhandenen Verunreinigungen befreit. Dabei werden als Eluenten Gemische aus n-Hexan bzw. Cyclohexan und Essigsäureethylester verwendet, deren Zusammensetzung der jeweils zu reinigenden Verbindung angepasst werden müssen.
Wenn nicht anders angegeben, werden alle erfindungsgemäßen Verfahren im Allgemeinen unter Normaldruck durchgeführt. Es ist jedoch auch möglich, unter erhöhtem oder vermindertem Druck - im Allgemeinen zwischen 0,1 bar und 10 bar - zu arbeiten.
Die erfindungsgemäßen Stoffe weisen eine starke mikrobizide Wirkung auf und können zur Bekämpfung von unerwünschten Mikroorganismen, wie Fungi und Bakterien, im Pflanzenschutz und im Materialschutz eingesetzt werden.
Fungizide lassen sich Pflanzenschutz zur Bekämpfung von Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes und Deuteromycetes einsetzen. Bakterizide lassen sich im Pflanzenschutz zur Bekämpfung von Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae und Streptomycetaceae einsetzen.
Beispielhaft aber nicht begrenzend seien einige Erreger von pilzlichen und bakteriellen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt:
Xanthomonas-Arten, wie z.B. Xanthomonas campestris pv. oryzae;
Pseudomonas-Arten, wie z.B. Pseudomonas syringae pv. lachrymans;
Erwinia-Arten, wie z.B. Erwinia amylovora; Pythium-Arten, wie z.B. Pythium ultimum;
Phytophthora-Arten, wie z.B. Phytophthora infestans;
Pseudoperonospora-Arten, wie z.B. Pseudoperonospora humuli oder
Pseudoperonospora cubensis;
Plasmopara-Arten, wie z.B. Plasmopara viticola; Bremia-Arten, wie z.B. Bremia lactucae;
Peronospora-Arten, wie z.B. Peronospora pisi oder P. brassicae;
Erysiphe-Arten, wie z.B. Erysiphe graminis;
Sphaerotheca-Arten, wie z.B. Sphaerotheca fuliginea;
Podosphaera-Arten, wie z.B. Podosphaera leucotricha; Venturia-Arten, wie z.B. Venturia inaequalis;
Pyrenophora-Arten, wie z.B. Pyrenophora teres oder P. graminea (Konidienform: Drechslera, Syn: Helminthosporium);
Cochliobolus-Arten, wie z.B. Cochliobolus sativus
(Konidienform: Drechslera, Syn: Helminthosporium);
Uromyces-Arten, wie z.B. Uromyces appendiculatus; Puccinia-Arten, wie z.B. Puccinia recondita;
Sclerotinia-Arten, wie z.B. Sclerotinia sclerotiorum;
Tilletia-Arten, wie z.B. Tilletia caries;
Ustilago-Arten, wie z.B. Ustilago nuda oder Ustilago avenae;
Pellicularia- Arten, wie z.B. Pellicularia sasakii; Pyricularia-Arten, wie z.B. Pyricularia oryzae;
Fusarium-Arten, wie z.B. Fusarium culmorum;
Botrytis-Arten, wie z.B. Botrytis cinerea;
Septoria-Arten, wie z.B. Septoria nodorum;
Leptosphaeria-Arten, wie z.B. Leptosphaeria nodorum; Cercospora-Arten, wie z.B. Cercospora canescens;
Alternaria-Arten, wie z.B. Alternaria brassicae;
Pseudocercosporella-Arten, wie z.B. Pseudocercosporella herpotrichoides,
Rhizoctonia-Arten, wie z.B. Rhizoctonia solani.
Die erfindungsgemäßen Wirkstoffe weisen auch eine starke stärkende Wirkung in Pflanzen auf. Sie eignen sich daher zur Mobilisierung pflanzeneigener Abwehrkräfte gegen Befall durch unerwünschte Mikroorganismen.
Unter pflanzenstärkenden (resistenzinduzierenden) Stoffen sind im vorliegenden Zusammenhang sol- ehe Substanzen zu verstehen, die in der Lage sind, das Abwehrsystem von Pflanzen so zu stimulieren, dass die behandelten Pflanzen bei nachfolgender Inokulation mit unerwünschten Mikroorganismen weitgehende Resistenz gegen diese Mikroorganismen entfalten.
Unter unerwünschten Mikroorganismen sind im vorliegenden Fall phytopathogene Pilze, Bakterien und Viren zu verstehen. Die erfindungsgemäßen Stoffe können also eingesetzt werden, um Pflanzen innerhalb eines gewissen Zeitraumes nach der Behandlung gegen den Befall durch die genannten Schaderreger zu schützen. Der Zeitraum, innerhalb dessen Schutz herbeigeführt wird, erstreckt sich im Allgemeinen von 1 bis 10 Tage, vorzugsweise 1 bis 7 Tage nach der Behandlung der Pflanzen mit den Wirkstoffen.
Die gute Pflanzenverträglichkeit der Wirkstoffe in den zur Bekämpfung von Pflanzenkrankheiten notwendigen Konzentrationen erlaubt eine Behandlung von oberirdischen Pflanzenteilen, von Pflanz- und Saatgut, und des Bodens.
Dabei lassen sich die erfindungsgemäßen Wirkstoffe mit besonders gutem Erfolg zur Bekämpfung von Getreidekrankheiten, wie z.B. gegen Puccinia-Arten und von Krankheiten im Wein-, Obst- und Gemüseanbau, wie z.B. gegen Botrytis-, Venturia- oder Alternaria-Arten, einsetzen.
Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Steigerung des Ernteertrages. Sie sind außerdem mindertoxisch und weisen eine gute Pflanzenverträglichkeit auf.
Die erfindungsgemäßen Wirkstoffe können gegebenenfalls in bestimmten Konzentrationen und Aufwandmengen auch als Herbizide, zur Beeinflussung des Pflanzenwachstums, sowie zur Bekämpfung von tierischen Schädlingen verwendet werden. Sie lassen sich gegebenenfalls auch als Zwischen- und Vorprodukte für die Synthese weiterer Wirkstoffe einsetzen.
Erfindungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kulturpflanzen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sorten- schutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Spross, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft Blätter, Nadeln, Stängel, Stämme, Blüten, Fruchtkörper, Früchte und Samen sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Stecklinge, Knollen, Rhizome, Ableger und Samen.
Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffen erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, Sprühen, Verdampfen, Vernebeln, Streuen, Aufstreichen und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch ein- oder mehrschichtiges Umhüllen.
Im Materialschutz lassen sich die erfindungsgemäßen Stoffe zum Schutz von technischen Materialien gegen Befall und Zerstörung durch unerwünschte Mikroorganismen einsetzen. Unter technischen Materialien sind im vorliegenden Zusammenhang nichtlebende Materialien zu verstehen, die für die Verwendung in der Technik zubereitet worden sind. Beispielsweise können technische Materialien, die durch erfindungsgemäße Wirkstoffe vor mikrobieller Veränderung oder Zerstörung geschützt werden sollen, Klebstoffe, Leime, Papier und Karton, Textilien, Leder, Holz, Anstrichrnittel und Kunststoffartikel, Kühlschmierstoffe und andere Materialien sein, die von Mikroorganismen befallen oder zersetzt werden können. Im Rahmen der zu schützenden Materialien seien auch Teile von Produktionsanlagen, beispielsweise Kühlwasserkreisläufe, genannt, die durch Vermehrung von Mikroorganismen beeinträchtigt werden können. Im Rahmen der vorliegenden Erfindung seien als technische Materialien vorzugsweise Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Anstrichmittel, Kühlschmiermittel und Wärmeübertragungsflüssigkeiten genannt, besonders bevorzugt Holz.
Als Mikroorganismen, die einen Abbau oder eine Veränderung der technischen Materialien bewirken können, seien beispielsweise Bakterien, Pilze, Hefen, Algen und Schleimorganismen genannt. Vor- zugsweise wirken die erfindungsgemäßen Wirkstoffe gegen Pilze, insbesondere Schimmelpilze, holzverfärbende und holzzerstörende Pilze (Basidiomyceten) sowie gegen Schleimorganismen und Algen.
Es seien beispielsweise Mikroorganismen der folgenden Gattungen genannt:
Alternaria, wie Alternaria tenuis, Aspergillus, wie Aspergillus niger,
Chaetomium, wie Chaetomium globosum,
Coniophora, wie Coniophora puetana,
Lentinus, wie Lentinus tigrinus,
Penicillium, wie Penicillium glaucum, Polyporus, wie Polyporus versicolor,
Aureobasidium, wie Aureobasidium pullulans,
Sclerophoma, wie Sclerophoma pityophila,
Trichoderma, wie Trichoderma viride,
Escherichia, wie Escherichia coli, Pseudomonas, wie Pseudomonas aeruginosa,
Staphylococcus, wie Staphylococcus aureus.
Die Wirkstoffe können in Abhängigkeit von ihren jeweiligen physikalischen und oder chemischen Eigenschaften in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie ULV-Kalt- und Warmnebel-Formulierungen. Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/ oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Be- nutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im Wesentlichen infrage: Aromaten, wie Xylol, Toluol oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser. Mit verflüssigten gasformigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid. Als feste Trägerstoffe kommen infrage: z.B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate. Als feste Trägerstoffe für Granulate kommen infrage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Bims, Marmor, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnussschalen, Maiskolben und Tabakstängel. Als Emulgier und/oder schaumerzeugende Mittel kommen infrage: z.B. nichtionogene und anionische Emulgatoren, wie Po- lyoxyethylen-Fettsäureester, Polyoxyethylen-Fettalkoholether, z.B. Alkylarylpolyglycolether, Alkyl- sulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate. Als Dispergiermittel kommen infrage: z.B. Lignin-Sulfitablaugen und Methylcellulose.
Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Poly- vinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.
Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.
Die Formulierungen enthalten im Allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %. Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Fungiziden, Bakteriziden, Akariziden, Nematiziden oder Insektiziden verwendet werden, um so z.B. das Wirkungsspektrum zu verbreitern oder Resistenzentwicklungen vorzubeugen. In vielen Fällen erhält man dabei synergistische Effekte, d.h. die Wirksamkeit der Mischung ist größer als die Wirksamkeit der Einzelkomponenten.
Als Mischpartner kommen zum Beispiel folgende Verbindungen infrage:
Fungizide:
2-Phenylρhenol; 8-Hydroxychinolinsulfat; Acibenzolar-S-methyl; Aldimorph; Amidoflumet; Ampro- pylfos; Ampropylfos-potassium; Andoprim; Anilazine; Azaconazole; Azoxystrobin; Benalaxyl; Beno- danil; Benomyl; Benthiavalicarb-isopropyl; Benzamacril; Benzamacril-isobutyl; Bilanafos; Binapacryl;
Biphenyl; Bitertanol; Blasticidin-S; Bromuconazole; Bupirimate; Buthiobate; Butylamin; Calciumpoly- sulfide; Capsimycin; Captafol; Captan; Carbendazim; Carboxin; Carpropamid; Carvone; Chinome- thionat; Chlobenthiazone; Chlorfenazole; Chloroneb; Chlorothalonil; Chlozolinate; Clozylacon; Cyazo- famid; Cyflufenamid; Cymoxanil; Cyproconazole; Cyprodinil; Cyprofuram; DaggerG; Debacarb; Di- chlofluanid; Dichlone; Dichlorophen; Diclocymet; Diclomezine; Dicloran; Diethofencarb; Difenocon- azole; Diflumetorim; Dimethirimol; Dimethomorph; Dimoxystrobin; Diniconazole; Diniconazole-M;
Dinocap; Diphenylamine; Dipyrithione; Ditalimfos; Dithianon; Dodine; Drazoxolon; Edifenphos;
Epoxiconazole; Ethaboxam; Ethirimol; Etridiazole; Famoxadone; Fenamidone; Fenapanil; Fenarimol; Fenbuconazole; Fenfuram; Fenhexamid; Fenitropan; Fenoxanil; Fenpiclonil; Fenpropidin; Fenpropi- morph; Ferbam; Fluazinam; Flubenzimine; Fludioxonil; Flumetover; Flumorph; Fluoromide; Fluoxa- strobin; Fluquinconazole; Flurprimidol; Flusilazole; Flusulfamide; Flutolanil; Flutriafol; Folpet; Fosetyl-
Al; Fosetyl-sodium; Fuberidazole; Furalaxyl; Furametpyr; Furcarbanil; Furmecyclox; Guazatine;
Hexachlorobenzene; Hexaconazole; Hymexazol; Imazalil; Imibenconazole; Iminoctadine triacetate; Iminoctadine tris(albesilate); lodocarb; Ipconazole; Iprobenfos; Iprodione; Iprovalicarb; Irumamycin;
Isoprothiolane; Isovaledione; Kasugamycin; Kresoxim-methyl; Mancozeb; Maneb; Meferimzone;
Mepanipyrim; Mepronil; Metalaxyl; Metalaxyl-M; Metconazole; Methasulfocarb; Methfuroxam;
Metiram; Metominostrobin; Metsulfovax; Mildiomycin; Myclobutanil; Myclozolin; Natamycin;
Nicobifen; Nitrothal-isopropyl; Noviflumuron; Nuarimol; Ofurace; Orysastrobin; Oxadixyl; Oxolinic acid; Oxpoconazole; Oxycarboxin; Oxyfenthiin; Paclobutrazol; Pefurazoate; Penconazole; Pencycuron;
Phosdiphen; Phthalide; Picoxystrobin; Piperalin; Polyoxins; Polyoxorim; Probenazole; Prochloraz; Pro- cymidone; Propamocarb; Propanosine-sodium; Propiconazole; Propineb; Proquinazid; Prothioconazole;
Pyraclostrobin; Pyrazophos; Pyrifenox; Pyrimethanil; Pyroquilon; Pyroxyfur; Pyrrolnitrine; Quincon- azole; Quinoxyfen; Quintozene; Simeconazole; Sp oxamine; Sulfur; Tebuconazole; Tecloftalam; Tec- nazene; Tetcyclacis; Tetraconazole; Thiabendazole; Thicyofen; Thifluzamide; Thiophanate-methyl;
Thiram; Tioxymid; Tolclofos-methyl; Tolylfluanid; Triadimefon; Triadimenol; Triazbutil; Triazoxide; Tricyclamide; Tricyclazole; Tridemorph; Trifloxystrobin; Triflumizole; Triforine; Triticonazole; Uniconazole; Validamycin A; Vinclozolin; Zineb; Ziram; Zoxamide; (2S)-N-[2-[4-[[3-(4-Chlorphenyl)- 2-propmyl]oxy]-3-memoxyphenyl]e l]-3-me l-2-[(me%lsulfonyl)ammo]-butanamid; 1-(1-Naph- thalenyl)-lH-pyrrol-2,5-dion; 2,3,5,6-Tetrachlor-4-(methylsulfonyl)pyridin; 2-Amino-4-methyl-N-phe- nyl-5-thiazolcarboxamid; 2-Chlor-N-(2,3-dihydro-l , 1 ,3-trimemyl-lH-mden-4-yl)-3-pyridincarboxamide; 3,4,5-Trichlor-2,6-pyridindicarbonitril; Actinovate; cis-l-(4-Chlorphenyl)-2-(lH-l,2,4-triazol-l-yl)- cycloheptanol; Methyl l-(2,3-dihydro-2,2-dimemyl-lH-mden-l-yl)-lH-irnidazol-5-carboxylat; Mono- kaliumcarbonat; N-(6-Methoxy-3-pyridinyl)-cyclopropancarboxamid; N-Butyl-8-(l,l-dimethylethyl)-l- oxaspiro[4.5]decan-3-amin; Natriumtetrathiocarbonat; sowie Kupfersalze und -Zubereitungen, wie Bordeaux mixture; Kupferhydroxid; Kupfemaphthenat; Kupferoxychlorid; Kupfersulfat; Cufraneb; Kupferoxid; Mancopper; Oxine-copper.
Bakterizide:
Bronopol, Dichlorophen, Nitrapyrin, Nickel-dimethyldithiocarbamat, Kasugamycin, Octhilinon, Furancarbonsäure, Oxytetracyclin, Probenazol, Streptomycin, Tecloftalam, Kupfersulfat und andere Kupfer-Zubereitungen.
Insektizide / Akarizide / Nematizide:
1. Acetylcholinesterase (AChE) Inhibitoren 1.1 Carbamate (z.B. Alanycarb, Aldicarb, Aldoxycarb, Allyxycarb, Aminocarb, Azamethiphos, Ben- diocarb, Benfüracarb, Bufencarb, Butacarb, Butocarboxim, Butoxycarboxim, Carbaryl, Carbofuran, Carbosulfan, Chloethocarb, Coumaphos, Cyanofenphos, Cyanophos, Dimetilan, Ethiofencarb, Feno- bucarb, Fenothiocarb, Formetanate, Furathiocarb, Isoprocarb, Metam-sodium, Methiocarb, Metho- myl, Metolcarb, Oxamyl, Pirimicarb, Promecarb, Propoxur, Thiodicarb, Thiofanox, Triazamate, Tri ethacarb, XMC, Xylylcarb)
1.2 Organophosphate (z.B. Acephate, Azamethiphos, Azinphos (-methyl, -ethyl), Bromophos-ethyl, Bromfenvinfos (-methyl), Butathiofos, Cadusafos, Carbophenothion, Chlorethoxyfos, Chlorfenvin- phos, Chlormephos, Chlorpyrifos (-methyl -ethyl), Coumaphos, Cyanofenphos, Cyanophos, Chlor- fenvinphos, Demeton-S-methyl, Demeton-S-methylsulphon, Dialifos, Diazinon, Dichlofenthion, Di- chlorvos/DDVP, Dicrotophos, Dimethoate, Dimethylvinphos, Dioxabenzofos, Disulfoton, EPN, Ethi- on, Ethoprophos, Etrimfos, Famphur, Fenamiphos, Fenitrothion, Fensulfothion, Fenthion, Flupyrazo- fos, Fonofos, Formothion, Fosmethilan, Fosthiazate, Heptenophos, Iodofenphos, Iprobenfos, Isazo- fos, Isofenphos, Isopropyl O-salicylate, Isoxathion, Malathion, Mecarbam, Methacrifos, Methamido- phos, Methidathion, Mevinphos, Monocrotophos, Naled, Omethoate, Oxydemeton-methyl, Parathion (-methyl/-ethyl), Phenthoate, Phorate, Phosalone, Phosmet, Phosphamidon, Phosphocarb, Phoxim, Pirimiphos (-methyl/-ethyl), Profenofos, Propaphos, Propetamphos, Prothiofos, Prothoate, Pyraclo- fos, Pyridaphenthion, Pyridathion, Quinalphos, Sebufos, Sulfotep, Sulprofos, Tebupirimfos,
Temephos, Terbufos, Tetrachlorvinphos, Thiometon, Triazophos, Triclorfon, Vamidothion)
2. Natrium-Kanal-Modulatoren /Spannungsabhängige Natrium-Kanal-Blocker
2.1 Pyrethroide (z.B. Acrinathrin, Allethrin (d-cis-trans, d-trans), Beta-Cyfluthrin, Bifenthrin, Bioalle- thrin, Bioallethrin-S-cyclopentyl-isomer, Bioemanomethrin, Biopermethrin, Bioresmethrin, Chlova- porthrin, Cis-Cypermethrin, Cis-Resmethrin, Cis-Permethrin, Clocythrin, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cypermethrin (alpha-, beta-, theta-, zeta-), Cyphenothrin, DDT, Deltamethrin, Empen- thrin (lR-isomer), Esfenvalerate, Etofenprox, Fenfluthrin, Fenpropathrin, Fenpyrithrin, Fenvalerate, Flubrocythrinate, Flucythrinate, Flufenprox, Flumethrin, Fluvalinate, Fubfenprox, Gamma-Cyhalo- thrin, Imiprothrin, Kadethrin, Lambda-Cyhalothrin, Metofluthrin, Permethrin (eis-, trans-), Pheno- thrin (lR-trans isomer), Prallethrin, Profluthrin, Protrifenbute, Pyresmethrin, Resmethrin, RU 15525, Silafluofen, Tau-Fluvalinate, Tefluthrin, Terallethrin, Tetramethrin (lR-isomer), Tralomethrin, Transfluthrin, ZXI 8901, Pyrethrins (pyrethrum))
2.2 Oxadiazine (z.B. Indoxacarb) 3. Acetylcholin-Rezeptor-Agonisten -Antagonisten
3.1 Chloronicotinyle/Neonicotinoide (z.B. Acetamiprid, Clothianidin, Dinotefuran, Imidacloprid, Ni- tenpyram, Nithiazine, Thiacloprid, Thiamethoxam)
3.2Nicotine, Bensultap, Cartap
4. Acetylcholin-Rezeptor-Modulatoren 4.1 Spinosyne (z.B. Spinosad)
5. GABA-gesteuerte Chlorid-Kanal-Antagonisten
5.1 Cyclodiene Organochlorine (z.B. Camphechlor, Chlordane, Endosulfan, Gamma-HCH, HCH, Heptachlor, Lindane, Methoxychlor
5.2 Fiprole (z.B. Acetoprole, Ethiprole, Fipronil, Vaniliprole) 6. Chlorid-Kanal-Aktivatoren
6.1 Mectine (z.B. Abamectin, Avermectin, Emamectin, Emamectin-benzoate, Ivermectin, Milbe- mectin, Milbemycin)
7. Juvenilhormon-Mimetika
(z.B. Diofenolan, Epofenonane, Fenoxycarb, Hydroprene, Kinoprene, Methoprene, Pyriproxifen, Triprene)
8. Ecdysonagonisten/disruptoren
8.1 Diacylhydrazine (z.B. Chromafenozide, Halofenozide, Methoxyfenozide, Tebufenozide)
9. Inhibitoren der Chitinbiosynthese
9.1 Benzoylhamstoffe (z.B. Bistrifluron, Chlofluazuron, Diflubenzuron, Fluazuron, Flucycloxuron, Flufenoxuron, Hexaflumuron, Lufenuron, Novaluron, Noviflumuron, Penfluron, Teflubenzuron, Tri- flumuron) 9.2 Buprofezin
9.3 Cyromazine
10. Inhibitoren der oxidativen Phosphorylierung, ATP-Disruptoren 10.1 Diafenthiuron 10.2 Organotine (z.B. Azocyclotin, Cyhexatin, Fenbutatin-oxide)
11. Entkoppler der oxidativen Phoshorylierung durch Unterbrechung des H-Protongradienten
11.1 Pyrrole (z.B. Chlorfenapyr)
11.2 Dinitrophenole (z.B. Binapacyrl, Dinobuton, Dinocap, DNOC)
12. Seite-I-Elektronentransportinhibitoren 12.1 METI's (z.B. Fenazaquin, Fenpyroximate, Pyrimidifen, Pyridaben, Tebufenpyrad, Tolfenpyrad)
12.2 Hydramethylnone
12.3 Dicofol
13. Seite-II-Elektronentransportinhibitoren 13.1 Rotenone 14. Seite-III-Elektronentransportinhibitoren
14.1 Acequinocyl, Fluacrypyrim
15. Mikrobielle Disruptoren der Insektendarmmembran Bacillus thuringiensis-Stämme
16. Inhibitoren der Fettsynthese 16.1 Tetronsäuren (z.B. Spirodiclofen, Spiromesifen)
16.2 Tetramsäuren [z.B. 3-(2,5-Dimethylphenyl)-8-methoxy-2-oxo-l-azaspiro[4.5]dec-3-en-4-yl ethyl carbonate (alias: Carbonic acid, 3-(2,5-dimethylphenyl)-8-methoxy-2-oxo-l-azaspiro[4.5]dec-3-en-4- yl ethyl ester, CAS-Reg.-No.: 382608-10-8) and Carbonic acid, cis-3-(2,5-dimethylphenyl)-8- methoxy-2-oxo-l-azaspiro[4.5]dec-3-en-4-yl ethyl ester (CAS-Reg.-No.: 203313-25-1)] 17. Carboxamide (z.B. Flonicamid)
18. Oktopaminerge Agonisten (z.B. Amitraz)
19. Inhibitoren der Magnesium-stimulierten ATPase (z.B. Propargite)
20. Phthalamide
(z.B. N2-[l,l-Dimemyl-2-(methylsulfonyl)e l]-3-iod-N,-[2-me l-4-[l,2,2,2-tetrafluor-l-(trifluor- me l)ethyl]phenyl]-l,2-benzenedicarboxamide (CAS-Reg.-No.: 272451-65-7))
21. Nereistoxin-Analoge (z.B . Thiocyclam hydrogen oxalate, Thiosultap-sodiurn)
22. Biologika, Hormone oder Pheromone (z.B. Azadirachtin, Bacillus spec, Beauveria spec, Codlemone, Metarrhizium spec, Paecilomyces spec, Thuringiensin, Verticillium spec.)
23. Wirkstoffe mit unbekannten oder nicht spezifischen Wirkmechanismen
23.1 Begasungsmittel (z.B. Aluminium phosphide, Methyl bromide, Sulfuryl fluoride) 23.2 Selektive Fraßhemmer (z.B. Cryolite, Flonicamid, Pymetrozine)
23.3 Milbenwachstumsinhibitoren (z.B. Clofentezine, Etoxazole, Hexythiazox)
23.4 Amidoflumet, Benclothiaz, Benzoximate, Bifenazate, Bromopropylate, Buprofezin, Chinomethi- onat, Chlordimeform, Chlorobenzilate, Chloropicrin, Clothiazoben, Cycloprene, Dicyclanil, Fenoxa- crim, Fentrifanil, Flubenzimine, Flufenerim, Flutenzin, Gossyplure, Hydramethylnone, Japonilure, Metoxadiazone, Petroleum, Piperonyl butoxide, Potassium oleate, Pyridalyl, Sulfluramid, Tetradifon, Tetrasul, Triarathene, Verbutin
femer die Verbindung 3-Methyl-phenyl-propylcarbamat (Tsumacide Z), die Verbindung 3-(5-Chlor- 3-pyridinyl)-8-(2,2,2-trifluorethyl)-8-azabicyclo[3.2.1]octan-3-carbonitril (CAS-Reg.-Nr. 185982-80- 3) und das entsprechende 3-endo-Isomere (CAS-Reg.-Nr. 185984-60-5) (vgl. WO-96/37494, WO- 98/25923), sowie Präparate, welche insektizid wirksame Pflanzenextrakte, Nematoden, Pilze oder Viren enthalten.
Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit Düngemitteln und Wachstumsregulatoren, Safener bzw. Semiochemicals ist möglich.
Darüber hinaus weisen die erfindungsgemäßen Verbindungen der Formel (I) auch sehr gute antimy- kotische Wirkungen auf. Sie besitzen ein sehr breites antimykotisches Wirkungsspektrum, insbesondere gegen Dermatophyten und Sprosspilze, Schimmel und diphasische Pilze (z.B. gegen Candida- Spezies wie Candida albicans, Candida glabrata) sowie Epidermophyton floccosum, Aspergillus- Spezies wie Aspergillus niger und Aspergillus furnigatus, Trichophyton-Spezies wie Trichophyton mentagrophytes, Microsporon-Spezies wie Microsporon canis und audouinii. Die Aufzählung dieser Pilze stellt keinesfalls eine Beschränkung des erfassbaren mykotischen Spektrums dar, sondern hat nur erläuternden Charakter.
Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, wie gebrauchsfertige Lösungen, Suspensionen, Spritzpulver, Pasten, lösliche Pulver, Stäubemittel und Granulate angewendet werden. Die Anwendung geschieht in üblicher Weise, z.B. durch Gießen, Verspritzen, Versprühen, Verstreuen, Verstäuben, Verschäumen, Bestreichen usw. Es ist femer möglich, die Wirkstoffe nach dem Ultra-Low-Volume-Verfahren auszubringen oder die Wirkstoffzubereitung oder den Wirkstoff selbst in den Boden zu injizieren. Es kann auch das Saatgut der Pflanzen behandelt werden.
Beim Einsatz der erfindungsgemäßen Wirkstoffe als Fungizide können die Aufwandmengen je nach Applikationsart innerhalb eines größeren Bereiches variiert werden. Bei der Behandlung von Pflan- zenteilen liegen die Aufwandmengen an Wirkstoff im Allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 10 und 1.000 gha. Bei der Saatgutbehandlung liegen die Aufwandmengen an Wirkstoff im Allgemeinen zwischen 0,001 und 50 g pro Kilogramm Saatgut, vorzugsweise zwischen 0,01 und 10 g pro Kilogramm Saatgut. Bei der Behandlung des Bodens liegen die Aufwandmengen an Wirkstoff im Allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 1 und 5.000 g/ha.
Wie bereits oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und Pflan- zensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetically Modified Organisms) und deren Teile behandelt. Der Begriff „Teile" bzw. „Teile von Pflanzen" oder „Pflanzenteile" wurde oben erläutert.
Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt. Unter Pflanzensorten versteht man Pflanzen mit neuen Eigenschaften („Traits"), die sowohl durch konventionelle Züchtung, durch Mutagenese oder durch rekombinante DNA-Techniken gezüchtet worden sind. Dies können Sorten, Rassen, Bio- und Genotypen sein.
Je nach Pflanzenarten bzw. Pflanzensorten, deren Standort und Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) können durch die erfindungsgemäße Behandlung auch überadditive („synergistische") Effekte auftreten. So sind beispielsweise erniedrigte Aufwandmengen und/oder Erweiterungen des Wirkungsspektrums und/oder eine Verstärkung der Wirkung der erfindungsgemäß verwendbaren Stoffe und Mittel, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasserbzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Emteprodukte, höhere Lager- fähigkeit und/oder Bearbeitbarkeit der Emteprodukte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen. Zu den bevorzugten erfindungsgemäß zu behandelnden transgenen (gentechnologisch erhaltenen) Pflanzen bzw. Pflanzensorten gehören alle Pflanzen, die durch die gentechnologische Modifikation genetisches Material erhielten, welches diesen Pflanzen besondere vorteilhafte wertvolle Eigenschaften („Traits") verleiht. Beispiele für solche Eigenschaften sind besseres Pflanzenwachstum, erhöhte To- leranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Emährungswert der Emteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Emteprodukte. Weitere und besonders hervorgehobene Beispiele für solche Eigenschaften sind eine erhöhte Abwehr der Pflanzen gegen tierische und mikro- bielle Schädlinge, wie gegenüber Insekten, Milben, pflanzenpathogenen Pilzen, Bakterien und/oder Viren sowie eine erhöhte Toleranz der Pflanzen gegen bestimmte herbizide Wirkstoffe. Als Beispiele transgener Pflanzen werden die wichtigen Kulturpflanzen, wie Getreide (Weizen, Reis), Mais, Soja, Kartoffel, Baumwolle, Tabak, Raps sowie Obstpflanzen (mit den Früchten Äpfel, Birnen, Zitrusfrüchten und Weintrauben) erwähnt, wobei Mais, Soja, Kartoffel, Baumwolle, Tabak und Raps besonders her- vorgehoben werden. Als Eigenschaften („Traits") werden besonders hervorgehoben die erhöhte Abwehr der Pflanzen gegen Insekten, Spinnentiere, Nematoden und Schnecken durch in den Pflanzen entstehende Toxine, insbesondere solche, die durch das genetische Material aus Bacillus Thuringiensis (z.B. durch die Gene CryIA(a), CryIA(b), CryΙA(c), CryHA, CryHIA, CryIHB2, Cry9c Cry2Ab, Cry3Bb und CrylF sowie deren Kombinationen) in den Pflanzen erzeugt werden (im Folgenden , t Pflanzen"). Als Eigenschaften („Traits") werden auch besonders hervorgehoben die erhöhte Abwehr von Pflanzen gegen Pilze, Bakterien und Viren durch Systemische Akquirierte Resistenz (SAR), Systemin, Phyto- alexine, Elicitoren sowie Resistenzgene und entsprechend exprimierte Proteine und Toxine. Als Eigenschaften („Traits") werden weiterhin besonders hervorgehoben die erhöhte Toleranz der Pflanzen gegenüber bestimmten herbiziden Wirkstoffen, z.B. Imidazolinonen, Sulfonylhamstoffen, Glyphosate oder Phosphinotricin (z.B. "PAT"-Gen). Die jeweils die gewünschten Eigenschaften („Traits") verleihenden Gene können auch in Kombinationen miteinander in den transgenen Pflanzen vorkommen. Als Beispiele für „Bt Pflanzen" seien Maissorten, Baumwollsorten, Sojasorten und Kartoffelsorten genannt, die unter den Handelsbezeichnungen YTJELD GARD® (z.B. Mais, Baumwolle, Soja), KnockOut® (z.B. Mais), StarLink® (z.B. Mais), Bollgard® (Baumwolle), Nucoton® (Baumwolle) und NewLeaf® (Kartoffel) vertrieben werden. Als Beispiele für Herbizid tolerante Pflanzen seien Maissorten, Baumwollsorten und Sojasorten genannt, die unter den Handelsbezeichnungen Roundup Ready® (Toleranz gegen Glyphosate z.B. Mais, Baumwolle, Soja), Liberty Link® (Toleranz gegen Phosphinotricin, z.B. Raps), HVH® (Toleranz gegen Imidazolinone) und STS® (Toleranz gegen Sulfonylharnstoffe z.B. Mais) vertrieben werden. Als Herbizid resistente (konventionell auf Herbizid-Toleranz gezüchtete) Pflanzen seien auch die unter der Bezeichnung Clearfϊeld® vertriebenen Sorten (z.B. Mais) erwähnt. Selbstver- ständlich gelten diese Aussagen auch für in der Zukunft entwickelte bzw. zukünftig auf den Markt kommende Pflanzensorten mit diesen oder zukünftig entwickelten genetischen Eigenschaften („Traits").
Die aufgeführten Pflanzen können besonders vorteilhaft erfmdungsgemäß mit den Verbindungen der allgemeinen Formel (I) bzw. den erfindungsgemäßen Wirkstoffmischungen behandelt werden. Die bei den Wirkstoffen bzw. Mischungen oben angegebenen Vorzugsbereiche gelten auch für die Behandlung dieser Pflanzen. Besonders hervorgehoben sei die Pflanzenbehandlung mit den im vorliegenden Text speziell aufgeführten Verbindungen bzw. Mischungen.
Die Herstellung und die Verwendung der erfindungsgemäßen Wirkstoffe geht aus den folgenden Beispielen hervor.
Herstellungsbeispiele
Beispiel 1
(+/-)-N-[2-(l,3-Dimethylbutyl)phenyl]-5-fluor-l,3-dimethyl-lH-pyrazol-4-carboxamid (200 mg) wird in 25 ml n-Heptan/Isopropanol 9:1 (v/v = Volumen/Volumen) gelöst. Anschließend chromatogra- phiert man die Lösung fraktionierend an der Kieselgelphase Chiralcel OD® [Hersteller: Daicel (Japan), Säulendimension: 500 mm x 40 mm (I.D.), Partikelgröße: 20 μm, Flussrate: 40 ml/min] mit n-Heptan/Isopropanol 9:1 (v/v) als Eluent nach dem Prinzip der High Performance Liquid Chromato- graphy (HPLC). Zur Trennung der gesamten Menge werden alle 30 min je 5 ml (entsprechend je 40 mg des Racemats) auf die Säule aufgegeben. Der Nachweis der Verbindungen erfolgt mit einem UV-Detektor bei einer Wellenlänge von 210 nm. Die Eluatfraktionen werden nach analytischer Prüfung auf Enantiomerenreinheit entsprechend zusammengefasst, im Vakuum weitest gehend eingedampft, die Rückstände abfiltriert und nach dem Waschen mit n-Heptan getrocknet. Das so erhaltene Rohprodukt wird an Kieselgel (Laufmittel: n-Hexan/Essigsäureethylester, 1:9 → 1:4, jeweils v/v) aufgereinigt.
Man erhält 87 mg an N-{2-[(lS)-l,3-Dimethylbutyl]phenyl}-5-fluor-l,3-dimethyl-lH-pyrazol-4-carb- oxamid (Schmelzpunkt 52-54°C, Drehwert [α]D = +6,7, c = 0,87; Methanol, 20°C, ee-Wert = 99 %).
Die Enantiomerenreinheit der Carboxamide der Formel (I) wurde mittels analytischer HPLC unter folgenden Bedingungen bestimmt:
Trennphase: Chiralcel OD (Daicel, Japan); 5 μm Säule: 250 mm x 4.6 mm (I.D.)
Elutionsmittel: n-Heptan/2-Propanol 10:1
Flussrate: 0,5 ml/min
UV-Detektion: 210 nm
Analog Beispiel 1, sowie entsprechend den Angaben in den allgemeinen Verfahrensbeschreibungen, werden die in der nachstehenden Tabelle 1 genannten Verbindungen der Formel (I) erhalten. Tabelle 1
Die Bestimmung der in den voranstehenden Tabellen und Herstellungsbeispielen angegebenen logP- Werte erfolgt gemäß EEC-Directive 79/831 Annex V.A8 durch HPLC (High Performance Liquid Chromatography) an einer Phasenumkehrsäule (C 18). Temperatur: 43°C.
Die Bestimmung erfolgt im sauren Bereich bei pH 2.3 mit 0,1 % wässriger Phosphorsäure und Acetonitril als Eluenten; linearer Gradient von 10 % Acetonitril bis 90 % Acetonitril. Die Eichung erfolgt mit unverzweigten Alkan-2-onen (mit 3 bis 16 Kohlenstoffatomen), deren logP- Werte bekannt sind (Bestimmung der logP-Werte anhand der Retentionszeiten durch lineare Interpolation zwischen zwei aufeinanderfolgenden Alkanonen).
Die lambda-max-Werte wurden an Hand der UV-Spektren von 200 nm bis 400 nm in den Maxima der chromatographischen Signale ermittelt. Anwendungsbeispiele
Beispiel A
Podosphaera-Test (Apfel) / protektiv
Lösungsmittel: 24,5 Gewichtsteile Aceton 24,5 Gewichtsteile Dimethylacetamid Emulgator : 1 Gewichtsteil Alkyl-Aryl-Polyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Sporensuspension des Apfelmehltauerregers Podosphaera leucotricha inokuliert. Die Pflanzen werden dann im Gewächshaus bei ca. 23 °C und einer relativen Luftfeuchtigkeit von ca. 70 % aufgestellt.
10 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.
Tabelle A Podosphaera-Test (Apfel) / protektiv Erfindungsgemäß :
Vergleichsversuch:
Erfindungsgemäß:
Vergleichsversuch:
Beispiel B
Sphaerotheca-Test (Gurke) / protektiv
Lösungsmittel: 24,5 Gewichtsteile Aceton 24,5 Gewichtsteile Dimethylacetamid Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit werden junge Gurkenpflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Sporensuspension von Sphaerotheca fuliginea inokuliert. Die Pflanzen werden dann bei ca. 23 °C und einer relativen Luftfeuchtigkeit von ca. 70 % im Gewächshaus aufgestellt.
7 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.
Tabelle B Sphaerotheca-Test (Gurke) / protektiv Erfindungsgemäß :
Vergleichsversuch:
Erfindungsgemäß :
Vergleichsversuch:
Tabelle B Sphaerotheca-Test (Gurke) / protektiv Erfmdungsgemäß :
Vergleichsversuch:
Erfmdungsgemäß:
Vergleichsversuch:
Tabelle B Sphaerotheca-Test (Gurke) / protektiv Erfϊndungsgemäß :
Vergleichsversuch:
Beispiel C
Venturia - Test (Apfel) / protektiv
Lösungsmittel: 24,5 Gewichtsteile Aceton 24,5 Gewichtsteile Dimethylacetamid Emulgator : 1 Gewichtsteil Alkyl-Aryl-Polyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Konidiensuspension des Apfelschorferregers Venturia inaequalis inokuliert und verbleiben dann 1 Tag bei ca. 20°C und 100 % relativer Luftfeuchtigkeit in einer Inkubationskabine.
Die Pflanzen werden dann im Gewächshaus bei ca. 21°C und einer relativen Luftfeuchtigkeit von ca. 90 % aufgestellt.
10 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.
Tabelle C Venturia - Test (Apfel) / protektiv Erfindungsgemäß :
Vergleichsversuch:
Erfmdungsgemäß:
Vergleichsversuch:
Tabelle C Venturia - Test (Apfel) / protektiv Erfindungsgemäß:
Vergleichsversuch:
Erfindungsgemäß:
Vergleichsversuch:
Tabelle C Venturia - Test (Apfel) / protektiv Erfindungsgemäß :
Vergleichsversuch:
Erfindungsgemäß :
Vergleichsversuch:
Beispiel D
Botrytis - Test (Bohne) / protektiv
Lösungsmittel: 24,5 Gewichtsteile Aceton 24,5 Gewichtsteile Dimethylacetamid Emulgator : 1 Gewichtsteil Alkyl-Aryl-Polyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden auf jedes Blatt 2 kleine mit Botrytis cinerea bewachsene Agarstückchen aufgelegt. Die inokulierten Pflanzen werden in einer abgedunkelten Kammer bei ca. 20°C und 100 % relativer Luftfeuchtigkeit aufgestellt.
2 Tage nach der Inokulation wird die Größe der Befallsflecken auf den Blättern ausgewertet. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.
Tabelle D Botrytis - Test (Bohne) / protektiv Erfindungsgemäß :
Vergleichsversuch:
Erfindungsgemäß:
Vergleichsversuch:
Tabelle D Botrytis - Test (Bohne) / protektiv Erfindungsgemäß:
Vergleichsversuch:
Erfϊndungsgemäß:
Vergleichsversuch:
Tabelle D Botrytis - Test (Bohne) / protektiv Erfmdungsgemäß :
Vergleichsversuch:
Beispiel E
Alternaria - Test (Tomate) / protektiv
Lösungsmittel: 24,5 Gewichtsteile Aceton 24,5 Gewichtsteile Dimethylacetamid Emulgator : 1 Gewichtsteil Alkyl-Aryl-Polyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.
Zur Prüfung auf protektive Wirksamkeit werden junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge besprüht. Nach Antrocknen des Spritzbelages werden die Pflanzen mit einer wässrigen Sporensuspension von Altemaria solani inokuliert. Die Pflanzen werden dann in einer Inkubationskabine bei ca. 20°C und 100 % relativer Luftfeuchtigkeit aufgestellt.
3 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wirkungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.
Tabelle E Alternaria - Test (Tomate) / protektiv Erfindungsgemäß:
Vergleichsversuch:

Claims

Patentansprüche
1. Optisch aktive Carboxamide der Formel (I)
in welcher R für Wasserstoff, Fluor, Chlor, Methyl, Ethyl oder Trifluormethyl steht,
M für steht ' M-l M-2 M-3 M-4 wobei die mit * markierte Bindung mit dem Amid verbunden ist, während die mit # markierte Bindung mit der Alkylseitenkette verknüpft ist, R1 für Wasserstoff, Fluor, Chlor, Methyl oder Trifluormethyl steht,
A für den Rest der Formel (AI)
(AI) steht, in welcher R2 für Methyl, Trifluormethyl oder Difluormethyl steht, R3 für Wasserstoff, Fluor oder Chlor steht, oder A für den Rest der Formel (A2)
(A2) steht, in welcher R4 für Trifluormethyl, Chlor, Brom oder Iod steht, oder A für den Rest der Formel (A3)
(A3) steht, in welcher R >5 für Methyl, Trifluormethyl oder Difluormethyl steht.
2. Optisch aktive Carboxamide der Formel (I) gemäß Anspmch 1, in welcher R für Wasserstoff, Methyl oder Ethyl steht, M für M-l oder M-2 steht, R1 für Wasserstoff, Fluor, Chlor, Methyl oder Trifluormethyl steht, R2 für Methyl oder Trifluormethyl steht, R3 für Wasserstoff oder Fluor steht, R4 für Trifluormethyl oder Iod steht, R5 für Trifluormethyl steht.
3. Verfahren zum Herstellen von optisch aktiven Carboxamiden der Formel (I) gemäß Anspmch 1, dadurch gekennzeichnet, dass man a) Carbonsäure-Derivate der Formel (H) O A^X 1 π) in welcher A die in Anspmch 1 angegebenen Bedeutungen hat und X1 für Halogen oder Hydroxy steht, mit einem Amin der Formel (JE)
in welcher R und M die in Anspmch 1 angegebenen Bedeutungen haben, gegebenenfalls in Gegenwart eines Katalysators, gegebenenfalls in Gegenwart eines Kondensationsmittels, gegebenenfalls in Gegenwart eines Säurebindemittels und gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt, oder b) racemische Verbindungen der Formel (I-rac)
in welcher R, M und A die in Anspmch 1 angegebenen Bedeutungen haben, an einer chiralen stationären Kieselgelphase in Gegenwart eines Eluenten oder eines Eluenten-Gemisches als flüssiger Phase chromatographiert, oder mit optisch aktiven Säuren unter Salzbildung fraktioniert kristallisiert und an- schließend die enantiomerenreinen oder angereicherten Verbindungen der Formel (I) freisetzt, oder c) Verbindungen der Formel (TV)
in welcher R, M und A die in Ansprach 1 angegebenen Bedeutungen haben, oder Verbindungen der Formel (V)
in welcher R, M und A die in Anspruch 1 angegebenen Bedeutungen haben, oder Gemische beider Verbindungen in Gegenwart eines optisch aktiven Katalysators bzw. eines Katalysators mit optisch aktivem Liganden hydriert.
Mittel zum Bekämpfen unerwünschter Mikroorganismen, gekennzeichnet durch einen Gehalt an mindestens einem optisch aktiven Carboxamid der Formel (I) gemäß Anspruch 1 neben Streckmitteln und/oder oberflächenaktiven Stoffen.
5. Verwendung von optisch aktiven Carboxamiden der Formel (I) gemäß Ansprach 1 zum Bekämpfen unerwünschter Mikroorganismen.
6. Verfahren zum Bekämpfen unerwünschter Mikroorganismen, dadurch gekennzeichnet, dass man optisch aktive Carboxamide der Formel (I) gemäß Anspruch 1 auf die Mikroorganismen und/oder deren Lebensraum ausbringt.
7. Verfahren zum Herstellen von Mitteln zum Bekämpfen unerwünschter Mikroorganismen, dadurch gekennzeichnet, dass man optisch aktive Carboxamide der Formel (I) gemäß Anspruch 1 mit Streckmitteln und/oder oberflächenaktiven Stoffen vermischt.
Amine der Formel (JE)
in welcher R und M die in Ansprach 1 angegebenen Bedeutungen haben.
EP04803543A 2003-12-18 2004-12-06 Optisch aktive carboxamide und deren verwendung zur bekämpfung von unerwünschten mikroorganismen Withdrawn EP1697329A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10359511 2003-12-18
DE102004004141 2004-01-28
DE102004005317A DE102004005317A1 (de) 2003-12-18 2004-02-04 Optisch aktive Carboxamide
PCT/EP2004/013834 WO2005058839A1 (de) 2003-12-18 2004-12-06 Optisch aktive carboxamide und deren verwendung zur bekämpfung von unerwünschten mikroorganismen

Publications (1)

Publication Number Publication Date
EP1697329A1 true EP1697329A1 (de) 2006-09-06

Family

ID=34704623

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04803543A Withdrawn EP1697329A1 (de) 2003-12-18 2004-12-06 Optisch aktive carboxamide und deren verwendung zur bekämpfung von unerwünschten mikroorganismen

Country Status (10)

Country Link
US (1) US20070276022A1 (de)
EP (1) EP1697329A1 (de)
JP (1) JP2007516261A (de)
KR (1) KR20060126713A (de)
AR (1) AR047148A1 (de)
AU (1) AU2004299217A1 (de)
BR (1) BRPI0417616A (de)
CA (1) CA2549821A1 (de)
MX (1) MXPA06006744A (de)
WO (1) WO2005058839A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004005786A1 (de) * 2004-02-06 2005-08-25 Bayer Cropscience Ag Haloalkylcarboxamide
ATE408341T1 (de) * 2004-09-27 2008-10-15 Du Pont Fungizide mischungen mit thiophenderivaten
DE102005022147A1 (de) * 2005-04-28 2006-11-02 Bayer Cropscience Ag Wirkstoffkombinationen
EP2027773A1 (de) * 2007-08-24 2009-02-25 Bayer CropScience AG Verwendung von N-[2-(1,3-Dimethylbutyl)phenyl]-5-fluor-1,3-dimethyl-1H-pyrazol-4-carboxamid
EP2272346A1 (de) * 2009-07-08 2011-01-12 LANXESS Deutschland GmbH Penthiopyrad für den Holzschutz
JP5706179B2 (ja) 2010-08-20 2015-04-22 住友化学株式会社 有害節足動物防除組成物及び有害節足動物の防除方法
EP2443927A1 (de) 2010-10-25 2012-04-25 LANXESS Deutschland GmbH Penflufen als Holzschutzmittel gegen holzzerstörende Basidiomyceten
PL2632266T3 (pl) 2010-10-25 2017-07-31 Lanxess Deutschland Gmbh Penflufen jako środek do ochrony drewna przed podstawczakami niszczącymi drewno
EP2443928A1 (de) 2010-10-25 2012-04-25 LANXESS Deutschland GmbH Fungizide Penflufen Mischungen
US20140088041A1 (en) 2010-10-25 2014-03-27 Lanxess Deutschland Gmbh Fungicidal penflufen mixtures
KR20230161044A (ko) 2022-05-18 2023-11-27 김홍대 지르코니아를 이용한 어구용 추의 제조방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2081935C (en) * 1991-11-22 2004-05-25 Karl Eicken Anilide derivatives and their use for combating botrytis
DE4231517A1 (de) * 1992-09-21 1994-03-24 Basf Ag Carbonsäureanilide, Verfahren zu ihrer Herstellung und sie enthaltende Mittel zur Bekämpfung von Schadpilzen
DE4231519A1 (de) * 1992-09-21 1994-03-24 Basf Ag Cyclohex(en)ylcarbonsäureamide, Verfahren zu ihrer Herstellung und sie enthaltende Mittel zur Bekämpfung von Schadpilzen
EP0737682B1 (de) * 1995-04-11 2002-01-09 Mitsui Chemicals, Inc. Substituierte Thiophenderivate und diese als aktiver Bestandteil enthaltenden Fungizide für Land- und Gartenbauwirtschaft
JP3164762B2 (ja) * 1995-04-11 2001-05-08 三井化学株式会社 置換チオフェン誘導体およびこれを有効成分とする農園芸用殺菌剤
JP3824421B2 (ja) * 1998-04-24 2006-09-20 三井化学株式会社 植物病害防除剤組成物
KR20040011427A (ko) * 2000-11-08 2004-02-05 신젠타 파티서페이션즈 아게 피롤카르복시아미드 및 피롤카르보티오아미드 및 그의농화학적 용도
AU2002304109B2 (en) * 2001-05-31 2005-07-21 Nihon Nohyaku Co., Ltd. Substituted anilide derivatives, intermediates thereof, agricultural and horticultural chemicals, and their usage
DE10136065A1 (de) * 2001-07-25 2003-02-13 Bayer Cropscience Ag Pyrazolylcarboxanilide
DE10229595A1 (de) * 2002-07-02 2004-01-15 Bayer Cropscience Ag Phenylbenzamide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005058839A1 *

Also Published As

Publication number Publication date
BRPI0417616A (pt) 2007-04-10
WO2005058839A1 (de) 2005-06-30
KR20060126713A (ko) 2006-12-08
US20070276022A1 (en) 2007-11-29
MXPA06006744A (es) 2006-08-18
AR047148A1 (es) 2006-01-11
AU2004299217A1 (en) 2005-06-30
CA2549821A1 (en) 2005-06-30
JP2007516261A (ja) 2007-06-21

Similar Documents

Publication Publication Date Title
EP1716099B1 (de) Haloalkylcarboxamide zur bekämpfung von mikroorganismen
EP1713789B1 (de) 2-halogenfuryl/thienyl-3-carboxamide
EP1771069B1 (de) N-(2-(hydroxymethyl)phenyl)-1h-pyrazol-4-carboxamid derivate und verwandte verbindungen als mikrobizide wirkstoffe zur anwendung im pflanzen- und materialschutz
DE102005009458A1 (de) Pyrazolylcarboxanilide
WO2006024389A2 (de) Biphenylthiazolcarboxamide
EP1966161B1 (de) Carboxamide zur bekämpfung unerwünschter mikroorganismen im pflanzenschutz
DE102005007534A1 (de) Pyrazolopyrimidine
WO2006024387A2 (de) Biphenylthiazolcarboxamide
EP1727816B1 (de) Mikrobizide silylierte carboxamide
EP1706387A1 (de) Substituierte heterocyclische amide mit fungizider wirkung
EP1697329A1 (de) Optisch aktive carboxamide und deren verwendung zur bekämpfung von unerwünschten mikroorganismen
DE102004059725A1 (de) 2-Alkyl-cycloalk(en)yl-carboxamide
EP1694681B1 (de) Pyrazolopyrimidine
WO2005077952A1 (de) Imidazolopyrimidine als fungizide wirkstoffe
EP1694682A1 (de) 7-amino-5-halopyrazolopyrimidine mit fungizider wirkung
EP1694679A1 (de) Pyrazolopyrimidine als fungizide wirkstoffe
WO2008014905A2 (de) 3-difluormethyl-pyrazolylcarboxanilide
EP1697372B1 (de) Pyrazolopyrimidine
EP1694680A1 (de) Pyrazolopyrimidine
DE102004005317A1 (de) Optisch aktive Carboxamide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060718

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20061023

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20061023

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090301