EP1694953A1 - Procede de commande pour la regeneration d'un filtre a particules - Google Patents

Procede de commande pour la regeneration d'un filtre a particules

Info

Publication number
EP1694953A1
EP1694953A1 EP04805796A EP04805796A EP1694953A1 EP 1694953 A1 EP1694953 A1 EP 1694953A1 EP 04805796 A EP04805796 A EP 04805796A EP 04805796 A EP04805796 A EP 04805796A EP 1694953 A1 EP1694953 A1 EP 1694953A1
Authority
EP
European Patent Office
Prior art keywords
injection
fuel
dilution rate
variation
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04805796A
Other languages
German (de)
English (en)
Other versions
EP1694953B1 (fr
Inventor
Vincent Brochon
Yann Chazal
Hervé MERLAUD
Sylvère RONDELE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP1694953A1 publication Critical patent/EP1694953A1/fr
Application granted granted Critical
Publication of EP1694953B1 publication Critical patent/EP1694953B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/18Indicating or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/16Controlling lubricant pressure or quantity
    • F01M2001/165Controlling lubricant pressure or quantity according to fuel dilution in oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/11Oil dilution, i.e. prevention thereof or special controls according thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections

Definitions

  • the invention relates to a control method for the regeneration of a particulate filter fitted to a powertrain of a vehicle.
  • the heterogeneity of the combustion processes in lean-mixture engines, in particular in diesel engines, has the effect of generating carbon particles, which cannot be burned efficiently in the engine. This results, for example, in the appearance, at the outlet of the exhaust line, of black smoke * This phenomenon is a source of pollution which we seek to reduce.
  • the presence of a particulate filter in the exhaust line of the stroller makes it possible to considerably reduce the quantity of particles, dust and other soot, emitted into the atmosphere, and to comply with anti-pollution standards.
  • Regeneration devices make it possible to periodically burn the particles trapped in the filter and to avoid clogging of the latter.
  • the soot particles are essentially carbon elements, and their combustion consumes oxygen to form carbon dioxide. This is done by raising the temperature within the particulate filter to a temperature of the order of 550 to 650 ° C, temperature from which the carbon particles retained in the filter ignite spontaneously -
  • the triggering of the regeneration of the filter is controlled by a computer which determines whether the regeneration should take place and, when it is in progress, whether it can continue.
  • the computer receives information on the operation of the vehicle.
  • This information includes, for example, the temperatures of the engine coolant, the ga ⁇ upstream and downstream of the particulate filter, the vehicle speed, the mass of soot accumulated in the particulate filter and the distance traveled since the last regeneration. .
  • the computer checks conditions on this information and does not trigger regeneration unless all the conditions are satisfied. Regeneration is maintained, even if certain conditions are no longer satisfied for a period of time below a predetermined threshold, of the order of one to two minutes. If at least one condition is no longer satisfied for a duration greater than said threshold, then the regeneration process is interrupted.
  • the engine operating conditions are changed to increase the temperature of the exhaust gases before they pass through the particulate filter.
  • CQS modifications often relate to fuel injection, which can be delayed for at least one engine combustion chamber. In some cases also, a post-injection of fuel is carried out, during the final phase of the expansion time. This last injection brings no additional mechanical power to the engine, but increases the exhaust gas temperature. These modifications increase the fuel consumption and also the quantity of fuel which dissolves in the engine oil, passing through the space between the cylinder and the piston.
  • the variation in the dilution rate is a function of the conditions of the injection of fuel into each of the combustion chambers.
  • the inventor has in fact found that the most influential parameters on the dilution of the fuel in the oil were the conditions for fuel injection. By taking these conditions into account, we can best estimate the rate of dilution of fuel in engine oil.
  • the variation in the dilution rate is a function of the following parameters; a number of phases of injection into the combustion chamber for a cycle; poiar each injection phase, the quantity of fuel injected and the position of a piston in the combustion chamber during the injection; and the fuel supply pressure. All injection phases are thus taken into account, as well as their individual parameters.
  • the variation in the dilution rate is calculated on a delayed injection phase, the yield of which is degraded compared to a normal injection, and on a post-injection phase which does not participate in the supply of power to the engine.
  • This type of operation is frequently used to control regeneration.
  • the post-injection phase is well taken into account, unlike some evaluation methods based solely on the engine load, evaluated for example by an air flow or an air pressure at the intake.
  • a coefficient for each injection phase comprising a multiplicative term equal to the product of the flow rate 'of fuel during said phase and the angular position of the crankshaft at the start of said injection phase and an end divider equal to the pressure fuel supply, the dilution change rate being a function of the sum of said coefficients over all injection phases.
  • the coefficient for the delayed injection also includes a multiplier term equal to the rate of change equal to the rate of change in the amount of fuel injected between the delayed injection and the normal injection
  • the coefficient for the post -injection further includes a multiplier term equal to the ratio of the amount of fuel injected from the post ⁇ injection and 1 delayed injection.
  • the variation in the dilution rate is a continuous function, zero when the sum of said coefficients over all the injection phases is less than an influence threshold, and refines beyond said influence threshold. The inventor found, by comparison with series of measurements, that such a function validly represented the variation in the dilution rate.
  • the invention also relates to a method for estimating a fuel dilution rate in the oil of a diesel engine during engine operation, the dilution rate being an integration over time of the variation in the dilution rate estimated as indicated above.
  • the subject of the invention is also a method of controlling a motorization system comprising an engine, a particle filter receiving exhaust gases from the engine to retain particles of the exhaust gases, the method processing information and controlling the engine for obtaining the regeneration of the particulate filter when necessary, characterized in that the method establishes an estimate of the dilution rate of fuel in the oil by the preceding method of estimation of a dilution rate of fuel in the engine oil, the process allowing regeneration if the estimated dilution rate is below a predetermined dilution threshold.
  • FIG. 2 is a timing diagram of different fuel injection modes
  • Figure 3 is a flow diagram of the regeneration control of the particulate filter
  • - Figure 4 is a graph showing the variation in dilution rate as a function of sum of coefficients.
  • a motorization system implementing the method according to the invention and represented in FIG. 1, comprises a diesel type engine 1 supercharged by a turbocharger 2 and the exhaust gases of which are treated by a catalytic particle filter 3.
  • the engine 1 is supplied with air by an air circuit comprising an air intake 11, a compressor 12 of the turbocharger 2, a discharge pipe 13 and an intake manifold 14 opening into combustion chambers of engine 1, a only chamber 15 being shown.
  • the exhaust gases produced by combustion are evacuated from the chamber 15 by an exhaust pipe .16, pass through a turbine 17 of the turbocharger, then the catalytic particle filter 3.
  • the exhaust gas recycling circuit includes a tapping 18 on the exhaust manifold, a selection valve 19 directing the exhaust gases towards the discharge line either via a cooler 20 or via a direct line 21.
  • a computer 24 receives information on the operation of the motorization system and controls the engine 1. It determines in particular the conditions under which fuel is injected into the engine. Referring to FIG. 2, a diagram of the injection times is represented under three different conditions. The diagram has the angular position ⁇ of the crankshaft as the abscissa, the zero representing the position of the piston in top dead center (TDC) for the room of combustion considered.
  • the injection is carried out in two stages, namely a pre-injection 51 followed by a main injection 52.
  • the main injection 52 begins at a position ⁇ in of the crankshaft, generally before reaching top dead center.
  • the injection is delayed, but always comprises a pre-injection 27, followed by a main injection 28.
  • the main injection 28 begins at a position ⁇ ir of the crankshaft, generally after reaching the top dead center. If the temperature of the exhaust gases needs to be further raised, a post-injection 29 is carried out. Post-injection 29 begins at a position ip of the crankshaft.
  • the computer 24 determines whether the regeneration should be controlled or not. For this, it establishes whether certain criteria are satisfied. When all the criteria are satisfied, a regeneration control signal is delivered. The computer maintains the regeneration control signal for a predetermined period after at least one criterion is no longer satisfied.
  • the computer takes into account a criterion on the dilution rate Pdil of fuel in the engine oil.
  • the dilution rate is estimated by the calculator, and if the estimate of the dilution rate Pdil is greater than a predetermined dilution threshold Sdil, the criterion is no longer met.
  • Sdil a predetermined dilution threshold
  • the estimation of the dilution rate is described below.
  • the estimate of the dilution rate Dpii is initialized either at a zero value if the oil is new , or to a value previously estimated and stored.
  • the test step 31 it is directed to a step 32 if no regeneration is in progress, or to a step 33 otherwise.
  • a term dPdil is calculated by the opposite of the product of a fevap function of evaporation of the fuel contained in the oil and of a time step dt.
  • the Févap function is calculated from a stored map, based on
  • a term dPdil is calculated by the product of a variation in the dilution rate DQc and a time step dt.
  • the variation in the rate of. DQc dilution is calculated using a compliant method
  • the new dilution rate Pdil (n) is calculated by adding to the dilution rate at the time step 5 preceding Pdii (n-1) the term dPdil. This produces a digital integration of the variation in the DQc dilution rate.
  • step 35 and 36 it is ensured that the dilution rate will not become negative. Then, in step 0 37, the dilution rate Pdil is compared to the predetermined dilution threshold Sdii: if it is higher, the criterion is not satisfied and regeneration is prohibited (step 38). Otherwise, regeneration is allowed (step 39).
  • step 40 we wait for the time step dt to elapse before proceeding with a new calculation step, starting again at step 31 ”
  • the variation in the dilution rate DQc is calculated according to the following formula: (DQc ⁇ O if Cir + Cîp ⁇ Sc t DQc ⁇ ax ⁇ Cir + C ⁇ -Sc) if Cir + C ⁇ ⁇ Sc
  • Cir a coefficient of delayed injection
  • Cip a coefficient of post-injection
  • Se a predetermined influence threshold
  • at a proportionality coefficient.
  • the graph in Figure 3 represents this function with C ⁇ Cir + Cip,
  • the delayed injection coefficient is defined by the following formula:
  • Qir quantity of fuel injected during the delayed injection phase
  • Pc common rail pressure supplying fuel to the injector.
  • the post-injection coefficient is defined by the following formula:
  • Cip ⁇ D, t ⁇ ⁇ lr Pc with Dip-ir ratio of the injection rate of post-injection to that of delayed injection
  • Qip quantity of fuel injected during the post-injection phase
  • ⁇ ip angular position of the crankshaft when post-in ection begins.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Networks Using Active Elements (AREA)
  • Filtration Of Liquid (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

Procédé de commande pour la régénération d'un filtre à particules. t. 'invention concerne un procédé de commande pour la régénération d'un filtre à particules équipant un groupe motopropulseur d'un véhicule. L'hétérogénéité des processus de combustion dans les moteurs à mélange pauvre, en particulier dans les moteurs Diesel, a pour effet de générer des particules de carbone, qui ne peuvent être brûlées efficacement dans le moteur. Cela se traduit par exemple par l'apparition, en sortie de la ligne d'échappement, de fumées noires* Ce phénomène est une source de pollution que l'on cherche à réduire.
La présence d'un filtre à particules dans la ligne d'échappement du raoteur permet de diminuer considérablement la quantité de particules, poussières et autres suies, émises dans 1 'atmosphère, et de satisfaire aux normes antipollution. Des dispositifs de régénération permettent de brûler périodiquement les particules piégées dans le filtre et d'éviter le colmatage de ce dernier. Les particules de suies sont des éléments essentiellement carbonés, et leur combustion consomme de l'oxygène pour former- du gas carbonique. Ceci est effectué en élevant la température au sein du filtre à particules jusqu'à une température de l'ordre de 550 à 650 °C, température à partir de laquelle les particules de carbone retenues dans le filtre s'enflamment spontanément - Le déclenchement de la régénération du filtre est contrôlé par un calculateur qui détermine si la régénération doit avoir lieu et, quand elle est en cours, si elle peut continuer. Pour cela, le calculateur reçoit des informations sur le fonctionnement du véhicule. Ces informations comprennent par exemple les températures du liquide de refroidissement du moteur, des ga∑ en amont et en aval du filtre à particules, la vitesse du véhicule, la masse de suie accumulée dans le filtre à particules et la distance parcourue depuis la dernière régénération.
Le calculateur vérifie des conditions sur ces informations et ne déclenche la régénération que si toutes les conditions sont satisfaites. La régénération est maintenue, même si certaines conditions ne sont plus satisfaites pendant une durée inférieure à un seuil prédéterminé, de l'ordre d'une à deux minutes. Si au moins une condition n'est plus satisfaite pendant une durée supérieure audit seuil, alors le processus de régénération est interrompu. Pour déclencher et maintenir la régénération, les conditions de fonctionnement du moteur sont modifiées pour augmenter la température des gaz d'échappement avant leur passage dans le filtre à particules. CQS modifications concernent souvent l'injection de carburant, qui peut être retardée pour- au moins une chambre de combustion du moteur. Dans certains cas également, on réalise une post-injection de carburant, lors de la phase finale du temps de détente. Cette dernière injection n'apporte aucune puissance mécanique supplémentaire au moteur, mais augmente la température des gaz d'échappement. Ces modifications augmentent la consommation de carburant et également la quantité de carburant qui se dissout dans l'huile du moteur, en passant par 1 * espace entre le cylindre et le piston.
Avec une nouvelle génération de filtres à particules catalytiques, qui intègrent les fonctions de pot cataiytique et de filtre à particules, on doit agir pendant toute la durée de la régénération pour maintenir les conditions permettant la combustion des suies piégées, .dans le filtre. Les inconvénients mentionnés précédemment sont donc prolongés pendant toute la durée de la régénération. De plus, ils sont aggravés dans certaines conditions de fonctionnement du moteur, dans lesquelles peu de chaleur est naturellement apportée aux gaz d'échappement- L'augmentation de la quantité de carburant diluée dans l'huile du moteur a . pour effet de faire varier les caractéristiques de l'huile, éverrttielle ent jusqu'à un point où le moteur pourrait se détériorer. C'est donc un objectif de l'invention de proposer une méthode permettant de connaître au mieux la dilution du carburant dans l'huile du moteur pour empêcher la régénération lorsque cette, dilution est supérieure à une limite admissible. Avec ces objectifs en vue, l'invention a. pour objet une méthode d'estimation de la variation d'un. taux de dilution de carburant dans l'huile d'un moteur Diesel pendant le fonctionnement du moteur-
Selon l'invention, la variation du taux de dilution est une fonction des conditions de l'injection du carburant dans chacune des chambres de combustion. L'inventeur a en effet constaté que les paramètres les plus influents sur la dilution du carburant dans l'huile étaient les conditions d'injection du carburant. En prenant en compte ces conditions, on peut estimer au mieux le taux de dilution de carburant dans l'huile d'un moteur. De préférence, la variation du taux de dilution est une fonction des paramètres suivants ; un nombre de phases d'injection dans la chambre de combustion pour un cycle ; poiar chaque phase d'injection, la quantité de carburant injecté et la position d'un piston dans la chambre de combustion lors de l'injection ; et la pression d'alimentation en carburant. Toutes les phases d'injection sont ainsi prises en compte, ainsi que leurs paramètres individuels. De manière particulière, la variation du taux de dilution est calculée sur une phase d'injection retardée dont le rendement est dégradé par rapport à une injection normale, et sur une phase de postinjection ne participant pas à la fourniture de puissance au moteur. Ce type de fonctionnement est fréquemment utilisé pour commander une régénératio . La phase de post-injection est bien prise en compte, contrairement à certaines méthodes d'évaluation se basant uniquement sur la charge du moteur, évaluée par exemple par un débit d'air ou une pression d'air à l'admission. Selon un mode de réalisation, on calcule un coefficient pour chaque phase d'injection, le coefficient comprenant un terme multiplicatif égal au produit du débit 'de carburant pendant ladite phase et de la position angulaire du vilebrequin au début de ladite phase d'injection, et un terme diviseur égal à la pression d'alimentation en carburant, le taux de variation de dilution étant une fonction de la somme desdits coefficients sur toutes les phases d'injection. L'inventeur a constaté que de tels coefficients pouvaient valablement représenter la contribution de chaque phase d'injection à la variation du taux de dilution de' carburant dans l'huile. De manière particulière, le coefficient de l'injection retardée comporte en outre un terme multiplicateur égal au taux de variation égal au taux de variation de la quantité de carburant injecté entre l'injection retardée et l'injection normale, et le coefficient de la post-injection comporte en outre un terme multiplicateur égal au rapport des quantité de carburant injecté de la post~injection et de 1 ' injection retardée . Préférentiellementr la variation du taux de dilution est une fonction continue, nulle lorsque la somme desdits coefficients sur toutes les phases d'injection est inférieure à un seuil d'influence, et affine au-delà dudit seuil d'influence. L'inventeur a constaté, par la comparaison avec des séries de mesures, qu'une telle fonction représentait valablement la variation du taux de dilution.
L'invention a aussi pour objet une méthode d'estimation d'un taux de dilution de carburant dans l'huile d'un moteur Diesel pendant le fonctionnement du moteur, le taux de dilution étant une intégration stir le temps de la variation du taux de dilution estimée comme indiqué précédemment. L'invention a aussi pour objet un procédé de commande d'un système de motorisation comportant un moteur, un filtre à particules recevant des gaz d'échappement du moteur pour retenir les particules des gaz d'échappement, le procédé traitant des informations et commandant le moteur pour obtenir la régénération du filtre à particules lorsque nécessaire, caractérisé en ce que le procédé établit une estimation du taux de dilution de carburant dans l'huile par la méthode précédente d'estimation d'un taux de dilution de carburant dans l'huile d'un moteur, le procédé autorisant la régénération si l'estimation du taux de dilution est inférieure à un seuil de dilution prédéterminé. L'invention sera mieux comprise et d'autres particularités et avantages apparaîtront à la lecture de la description qui va suivre, la description faisant référence aux dessins annexés parmi lesquels Ï la figure 1 est une vue schématique d' un système de motorisation conforme à l'invention ;
- La figure 2 est un chronogramme de différents modes d'injection de carburant ; la figure 3 est un organigramme de la commande de régénération du filtre à particules ; - la figure 4 est un graphique représentant la variation de taux de dilution en fonction d'une somme de coefficients.
Un système de motorisation mettant en œuvre la méthode selon l'invention et représenté sur la figure 1, comporte un moteur 1 du type Diesel suralimenté par un turbocompresseur 2 et dont les gaz d'échappement sont traités par un filtre à particules catalytique 3. Le moteur 1 est alimenté en air par un circuit d'air comprenant une prise d'air 11, un compresseur 12 du turbocompresseur 2, une conduite de refoulement 13 et une tubulure d'admission 14 débouchant dans des chambres de combustion du moteur 1, une seule chambre 15 étant représentée.
Les gaz d'échappement produits par la combustion sont évacués de la chambre 15 par une tubulure d'échappement .16, traversent une turbine 17 du turbocompresseur, puis le filtre à particules catalytique 3. On circuit de recyclage des gaz d'échappement comporte un piquage 18 sur la tubulure d'échappement, une vanne de sélection 19 orientant les gaz d'échappement vers la conduite de refoulement soit en passant par un refroidisseur 20, soit par une conduite directe 21. Un calculateur 24 reçoit des informations sur le fonctionnement du système de motorisation et commande le moteur 1. Il détermine en particulier les conditions dans lesquelles est réalisée l'injection de carburant dans le moteur. En se référant à la figure 2, un diagramme des temps de l'injection est représenté dans trois conditions différentes- Le diagramme a pour abscisse la position angulaire φ du vilebrequin, le zéro représentant la position du piston au point mort haut {PMH) pour la chambre de combustion considérée.
Lors d'une injection normale, lorsque aucune régénération n'est commandée, l'injection est réalisée en deux temps, à savoir une pré-injection 51 suivie d'une injection principale 52. L'injection principale 52 débute à une position φin du vilebrequin, en général avant l'atteinte du point mort haut.
Lorsqu'une régénération est commandée, l'injection est retardée, mais comporte toujours une pré-injection 27, suivie d'une injection principale 28. L'injection principale 28 débute à une position φir du vilebrequin, en général après l'atteinte du point mort haut. Si la température des gaz d'échappement a besoin d'être encore plus relevée, une post-injection 29 est réalisée. La post-injection 29 débute à une position ip du vilebrequin. Le calculateur 24 détermine si la régénération doit être pilotée ou non. Pour cela, il établit si certains critères sont satisfaits. Lorsque tous les critères sont satisfaits, un signal de commande de la régénération est délivré. Le calculateur maintient le signai de commande de la régénération pendant une durée prédéterminée après qu'au moins un critère n'est plus satisfait. Parmi ces critères, le calculateur prend en compte un critère sur le taux de dilution Pdil de carburant dans l'huile du moteur. Le taux de dilution est estimé par le calculateur, et si l'estimation du taux de dilution Pdil est supérieure à un seuil de dilution Sdil prédéterminé, le critère n'est plus satisfait. L'estimation du taux de dilution est décrite plus loin. Pour l'élaboration de ce critère, on se réfère à l'organigramme de la figure 3. Dans une étape d'initialisation 30, l'estimation du taux de dilution Dpii est initialisé soit à une valeur nulle si 5 l'huile est neuve, soit à une valeur précédemment estimée et mémorisée. A l'étape de test 31, on oriente vers une étape 32 si aucune régénération n'est en cours, ou vers une étape 33 dans le cas contraire.
îû Lors de l'étape 32, un terme dPdil est calculé par l'opposé du produit d'une fonction Févap d'évaporation du carburant contenu dans l'huile et d'un pas de temps dt. La fonction Févap est calculée à partir d'une cartographie mémorisée, en fonction de
15 la vitesse de rotation N et du débit de carburant Qc.
Lors de l'étape 33, un terme dPdil est calculé par le produit d'une variation du taux de dilution DQc et d'un pas de temps dt. La variation du taux de . dilution DQc est calculée selon une méthode conforme
20 à l'invention, exposée ci-après, à partir des caractéristiques d'injection du carburant. Après l'évaluation de l'une des étapes 32 ou 33, le nouveau taux de dilution Pdil(n) est calculé en ajoutant au taux de dilution au pas de temps 5 précédent Pdii{n-1) le terme dPdil. On réalise ainsi une intégration numérique de la variation du taux de dilution DQc.
Aux étapes 35 et 36, on s'assure que le taux de dilution ne deviendra pas négatif. Ensuite, à l'étape 0 37, le taux de dilution Pdil est comparé au seuil de dilution Sdii prédéterminé : s'il est supérieur, le critère n'est pas satisfait et une régénération est interdite (étape 38) . Dans le cas contraire, une régénération est autorisée (étape 39) .
A l'étape 40, on attend l'écoulement du pas de temps dt avant de procéder à un nouveau pas de calcul, en reprenant à l'étape 31» La variation du taux de dilution DQc est calculée selon la formule suivante : ( DQc ≈ O si Cir + Cîp<Sc t DQc ≈ax{Cir + Cφ-Sc) si Cir + Cφ ≥Sc
avec : Cir : un coefficient de l'injection retardée ; Cip : un coefficient de la post-injection ; Se : un seuil d'influence prédéterminé ; a ; un coefficient de proportionnalité. Le graphique de la figure 3 représente cette fonction avec C ≈ Cir+Cip, Le coefficient d'injection retardée est défini par la formule suivante :
-""" Pc avec :
Dir-in ; taux de variation du débit d'injection entre l'injection retardée et l'injection normale ; φr : position angulaire du vilebrequin lorsque l'injection retardée débute, par rapport au point π
mort haut du piston de la chambre de combustion considérée ;
Qir : quantité de carburant injecté pendant la phase d'injection retardée ;
Pc : pression de rampe commune alimentant l'injecteur en carburant. Le coefficient de post-injection est défini par la formule suivante :
Cip ≈ D, tρ~lr Pc avec Dip-ir : rapport du débit d'injection de la post-injection sur celui de l'injection retardée ; Qip : quantité de carburant injecté pendant la phase post-injection ; φip : position angulaire du vilebrequin lorsque la post-in ection débute. Ces équations ont été vérifiées par la comparaison du résultat de ces équations avec des résultats d'essais de fonctionnement. Le taxxx de dilution de carburant dans l'huile du moteur a été mesuré après un fonctionnement du moteur à conditions constantes pendant une durée d'une heure. La mesure du taux de dilution est réalisée par exemple par chromatographie. Après détermination statistique du coefficient de proportionnalité et du seuil d' in£luencef les simulations sont corréiées à 86 % avec les résultats de mesure. La méthode seion l'invention peut s'appliquer à. l'ensemble des chambres de combustion si elles son-fc commandés de la même manière, ou individuellement si les conditions particulières d'injection sont; appliquées uniquement à certaines chambres de combustion.

Claims

REVENDICATIONS
1, Méthode d'estimation de la variation d'un taux de dilution de carburant dans l'huile d'un moteur Diesel pendant le fonctionnement du mαteiar (1), la variation du taux de dilution (DQc) étant une fonction, dans chacune des chambres de combustion (15) , des paramètres suivants : - un nombre de phases d'injection dans la chambre de combustion (15) pour un cycle ; - pour chaque phase d'injection, la quantité de carburant injecté (Qin, Qir, Qip) et la position d'un piston ( in, φir, fip) dans la chambre de combustion {15} lors de l'injection ; caractérisée en ce que la variation du taux de dilution est fonction en outre de la pression d'alimentation {Pc) en carburant.
2, Méthode selon la revendication 1, dans laquelle la variation du taux de dilution (DQc) est calculée sur une phase d'injection retardée {27, 28} dont le rendement est dégradé par rapport à une injection normale (25, 26) , et sur une phase de postinjection (29) ne participant pas à la fourniture de puissance au moteur.
3. Méthode selon la revendication 1 ou 2, dans laquelle on calcule un coefficient pour chaque phase d'injection, le coefficient (Clr, Cip) comprenant un terme multiplicatif égal au produit de la quantité de carburant injecté {Qir, Qip) pendant ladite phase et de la position angulaire du vilebrequin (φir, φip) au début de ladite phase. d'injection, et un terme diviseur égal à la pression d'alimentation (Pc) en carburant, le taux de variation de dilution (DQc) étant une fonction de la somme (C) desdits coefficients {Cir, Cip) sur toutes les phases d'injection.
4. Méthode selon la revendication 3, dans laquelle le coefficient de l'injection retardée {Cir) comporte en outre un terme multiplicateur {Dir-in) égal au taux de variation de la quantité d carburant injecté entre l'injection retardée (Qir) et l'injection normale (Qin) .
5. Méthode seion la revendication 3, dans laquelle le coefficient de la post-injection (Cip) comporte en outre un terme multiplicateux (Dir-ip) égal au rapport des quantités de carburant injecté de la post-injection {Qip) et de l'injection retardée {Qir) .
6. Méthode selon la revendication 3, dans laquelle la variation du taux de dilution est une fonction continue, nulle lorsque la somme (C) desdits coefficients {Cir, Cip) sur toutes les phases d'injection est inférieure à un seuil d'influence (Se), et affine au-delà dudit seuil d'influence {Se}.
7. Méthode d'estimation d'un taux de dilution de carburant (Pdil) dans l'huile d'un moteur Diesel pendant le fonctionnement du moteur, le taux de dilution étant une intégration sur le temps de la variation du taux de dilution (DQc) estimée selon l'une des revendications précédentes.
8. Procédé de commande d'un système de motorisation comportant un moteur (1) , un filtre à particules (3) recevant des gaz d'échappement du moteur (1) pour retenir les particules des gaz d'échappement, le procédé traitant des informations et commandant le moteur (1) pour obtenir la régénération du filtre à particules (3) lorsque nécessaire, caractérisé en ce que le procédé établit une estimation du taux de dilution (Pdil) de carburant dans l'huile par une méthode selon la revendication 7, le procédé autorisant la régénération si l'estimation, du taux de dilution (Pdil) est inférieure à un seuil de dilution prédéterminé {Sdil) .
EP04805796A 2003-11-10 2004-10-29 Procede de commande pour la regeneration d'un filtre a particules Not-in-force EP1694953B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0313166A FR2862087B1 (fr) 2003-11-10 2003-11-10 Procede de commande pour la regeneration d'un filtre a particules
PCT/FR2004/050553 WO2005047680A1 (fr) 2003-11-10 2004-10-29 Procede de commande pour la regeneration d'un filtre a particules

Publications (2)

Publication Number Publication Date
EP1694953A1 true EP1694953A1 (fr) 2006-08-30
EP1694953B1 EP1694953B1 (fr) 2009-03-04

Family

ID=34508367

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04805796A Not-in-force EP1694953B1 (fr) 2003-11-10 2004-10-29 Procede de commande pour la regeneration d'un filtre a particules

Country Status (7)

Country Link
EP (1) EP1694953B1 (fr)
JP (1) JP4764826B2 (fr)
KR (1) KR20060117947A (fr)
AT (1) ATE424504T1 (fr)
DE (1) DE602004019808D1 (fr)
FR (1) FR2862087B1 (fr)
WO (1) WO2005047680A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004033413A1 (de) * 2004-07-10 2006-02-02 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
JP3933172B2 (ja) * 2005-07-15 2007-06-20 いすゞ自動車株式会社 排気ガス浄化システムの制御方法及び排気ガス浄化システム
DE102005051924A1 (de) * 2005-10-29 2007-05-03 Ford Global Technologies, LLC, Dearborn Online Messung von Ölverdünnungen
JP2007162569A (ja) * 2005-12-14 2007-06-28 Nissan Motor Co Ltd 希釈オイル再生装置及び希釈オイル再生方法
JP4905303B2 (ja) * 2006-10-02 2012-03-28 日産自動車株式会社 内燃機関の排出ガス温度制御方法及び装置並びに内燃機関システム
DE102006059675A1 (de) 2006-12-18 2008-06-19 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erkennung eines kontinuierlichen Kraftstoffeintrags in das Schmieröl einer Brennkraftmaschine beim Kaltstart
FR2914945A3 (fr) * 2007-04-13 2008-10-17 Renault Sas Procede d'estimation de la dilution de carburant dans l'huile d'un moteur a combustion interne.
US7433776B1 (en) * 2007-04-18 2008-10-07 International Engine Intellecutal Property Company, Llc System and method for quantizing fuel dilution of engine motor due to post-injection fueling to regenerate an exhaust aftertreatment device
EP2067946B1 (fr) * 2007-12-05 2012-07-11 Iveco Motorenforschung AG Procédé et système de détection de la dilution du lubrifiant par le carburant
FR2926323B1 (fr) * 2008-01-11 2010-01-08 Renault Sas Procede de gestion d'un piege a oxydes d'azote afin d'assurer un intervalle de vidange minimal
EP2123868A1 (fr) * 2008-05-22 2009-11-25 Ford Global Technologies, LLC Procédé pour déterminer une dilution d'huile
FR2933735B1 (fr) * 2008-07-08 2011-04-29 Peugeot Citroen Automobiles Sa Procede et dispositif de commande des regenerations d'un systeme de post-traitement des gaz d'echappement d'un moteur a combustion
FR2999231B1 (fr) * 2012-12-06 2018-08-17 Psa Automobiles Sa. Controleur de commande de regeneration de filtre a particules a effet de dilution reduit
FR3011577B1 (fr) * 2013-10-03 2015-12-04 Peugeot Citroen Automobiles Sa Procede d'alerte au conducteur en cas de detection de dilution elevee d'un lubrifiant pour moteur de type flex fuel et calculateur moteur correspondant
DE102015207287B4 (de) 2015-04-22 2017-03-09 Ford Global Technologies, Llc Ölsystem für einen Dieselmotor und Verfahren zum Betreiben eines Dieselmotors

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02199212A (ja) * 1989-01-27 1990-08-07 Suzuki Motor Co Ltd 内燃機関のオイル不良検知装置
JPH0849584A (ja) * 1994-08-04 1996-02-20 Nippondenso Co Ltd 内燃機関の制御装置
US5750887A (en) * 1996-11-18 1998-05-12 Caterpillar Inc. Method for determining a remaining life of engine oil
JP2001323835A (ja) * 2000-05-15 2001-11-22 Toyota Motor Corp 内燃機関の排気浄化装置
JP2002013428A (ja) * 2000-06-30 2002-01-18 Mitsubishi Motors Corp 筒内噴射型内燃機関
JP2003138952A (ja) * 2001-11-05 2003-05-14 Mitsubishi Motors Corp ディーゼル機関
DE10159479A1 (de) * 2001-12-04 2003-06-18 Daimler Chrysler Ag Verfahren zum Betrieb einer Brennkraftmaschine
JP3797278B2 (ja) * 2002-04-26 2006-07-12 トヨタ自動車株式会社 筒内噴射式内燃機関の燃料噴射制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005047680A1 *

Also Published As

Publication number Publication date
KR20060117947A (ko) 2006-11-17
FR2862087B1 (fr) 2008-05-16
DE602004019808D1 (de) 2009-04-16
WO2005047680A1 (fr) 2005-05-26
JP4764826B2 (ja) 2011-09-07
EP1694953B1 (fr) 2009-03-04
FR2862087A1 (fr) 2005-05-13
JP2007510855A (ja) 2007-04-26
ATE424504T1 (de) 2009-03-15

Similar Documents

Publication Publication Date Title
EP1694953B1 (fr) Procede de commande pour la regeneration d&#39;un filtre a particules
EP2007976A1 (fr) Procede et dispositif de controle de la regeneration d&#39;un systeme de depollution
EP1310656A1 (fr) Système d&#39;aide à la régénération de moyens de dépollution intégrés dans une ligne d&#39;échappement d&#39;un moteur de véhicule automobile
EP1524425B1 (fr) Procédé de commande pour la régénération d&#39;un filtre à particules
FR2903735A1 (fr) Systeme de commande d&#39;un moteur a combustion du type diesel suralimente avec recirculation des gaz d&#39;echappement
FR2884872A1 (fr) Procede de commande d&#39;un moteur de vehicule pour reguler la temperature d&#39;un filtre a particules
EP1650420B1 (fr) Système et procédé de régularisation de la régénération d&#39;un filtre à particules de moteur à combustion interne
FR2870887A1 (fr) Procede de gestion d&#39;un moteur a combustion interne
EP1314875B2 (fr) Système de contrôle du fonctionnement d&#39;un moteur diesel de véhicule automobile
FR2914945A3 (fr) Procede d&#39;estimation de la dilution de carburant dans l&#39;huile d&#39;un moteur a combustion interne.
EP2078839B1 (fr) Strategie de chauffage rapide pour compenser le vieillissement d&#39;un catalyseur d&#39;oxydation d&#39;un moteur diesel
FR3088957A1 (fr) Dispositif et procédé de commande de la régénération d&#39;un filtre à particules d&#39;une ligne d&#39;échappement d&#39;un moteur à combustion interne
EP3546716B1 (fr) Procédé et système de commande de la régénération d &#39;un filtre à particules
EP3816416B1 (fr) Procédé de régénération d&#39;un piège à oxydes d azote de moteur à combustion interne équipé d&#39;un catalyseur de réduction sélective des oxydes d azote
EP2299094A1 (fr) Procédé de commande d&#39;un moteur diesel suralimenté à recirculation de gaz d&#39;échappement à basse pression
FR2856432A1 (fr) Procede de controle d&#39;un systeme de motorisation a moteur diesel et piege a oxydes d&#39;azote
FR2921699A1 (fr) Moteur thermique equipe d&#39;un turbocompresseur de suralimentation et procede pour lutter contre le pompage du turbocompresseur
EP2324222B1 (fr) Moteur a injection de carburant divisee en deux phases
FR2860832A1 (fr) Procede de commande pour la regeneration d&#39;un filtre a particules
EP1411228A1 (fr) Procédé de régénération d&#39;un filtre à particules et dispositif de mise en oeuvre
EP3803088A1 (fr) Procede de commande d&#39;injecteur air-essence d&#39;un moteur a combustion interne
EP3743603A1 (fr) Procédé d&#39;estimation de la dilution du carburant dans l&#39;huile d&#39;un moteur à combustion interne
FR2879245A1 (fr) Dispositif de determination de la masse instantanee de particules retenues par un filtre a particules et utilisation du dispositif.
FR2857407A1 (fr) Procede d&#39;actionnement d&#39;un moteur a allumage par etincelles a injection directe, et moteur a allumage par etincelles a injection directe
WO2006042987A1 (fr) Systeme et procede de regulation de la regeneration d&#39;un filtre a particules de moteur a combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060612

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MERLAUD, HERVE

Inventor name: CHAZAL, YANN

Inventor name: RONDELE, SYLVERE

Inventor name: BROCHON, VINCENT

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070801

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602004019808

Country of ref document: DE

Date of ref document: 20090416

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090304

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090304

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090304

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090304

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090604

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090304

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090304

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090615

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090304

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090304

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090304

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090304

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090604

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090304

26N No opposition filed

Effective date: 20091207

BERE Be: lapsed

Owner name: RENAULT SAS

Effective date: 20091031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090605

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211020

Year of fee payment: 18

Ref country code: GB

Payment date: 20211022

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004019808

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221029