EP1689761A2 - Chiral di- and triphosphites - Google Patents

Chiral di- and triphosphites

Info

Publication number
EP1689761A2
EP1689761A2 EP04802710A EP04802710A EP1689761A2 EP 1689761 A2 EP1689761 A2 EP 1689761A2 EP 04802710 A EP04802710 A EP 04802710A EP 04802710 A EP04802710 A EP 04802710A EP 1689761 A2 EP1689761 A2 EP 1689761A2
Authority
EP
European Patent Office
Prior art keywords
alkyl
aryl
sulfonyl
compounds
chiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04802710A
Other languages
German (de)
French (fr)
Inventor
Manfred Theodor Reetz
Andreas Meiswinkel
Gerlinde Mehler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Studiengesellschaft Kohle gGmbH
Original Assignee
Studiengesellschaft Kohle gGmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Studiengesellschaft Kohle gGmbH filed Critical Studiengesellschaft Kohle gGmbH
Publication of EP1689761A2 publication Critical patent/EP1689761A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0073Rhodium compounds
    • C07F15/008Rhodium compounds without a metal-carbon linkage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • B01J31/185Phosphites ((RO)3P), their isomeric phosphonates (R(RO)2P=O) and RO-substitution derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • B01J31/185Phosphites ((RO)3P), their isomeric phosphonates (R(RO)2P=O) and RO-substitution derivatives thereof
    • B01J31/1855Triamide derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • B01J31/185Phosphites ((RO)3P), their isomeric phosphonates (R(RO)2P=O) and RO-substitution derivatives thereof
    • B01J31/186Mono- or diamide derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • C07C45/505Asymmetric hydroformylation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0073Rhodium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/657154Cyclic esteramides of oxyacids of phosphorus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/6574Esters of oxyacids of phosphorus
    • C07F9/65746Esters of oxyacids of phosphorus the molecule containing more than one cyclic phosphorus atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/321Hydroformylation, metalformylation, carbonylation or hydroaminomethylation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • B01J2231/641Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/822Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2234Beta-dicarbonyl ligands, e.g. acetylacetonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls

Definitions

  • the present invention relates to chiral di- and triphosphites with the general formulas I or II, which are bridged via suitable groups, the use of these compounds in asymmetric transition metal catalysis, and chiral transition metal catalysts.
  • ligands required for this are often chiral phosphorus-containing ligands (P ligands), e.g. As phosphines, phosphonites, phosphinites, phosphites or phosphoramidites, which are bound to the transition metals.
  • P ligands chiral phosphorus-containing ligands
  • Typical examples are rhodium, ruthenium or iridium complexes of optically active diphosphines such as BINAP.
  • Monophosphorus-containing ligands of types A, B and C are particularly easily accessible and can be varied very easily due to the modular structure.
  • the radical R in A, B or C can be used to build up a large number of chiral ligands, which enables ligand optimization in a given transition metal-catalyzed reaction (e.g. hydrogenation of a prochiral olefin, ketone or imine or hydroformylation of a prochiral olefin).
  • a transition metal-catalyzed reaction e.g. hydrogenation of a prochiral olefin, ketone or imine or hydroformylation of a prochiral olefin.
  • a transition metal-catalyzed reaction e.g. hydrogenation of a prochiral olefin, ketone or imine or hydroformylation of a prochiral olefin.
  • a transition metal-catalyzed reaction e.g. hydrogenation of a prochiral olefin, ketone or imine or hydroformylation of a prochiral olefin
  • the object of the present invention was accordingly to provide new chiral phosphorus ligands which are simple to prepare and which, as ligands in transition metal complexes, give catalysts which show high efficiency in transition metal catalysis, in particular in the hydrogenation and hydroboration and hydrocyanation of olefins, ketones and ketimes.
  • the present invention accordingly relates to chiral compounds having the general formula I or II
  • L 1 , L 2 , L 3 , L 4 , L 1 , L 2 , L 3 , L 4 , L 5 and L 6 can each be the same or different and at least one of L 1 , L 2 , L 3 and L 4 in formula I or at least one of L 1 , L 2 , L 3 , L 4 ,
  • L 5 and L 6 in formula II represent a chiral radical, it being possible for L 1 and L 2 , L 3 and L 4 , L 1 and L 2 , L 3 and L 4 , and L 5 and L 6 to be linked to one another,
  • Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , Y 1 ' , Y 2' , Y 3 ' , Y 4' , Y 5 ' , Y 6' , Y 7 Y 8 Y 9 are the same or can be different and represent O, S or a group NR ', in which R' is hydrogen, optionally substituted CC 6 -
  • Alkyl or optionally substituted aryl means, where the substituents can be selected, for example, from F, Cl, Br, I, OH, NO 2 , CN, carboxyl, carbonyl, sulfonyl, silyl,
  • R a and R can be defined as R 1 ,
  • R 1 and R 2 for C 2 -C 22 alkylene preferably ethylene, n-propylene, iso-propylene, n-butylene, iso-butylene, sec-butylene, phenylene, diphenylene, which may optionally have substituents, such as
  • Groups L 1 Y 1 and L 2 Y 2 and L 3 Y 3 and L 4 Y 4 each together form a binol radical and m is 1, R 1 is not ethylene, and when Y 5 and Y 6 are O and the groups L 1 Y 1 and L 2 Y 2 and L 3 Y 3 and L 4 Y 4 each together form a binol radical, m is not 4 or 5, and if in the compound with the formula I the group Y 5 - [R 1 Y 6 ] m for -N (CH 3 ) -C 2 H 4 -
  • the compounds of the formulas I and II according to the invention are new. They can be easily converted into the corresponding complexes using transition metal salts, which in turn are extremely well suited for transition metal catalysis.
  • the compounds of the formulas I and II are preferably derivatives of phosphorous acid or thiophosphorous acid, ie Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 1 ' , Y 2' , Y 3 ' , Y 4' , Y 5 , Y 7 Y 8 Y 9 mean oxygen or sulfur.
  • the starting compounds can be prepared in a simple manner or are commercially available at low cost.
  • At least one of the radicals L 1 , L 2 , L 3 , L 4 , L 1 , L 2 , L 3 , L 4 , L 5 and L 6 is chiral, ie has one or more optically active elements. Those ligands which contain elements with axial chirality are particularly preferred.
  • L 4 , as well as L 5 and L 6 are bridged, with particular preference forming a binol radical.
  • suitable groups L 1 -Y 1 and L 2 -Y 2 , L 3 -Y 3 , L 4 -Y 4 , L r -Y r , L 2 ' -Y 2' , L 3 ' -Y 3' , L 4 -Y 4 ' , L 5 - Y 5 and L ⁇ Y 6 in which these residues are bridged are:
  • R H, alkyl, aryl, sulfonyl
  • R H, alkyl, aryl, sulfonyl
  • R H, alkyl, aryl, sulfonyl
  • R H, alkyl, aryl, sulfonyl
  • R H, alkyl, aryl, sulfonyl
  • R H, alkyl, aryl, sulfonyl carboxyl
  • R ' H, alkyl, aryl, sulfonyl
  • R H, alkyl, aryl, sulfonyl
  • R H, alkyl, aryl, sulfonyl carboxyl
  • R ' H, alkyl, aryl, sulfonyl
  • R H, alkyl, aryl, sulfonyl
  • R H, alkyl, aryl, sulfonyl
  • R H, alkyl, aryl
  • R H, alkyl, aryl
  • R ' H, alkyl, aryl, sulfonyl
  • R ' H, alkyl, aryl, sulfonyl
  • R ' H, alkyl, aryl, sulfonyl
  • X F, Cl, Br, I
  • R H, alkyl, aryl, sulfonyl
  • R ' H, alkyl, aryl, sulfonyl
  • R ' H, alkyl, aryl, sulfonyl
  • X F, Cl, Br, I
  • R alkyl
  • R H, alkyl, aryl, sulfonyl
  • R H, alkyl, aryl, sulfonyl
  • R aryl
  • the groups -Y 5 - [R 1 ⁇ 6 ] m - and -Y 5 - [R 2 ⁇ 6 ] m- connect the two chiral phosphorus-containing parts of the molecule to one another, thereby representing alkyleneoxy, thioalkyleneoxy or di- or triamino compounds.
  • Y 6 and Y 6 for oxygen, so that the groups mentioned are radicals which are derived from mono-, di-, oligo- or polyalkylene oxide radicals or polyalkyleneoxy radicals.
  • the groups R 1 ⁇ and R 3 are preferably derived from ethylene oxide (EO), iso-propylene oxide (PO) and glycerol.
  • n and m ' according to the invention stand for numbers between 1 and 1000, preferably for 1 to 10, in particular 1 to 6. In particular if the radicals
  • R 1 and R 2 are ethylene, n-propylene or iso-propylene, m and m 'can represent a number above 6.
  • the present invention further provides a process for the preparation of chiral compounds of the general formula I or II,
  • Lg 1 and Lg 2 can be the same or different and selected for a group from L 1 -Y 1 ,
  • At least one of the compounds with the formulas III to XII has a chiral center or axial chirality.
  • the pure or enriched enantiomers are preferably used as starting compounds.
  • Enantiomeric mixtures of the compounds of the formula I or II according to the invention can be separated into the pure enantiomers in a manner known per se by physical and chemical separation processes. Chromatography may be mentioned as physical separation processes.
  • the chemical separation can be carried out by co-crystallization with suitable chiral, enantiomerically enriched auxiliaries, such as, for example, chiral enantiomerically pure amines.
  • radicals L 1 to L 8 are aryl radicals or bridged aryl radicals
  • the separation of stereoisomers can take place, for example, by the compounds of the formula I or II being co-crystallized with suitable chiral, enantiomerically enriched auxiliaries, such as, for example, chiral enantiomerically pure amines into which enantiomers are separated.
  • the present invention further relates to transition metal catalysts which contain chiral compounds of the general formula I and / or II as ligands.
  • the present invention further relates to a process for the preparation of transition metal catalysts comprising transition metal complexes of chiral compounds of the general formula I and / or II, in which transition metal salts are known per se with one or more of the compounds of the formulas I and / or II are implemented.
  • the catalysts or precatalysts can be prepared by processes which are well known to those skilled in the art.
  • the respective ligands or mixtures of ligands are usually brought together with a suitable transition metal complex.
  • the transition metals that can be used include those from groups IIIb, IVb, Vb, Vlb, Vllb, VIII, Ib and Mb of the periodic table, as well as lanthanides and actinides.
  • the metals are preferably selected from the transition metals of the
  • Groups VIII and Ib of the periodic table are Transition metal complexes of ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium, platinum and copper, preferably those of ruthenium, rhodium, iridium, nickel, palladium, platinum and copper.
  • the metal compound and the ligand i.e. Compounds with the formula I or II are usually used in amounts such that catalytically active compounds are formed.
  • the amount of the metal compound used can be 25 to 200 mol%, based on the chiral compounds of the general formulas I and / or II used, 30 to 100 mol% are preferred, 80 to 100 mol% are very particularly preferred, and more more preferably 90 to 100 mol%.
  • the catalysts which contain transition metal complexes or isolated transition metal complexes generated in situ, are particularly suitable for use in a process for the preparation of chiral compounds.
  • the catalysts are preferably used for asymmetric 1,4-additions, asymmetric hydroformylations, asymmetric hydrocyanations, asymmetric hydroboration, asymmetric hydrosilylation, asymmetric hydrovinylation, asymmetric Heck reactions and asymmetric hydrogenations.
  • Another subject is accordingly a process for asymmetric transition metal-catalyzed hydrogenation, hydroboration, hydrocyanation, 1,4-addition, hydroformylation, hydrosilylation, hydrovinylation and Heck reaction of prochiral olefins, ketones or ketimines, characterized in that the catalysts contain chiral ligands have the formulas I and / or II defined above.
  • the transition metal catalysts are used for the asymmetric hydrogenation, hydroboration or hydrocyanation of prochiral olefins, ketones or ketimines. End products are obtained in good yield and high purity of the optical isomers.
  • Particularly preferred asymmetric hydrogenations are hydrogenations of prochiral enamines and olefins.
  • the amount of the metal compound or the transition metal complex used can be, for example, 0.0001 to 5 mol%, based on the substrate used, 0.0001 to 0.5 mol% is preferred, 0.0001 to 0.1 is very particularly preferred mol% and even more preferably 0.001 to 0.008 mol%.
  • asymmetric hydrogenations can be carried out, for example, in such a way that the catalyst is generated in situ from a metal compound and a chiral compound of the general formula I and / or II, if appropriate in a suitable solvent, the substrate is added and the reaction mixture is brought down at the reaction temperature Hydrogen pressure is set.
  • Suitable solvents for the asymmetric hydrogenation are, for example, chlorinated alkanes such as methylene chloride, short-chain CC 6 alcohols, such as. As methanol, iso-propanol or ethanol, aromatic hydrocarbons, such as. B. toluene or benzene, ketones such as z. B. acetone or carboxylic acid esters such. B. ethyl acetate.
  • the asymmetric hydrogenation is carried out, for example, at a temperature of from -20 ° C. to 200 ° C., preferably 0 to 100 ° C. and particularly preferably at 20 to 70 ° C.
  • the hydrogen pressure can be, for example, 0.1 to 200 bar, preferably 0.5 to 50 and particularly preferably 0.5 to 5 bar.
  • the catalysts of the invention are particularly suitable in a process for the production of chiral active ingredients of pharmaceuticals and agricultural chemicals or
  • the advantage of the present invention is that good activities with extraordinary selectivity can be achieved with ligands that are easy to prepare, especially in asymmetric hydrogenations.
  • Examples 19-36 describe the hydrogenation of the substrate dimethyl itaconate to 2-methylsuccinic acid dimethyl ester according to the "General instructions for hydrogenation with catalyst prepared in situ". The exact reaction conditions and the conversions and enantioselectivities achieved are given in Table 1.
  • Examples 37-41 describe the hydrogenation of the substrate 2-acetamidoacrylic acid methyl ester to ⁇ / -acetylalanine methyl ester according to the “general instructions for hydrogenation with catalyst prepared in situ”. The exact reaction conditions and the conversions and enantioselectivities achieved are given in Table 2.
  • Examples 42-43 describe the hydrogenation of the substrate ⁇ r-acetamido cinnamic acid methyl ester to ⁇ / -acetylphenylalanine methyl ester according to the “general instructions for hydrogenation with catalyst prepared in situ”. The exact reaction conditions and the conversions and enantioselectivities achieved are given in Table 3.
  • Examples 49-51 describe the hydrogenation of the substrate acetic acid 1-phenyl vinyl ester to acetic acid 1-phenyl ethanol ester.
  • 0.25ml of a 2mM ligand solution was mixed with 0.25ml of a 2mM solution of [Rh (cod) 2 ] BF 4 .
  • the mixture was stirred at 60 bar hydrogen pressure for 20 h.
  • 2 ml of the solution thus obtained were filtered through silica (70-230 mesh, activity level I) and analyzed by gas chromatography.
  • the exact reaction conditions as well as the conversions and enantioselectivities achieved are given in Table 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The invention claims chiral di- and triphosphites of general formulas (I) or (II), which are bridged by suitable groups. The claimed compounds can be used in asymmetric transition metal catalysis and as chiral transition metal catalysts.

Description

Chirale Di- und Triphosphite Chiral di- and triphosphites
Die vorliegende Erfindung betrifft chirale Di- und Triphosphite mit den allgemeinen Formeln I oder II, die über geeignete Gruppen verbrückt sind, die Verwendung dieser Verbindungen in der asymmetrischen Übergangsmetall-Katalyse, sowie chirale Übergangsmetall- Katalysatoren.The present invention relates to chiral di- and triphosphites with the general formulas I or II, which are bridged via suitable groups, the use of these compounds in asymmetric transition metal catalysis, and chiral transition metal catalysts.
Stand der TechnikState of the art
Enantioselektive Übergangsmetall-katalysierte Prozesse haben in den letzten 20 Jahren industriell an Bedeutung gewonnen, so z. B. die Übergangsmetall-katalysierte asymmetrische Hydrierung. Die dazu erforderlichen Liganden sind häufig chirale phosphorhaltige Liganden (P-Liganden), z. B. Phosphane, Phosphonite, Phosphinite, Phosphite oder Phosphoramidite, die an den Übergangsmetallen gebunden sind. Als typische Beispiele seien Rhodium-, Ruthenium- oder Iridium-Komplexe von optisch aktiven Diphosphanen wie BINAP genannt.Enantioselective transition metal-catalyzed processes have gained industrial importance in the past 20 years. B. the transition metal-catalyzed asymmetric hydrogenation. The ligands required for this are often chiral phosphorus-containing ligands (P ligands), e.g. As phosphines, phosphonites, phosphinites, phosphites or phosphoramidites, which are bound to the transition metals. Typical examples are rhodium, ruthenium or iridium complexes of optically active diphosphines such as BINAP.
Die Entwicklung chiraler Liganden erfordert ein kostspieliges Verfahren, bestehend aus "Design" und "trial and error". Eine ergänzende Suchmethode ist die sogenannte kombinatorische asymmetrische Katalyse, bei der Bibliotheken von modular aufgebauten chiralen Liganden bzw. Katalysatoren hergestellt und getestet werden, wodurch die Wahrscheinlichkeit des Auffindens eines Treffers erhöht wird. Nachteilig bei all diesen Systemen ist der relativ hohe präparative Aufwand bei der Darstellung großer Zahlen von Liganden sowie die oftmals unzureichende Enantioselektivität, die bei der Katalyse beobachtet wird. Es ist daher nach wie vor das Ziel der industriellen und akademischen Forschung, neue, preiswerte und besonders leistungsfähige Liganden auf möglichst einfachem Weg herzustellen.The development of chiral ligands requires an expensive process consisting of "design" and "trial and error". A complementary search method is the so-called combinatorial asymmetric catalysis, in which libraries of modular chiral ligands or catalysts are produced and tested, which increases the likelihood of finding a hit. A disadvantage of all of these systems is the relatively high preparative effort in the preparation of large numbers of ligands and the often insufficient enantioselectivity that is observed in catalysis. It is therefore still the goal of industrial and academic research to produce new, inexpensive and particularly powerful ligands in the simplest possible way.
Während die meisten chiralen phosphorhaltigen Liganden chelatisierende Diphosphor- Verbindungen, insbesondere Diphosphane, darstellen, die das jeweilige Übergangsmetall als Chelat-Komplex binden, stabilisieren und dabei das Ausmaß der asymmetrischen Induktion bei der Katalyse bestimmen, ist vor einiger Zeit bekannt geworden, dass bestimmte chirale Monophosphonite, Monophosphite sowie Monophosphoramidite ebenfalls effiziente Liganden sein können, so z. B. bei der Rhodium-katalysierten asymmetrischen Hydrierung von prochiralen Olefinen. Bekannte Beispiele sind BINOL-abgeleitete Vertreter wie z. B. die Liganden A, B und C. Spektroskopische und mechanistische Studien deuten darauf hin, dass in der Katalyse jeweils zwei Mono-P-Liganden am Metall gebunden sind. Deswegen beträgt das Metall-Ligand-Verhältnis in der Regel 1 : 2. Auch manche chirale Monophosphane des Typs R1R2R3P können bei der Übergangsmetall-Katalyse gute Liganden sein, obgleich sie in der Regel teuer sind.While most chiral phosphorus-containing ligands are chelating diphosphorus compounds, especially diphosphines, which bind the respective transition metal as a chelate complex, stabilize and thereby determine the extent of the asymmetric induction in catalysis, it has been known for some time that certain chiral monophosphonites , Monophosphite and Monophosphoramidite can also be efficient ligands, such. B. in the rhodium-catalyzed asymmetric hydrogenation of prochiral olefins. Well-known examples are BINOL-derived representatives such as B. the Ligands A, B and C. Spectroscopic and mechanistic studies indicate that two mono-P ligands are bound to the metal in catalysis. For this reason, the metal-ligand ratio is usually 1: 2. Some chiral monophosphanes of the type R 1 R 2 R 3 P can also be good ligands in transition metal catalysis, although they are generally expensive.
A a) R = =CH3 B a) R = CH3 C a) R = CH3 b) R : = C2H5 b) R = C2H5 b) R = CH(CH3)2 c) R = = c-C6H-|i c) R = c-CgH-)-) d) R = = C(CH3)3 d) R = C(CH3)3 e) R : = C6H5 e) R = C6H5 f) R : = CI f) R = 2,6-(CH3)2-C6H3 g) R = CH(CH3)2 h) R = 9-fluorenyl A a) R = = CH 3 B a) R = CH 3 C a) R = CH 3 b) R : = C 2 H 5 b) R = C 2 H 5 b) R = CH (CH 3 ) 2 c ) R = = cC 6 H- | ic) R = c-CgH -) -) d) R = = C (CH 3 ) 3 d) R = C (CH 3 ) 3 e) R : = C 6 H 5 e) R = C 6 H 5 f ) R : = CI f) R = 2,6- (CH 3 ) 2 -C 6 H 3 g) R = CH (CH 3 ) 2 h) R = 9-fluorenyl
Monophosphor-haltige Liganden des Typs A, B und C sind besonders leicht zugänglich und können aufgrund des modularen Aufbaus sehr leicht variiert werden. Durch Variation desMonophosphorus-containing ligands of types A, B and C are particularly easily accessible and can be varied very easily due to the modular structure. By varying the
Restes R in A, B oder C lässt sich eine Vielzahl von chiralen Liganden aufbauen, wodurch eine Ligandenoptimierung bei einer gegebenen Übergangsmetall-katalysierten Reaktion (z. B. Hydrierung eines prochiralen Olefins, Ketons oder Imins oder Hydroformylierung eines prochiralen Olefins) möglich ist. Leider existieren auch hier Grenzen der Methode, d. h. viele Substrate werden mit einer mäßigen oder schlechten Enantioselektivität umgesetzt, z. B. bei Hydrierungen oder Hydroformylierungen. Deshalb besteht nach wie vor der Bedarf an neuen preiswerten und effektiven chiralen Liganden für die industrielle Anwendung in der Übergangsmetall-Katalyse.The radical R in A, B or C can be used to build up a large number of chiral ligands, which enables ligand optimization in a given transition metal-catalyzed reaction (e.g. hydrogenation of a prochiral olefin, ketone or imine or hydroformylation of a prochiral olefin). Unfortunately, there are limits to the method here, too. H. many substrates are implemented with moderate or poor enantioselectivity, e.g. B. in hydrogenations or hydroformylations. Therefore, there is still a need for new, inexpensive and effective chiral ligands for industrial use in transition metal catalysis.
Der vorliegenden Erfindung lag demgemäß die Aufgabe zugrunde, neue chirale Phosphor- Liganden zur Verfügung zustellen, die sich einfach herstellen lassen und als Liganden in Übergangsmetall-Komplexen Katalysatoren ergeben, die eine hohe Effizienz in der Übergangsmetall-Katalyse zeigen, insbesondere in der Hydrierung, Hydroborierung und Hydrocyanierung von Olefinen, Ketonen und Ketimen.The object of the present invention was accordingly to provide new chiral phosphorus ligands which are simple to prepare and which, as ligands in transition metal complexes, give catalysts which show high efficiency in transition metal catalysis, in particular in the hydrogenation and hydroboration and hydrocyanation of olefins, ketones and ketimes.
Gegenstand der vorliegenden Erfindung sind demgemäß chirale Verbindungen mit der allgemeinen Formel I oder II The present invention accordingly relates to chiral compounds having the general formula I or II
worin L1, L2, L3, L4, L1 , L2 , L3 , L4 , L5 und L6 jeweils gleich oder verschieden sein können und mindestens einer von L1, L2, L3 und L4 in Formel I bzw. mindestens einer von L1 , L2 , L3 , L4 ,wherein L 1 , L 2 , L 3 , L 4 , L 1 , L 2 , L 3 , L 4 , L 5 and L 6 can each be the same or different and at least one of L 1 , L 2 , L 3 and L 4 in formula I or at least one of L 1 , L 2 , L 3 , L 4 ,
L5 und L6 in Formel II einen chiralen Rest darstellen, wobei L1 und L2, L3 und L4, L1 und L2 , L3 und L4 , sowie L5 und L6 miteinander verbunden sein können,L 5 and L 6 in formula II represent a chiral radical, it being possible for L 1 and L 2 , L 3 and L 4 , L 1 and L 2 , L 3 and L 4 , and L 5 and L 6 to be linked to one another,
Y1, Y2, Y3, Y4, Y5, Y6, Y1', Y2', Y3', Y4', Y5', Y6', Y7 Y8 Y9 gleich oder verschieden sein können und für O, S oder eine Gruppe NR' stehen, in der R' Wasserstoff, ggf. substituiertes C C6-Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , Y 1 ' , Y 2' , Y 3 ' , Y 4' , Y 5 ' , Y 6' , Y 7 Y 8 Y 9 are the same or can be different and represent O, S or a group NR ', in which R' is hydrogen, optionally substituted CC 6 -
Alkyl oder ggf. substituiertes Aryl bedeutet, wobei die Substituenten beispielsweise ausgewählt sein können aus F, Cl, Br, I, OH, NO2, CN, Carboxyl, Carbonyl, Sulfonyl, Silyl,Alkyl or optionally substituted aryl means, where the substituents can be selected, for example, from F, Cl, Br, I, OH, NO 2 , CN, carboxyl, carbonyl, sulfonyl, silyl,
CF3, NRaRb, worin Ra und R wie R1 definiert sein können,CF 3 , NR a R b , in which R a and R can be defined as R 1 ,
R1 und R2 für C2-C22-Alkylen, vorzugsweise Ethylen, n-Propylen, iso-Propylen, n-Butylen, iso- Butylen, sec.-Butylen, Phenylen, Diphenylen, die ggf. Substituenten aufweisen können, wieR 1 and R 2 for C 2 -C 22 alkylene, preferably ethylene, n-propylene, iso-propylene, n-butylene, iso-butylene, sec-butylene, phenylene, diphenylene, which may optionally have substituents, such as
F, Cl, Br, I, OH, NO2, CN, CF3, NH2, Sulfonyl, Silyl, Mono- oder Di(C C6)-Alkylamino, C Ce-F, Cl, Br, I, OH, NO 2 , CN, CF 3 , NH 2 , sulfonyl, silyl, mono- or di (CC 6 ) alkylamino, C Ce
Alkyl, CrC6-Alkoxy, Carboxyl oder Carbonyl, die ggf. wiederum Substituenten aufweisen können, stehen und m und m' eine Zahl zwischen 1 und 1000 bedeuten, mit der Maßgabe, dass, wenn einer von Y5 und Y6 O und der andere N(CH2CH3) ist und dieAlkyl, CrC 6 -alkoxy, carboxyl or carbonyl, which may in turn optionally have substituents, and m and m 'represent a number between 1 and 1000, with the proviso that if one of Y 5 and Y 6 O and the other is N (CH 2 CH 3 ) and the
Gruppen L1Y1 und L2Y2 sowie L3Y3 und L4Y4 jeweils gemeinsam einen Binolrest bilden und m gleich 1 ist, ist R1 nicht Ethylen, und wenn Y5 und Y6 O sind und die Gruppen L1Y1 und L2Y2 sowie L3Y3 und L4Y4 jeweils gemeinsam einen Binolrest bilden, ist m nicht 4 oder 5, und wenn in der Verbindung mit der Formel I die Gruppierung Y5 - [R1Y6]m für -N(CH3)-C2H4-Groups L 1 Y 1 and L 2 Y 2 and L 3 Y 3 and L 4 Y 4 each together form a binol radical and m is 1, R 1 is not ethylene, and when Y 5 and Y 6 are O and the groups L 1 Y 1 and L 2 Y 2 and L 3 Y 3 and L 4 Y 4 each together form a binol radical, m is not 4 or 5, and if in the compound with the formula I the group Y 5 - [R 1 Y 6 ] m for -N (CH 3 ) -C 2 H 4 -
N(CH3), -N(CH(CH3)2)-C3H6-N(CH(CH3)2) oder -N(CHPhCH3)-C3H6-N(CHPhCH3) steht, bilden die Gruppen L1Y1 und L2Y2 sowie L3Y3 und L'V nicht jeweils gemeinsam einen Binolrest.N (CH 3 ), -N (CH (CH 3 ) 2 ) -C 3 H 6 -N (CH (CH 3 ) 2 ) or -N (CHPhCH 3 ) -C 3 H 6 -N (CHPhCH 3 ) . The groups L 1 Y 1 and L 2 Y 2 as well as L 3 Y 3 and L'V do not together form a binol residue.
Die erfindungsgemäßen Verbindungen mit den Formeln I und II sind neu. Sie können auf einfache Weise mit Übergangsmetallsalzen in die entsprechenden Komplexe überführt werden, die wiederum eine außerordentlich gute Eignung in der Übergangsmetall-Katalyse zeigen.The compounds of the formulas I and II according to the invention are new. They can be easily converted into the corresponding complexes using transition metal salts, which in turn are extremely well suited for transition metal catalysis.
Die Verbindungen mit den Formeln I und II stellen vorzugsweise Derivate der Phosphorigsäure bzw. der Thiophosphorigsäure dar, d.h. Y1, Y2, Y3, Y4, Y5, Y1', Y2', Y3', Y4', Y5 , Y7 Y8 Y9 bedeuten Sauerstoff oder Schwefel. Neben ihrer guten Selektivität in der enantioselektiven Übergangsmetall-katalysierten Hydrierung, Hydroborierung und Hydrocyanierung sind die Ausgangsverbindungen auf einfache Weise herstellbar bzw. kostengünstig im Handel erhältlich.The compounds of the formulas I and II are preferably derivatives of phosphorous acid or thiophosphorous acid, ie Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 1 ' , Y 2' , Y 3 ' , Y 4' , Y 5 , Y 7 Y 8 Y 9 mean oxygen or sulfur. In addition to their good selectivity in enantioselective transition metal-catalyzed hydrogenation, hydroboration and hydrocyanation, the starting compounds can be prepared in a simple manner or are commercially available at low cost.
Erfindungsgemäß ist mindestens einer der Reste L1, L2, L3, L4, L1 , L2 , L3 , L4, L5 und L6 chiral, d.h. weist ein oder mehrere optisch aktive Elemente auf. Besonders bevorzugt sind solche Liganden, die Elemente mit axialer Chiralität enthalten.According to the invention, at least one of the radicals L 1 , L 2 , L 3 , L 4 , L 1 , L 2 , L 3 , L 4 , L 5 and L 6 is chiral, ie has one or more optically active elements. Those ligands which contain elements with axial chirality are particularly preferred.
In einer bevorzugten Ausführungsform sind die Reste L1 und L2, L3 und L4, L1 und L2 , L3 undIn a preferred embodiment, the radicals L 1 and L 2 , L 3 and L 4 , L 1 and L 2 , L 3 and
L4 , sowie L5 und L6 verbrückt, wobei sie besonders bevorzugt einen Binolrest bilden. Beispiele für geeignete Gruppen L1-Y1 und L2-Y2, L3-Y3, L4-Y4, Lr-Yr, L2'-Y2', L3'-Y3', L4-Y4', L5- Y5 und L^Y6, in denen diese Reste verbrückt sind, sind:L 4 , as well as L 5 and L 6 are bridged, with particular preference forming a binol radical. Examples of suitable groups L 1 -Y 1 and L 2 -Y 2 , L 3 -Y 3 , L 4 -Y 4 , L r -Y r , L 2 ' -Y 2' , L 3 ' -Y 3' , L 4 -Y 4 ' , L 5 - Y 5 and L ^ Y 6 in which these residues are bridged are:
R = H, Alkyl, Aryl, Sulfonyl R = H, Alkyl, Aryl, Sulfonyl R = H, alkyl, aryl, sulfonyl R = H, alkyl, aryl, sulfonyl
R = H, Alkyl, Aryl, Sulfonyl R = H, Alkyl, Aryl, Sulfonyl R = H, alkyl, aryl, sulfonyl R = H, alkyl, aryl, sulfonyl
X = F, Cl, Br, I X = F, Cl, Br, I R = Alkyl, Aryl, Alkoxy, CarboxylX = F, Cl, Br, I X = F, Cl, Br, I R = alkyl, aryl, alkoxy, carboxyl
X = F, Cl, Br, I X = F, Cl, Br, I R = Alkyl, Aryl, Alkoxy,X = F, Cl, Br, I X = F, Cl, Br, I R = alkyl, aryl, alkoxy,
R = H, Alkyl, Aryl, Sulfonyl R = H, Alkyl, Aryl, Sulfonyl Carboxyl R'= H, Alkyl, Aryl, SulfonylR = H, alkyl, aryl, sulfonyl R = H, alkyl, aryl, sulfonyl carboxyl R ' = H, alkyl, aryl, sulfonyl
X = F, Cl, Br, I X = F, Cl, Br, I R = Alkyl, Aryl, Alkoxy,X = F, Cl, Br, I X = F, Cl, Br, I R = alkyl, aryl, alkoxy,
R = H, Alkyl, Aryl, Sulfonyl R = H, Alkyl, Aryl, Sulfonyl Carboxyl R'= H, Alkyl, Aryl, SulfonylR = H, alkyl, aryl, sulfonyl R = H, alkyl, aryl, sulfonyl carboxyl R ' = H, alkyl, aryl, sulfonyl
R = H, Alkyl, Aryl, Sulfonyl R = H, Alkyl, Aryl, Sulfonyl R = H, alkyl, aryl, sulfonyl R = H, alkyl, aryl, sulfonyl
R = H, Alkyl, Aryl R = H, Alkyl, ArylR = H, alkyl, aryl R = H, alkyl, aryl
R = H, Alkyl, Aryl R = H, Alkyl, Aryl X = F, Cl, Br, I R'= H, Alkyl, Aryl, Sulfonyl R = H, Alkyl, Aryl, SulfonylR = H, alkyl, aryl R = H, alkyl, aryl X = F, Cl, Br, IR ' = H, alkyl, aryl, sulfonyl R = H, alkyl, aryl, sulfonyl
R = H, Alkyl, Aryl R = H, Alkyl, Aryl R = H, Alkyl, ArylR = H, alkyl, aryl R = H, alkyl, aryl R = H, alkyl, aryl
R'= H, Alkyl, Aryl, Sulfonyl R'= H, Alkyl, Aryl, Sulfonyl R'= H, Alkyl, Aryl, Sulfonyl X = F, Cl, Br, IR ' = H, alkyl, aryl, sulfonyl R ' = H, alkyl, aryl, sulfonyl R ' = H, alkyl, aryl, sulfonyl X = F, Cl, Br, I
X = F, Cl, Br, I R = H, Alkyl, Aryl R = H, Alkyl, ArylX = F, Cl, Br, I R = H, alkyl, aryl R = H, alkyl, aryl
R = H, Alkyl, Aryl, Sulfonyl R'= H, Alkyl, Aryl, Sulfonyl R'= H, Alkyl, Aryl, Sulfonyl X = F, Cl, Br, I R = Alkyl R = H, Alkyl, Aryl, Sulfonyl R = H, Alkyl, Aryl, SulfonylR = H, alkyl, aryl, sulfonyl R ' = H, alkyl, aryl, sulfonyl R ' = H, alkyl, aryl, sulfonyl X = F, Cl, Br, I R = alkyl R = H, alkyl, aryl, sulfonyl R = H, alkyl, aryl, sulfonyl
R = Aryl R = aryl
Die Gruppen -Y5-[R1γ6]m- und -Y5-[R2γ6]m- verbinden die beiden chiralen phosphorhaltigen Molekülteile miteinander, dabei stellen sie Alkylenoxy, Thioalkylenoxy bzw. Di- oder Triaminoverbindungen dar. Vorzugsweise stehen Y6 und Y6 für Sauerstoff, so dass es sich bei den genannten Gruppen um Reste handelt, die sich von Mono-, Di-, Oligo- oder Polyalkylenoxidresten oder Polyalkylenoxyresten ableiteten. Die Gruppen R1 ^ und R 3 leiten sich vorzugsweise von Ethylenoxid (EO), iso-Propylenoxid (PO) und Glycerin ab.The groups -Y 5 - [R 1γ6 ] m - and -Y 5 - [R 2γ6 ] m- connect the two chiral phosphorus-containing parts of the molecule to one another, thereby representing alkyleneoxy, thioalkyleneoxy or di- or triamino compounds. Y 6 and Y 6 for oxygen, so that the groups mentioned are radicals which are derived from mono-, di-, oligo- or polyalkylene oxide radicals or polyalkyleneoxy radicals. The groups R 1 ^ and R 3 are preferably derived from ethylene oxide (EO), iso-propylene oxide (PO) and glycerol.
In den allgemeinen Formeln I und II stehen m und m' erfindungsgemäß für Zahlen zwischen 1 und 1000, vorzugsweise für 1 bis 10, insbesondere 1 bis 6. Insbesondere, wenn die ResteIn the general formulas I and II, m and m 'according to the invention stand for numbers between 1 and 1000, preferably for 1 to 10, in particular 1 to 6. In particular if the radicals
R1 und R2 Ethylen, n-Propylen oder iso-Propylen bedeuten, können m und m' für eine Zahl über 6 stehen.R 1 and R 2 are ethylene, n-propylene or iso-propylene, m and m 'can represent a number above 6.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von chiralen Verbindungen mit der allgemeinen Formel I oder II,The present invention further provides a process for the preparation of chiral compounds of the general formula I or II,
in denenin which
L1, L2, L3, L4, L1', L2', L3', L4', L5, L8, Y , Y2, Y3, Y4, Y5, Y8, Y1', Y2', Y3', Y4', Y5', Y8', Y7 Y8 Y9, R1,L 1 , L 2 , L 3 , L 4 , L 1 ' , L 2' , L 3 ' , L 4' , L 5 , L 8 , Y, Y 2 , Y 3 , Y 4 , Y 5 , Y 8 , Y 1 ' , Y 2' , Y 3 ' , Y 4' , Y 5 ' , Y 8' , Y 7 Y 8 Y 9 , R 1 ,
R2, m und m' wie oben definiert sind, worin Verbindungen mit der folgenden allgemeinen Formel IMR 2 , m and m 'are as defined above, wherein compounds having the following general formula IM
in derin the
Lg1 und Lg2 gleich oder verschieden sein können und für eine Gruppe ausgewählt aus L1-Y1,Lg 1 and Lg 2 can be the same or different and selected for a group from L 1 -Y 1 ,
L22, L 3-Y3, L4-Y4, L1 -Y1', L2'-Y2', L3-Y3', L4-Y4', L5-Y8 oder L6-Y9 stehen, in Gegenwart einer Base einer Verbindung mit der allgemeinen Formel IV oder V H -Y5 - [RV] - H (IV)L 22 , L 3 -Y 3 , L 4 -Y 4 , L 1 -Y 1 ' , L 2' -Y 2 ' , L 3 -Y 3' , L 4 -Y 4 ' , L 5 -Y 8 or L 6 -Y 9 , in the presence of a base of a compound of the general formula IV or VH -Y 5 - [RV] - H (IV)
H - Y5' - [RV'jπv - H (V)H - Y 5 ' - [RV ' j π v - H (V)
zur Reaktion gebracht werden.to be reacted.
In einer weiteren möglichen Ausführungsform zur Herstellung der erfindungsgemäßen Verbindungen mit den Formeln I oder II werden Verbindungen mit der allgemeinen Formel VI oder VII CI2P- Y5 - [RVL -PCI2 (VI)In a further possible embodiment for the preparation of the compounds according to the invention having the formulas I or II, compounds having the general formula VI or VII CI 2 P- Y 5 - [RVL -PCI 2 (VI)
CI2P- Y5' - [RV'jm-PCI, (VII) PCI2 mit Liganden der Formel Lg1 oder Lg2 unter Bildung von Verbindungen mit den allgemeinen Formeln I oder II umgesetzt.CI 2 P- Y 5 ' - [RV ' j m -PCI, (VII) PCI 2 implemented with ligands of the formula Lg 1 or Lg 2 to form compounds of the general formulas I or II.
Um erfindungsgemäße Verbindungen mit der Formel I oder II mit mindestens einem chiralen Zentrum zu erhalten, weist mindestens eine der Verbindungen mit der Formel III bis XII ein chirales Zentrum oder axiale Chiralität auf. Vorzugsweise werden bereits als Ausgangsverbindungen die reinen bzw. angereicherten Enantiomeren eingesetzt. Enantiomerengemische der erfindungsgemäßen Verbindungen mit der Formel I oder II können in an sich bekannter Weise durch physikalische und chemische Trennverfahren in die reinen Enantiomeren getrennt werden. Als physikalische Trennverfahren sind beispielsweise die Chromatographie zu nennen. Auf chemischem Wege kann die Trennung durch Co-Kristallisation mit geeigneten chiralen, enantiomerenangereicherten Hilfsstoffen, wie zum Beispiel chiralen enantiomerenreinen Aminen, erfolgen.In order to obtain compounds of the formula I or II according to the invention with at least one chiral center, at least one of the compounds with the formulas III to XII has a chiral center or axial chirality. The pure or enriched enantiomers are preferably used as starting compounds. Enantiomeric mixtures of the compounds of the formula I or II according to the invention can be separated into the pure enantiomers in a manner known per se by physical and chemical separation processes. Chromatography may be mentioned as physical separation processes. The chemical separation can be carried out by co-crystallization with suitable chiral, enantiomerically enriched auxiliaries, such as, for example, chiral enantiomerically pure amines.
Stellen einer oder mehrere der Reste L1 bis L8 Arylreste oder verbrückte Arylreste dar, kann die Trennung von Stereoisomeren beispielsweise dadurch erfolgen, dass die Verbindungen mit der Formel I oder II durch Co-Kristallisation mit geeigneten chiralen, enantiomerenangereicherten Hilfsstoffen, wie zum Beispiel chiralen enantiomerenreinen Aminen, in die Enantiomeren getrennt werden.If one or more of the radicals L 1 to L 8 are aryl radicals or bridged aryl radicals, the separation of stereoisomers can take place, for example, by the compounds of the formula I or II being co-crystallized with suitable chiral, enantiomerically enriched auxiliaries, such as, for example, chiral enantiomerically pure amines into which enantiomers are separated.
Ein weiterer Gegenstand der vorliegenden Erfindung betrifft Übergangsmetall-Katalysatoren, die als Liganden chirale Verbindungen mit der allgemeinen Formel I und/oder II enthalten.The present invention further relates to transition metal catalysts which contain chiral compounds of the general formula I and / or II as ligands.
Ein weiterer Gegenstand der vorliegenden Erfindung betrifft ein Verfahren zur Herstellung von Übergangsmetall-Katalysatoren, enthaltend Übergangsmetallkomplexe von chiralen Verbindungen mit der allgemeinen Formel I und/oder II, worin Übergangsmetallsalze in an sich bekannter Weise mit einer oder mehrerer der Verbindungen mit den Formeln I und/oder II umgesetzt werden.The present invention further relates to a process for the preparation of transition metal catalysts comprising transition metal complexes of chiral compounds of the general formula I and / or II, in which transition metal salts are known per se with one or more of the compounds of the formulas I and / or II are implemented.
Die Herstellung der Katalysatoren bzw. Präkatalysatoren kann nach dem Fachmann gut bekannten Verfahren erfolgen. Dabei werden üblicherweise die jeweilige Liganden bzw. Gemische von Liganden mit einem geeigneten Übergangsmetall-Komplex zusammengebracht. Zu den Übergangsmetallen, die eingesetzte werden können, zählen jene der Gruppen lllb, IVb, Vb, Vlb, Vllb, VIII, Ib und Mb des Periodensystems sowie Lanthanide und Actinide. Vorzugsweise sind die Metalle ausgewählt aus den Übergangsmetallen derThe catalysts or precatalysts can be prepared by processes which are well known to those skilled in the art. The respective ligands or mixtures of ligands are usually brought together with a suitable transition metal complex. The transition metals that can be used include those from groups IIIb, IVb, Vb, Vlb, Vllb, VIII, Ib and Mb of the periodic table, as well as lanthanides and actinides. The metals are preferably selected from the transition metals of the
Gruppen VIII und Ib des Periodensystems. Insbesondere sind dies Übergangsmetallkomplexe von Ruthenium, Osmium, Cobalt, Rhodium, Iridium, Nickel, Palladium, Platin und Kupfer, bevorzugt solche von Ruthenium, Rhodium, Iridium, Nickel, Palladium, Platin und Kupfer.Groups VIII and Ib of the periodic table. In particular, these are Transition metal complexes of ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium, platinum and copper, preferably those of ruthenium, rhodium, iridium, nickel, palladium, platinum and copper.
Die Übergangsmetall-Komplexe können gängige Salze wie MXn (X = F, Cl, Br, I, BF4 ", BAr4 ", wobei Ar für Phenyl, Benzyl oder 3,5-Bistrifluormethylphenyl stehen, SbF6 ", PF6 ", CIO4 ", RCO ', CFaSOa", Acac") sein, z. B. [Rh(OAc)2]2, Rh(acac)3, Rh(COD)2BF4, Cu(CF3SO3)2, CuBF4, Ag(CF3SO3), Au(CO)CI, ln(CF3SO3)3, Fe(CIO4)3, NiCI2(COD) (COD = 1 ,5- Cyclooctadien), Pd(OAc)2, [C3H5PdCI]2, PdCI2(CH3CN)2 oder La(CF3SO3)3, um nur einige zu nennen. Es kann sich aber auch um Metall-Komplexe handeln, die u. a. Liganden wie Olefine, Diene, Pyridin, CO oder NO tragen (um nur einige zu nennen). Letztere werden durch die Reaktion mit den P-Liganden ganz oder teilweise verdrängt. Kationische Metall- Komplexe können ebenfalls eingesetzt werden. Die Fachwelt kennt eine Vielzahl von Möglichkeiten (G. Wilkinson, Comprehensive Coordination Chemistry, Pergamon Press, Oxford (1987); B. Cornils, W. A. Herrmann, Applied Homogeneous Catalysis withThe transition metal complexes can be common salts such as MX n (X = F, Cl, Br, I, BF 4 " , BAr 4 " , where Ar is phenyl, benzyl or 3,5-bistrifluoromethylphenyl, SbF 6 " , PF 6 " , CIO 4 " , RCO ', CFaSOa", Acac "), for example [Rh (OAc) 2 ] 2 , Rh (acac) 3 , Rh (COD) 2 BF 4 , Cu (CF 3 SO 3 ) 2 , CuBF 4 , Ag (CF 3 SO 3 ), Au (CO) CI, ln (CF 3 SO 3 ) 3 , Fe (CIO 4 ) 3 , NiCI 2 (COD) (COD = 1, 5-cyclooctadiene), Pd (OAc) 2 , [C 3 H 5 PdCI] 2 , PdCI 2 (CH 3 CN) 2 or La (CF 3 SO 3 ) 3 , to name but a few, but they can also be metal complexes, which carry ligands such as olefins, dienes, pyridine, CO or NO (to name just a few), the latter being completely or partially displaced by the reaction with the P ligands. Cationic metal complexes can also be used Variety of options (G. Wilkinson, Comprehensive Coordination Chemistry, Pergamon Press, Oxford (1987); B. Cornils, WA Herrmann, Applied Homogeneous Catalysis with
Organometallic Compounds, VCH, Weinheim (1996)). Gängige Beispiele sind Rh(COD)2BF4, [(Cymol)RuCI2]2, (Pyridin)2lr(COD)BF4, Ni(COD)2, (TMEDA)Pd(CH3)2 (TMEDA = N, N, ΛT, ΛT- Tetramethylethylendiamin), Pt(COD)2, PtCI2(COD) oder [RuCI2(CO)3]2, um nur einige wenige zu nennen.Organometallic Compounds, VCH, Weinheim (1996)). Common examples are Rh (COD) 2 BF 4 , [(Cymol) RuCI 2 ] 2 , (pyridine) 2 lr (COD) BF 4 , Ni (COD) 2 , (TMEDA) Pd (CH 3 ) 2 (TMEDA = N , N, ΛT, ΛT-tetramethylethylenediamine), Pt (COD) 2 , PtCI 2 (COD) or [RuCI 2 (CO) 3 ] 2 , to name just a few.
Die Metallverbindung und der Ligand, d.h. Verbindungen mit den Formel I oder II, werden üblicherweise in solchen Mengen eingesetzt, dass sich katalytisch aktive Verbindungen bilden. So kann die Menge der eingesetzten Metallverbindung beispielsweise 25 bis 200 mol-% bezogen auf die eingesetzte chirale Verbindungen der allgemeinen Formeln I und/oder II betragen, bevorzugt sind 30 bis 100 mol-%, ganz besonders bevorzugt 80 bis 100 mol-% und noch weiter bevorzugt 90 bis 100 mol-%.The metal compound and the ligand, i.e. Compounds with the formula I or II are usually used in amounts such that catalytically active compounds are formed. For example, the amount of the metal compound used can be 25 to 200 mol%, based on the chiral compounds of the general formulas I and / or II used, 30 to 100 mol% are preferred, 80 to 100 mol% are very particularly preferred, and more more preferably 90 to 100 mol%.
Die Katalysatoren, die in situ erzeugte Übergangsmetallkomplexe oder isolierte Übergangsmetallkomplexe enthalten, eignen sich insbesondere für den Einsatz in einem Verfahren zur Herstellung von chiralen Verbindungen. Bevorzugt werden die Katalysatoren für asymmetrische 1 ,4-Additionen, asymmetrische Hydroformylierungen, asymmetrische Hydrocyanierungen, asymmetrische Hydroborierungen, asymmetrische Hydrosilylierung, asymmetrische Hydrovinylierung, asymmetrische Heck-Reaktionen und asymmetrische Hydrierungen eingesetzt. Ein weiterer Gegenstand ist demgemäß ein Verfahren zur asymmetrischen Übergangsmetall- katalysierten Hydrierung, Hydroborierung, Hydrocyanierung, 1 ,4-Addition, Hydroformylierung, Hydrosilylierung, Hydrovinylierung und Heck-Reaktion von prochiralen Olefinen, Ketonen oder Ketiminen, dadurch gekennzeichnet, das die Katalysatoren chirale Liganden mit den oben definierten Formeln I und/oder II aufweisen.The catalysts, which contain transition metal complexes or isolated transition metal complexes generated in situ, are particularly suitable for use in a process for the preparation of chiral compounds. The catalysts are preferably used for asymmetric 1,4-additions, asymmetric hydroformylations, asymmetric hydrocyanations, asymmetric hydroboration, asymmetric hydrosilylation, asymmetric hydrovinylation, asymmetric Heck reactions and asymmetric hydrogenations. Another subject is accordingly a process for asymmetric transition metal-catalyzed hydrogenation, hydroboration, hydrocyanation, 1,4-addition, hydroformylation, hydrosilylation, hydrovinylation and Heck reaction of prochiral olefins, ketones or ketimines, characterized in that the catalysts contain chiral ligands have the formulas I and / or II defined above.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden die Übergangsmetallkatalysatoren zur asymmetrischen Hydrierung, Hydroborierung oder Hydrocyanierung von prochiralen Olefinen, Ketonen oder Ketiminen eingesetzt. Es werden Endprodukte in guter Ausbeute und hoher Reinheit der optischen Isomeren erhalten.In a preferred embodiment of the present invention, the transition metal catalysts are used for the asymmetric hydrogenation, hydroboration or hydrocyanation of prochiral olefins, ketones or ketimines. End products are obtained in good yield and high purity of the optical isomers.
Bevorzugte asymmetrische Hydrierungen sind beispielsweise Hydrierungen von prochiralen C=C-Bindungen wie zum Beispiel prochirale Enamine, Olefine und Enolether, C=O- Bindungen wie zum Beispiel prochirale Ketone und C=N-Bindungen wie zum Beispiel prochirale Imine. Besonders bevorzugte asymmetrische Hydrierungen sind Hydrierungen von prochiralen Enaminen und Olefinen.Preferred asymmetric hydrogenations are, for example, hydrogenations of prochiral C = C bonds such as, for example, prochiral enamines, olefins and enol ethers, C = O bonds such as, for example, prochiral ketones and C = N bonds such as, for example, prochiral imines. Particularly preferred asymmetric hydrogenations are hydrogenations of prochiral enamines and olefins.
Die Menge der eingesetzten Metallverbindung oder des eingesetzten Übergangsmetallkomplexes kann beispielsweise 0,0001 bis 5 mol-%, bezogen auf das eingesetzte Substrat betragen, bevorzugt sind 0,0001 bis 0,5 mol-%, ganz besonders bevorzugt 0,0001 bis 0,1 mol-% und noch weiter bevorzugt 0,001 bis 0,008 mol-%.The amount of the metal compound or the transition metal complex used can be, for example, 0.0001 to 5 mol%, based on the substrate used, 0.0001 to 0.5 mol% is preferred, 0.0001 to 0.1 is very particularly preferred mol% and even more preferably 0.001 to 0.008 mol%.
In einer bevorzugten Ausführungsform können asymmetrische Hydrierungen beispielsweise so durchgeführt werden, dass der Katalysator in situ aus einer Metallverbindung und einer chiralen Verbindung der allgemeinen Formel I und/oder II gegebenenfalls in einem geeigneten Lösungsmittel erzeugt wird, das Substrat zugegeben wird und die Reaktionsmischung bei Reaktionstemperatur unter Wasserstoffdruck gesetzt wird.In a preferred embodiment, asymmetric hydrogenations can be carried out, for example, in such a way that the catalyst is generated in situ from a metal compound and a chiral compound of the general formula I and / or II, if appropriate in a suitable solvent, the substrate is added and the reaction mixture is brought down at the reaction temperature Hydrogen pressure is set.
Zur Durchführung einer Hydrierung werden z. B. in einem ausgeheizten Autoklaven Metallverbindung und Ligand in entgastem Lösungsmittel gelöst. Man lässt ca. 5 min rühren und gibt anschließend das Substrat in entgastem Lösungsmittel zu. Nach dem Einstellen der jeweiligen Temperatur wird mit H2-Überdruck hydriert.To carry out a hydrogenation z. B. dissolved in a heated autoclave metal compound and ligand in degassed solvent. The mixture is stirred for about 5 minutes and then the substrate is added in degassed solvent. After the respective temperature has been set, the mixture is hydrogenated with H 2 overpressure.
Als Lösungsmittel für die asymmetrische Hydrierung eignen sich beispielsweise chlorierte Alkane wie Methylenchlorid, kurzkettige C C6-Alkohole, wie z. B. Methanol, iso-Propanol oder Ethanol, aromatische Kohlenwasserstoffe, wie z. B. Toluol oder Benzol, Ketone wie z. B. Aceton oder Carbonsäureester wie z. B. Ethylacetat.Suitable solvents for the asymmetric hydrogenation are, for example, chlorinated alkanes such as methylene chloride, short-chain CC 6 alcohols, such as. As methanol, iso-propanol or ethanol, aromatic hydrocarbons, such as. B. toluene or benzene, ketones such as z. B. acetone or carboxylic acid esters such. B. ethyl acetate.
Die asymmetrische Hydrierung wird beispielsweise bei einer Temperatur von -20°C bis 200°C, bevorzugt 0 bis 100°C und besonders bevorzugt bei 20 bis 70°C durchgeführt.The asymmetric hydrogenation is carried out, for example, at a temperature of from -20 ° C. to 200 ° C., preferably 0 to 100 ° C. and particularly preferably at 20 to 70 ° C.
Der Wasserstoffdruck kann beispielsweise 0,1 bis 200 bar, bevorzugt 0,5 bis 50 und besonders bevorzugt 0,5 bis 5 bar betragen.The hydrogen pressure can be, for example, 0.1 to 200 bar, preferably 0.5 to 50 and particularly preferably 0.5 to 5 bar.
Die erfindungsgemäßen Katalysatoren eignen sich insbesondere in einem Verfahren zur Herstellung von chiralen Wirkstoffen von Arzneimitteln und Agrarchemikalien oderThe catalysts of the invention are particularly suitable in a process for the production of chiral active ingredients of pharmaceuticals and agricultural chemicals or
Zwischenprodukten dieser beiden Klassen.Intermediate products of these two classes.
Der Vorteil der vorliegenden Erfindung ist, dass mit einfach herzustellenden Liganden insbesondere in asymmetrischen Hydrierungen gute Aktivitäten mit einer außerordentlichen Selektivität erreicht werden können. The advantage of the present invention is that good activities with extraordinary selectivity can be achieved with ligands that are easy to prepare, especially in asymmetric hydrogenations.
BeispieleExamples
Darstellung von chiralen Di- und Triphosphitliganden Beispiel 1. Synthese von Bis-O-[(R)-4H-dinaphtho[2,1-d:1 ',2'-f]-[1 ,3,2]dioxaphosphepin-4,4'- diyl]-1 ,2-ethandiol (I: L1Y1 und L2Y2= L3Y3und L4Y4= BINOL; Y5= O; R1Y*= (CH2CH2O); m=1 )Preparation of Chiral Di- and Triphosphite Ligands Example 1. Synthesis of Bis-O - [(R) -4H-dinaphtho [2,1-d: 1 ' , 2'-f] - [1, 3,2] dioxaphosphepin-4 , 4 ' - diyl] -1, 2-ethanediol (I: L 1 Y 1 and L 2 Y 2 = L 3 Y 3 and L 4 Y 4 = BINOL; Y 5 = O; R 1 Y * = (CH 2 CH 2 O); m = 1)
0.93 g (2.65 mmol) (/^^-Binaphthylphoshorigsäurediesterchlorid wurden bei Raumtemperatur in 150 ml abs. Diethylether vorgelegt. Hierzu wurden 74 μl (0.082 g, 1.32 mmol) abs. 1 ,2-Ethandiol und 0.41 ml (0.29 g, 2.91 mmol) abs. Triethylamin pipettiert. Nach Rühren über Nacht wurde der ausgefallene farblose Feststoff über eine D4-Fritte abfiltriert und mit 5 ml abs. Diethylether gewaschen. Das Filtrat wurde anschließend vollständig vom Lösungsmittel befreit. Man erhielt 0.71g (1.03 mmol, 77.9%) Produkt als farbloses Pulver. Analytik: 1H-NMR (CD2CI2, 300 MHz) 7.91-7.15 [24H], 3.92 (m) [2H], 3.71 (m) [2H], 13C-NMR (CD2CI2, 75 MHz) 63.62 (t) J= 4.8 Hz; 31P-NMR (CD2CI2, 121 MHz) 141.53 (s); MS (El,0.93 g (2.65 mmol) (/ ^^ - binaphthylphosphoric acid diester chloride were initially introduced into 150 ml of absolute diethyl ether at room temperature. 74 μl (0.082 g, 1.32 mmol) of absolute 1, 2-ethanediol and 0.41 ml (0.29 g, 2.91 mmol ) After stirring overnight, the precipitated colorless solid was filtered off over a D4 frit and washed with 5 ml of absolute diethyl ether. The filtrate was then completely freed from the solvent. 0.71 g (1.03 mmol, 77.9%) was obtained. Product as colorless powder Analysis: 1 H-NMR (CD 2 CI 2 , 300 MHz) 7.91-7.15 [24H], 3.92 (m) [2H], 3.71 (m) [2H], 13 C-NMR (CD 2 CI 2 , 75 MHz) 63.62 (t) J = 4.8 Hz; 31 P-NMR (CD 2 CI 2 , 121 MHz) 141.53 (s); MS (El,
Verdampfungstemperatur 275°C) m/z = 690 (17.29%), 268 (100%), 239 (38.82%) EA P: 8.39% (ber. 8.97%).Evaporation temperature 275 ° C) m / z = 690 (17.29%), 268 (100%), 239 (38.82%) EA P: 8.39% (calc. 8.97%).
Beispiel 2. Synthese von Bis-O-[(S)-4H-dinaphtho[2,1-d:1 ',2'-f]-[1 ,3,2]dioxaphosphepin-4,4'- diyl]- 1 ,3-propandiol (I: L1Y1 und L2Y2= L3Y3und L4Y4= BINOL; Y5= O; Y5= O; R1Y6=Example 2. Synthesis of bis-O - [(S) -4H-dinaphtho [2,1-d: 1 ', 2'-f] - [1, 3,2] dioxaphosphepin-4,4 ' - diyl] - 1,3-propanediol (I: L 1 Y 1 and L 2 Y 2 = L 3 Y 3 and L 4 Y 4 = BINOL; Y 5 = O; Y 5 = O; R 1 Y 6 =
(CH2CH2CH2O); m=1 )(CH 2 CH 2 CH 2 O); m = 1)
1.97 g (5.62 mmol) (S)-2,2'-Binaphthylphoshorigsäurediesterchlorid wurden bei Raumtemperatur in 150 ml abs. Diethylether vorgelegt. Hierzu wurden 200 μl (0.21 g, 2.81 mmol) abs. 1 ,3-Propandiol und 0.86 ml (0.62g, 6.18 mmol) abs. Triethylamin pipettiert. Nach Rühren über Nacht wurde der ausgefallene farblose Feststoff über eine D4-Fritte abfiltriert und mit 5ml abs. Diethylether gewaschen. Das Filtrat wurde anschließend vollständig vom Lösungsmittel befreit. Man erhielt 1.6 g (2.27 mmol, 81.1%) Produkt als farbloses Pulver. Analytik: 1H-NMR (CD2CI2, 300 MHz) 7.90-7.12 [24H], 3.84 (m) [4H], 1.69 (m) [2H]; 13C-NMR (CD2CI2, 75 MHz) 60.43 (d) J= 6.8 Hz, 31.38; 31P-NMR (CD2CI2, 121 MHz) 141.92 (s); MS (El,1.97 g (5.62 mmol) of (S) -2,2 '-Binaphthylphoshorigsäurediesterchlorid were abs ml at room temperature in the 150th Diethyl ether submitted. For this purpose, 200 ul (0.21 g, 2.81 mmol) abs. 1,3-propanediol and 0.86 ml (0.62g, 6.18 mmol) abs. Pipetted triethylamine. After stirring overnight, the colorless solid which had precipitated out was filtered off over a D4 frit and washed with 5 ml of abs. Washed diethyl ether. The filtrate was then completely freed from the solvent. 1.6 g (2.27 mmol, 81.1%) of product were obtained as a colorless powder. Analysis: 1 H NMR (CD 2 CI 2 , 300 MHz) 7.90-7.12 [24H], 3.84 (m) [4H], 1.69 (m) [2H]; 13 C NMR (CD 2 CI 2 , 75 MHz) 60.43 (d) J = 6.8 Hz, 31.38; 31 P NMR (CD 2 CI 2 , 121 MHz) 141.92 (s); MS (El,
Verdampfungstemperatur 280°C) m/z = 704 (22.11 %), 373 (100%), 268 (91.9%); EA P: 7.99% (ber. 8.79%).Evaporation temperature 280 ° C) m / z = 704 (22.11%), 373 (100%), 268 (91.9%); EA P: 7.99% (calc. 8.79%).
Beispiel 3. Synthese von (S,S) Bis-O-[(S)-4H-dinaphtho[2,1-d:1',2'-f]-[1 ,3,2]dioxaphos- phepin-4,4"-diyl]- 1 ,4-butandiol (I: L1Y1 und L2Y2= L3Y3und L4Y4= BINOL; Y5= O; RV=Example 3. Synthesis of (S, S) bis-O - [(S) -4H-dinaphtho [2,1-d: 1 ', 2'-f] - [1, 3,2] dioxaphosphepin-4 , 4 " -diyl] - 1,4-butanediol (I: L 1 Y 1 and L 2 Y 2 = L 3 Y 3 and L 4 Y 4 = BINOL; Y 5 = O; RV =
(CH2CH2CH2CH2O), m=1 ) 1.10 g (3.13 mmol) (S)-2,2'-Binaphthylphoshorigsäurediesterchlorid wurden bei Raumtemperatur in 150 ml abs. Diethylether vorgelegt. Hierzu wurden 140 μl (0.14 g, 1.56 mmol) abs. 1 ,4-Butandiol und 0.48 ml (0.35g, 3.44 mmol) abs. Triethylamin pipettiert. Nach Rühren über Nacht wurde der ausgefallene farblose Feststoff über eine D4-Fritte abfiltriert und mit(CH 2 CH 2 CH 2 CH 2 O), m = 1) 1.10 g (3.13 mmol) of (S) -2,2 '-Binaphthylphoshorigsäurediesterchlorid were abs ml at room temperature in the 150th Diethyl ether submitted. For this, 140 μl (0.14 g, 1.56 mmol) abs. 1, 4-butanediol and 0.48 ml (0.35g, 3.44 mmol) abs. Pipetted triethylamine. After stirring overnight, the colorless solid which had precipitated out was filtered off on a D4 frit and filtered with
5 ml abs. Diethylether gewaschen. Das Filtrat wurde anschließend vollständig vom Lösungsmittel befreit. Man erhielt 0.86 g (1.19 mmol, 76.7%) Produkt als farbloses Pulver. Analytik: H-NMR (CD2CI2, 300 MHz) 7.90-7.18 [24H], 3.85 (m) [2H], 3.68 (m) [2H], 1.43 (m) [4H]; 13C-NMR (CD2CI2, 75 MHz) 63.87 (d) J= 6.9 Hz, 26.50 (d) J= 4.1 Hz; 31P-NMR (CD2CI2, 121 MHz) 142.72 (s); MS (El, Verdampfungstemperatur 285°C) m/z = 718 (15.05%), 2685 ml abs. Washed diethyl ether. The filtrate was then completely freed from the solvent. 0.86 g (1.19 mmol, 76.7%) of product was obtained as a colorless powder. Analysis: H NMR (CD 2 CI 2 , 300 MHz) 7.90-7.18 [24H], 3.85 (m) [2H], 3.68 (m) [2H], 1.43 (m) [4H]; 13 C NMR (CD 2 CI 2 , 75 MHz) 63.87 (d) J = 6.9 Hz, 26.50 (d) J = 4.1 Hz; 31 P NMR (CD 2 CI 2 , 121 MHz) 142.72 (s); MS (El, evaporation temperature 285 ° C) m / z = 718 (15.05%), 268
(100%), 239 (50.5%); EA P: 8.06% (ber. 8.62%).(100%), 239 (50.5%); EA P: 8.06% (calc. 8.62%).
Beispiel 4. Synthese von 1 ,7-Bis-O-[(S)-4H-dinaphtho[2,1-d:1 ',2'-f]-[1 ,3,2]dioxaphosphepin- 4,4,-diyl]-1 ,4,7-trioxaheptan (I: L1Y1 und L2Y2= L3Y3und L4Y4= BINOL; Y5= O; RV= (CH2CH2O), m=2)Example 4. Synthesis of 1, 7-bis-O - [(S) -4H-dinaphtho [2,1-d: 1 ', 2'-f] - [1, 3,2] dioxaphosphepine-4,4 , -diyl] -1, 4,7-trioxaheptane (I: L 1 Y 1 and L 2 Y 2 = L 3 Y 3 and L 4 Y 4 = BINOL; Y 5 = O; RV = (CH 2 CH 2 O) , m = 2)
0.86g (2.45 mmol) (S^^-Binaphthylphoshorigsäureesterchlorid wurden bei Raumtemperatur in 150 ml abs. Diethylether vorgelegt. Hierzu wurden 120 μl (0.13g, 1.23 mmol) abs. Diethylenglykol und 0.37 ml (0.27 g, 2.69 mmol) abs. Triethylamin pipettiert. Nach Rühren über Nacht wurde der ausgefallene farblose Feststoff über eine D4-Fritte abfiltriert und mit 5ml abs. Diethylether gewaschen. Das Filtrat wurde anschließend vollständig vom Lösungsmittel befreit. Man erhielt 0.50 g (0.68 mmol, 55.3%) Produkt als farbloses Pulver. Analytik: 1H-NMR (CD2CI2, 300 MHz) 7.89-7.14 [24H], 4.01 (m) [2H], 3.87 (m) [2H], 3.52 (m) [4H], 13C-NMR (CD2CI2, 75 MHz) 69.89 (d) J= 5.0 Hz, 63.58 (d) J= 5.7 Hz; 31P-NMR (CD2CI2, 121 MHz) 143.59 (s); MS (El, Verdampfungstemperatur 285°C) m/z = 734 (9.05%), 2680.86 g (2.45 mmol) (S ^^ - binaphthylphosphoric acid ester chloride were initially introduced into 150 ml of absolute diethyl ether at room temperature. 120 μl (0.13 g, 1.23 mmol) of absolute diethylene glycol and 0.37 ml (0.27 g, 2.69 mmol) of absolute triethylamine were added After stirring overnight, the colorless solid which had precipitated out was filtered off over a D4 frit and washed with 5 ml of absolute diethyl ether, and the filtrate was then completely freed from the solvent, giving 0.50 g (0.68 mmol, 55.3%) of the product as a colorless powder. Analysis: 1 H-NMR (CD 2 CI 2 , 300 MHz) 7.89-7.14 [24H], 4.01 (m) [2H], 3.87 (m) [2H], 3.52 (m) [4H], 13 C-NMR (CD 2 CI 2 , 75 MHz) 69.89 (d) J = 5.0 Hz, 63.58 (d) J = 5.7 Hz; 31 P-NMR (CD 2 CI 2 , 121 MHz) 143.59 (s); MS (El, evaporation temperature 285 ° C) m / z = 734 (9.05%), 268
(100%), 239 (43.46%); EA C: 69.64% (ber. 71.93%), H: 5.15% (ber. 4.39%); P: 7.84% (ber. 8.43%).(100%), 239 (43.46%); EA C: 69.64% (calc. 71.93%), H: 5.15% (calc. 4.39%); P: 7.84% (calc. 8.43%).
Beispiel 5. Synthese von 1 ,10-Bis-O-[(S)-4H-dinaphtho[2,1-d:1 ',2'-f]-[1 ,3,2]dioxaphosphepin- 4,4'-diyl]-1 , 4,7,10-tetraoxadecan (I: L1Y1 und L2Y = L3Y3und L4Y4= BINOL; Y5= O; RV=Example 5. Synthesis of 1, 10-bis-O - [(S) -4H-dinaphtho [2,1-d: 1 ', 2'-f] - [1, 3,2] dioxaphosphepine-4,4 ' -diyl] -1, 4,7,10-tetraoxadecane (I: L 1 Y 1 and L 2 Y = L 3 Y 3 and L 4 Y 4 = BINOL; Y 5 = O; RV =
(CH2CH2O); m=3)(CH 2 CH 2 O); m = 3)
0.88 g (2.50 mmol) (S)-2,2Λ-Binaphthylphoshorigsäurediesterchlorid wurden bei Raumtemperatur in 150 ml abs. Diethylether vorgelegt. Hierzu wurden 170 μl (0.188 g, 1.25 mmol) abs. Triethylenglykol und 0.38 ml (0.28 g, 2.76 mmol) abs. Triethylamin pipettiert. Nach0.88 g (2.50 mmol) of (S) -2.2 Λ- binaphthylphosphoric acid diester chloride were dissolved in 150 ml of abs. Diethyl ether submitted. For this purpose, 170 ul (0.188 g, 1.25 mmol) abs. Triethylene glycol and 0.38 ml (0.28 g, 2.76 mmol) abs. Pipetted triethylamine. To
Rühren über Nacht wurde der ausgefallene farblose Feststoff über eine D4-Fritte abfiltriert und mit 5 ml abs. Diethylether gewaschen. Das Filtrat wurde anschließend vollständig vom Lösungsmittel befreit. Man erhielt 0.63 g (0.81 mmol, 64.7%) Produkt als farbloses Pulver. Analytik: 1H-NMR (CD2CI2, 300 MHz) 7.86-7.12 [24H], 3.95 (m) [2H], 3.79 (m) [2H], 3.50 (s) [4H], 3.46 (m) [4H]; 13C-NMR (CD2CI2, 75 MHz) 69.90 (d) J= 3.9 Hz, 69.81 (s), 63.61 (d) J= 7.2 Hz; 31P-NMR (CD2CI2, 121 MHz) 143.84 (s); MS (El, Verdampfungstemperatur 275°C) m/z = 778 (8.66%), 376 (34.39%), 268 (100%), 239 (23.95%); EA P: 7.96% (ber. 7.19%).The precipitated colorless solid was filtered off over a D4 frit while stirring overnight and with 5 ml abs. Washed diethyl ether. The filtrate was then completely freed from the solvent. 0.63 g (0.81 mmol, 64.7%) of product was obtained as a colorless powder. Analysis: 1 H NMR (CD 2 CI 2 , 300 MHz) 7.86-7.12 [24H], 3.95 (m) [2H], 3.79 (m) [2H], 3.50 (s) [4H], 3.46 (m) [4H]; 13 C NMR (CD 2 CI 2 , 75 MHz) 69.90 (d) J = 3.9 Hz, 69.81 (s), 63.61 (d) J = 7.2 Hz; 31 P NMR (CD 2 CI 2 , 121 MHz) 143.84 (s); MS (El, evaporation temperature 275 ° C) m / z = 778 (8.66%), 376 (34.39%), 268 (100%), 239 (23.95%); EA P: 7.96% (calc. 7.19%).
Beispiel 6. Synthese von 1 ,13-Bis-O-[(S)-4H-dinaphtho[2,1-d:1 ',2'-f]-[1 ,3,2]dioxaphosphepin- 4,4*-diyl]- 1 ,4,7,10,13-pentaoxatridecan (I: L1Y1 und L2Y2= L3Y3und L4Y4= BINOL; Y5= O; RV= (CH2CH2O); m=4)Example 6. Synthesis of 1, 13-bis-O - [(S) -4H-dinaphtho [2,1-d: 1 ', 2'-f] - [1, 3,2] dioxaphosphepine-4,4 * -diyl] - 1, 4,7,10,13-pentaoxatridecan (I: L 1 Y 1 and L 2 Y 2 = L 3 Y 3 and L 4 Y 4 = BINOL; Y 5 = O; RV = (CH 2 CH 2 O); m = 4)
1.20 g (3.40 mmol) (S)-2,2'-Binaphthylphoshorigsäureesterchlorid wurden bei Raumtemperatur in 150 ml abs. Diethylether vorgelegt. Hierzu wurden 290 μl (0.33 g, 1.70 mmol) abs. Tetraethylenglykol und 0.52 ml (0.38 g, 3.74 mmol) abs. Triethylamin pipettiert. Nach Rühren über Nacht wurde der ausgefallene farblose Feststoff über eine D4-Fritte abfiltriert und mit 5ml abs. Diethylether gewaschen. Das Filtrat wurde anschließend vollständig vom Lösungsmittel befreit. Man erhielt 0.95 g (1.15 mmol, 67.9%) Produkt als farbloses Pulver. Analytik: 1H-NMR (CD2CI2, 300 MHz) 7.87-7.16 [24H], 3.95 (m) [2H], 3.82 (m) [2H], 3.51 (s) [8H], 3.41 (m) [4H]; 13C-NMR (CD2CI2, 75 MHz) 70.27 (s), 69.78 (s), 69.57 (s), 63.67 (d) J= 7.1 Hz; 31P-NMR (CD2CI2, 121 MHz) 143.76 (s); MS (El, Verdampfungstemperatur 300°C) m/z = 376 (29.67%), 268 (100%), 239 (31.44%) EA P: 6.45% (ber. 7.52%).1.20 g (3.40 mmol) of (S) -2,2 ' -Binaphthylphoshorigsäureesterchlorid were at room temperature in 150 ml abs. Diethyl ether submitted. For this purpose, 290 μl (0.33 g, 1.70 mmol) abs. Tetraethylene glycol and 0.52 ml (0.38 g, 3.74 mmol) abs. Pipetted triethylamine. After stirring overnight, the colorless solid which had precipitated out was filtered off over a D4 frit and washed with 5 ml of abs. Washed diethyl ether. The filtrate was then completely freed from the solvent. 0.95 g (1.15 mmol, 67.9%) of product was obtained as a colorless powder. Analysis: 1 H-NMR (CD 2 CI 2 , 300 MHz) 7.87-7.16 [24H], 3.95 (m) [2H], 3.82 (m) [2H], 3.51 (s) [8H], 3.41 (m) [4H]; 13 C NMR (CD 2 CI 2 , 75 MHz) 70.27 (s), 69.78 (s), 69.57 (s), 63.67 (d) J = 7.1 Hz; 31 P NMR (CD 2 CI 2 , 121 MHz) 143.76 (s); MS (El, evaporation temperature 300 ° C) m / z = 376 (29.67%), 268 (100%), 239 (31.44%) EA P: 6.45% (calc. 7.52%).
Beispiel 7. Synthese von 1 ,16-Bis-O-[(S)-4H-dinaphtho[2,1-d:r,2'-f]-[1 ,3,2]dioxaphosphepin- 4,4'-diyl]-1 ,4,7,10,13,16-hexaoxahexadecan (I: L1Y1 und L2Y2= L3Y3und L4Y4= BINOL; Y5= O; RV= (CH2CH2O); m=5)Example 7. Synthesis of 1, 16-bis-O - [(S) -4H-dinaphtho [2,1-d: r, 2'-f] - [1, 3,2] dioxaphosphepine-4,4 ' - diyl] -1, 4,7,10,13,16-hexaoxahexadecan (I: L 1 Y 1 and L 2 Y 2 = L 3 Y 3 and L 4 Y 4 = BINOL; Y 5 = O; RV = (CH 2 CH 2 O); m = 5)
0.86 g (2.44 mmol) (S)-2,2'-Binaphthylphoshorigsäureesterchlorid wurden bei Raumtemperatur in 150 ml abs. Diethylether vorgelegt. Hierzu wurden 260 μl (0.29g, 1.22 mmol) abs. Pentaethylenglykol und 0.38 ml (0.27 g, 2.70 mmol) abs. Triethylamin pipettiert. Nach Rühren über Nacht wurde der ausgefallene farblose Feststoff über eine D4-Fritte abfiltriert und mit 5 ml abs. Diethylether gewaschen. Das Filtrat wurde anschließend vollständig vom Lösungsmittel befreit. Man erhielt 0.75 g (0.86 mmol, 70.9%) Produkt als farbloses Pulver. Analytik: 1H-NMR (CD2CI2, 300 MHz) 7.89-7.13 [24H], 3.95 (m) [2H], 3.80 (m) [2H], 3.46 (s) [12H], 3.45 (m) [4H]; 13C-NMR (CD2CI2, 75 MHz) 71.70 (s), 69.81 (s), 69.69 (s), 69.51 (s), 63.65 (d); J= 7.2 Hz; 31P-NMR (CD2CI2, 121 MHz) 143.70 (s); MS (El, Verdampfungstemperatur 315°C) m/z = 376 (28.61%), 268 (100%), 239 (42.62%); EA P: 6.60% (ber. 7.14%).0.86 g (2.44 mmol) of (S) -2,2 ' -Binaphthylphoshorigsäureesterchlorid were at room temperature in 150 ml abs. Diethyl ether submitted. For this purpose, 260 μl (0.29g, 1.22 mmol) abs. Pentaethylene glycol and 0.38 ml (0.27 g, 2.70 mmol) abs. Pipetted triethylamine. After stirring overnight, the precipitated colorless solid was filtered off on a D4 frit and treated with 5 ml of abs. Washed diethyl ether. The filtrate was then completely freed from the solvent. 0.75 g (0.86 mmol, 70.9%) of product was obtained as a colorless powder. Analysis: 1 H NMR (CD 2 CI 2 , 300 MHz) 7.89-7.13 [24H], 3.95 (m) [2H], 3.80 (m) [2H], 3.46 (s) [12H], 3.45 (m) [4H]; 13 C NMR (CD 2 CI 2 , 75 MHz) 71.70 (s), 69.81 (s), 69.69 (s), 69.51 (s), 63.65 (d); J = 7.2 Hz; 31 P NMR (CD 2 CI 2 , 121 MHz) 143.70 (s); MS (El, evaporation temperature 315 ° C) m / z = 376 (28.61%), 268 (100%), 239 (42.62%); EA P: 6.60% (calc. 14.7%).
Beispiel 8. Synthese von Bis-O-[(S)-4H-dinaphtho[2,1-d:r,2'-f]-[1 ,3,2]dioxaphosphepin-4,4'- diyl]-1 ,2-dihydroxybenzol (I: L1Y1 und L2Y2= L3Y3und L4Y4= BINOL; Y5= O; RV= C6H5O; m=1)Example 8. Synthesis of Bis-O - [(S) -4H-dinaphtho [2,1-d: r, 2'-f] - [1, 3,2] dioxaphosphepine-4,4 ' - diyl] -1 , 2-dihydroxybenzene (I: L 1 Y 1 and L 2 Y 2 = L 3 Y 3 and L 4 Y 4 = BINOL; Y 5 = O; RV = C 6 H 5 O; m = 1)
0.73 g (2.07 mmol) (S^^-Binaphthylphoshorigsäureesterchlorid wurden bei Raumtemperatur in 150 ml abs. Diethylether vorgelegt und 0.32 ml (0.23 g, 2.28 mmol) abs. Triethylamin zupipettiert. Die Lösung wurde auf -80°C gekühlt. Hierzu wurden 0.114 g (1.035 mmol) 1 ,2-Dihydroxybenzol in 20 ml Diethylether innerhalb 1 h getropft und die Suspension auf Raumtemperatur erwärmt. Nach Rühren über Nacht wurde der ausgefallene farblose Feststoff über eine D4-Fritte abfiltriert und mit 5 ml abs. Diethylether gewaschen. Das Filtrat wurde anschließend vollständig vom Lösungsmittel befreit. Man erhielt 0.54g (0.73 mmol, 70.6%) Produkt als farbloses Pulver. Analytik: 1H-NMR (CD2CI2, 300 MHz) 7.96- 6.38 [28H]; 31P-NMR (CD2CI2, 121 MHz) 145.65 (s); EA P: 7.71% (ber. 8.38%).0.73 g (2.07 mmol) (S ^^ - Binaphthylphoshorigsäureesterchlorid were placed at room temperature in 150 ml of absolute diethyl ether and 0.32 ml (0.23 g, 2.28 mmol) of absolute triethylamine. The solution was cooled to -80 ° C. 0.114 g (1,035 mmol) of 1,2-dihydroxybenzene in 20 ml of diethyl ether was added dropwise over the course of 1 hour and the suspension was warmed to room temperature, and after stirring overnight the precipitated colorless solid was filtered off on a D4 frit and washed with 5 ml of absolute diethyl ether The filtrate was then completely freed from the solvent, giving 0.54 g (0.73 mmol, 70.6%) of the product as a colorless powder.Analysis: 1 H-NMR (CD 2 CI 2 , 300 MHz) 7.96-6.38 [28H]; 31 P-NMR (CD 2 CI 2 , 121 MHz) 145.65 (s); EA P: 7.71% (calc. 8.38%).
Beispiel 9 Synthese von Bis-O[(S)-4H-dinaphtho[2,1-d:1 ',2'-f]-[1 ,3,2]dioxaphosphepin-4,4'- diyl]-1 ,3-dihydroxybenzol (I: L1Y1 und L2Y2= L3Y3und L4Y4= BINOL; Y5= O; RV= C6H5O; m=1 )Example 9 Synthesis of Bis-O [(S) -4H-dinaphtho [2,1-d: 1 ', 2'-f] - [1, 3,2] dioxaphosphepin-4,4 ' - diyl] -1, 3-dihydroxybenzene (I: L 1 Y 1 and L 2 Y 2 = L 3 Y 3 and L 4 Y 4 = BINOL; Y 5 = O; RV = C 6 H 5 O; m = 1)
0.44 g (1.26 mmol) (S)-2,2'-Binaphthylphoshorigsäureesterchlorid wurden bei Raum- ' temperatur in 150 ml abs. Diethylether vorgelegt. Hierzu wurden 0.07 g (0.63 mmol) 1 ,3-Di- hydroxybenzol und 0.19 ml (0.14 g, 1.38 mmol) abs. Triethylamin pipettiert. Nach Rühren über Nacht wurde der ausgefallene farblose Feststoff über eine D4-Fritte abfiltriert und mit 5ml abs. Diethylether gewaschen. Das Filtrat wurde anschließend vollständig vom Lösungsmittel befreit. Man erhielt 0.29 g (0.39 mmol, 62.3%) Produkt als farbloses Pulver. Analytik: 1H-NMR (CD2CI2, 300 MHz) 7.95-6.94 [28H]; 31P-NMR (CD2CI2, 121 MHz) 144.81 ; MS (El, Verdampfungstemperatur 285°C) m/z = 738 (63.22%), 315 (88.94%), 268 (100%), 239 (20.42%); EA P: 7.32% (ber. 8.38%).0.44g (1.26 mmol) of (S) -2,2 '-Binaphthylphoshorigsäureesterchlorid were at room' temperature abs ml in 150th Diethyl ether submitted. For this purpose 0.07 g (0.63 mmol) 1, 3-di-hydroxybenzene and 0.19 ml (0.14 g, 1.38 mmol) abs. Pipetted triethylamine. After stirring overnight, the colorless solid which had precipitated out was filtered off over a D4 frit and washed with 5 ml of abs. Washed diethyl ether. The filtrate was then completely freed from the solvent. 0.29 g (0.39 mmol, 62.3%) of product was obtained as a colorless powder. Analysis: 1 H NMR (CD 2 CI 2 , 300 MHz) 7.95-6.94 [28H]; 31 P NMR (CD 2 CI 2 , 121 MHz) 144.81; MS (El, evaporation temperature 285 ° C) m / z = 738 (63.22%), 315 (88.94%), 268 (100%), 239 (20.42%); EA P: 7.32% (calc. 8.38%).
Beispiel 10. Synthese von Bis-O-[(S)-4H-dinaphtho[2,1-d:1',2'-f]-[1 ,3,2]dioxaphosphepin- 4,4'-diyl]-1 ,4-dihydroxybenzol (I: L1Y1 und L2Y2= L3Y3und L4Y4= BINOL; Y5= O; RV= C6H5O; m=1 ) 0.56 g (1.60 mmol) (S)-2,2'-Binaphthylphoshorigsäureesterchlorid wurden bei Raumtemperatur in 150 ml abs. Diethylether vorgelegt. Hierzu wurden 0.088 g (0.80 mmol) 1 ,4-Di- hydroxybenzol und 0.24ml (0.18g, 1.76 mmol) abs. Triethylamin pipettiert. Nach Rühren über Nacht wurde der ausgefallene farblose Feststoff über eine D4-Fritte abfiltriert und mit 5 ml abs. Diethylether gewaschen. Das Filtrat wurde anschließend vollständig vom Lösungsmittel befreit. Man erhielt 0.26 g (0.35 mmol, 44.0%) Produkt als farbloses Pulver. Analytik: 1H-NMR (CD2CI2, 300 MHz) 8.13-7.29 [28H]; 31P-NMR (CD2CI2, 121 MHz) 145.44; MS (El,Example 10. Synthesis of bis-O - [(S) -4-dinaphtho [2,1-d: 1 ', 2'-f] - [1, 3,2] dioxaphosphepin- 4,4' -diyl] - 1,4-dihydroxybenzene (I: L 1 Y 1 and L 2 Y 2 = L 3 Y 3 and L 4 Y 4 = BINOL; Y 5 = O; RV = C 6 H 5 O; m = 1) 0.56 g ( 1.60 mmol) (S) -2,2 ' -Binaphthylphoshorigsäureesterchlorid were at room temperature in 150 ml abs. Diethyl ether submitted. For this 0.088 g (0.80 mmol) 1, 4-di- hydroxybenzene and 0.24ml (0.18g, 1.76 mmol) abs. Pipetted triethylamine. After stirring overnight, the precipitated colorless solid was filtered off on a D4 frit and treated with 5 ml of abs. Washed diethyl ether. The filtrate was then completely freed from the solvent. 0.26 g (0.35 mmol, 44.0%) of product was obtained as a colorless powder. Analysis: 1 H NMR (CD 2 CI 2 , 300 MHz) 8.13-7.29 [28H]; 31 P NMR (CD 2 CI 2 , 121 MHz) 145.44; MS (El,
Verdampfungstemperatur 200°C) m/z = 738 (42.75%), 315 (100%), 268 (69.45%), 239 (15.08%); EA P: 7.67% (ber. 8.38%).Evaporation temperature 200 ° C) m / z = 738 (42.75%), 315 (100%), 268 (69.45%), 239 (15.08%); EA P: 7.67% (calc. 8.38%).
Beispiel 11. Synthese von Bis-O-[(S)-4H-dinaphtho[2,1-d:1\2'-f]-[1 ,3,2]dioxaphosphepin- 4,4'-diyl]-1 ,2-bis(hydroxymethyl)benzol (I: L1Y1 und L2Y2= L3Y3und L4Y4= BINOL; Y5= O;Example 11. Synthesis of bis-O - [(S) -4-dinaphtho [2,1-d: 1 \ 2'-f] - [1, 3,2] dioxaphosphepin- 4,4 '-diyl] -1 , 2-bis (hydroxymethyl) benzene (I: L 1 Y 1 and L 2 Y 2 = L 3 Y 3 and L 4 Y 4 = BINOL; Y 5 = O;
R1Y6= CH2C6H5CH2O, m=1 )R 1 Y 6 = CH 2 C 6 H 5 CH 2 O, m = 1)
1.0 g (2.85 mmol) (S)-2,2'-Binaphthylphoshorigsäureesterchlorid wurden bei Raumtemperatur in 150 ml abs. Diethylether vorgelegt. Hierzu wurden 0.20g (1.42 mmol) 1 ,2- Bis(hydroxymethyl)benzol und 0.44 ml (0.32 g, 3.13 mmol) abs. Triethylamin pipettiert. Nach1.0 g (2.85 mmol) of (S) -2,2 ' -Binaphthylphoshorigsäureesterchlorid were at room temperature in 150 ml abs. Diethyl ether submitted. For this, 0.20g (1.42 mmol) of 1,2-bis (hydroxymethyl) benzene and 0.44 ml (0.32 g, 3.13 mmol) of abs. Pipetted triethylamine. To
Rühren über Nacht wurde der ausgefallene farblose Feststoff über eine D4-Fritte abfiltriert und mit 5 ml abs. Diethylether gewaschen. Das Filtrat wurde anschließend vollständig vom Lösungsmittel befreit. Man erhielt 0.62 g (0.81 mmol, 57.0%) Produkt als farbloses Pulver. Analytik: 1H-NMR (CD2CI2, 300 MHz) 7.87-7.09 [28H], 5.14 (m) [2H], 4.75 (m) [2H]; 13C-NMR (CD2CI2, 75 MHz) 63.37 (d) J= 6.4 Hz; 31P-NMR (CD2CI2, 121 MHz) 140.97 (s); EA P:7.43%Stirring overnight, the colorless solid which had precipitated was filtered off over a D4 frit and washed with 5 ml of abs. Washed diethyl ether. The filtrate was then completely freed from the solvent. 0.62 g (0.81 mmol, 57.0%) of product was obtained as a colorless powder. Analysis: 1 H NMR (CD 2 CI 2 , 300 MHz) 7.87-7.09 [28H], 5.14 (m) [2H], 4.75 (m) [2H]; 13 C NMR (CD 2 CI 2 , 75 MHz) 63.37 (d) J = 6.4 Hz; 31 P NMR (CD 2 CI 2 , 121 MHz) 140.97 (s); EA P: 7.43%
(ber. 8.08%).(calculated 8.08%).
Beispiel 12. Synthese von Bis-O-[(S)-4H-dinaphtho[2,1-d:1 ',2'-f]-[1 ,3,2]dioxaphosphepin- 4,4'-diyl]-1 ,1'-biphenol (I L1Y1 und L2Y2= L3Y3und L4Y4= BINOL; Y5= O; RV= C6H5C6H5O)Example 12. Synthesis of bis-O - [(S) -4-dinaphtho [2,1-d: 1 ', 2'-f] - [1, 3,2] dioxaphosphepin- 4,4' -diyl] - 1, 1 ' -biphenol (IL 1 Y 1 and L 2 Y 2 = L 3 Y 3 and L 4 Y 4 = BINOL; Y 5 = O; RV = C 6 H 5 C 6 H 5 O)
1.1 g (3.10 mmol) (S)-2,2Λ-Binaphthylphoshorigsäureesterchlorid wurden bei Raumtemperatur in 150 ml abs. Diethylether vorgelegt. Hierzu wurden 0.29 g (1.55 mmol) 1 ,1 *-Bi- phenol und 0.48 ml (0.34 g, 3.40 mmol) abs. Triethylamin pipettiert. Nach Rühren über Nacht wurde der ausgefallene farblose Feststoff über eine D4-Fritte abfiltriert und mit 5 ml abs. Diethylether gewaschen. Das Filtrat wurde anschließend vollständig vom Lösungsmittel befreit. Man erhielt 1.03 g (1.26 mmol, 81.6%) Produkt als farbloses Pulver. Analytik: 1H- NMR (CD2CI2, 300 MHz) 7.87-7.09 [32H]; 3 P-NMR (CD2CI2, 121 MHz) 145.23 (s); MS (El, Verdampfungstemperatur 250°C) m/z = 814 (0.28%), 483 (100%), 268 (10.14%), 168 (18.62%); EA P: 7.15% (ber. 7.60%). Beispiel 13. Synthese von 4,4*-Bis-O-[(S)-4H-dinaphtho[2,1-d:1 \2'-f]-[1 ,3,2]dioxaphos- phepin-4,4'-diyl]-isopropylidenediphenol (I: L1Y1 und L Y2= L3Y3und L4Y4= BINOL; Y5= O; RV= C6H5C(CH3)2C6H5O)1.1 g (3.10 mmol) of (S) -2.2 Λ- binaphthylphosphoric acid ester chloride were dissolved in 150 ml of abs. Diethyl ether submitted. For this purpose 0.29 g (1.55 mmol) 1, 1 * -Biphenol and 0.48 ml (0.34 g, 3.40 mmol) abs. Pipetted triethylamine. After stirring overnight, the precipitated colorless solid was filtered off on a D4 frit and treated with 5 ml of abs. Washed diethyl ether. The filtrate was then completely freed from the solvent. 1.03 g (1.26 mmol, 81.6%) of product were obtained as a colorless powder. Analysis: 1 H NMR (CD 2 CI 2 , 300 MHz) 7.87-7.09 [32H]; 3 P NMR (CD 2 CI 2 , 121 MHz) 145.23 (s); MS (El, evaporation temperature 250 ° C) m / z = 814 (0.28%), 483 (100%), 268 (10.14%), 168 (18.62%); EA P: 7.15% (calc. 7.60%). Example 13. Synthesis of 4,4 * -Bis-O - [(S) -4H-dinaphtho [2,1-d: 1 \ 2'-f] - [1, 3,2] dioxaphosphepin-4, 4'-diyl] isopropylidene diphenol (I: L 1 Y 1 and LY 2 = L 3 Y 3 and L 4 Y 4 = BINOL; Y 5 = O; RV = C 6 H 5 C (CH 3 ) 2 C 6 H 5 O)
0.68 g (1.94 mmol) (S)-2,2'-Binaphthylphoshorigsäureesterchlorid wurden bei Raumtemperatur in 150 ml abs. Diethylether vorgelegt. Hierzu wurden 0.22 g (0.97 mmol) 4,4'-lso- propylidendiphenol und 0.30 ml (0.21 g, 2.13 mmol) abs. Triethylamin pipettiert. Nach Rühren über Nacht wurde der ausgefallene farblose Feststoff über eine D4-Fritte abfiltriert und mit 5 ml abs. Diethylether gewaschen. Das Filtrat wurde anschließend vollständig vom Lösungsmittel befreit. Man erhielt 0.63 g (0.73 mmol, 75.2%) Produkt als farbloses Pulver.0.68 g (1.94 mmol) of (S) -2,2 ' -Binaphthylphoshorigsäureesterchlorid were at room temperature in 150 ml abs. Diethyl ether submitted. To this was added 0.22g (0.97 mmol) of 4,4 '-lso- propylidendiphenol and 0:30 ml (0.21g, 2.13 mmol) abs. Pipetted triethylamine. After stirring overnight, the precipitated colorless solid was filtered off on a D4 frit and treated with 5 ml of abs. Washed diethyl ether. The filtrate was then completely freed from the solvent. 0.63 g (0.73 mmol, 75.2%) of product was obtained as a colorless powder.
Analytik: 1H-NMR (CD2CI2, 300 MHz) 7.90-6.98 [32H], 1.55 (s) [6H]; 31P-NMR (CD2CI2, 121 MHz) 145.21 (s); MS (El, Verdampfungstemperatur 325°C) m/z = 856 (41.56%), 841 (24.68%), 315 (100%), 268 (73.43%); EA P: 6.58% (ber. 7.23%).Analysis: 1 H NMR (CD 2 CI 2 , 300 MHz) 7.90-6.98 [32H], 1.55 (s) [6H]; 31 P NMR (CD 2 CI 2 , 121 MHz) 145.21 (s); MS (El, evaporation temperature 325 ° C) m / z = 856 (41.56%), 841 (24.68%), 315 (100%), 268 (73.43%); EA P: 6.58% (calc. 7.23%).
Beispiel 14. Synthese von 1 ,3,5-Tris-O-[(S)-4H-dinaphtho[2,1-d:1',2'-f]-[1 ,3,2]dioxaphos- phepin-4,4'-diyl]- benzol (II: L1 Y1 ' und L2 Y2 = L3 Y3 und L4 Y4 = L5Y8und L6Y9= BINOL; Y5 = O; R2 Y6 = C6H3O; m=1)Example 14. Synthesis of 1, 3,5-tris-O - [(S) -4H-dinaphtho [2,1-d: 1 ', 2'-f] - [1, 3,2] dioxaphosphepin- 4,4 '-diyl] - benzene (II: Y 1 L 1' and L 2 Y 2 = Y 3 L 3 and L 4 Y 4 = L 5 and L 6 Y 8 Y 9 = BINOL Y 5 = O; R 2 Y 6 = C 6 H 3 O; m = 1)
1.15 g (3.28 mmol) (S)-2,2'-Binaphthylphoshorigsäureesterchlorid wurden bei Raum- temperatur in 150 ml abs. Diethylether vorgelegt. Hierzu wurden 0.137 g (1.09 mmol) 1 ,3,5-1.15 g (3.28 mmol) of (S) -2,2 '-Binaphthylphoshorigsäureesterchlorid were temperature abs in 150 ml at room. Diethyl ether submitted. 0.137 g (1.09 mmol) 1, 3.5-
Trihydroxybenzol und 0.30 ml (0.36 g, 3.61 mmol) abs. Triethylamin pipettiert. Nach Rühren über Nacht wurde der ausgefallene farblose Feststoff über eine D4-Fritte abfiltriert und mit 5 ml abs. Diethylether gewaschen. Das Filtrat wurde anschließend vollständig vom Lösungsmittel befreit. Man erhielt 0.92 g (0.86 mmol, 79.0%) Produkt als farbloses Pulver. Analytik: 1H-NMR (CD2CI2, 300 MHz) 7.95-7.13 [36H], 6.77 (s) [3H]; 31P-NMR (CD2CI2,Trihydroxybenzene and 0.30 ml (0.36 g, 3.61 mmol) abs. Pipetted triethylamine. After stirring overnight, the precipitated colorless solid was filtered off on a D4 frit and treated with 5 ml of abs. Washed diethyl ether. The filtrate was then completely freed from the solvent. 0.92 g (0.86 mmol, 79.0%) of product was obtained as a colorless powder. Analysis: 1 H NMR (CD 2 CI 2 , 300 MHz) 7.95-7.13 [36H], 6.77 (s) [3H]; 31 P NMR (CD 2 CI 2 ,
121 MHz) 144.06 (s); EA P: 8.29% (ber. 8.69%).121 MHz) 144.06 (s); EA P: 8.29% (calc. 8.69%).
Beispiel 15. Synthese von Tris-O-[(S)-4H-dinaphtho[2,1-d:1 ',2'-f]-[1 ,3,2]dioxaphosphepin- 4,4--diyl]-2,2',2"-nitrilotriethanol (II: L1V1 ' und L2 Y2 = L3 Y3 und L4 Y4 = L5Y8und L6Y9= BINOL; Y5 = Y6 = Y7 O; R2 = N(C2H4)3; m=1 )Example 15. Synthesis of Tris-O - [(S) -4H-dinaphtho [2,1-d: 1 ', 2'-f] - [1, 3,2] dioxaphosphepine-4,4-diyl] - 2,2 ' , 2 "-nitrilotriethanol (II: L 1 V 1' and L 2 Y 2 = L 3 Y 3 and L 4 Y 4 = L 5 Y 8 and L 6 Y 9 = BINOL; Y 5 = Y 6 = Y 7 O; R 2 = N (C 2 H 4 ) 3 ; m = 1)
1.26 g (3.60 mmol) (S)-2,2'-Binaphthylphoshorigsäureesterchlorid wurden bei Raumtemperatur in 150 ml abs. Diethylether vorgelegt. Hierzu wurden 160 μl (0.18 g, 1.2 mmol) Triethanolamin und 0.55 ml (0.40 g, 3.95 mmol) abs. Triethylamin pipettiert. Nach Rühren über Nacht wurde der ausgefallene farblose Feststoff über eine D4-Fritte abfiltriert und mit1.26 g (3.60 mmol) of (S) -2,2 ' -Binaphthylphoshorigsäureesterchlorid were at room temperature in 150 ml abs. Diethyl ether submitted. 160 μl (0.18 g, 1.2 mmol) triethanolamine and 0.55 ml (0.40 g, 3.95 mmol) abs. Pipetted triethylamine. After stirring overnight, the colorless solid which had precipitated out was filtered off on a D4 frit and filtered with
5ml abs. Diethylether gewaschen. Das Filtrat wurde anschließend vollständig vom Lösungsmittel befreit. Man erhielt 1.02 g (0.93 mmol, 77.8%) Produkt als farbloses Pulver. Analytik: H-NMR (CD2CI2, 300 MHz) 7.98-7.07 [36H], 3.71 (m) [6H], 2.59 (t) [6H] J= 5.7 Hz; 31P-NMR (CD2CI2, 121 MHz) 143.08 (s); EA P: 7.92% (ber. 8.51%).5ml abs. Washed diethyl ether. The filtrate was then completely from Free solvent. 1.02 g (0.93 mmol, 77.8%) of product was obtained as a colorless powder. Analysis: H NMR (CD 2 CI 2 , 300 MHz) 7.98-7.07 [36H], 3.71 (m) [6H], 2.59 (t) [6H] J = 5.7 Hz; 31 P NMR (CD 2 CI 2 , 121 MHz) 143.08 (s); EA P: 7.92% (calc. 8.51%).
Beispiele 16-18. Allgemeine Vorschrift zur Synthese von Liganden, die sich vonExamples 16-18. General instructions for the synthesis of ligands that differ from
Aminoalkoholen ableitenDerive amino alcohols
600 mg (1.71 mmol) (S)-2,2'-Binaphthylphosphorigsäureesterchlorid und 0.3 ml (2.16 mmol) Triethylamin wurden bei -78 °C in 100 ml Toluol vorgelegt und jeweils mit 0.5 Äquivalenten (0.86 mmol) des entsprechenden Aminoalkohols versetzt. Nach 16 h Rühren und Erwärmen auf Raumtemperatur wurde der entstandene Niederschlag abfiltriert und das Filtrat vollständig vom Lösungsmittel befreit. Nach Trocknen im Hochvakuum wurden die Liganden als weiße Feststoffe in Ausbeuten zwischen 42% und 99% isoliert.600 mg (1.71 mmol) of (S) -2,2'-binaphthylphosphoric acid ester chloride and 0.3 ml (2.16 mmol) of triethylamine were initially introduced into 100 ml of toluene at -78 ° C., and 0.5 equivalents (0.86 mmol) of the corresponding amino alcohol were added to each. After stirring for 16 h and warming to room temperature, the precipitate formed was filtered off and the filtrate was completely freed from the solvent. After drying under high vacuum, the ligands were isolated as white solids in yields between 42% and 99%.
Beispiel 16. Bis-O-[(S)-4H-dinaphtho[2,1-d:r,2'-f]-[1 ,3,2]dioxaphosphepin-4,4'-diyl]-Λ/- methyl-2-aminoethanol (I: L1Y1 und L2Y2= L3Y3und L4Y4= BINOL; Y5= NCH3; RV= (CH2CH2O); m=1 )Example 16. Bis-O - [(S) -4H-dinaphtho [2,1-d: r, 2'-f] - [1, 3,2] dioxaphosphepine-4,4'-diyl] -Λ / - methyl-2-aminoethanol (I: L 1 Y 1 and L 2 Y 2 = L 3 Y 3 and L 4 Y 4 = BINOL; Y 5 = NCH 3 ; RV = (CH 2 CH 2 O); m = 1)
Analytik: 1H-NMR (C6D6, 300.1 MHz) δ = 7.70-6.90 (m) [24 H], 3.75 (m, 1 H), 3.48 (m) [1 H], 3.11 (m) [1 H], 2.67 (m) [1 H], 2.15 (d, JPH = 5.3 Hz) [3 H]; 31P-NMR (C6D6, 121.5 MHz) 149.8Analysis: 1 H-NMR (C 6 D 6 , 300.1 MHz) δ = 7.70-6.90 (m) [24 H], 3.75 (m, 1 H), 3.48 (m) [1 H], 3.11 (m) [ 1 H], 2.67 (m) [1 H], 2.15 (d, J PH = 5.3 Hz) [3 H]; 31 P NMR (C 6 D 6 , 121.5 MHz) 149.8
(s), 139.0 (s); MS (El, pos. Ionen): m/z = 703 [M]+.(s), 139.0 (s); MS (El, pos. Ions): m / z = 703 [M] + .
Beispiel 17. Bis-Λ/,O-[(S)-4H-dinaphtho[2,1-d:1',2'-f]-[1 ,3,2]dioxaphosphepin-4,4'-diyl]- 3-aminopropanol (I: L1Y1 und L2Y2= L3Y3und L4Y4= BINOL; Y5= NH; R1Y8= (CH2CH2CH2O); m=1 )Example 17. Bis-Λ /, O - [(S) -4H-dinaphtho [2,1-d: 1 ', 2'-f] - [1, 3,2] dioxaphosphepin-4,4'-diyl] - 3-aminopropanol (I: L 1 Y 1 and L 2 Y 2 = L 3 Y 3 and L 4 Y 4 = BINOL; Y 5 = NH; R 1 Y 8 = (CH 2 CH 2 CH 2 O); m = 1)
Analytik: 1H-NMR (C6D6, 400.1 MHz) 7.71-6.86 (m) [24 H]. 3.71 (m) [1 H], 3.52 (m) [1 H], 2,79-2,66 (m) [2 H], 2.60 (m) [1 H], 1.16 (m) [2 H]; 31P-NMR (C6D6, 162.0 MHz) 153.9 (s), 139.4 (s); MS (El, pos. Ionen) m/z = 703 [M]+; EA C: 72.68% (ber. 73.40%), H: 4.80% (ber. 4.44%), N 1.67% (ber. 1.99%), P: 8.44% (ber. 8.80%).Analysis: 1 H NMR (C 6 D 6 , 400.1 MHz) 7.71-6.86 (m) [24 H]. 3.71 (m) [1 H], 3.52 (m) [1 H], 2.79-2.66 (m) [2 H], 2.60 (m) [1 H], 1.16 (m) [2 H] ; 31 P NMR (C 6 D 6 , 162.0 MHz) 153.9 (s), 139.4 (s); MS (El, pos. Ions) m / z = 703 [M] + ; EA C: 72.68% (calc. 73.40%), H: 4.80% (calc. 4.44%), N 1.67% (calc. 1.99%), P: 8.44% (calc. 8.80%).
Beispiel 18. Bis-Λ/,O-[(S)-4H-dinaphtho[2,1-d:1',2'-f]-[1 ,3,2]dioxaphosphepin-4,4'-diyl]- 4-aminobutanol (I: L1Y1 und L2Y2= L3Y3und l_V= BINOL; Y5= NH; R1Y8= (CH2CH2CH2CH2O); m=1)Example 18. Bis-Λ /, O - [(S) -4H-dinaphtho [2,1-d: 1 ', 2'-f] - [1, 3,2] dioxaphosphepin-4,4'-diyl] - 4-aminobutanol (I: L 1 Y 1 and L 2 Y 2 = L 3 Y 3 and l_V = BINOL; Y 5 = NH; R 1 Y 8 = (CH 2 CH 2 CH 2 CH 2 O); m = 1)
Analytik: Η-NMR (C6D6, 400.1 MHz) 7.69-6.88 (m) [24 H], 3.70 (m) [1 H], 3.50 (m) [1 H], 2.63 (m) [1 H], 2.55-2.41 (m) [2 H], 1.12 (m) [2 H], 1.04 (m) [2 H]; 31P-NMR (C6D6, 162.0 MHz) 153.8 (s), 140.0 (s); MS (El, pos. Ionen) m/z = 717 [M]+; EA C 73.58% (ber. 73.64%), H 4.70% (ber. 4.63%), N 2.06% (ber. 1.95%), P 8.52% (ber. 8.63%). HydrierungenAnalysis: Η NMR (C 6 D 6 , 400.1 MHz) 7.69-6.88 (m) [24 H], 3.70 (m) [1 H], 3.50 (m) [1 H], 2.63 (m) [1H], 2.55-2.41 (m) [2H], 1.12 (m) [2H], 1.04 (m) [2H]; 31 P NMR (C 6 D 6 , 162.0 MHz) 153.8 (s), 140.0 (s); MS (El, pos. Ions) m / z = 717 [M] + ; EA C 73.58% (calc. 73.64%), H 4.70% (calc. 4.63%), N 2.06% (calc. 1.95%), P 8.52% (calc. 8.63%). hydrogenation
Allgemeine Vorschrift zur Hydrierung mit in situ hergestelltem KatalysatorGeneral instructions for hydrogenation with catalyst prepared in situ
0.5ml einer 2mM Lösung von [Rh(cod)2]BF4 in Dichlormethan wurde in einem Rundkolben mit Seithahn vorgelegt. Hierzu wurden 0.5ml einer 2mM Lösung des angegebenen Liganden und anschließend 9.0ml einer 0.11 M Substratlösung in Dichlormethan gegeben. Die Lösung wurde nun mit Wasserstoff gesättigt und unter 1.3 bar Wasserstoffdruck für 20h bei Raumtemperatur gerührt. 2ml der so erhaltenen Lösung wurden über Silica (70-230 mesh, Aktivitätsstufe I) filtriert und gaschromatographisch analysiert.0.5ml of a 2mM solution of [Rh (cod) 2 ] BF 4 in dichloromethane was placed in a round bottom flask with a side tap. For this purpose, 0.5 ml of a 2 mM solution of the specified ligand and then 9.0 ml of a 0.11 M substrate solution in dichloromethane were added. The solution was then saturated with hydrogen and stirred under 1.3 bar hydrogen pressure for 20 h at room temperature. 2 ml of the solution thus obtained were filtered through silica (70-230 mesh, activity level I) and analyzed by gas chromatography.
Beispiele 19-36. Enantioselektive Hydrierung von DimethylitconatExamples 19-36. Enantioselective hydrogenation of dimethylitconate
Die Beispiele 19-36 beschreiben die Hydrierung des Substrates Dimethylitaconat zu 2-Methylbemsteinsäuredimethylester nach der „Allgemeinen Vorschrift zur Hydrierung mit in situ hergestelltem Katalysator". Die genauen Reaktionsbedingungen sowie die erzielten Umsätze und Enantioselektivitäten sind in der Tabelle 1 angegeben.Examples 19-36 describe the hydrogenation of the substrate dimethyl itaconate to 2-methylsuccinic acid dimethyl ester according to the "General instructions for hydrogenation with catalyst prepared in situ". The exact reaction conditions and the conversions and enantioselectivities achieved are given in Table 1.
Tabelle 1 Bsp. Ligand L Umsatz ee aus Beispiel in %[al in % Konfig. 19 1 83.0 48.4 (R) 20 2 43.7 37.6 (S) 21 3 95.6 93.4 (S) 22 4 96.8 96.8 (S) 23 5 37.9 56.4 (S) 24 6 97.4 95.8 (S) 25 7 23.1 6.4 (S) 26 8 7.0 5.4 (S) 27 9 95.5 84.6 (S) 28 10 99.1 91.0 (S) 29 11 88.6 49.6 (S) 30 12 8.2 10.6 (S) 31 13 88.6 49.6 (S) 32 14 5.1 30.8 (S) 33 15 1.8 43.0 (S) 34 16 83.0 34.6 (S) 35 17 100 82.4 (S) 36 18 100 86.6 (S)Table 1 Example ligand L conversion ee from example in% [al in% config. 19 1 83.0 48.4 (R) 20 2 43.7 37.6 (S) 21 3 95.6 93.4 (S) 22 4 96.8 96.8 (S) 23 5 37.9 56.4 (S) 24 6 97.4 95.8 (S) 25 7 23.1 6.4 (S) 26 8 7.0 5.4 (S) 27 9 95.5 84.6 (S) 28 10 99.1 91.0 (S) 29 11 88.6 49.6 (S) 30 12 8.2 10.6 (S) 31 13 88.6 49.6 (S) 32 14 5.1 30.8 (S) 33 15 1.8 43.0 (S) 34 16 83.0 34.6 (S) 35 17 100 82.4 (S) 36 18 100 86.6 (S)
[a] Falls gaschromatographisch kein Edukt mehr nachzuweisen war, ist der Umsatz 100% angegeben. Beispiele 37-41. Enantioselektive Hydrierung von 2-Acetamidoacrylsäuremethylester[a] If the starting material was no longer detectable by gas chromatography, the conversion is 100%. Examples 37-41. Enantioselective hydrogenation of methyl 2-acetamidoacrylate
Die Beispiele 37-41 beschreiben die Hydrierung des Substrates 2-Acetamidoacrylsäure- methylester zu Λ/-Acetylalaninmethylester nach der „Allgemeinen Vorschrift zur Hydrierung mit in situ hergestelltem Katalysator". Die genauen Reaktionsbedingungen sowie die erzielten Umsätze und Enantioselektivitäten sind in Tabelle 2 angegeben.Examples 37-41 describe the hydrogenation of the substrate 2-acetamidoacrylic acid methyl ester to Λ / -acetylalanine methyl ester according to the “general instructions for hydrogenation with catalyst prepared in situ”. The exact reaction conditions and the conversions and enantioselectivities achieved are given in Table 2.
Tabelle 2 Bsp. Ligand L Umsatz ee aus Beispiel in %[al in % Konfig. 37 3 100 69.6 (R) 38 4 100 78.8 (R) 39 16 98.0 rac. — 40 17 100 36.0 (R) 41 18 100 88.8 (R) [a] Falls gaschromatographisch kein Edukt mehr nachzuweisen war, ist der Umsatz 100% angegeben.Table 2 Example ligand L conversion ee from example in% [al in% config. 37 3 100 69.6 (R) 38 4 100 78.8 (R) 39 16 98.0 rac. - 40 17 100 36.0 (R) 41 18 100 88.8 (R) [a] If the starting material was no longer detectable by gas chromatography, the conversion is 100%.
Beispiele 42-43. Enantioselektive Hydrierung von α-AcetamidozimtsäuremethylesterExamples 42-43. Enantioselective hydrogenation of methyl α-acetamido cinnamate
Die Beispiele 42-43 beschreiben die Hydrierung des Substrates αr-Acetamidozimtsäure- methylester zu Λ/-Acetylphenylalaninmethylester nach der „Allgemeinen Vorschrift zur Hydrierung mit in situ hergestelltem Katalysator". Die genauen Reaktionsbedingungen sowie die erzielten Umsätze und Enantioselektivitäten sind in Tabelle 3 angegeben.Examples 42-43 describe the hydrogenation of the substrate αr-acetamido cinnamic acid methyl ester to Λ / -acetylphenylalanine methyl ester according to the “general instructions for hydrogenation with catalyst prepared in situ”. The exact reaction conditions and the conversions and enantioselectivities achieved are given in Table 3.
Tabelle 3 Bsp. Ligand L Umsatz ee aus Beispiel in %[al in % Konfig. 42 3 89.2 58.8 (R) 43 4 81.5 63.6 (R)Table 3 Example ligand L conversion ee from example in% [al in% config. 42 3 89.2 58.8 (R) 43 4 81.5 63.6 (R)
Beispiele 44-48. Enantioselektive Hydrierung von oAcetamidostyrolExamples 44-48. Enantioselective hydrogenation of oAcetamidostyrene
Die Beispiele 44-48 beschreiben die Hydrierung des Substrates α-Acetamidostyrol zuExamples 44-48 describe the hydrogenation of the substrate α-acetamidostyrene
Λ/-Acetyl-1-phenylethylamin. 0.5 ml einer 2 mM Ligandlösung wurden mit 0.5 ml einer 2 mM Lösung von [Rh(cod)2]BF4 versetzt. Nach Zugabe von 2.0 ml einer 0.25 M Substratlösung wurde 20 h bei 60 bar Wasserstoffdruck gerührt. 2 ml der so erhaltenen Lösung wurden über Silica (70-230 mesh, Aktivitätsstufe I) filtriert und gaschromatographisch analysiert. Die genauen Reaktionsbedingungen sowie die erzielten Umsätze und Enantioselektivitäten sind in Tabelle 4 angegeben.Λ / acetyl-1-phenylethylamine. 0.5 ml of a 2 mM solution of [Rh (cod) 2 ] BF 4 was added to 0.5 ml of a 2 mM ligand solution. After adding 2.0 ml of a 0.25 M substrate solution, the mixture was stirred at 60 bar hydrogen pressure for 20 h. 2 ml of the solution thus obtained were filtered through silica (70-230 mesh, activity level I) and analyzed by gas chromatography. The the exact reaction conditions and the conversions and enantioselectivities achieved are given in Table 4.
Tabelle 4 Bsp. Ligand L Umsatz ee aus Beispiel in %lal in % Konfig. 44 3 72.1 78.4 (R) 45 4 67.7 76.4 (R) 46 16 100 19.2 (S) 47 17 100 56.0 (R) 48 18 100 62.6 (R)Table 4 Example ligand L conversion ee from example in% lal in% config. 44 3 72.1 78.4 (R) 45 4 67.7 76.4 (R) 46 16 100 19.2 (S) 47 17 100 56.0 (R) 48 18 100 62.6 (R)
[a] Falls gaschromatographisch kein Edukt mehr nachzuweisen war, ist der Umsatz 100% angegeben.[a] If the starting material was no longer detectable by gas chromatography, the conversion is 100%.
Beispiele 49-51. Enantioselektive Hydrierung von Essigsäure-1-phenyl-vinylesterExamples 49-51. Enantioselective hydrogenation of 1-phenyl-vinyl acetate
Die Beispiele 49-51 beschreiben die Hydrierung des Substrates Essigsäure-1-phenyl-vinyl- ester zu Essigsäure-1-phenyl-ethanolester. 0.25ml einer 2mM Ligandlösung wurden mit 0.25ml einer 2mM Lösung von [Rh(cod)2]BF4 versetzt. Nach Zugabe von 1.0ml einer 0.1 M Substratlösung und 2.0ml Dichlormethan wurde 20h bei 60bar Wasserstoffdruck gerührt. 2ml der so erhaltenen Lösung wurden über Silica (70-230 mesh, Aktivitätsstufe I) filtriert und gaschromatographisch analysiert. Die genauen Reaktionsbedingungen sowie die erzielten Umsätze und Enantioselektivitäten sind in Tabelle 5 angegeben.Examples 49-51 describe the hydrogenation of the substrate acetic acid 1-phenyl vinyl ester to acetic acid 1-phenyl ethanol ester. 0.25ml of a 2mM ligand solution was mixed with 0.25ml of a 2mM solution of [Rh (cod) 2 ] BF 4 . After adding 1.0 ml of a 0.1 M substrate solution and 2.0 ml of dichloromethane, the mixture was stirred at 60 bar hydrogen pressure for 20 h. 2 ml of the solution thus obtained were filtered through silica (70-230 mesh, activity level I) and analyzed by gas chromatography. The exact reaction conditions as well as the conversions and enantioselectivities achieved are given in Table 5.
Tabelle 5 Bsp. Ligand L Umsatz ee aus Beispiel in %Ial in % Konfig. 49 16 100 76.6 (S) 50 17 100 59.8 (S) 51 18 100 31.4 (S)Table 5 Example ligand L conversion ee from example in% Ial in% config. 49 16 100 76.6 (S) 50 17 100 59.8 (S) 51 18 100 31.4 (S)
[a] Falls gaschromatographisch kein Edukt mehr nachzuweisen war, ist der Umsatz 100% angegeben. [a] If the starting material was no longer detectable by gas chromatography, the conversion is 100%.

Claims

Patentansprücheclaims
Chirale Verbindungen mit der allgemeinen Formel I oder IIChiral compounds with the general formula I or II
worin L1, L2, L3, L4, L1 , L2 , L3 , L4 , L5 und L6 jeweils gleich oder verschieden sein können und mindestens einer von L1, L2, L3 und L4 in Formel I bzw. mindestens einer von L1 , L2 , L3 , L4 , L5 und L6 in Formel II einen chiralen Rest darstellen, wobei L1 und L2, L3 und L4, L1 und L2 , L3 und L4 , sowie L5 und L8 miteinander verbunden sein können, Y1, Y2, Y3, Y4, Y5, Y6, Y1', Y2', Y3', Y4', Y5', Y6', Y7 Y8 Y9 gleich oder verschieden sein können und für O, S oder eine Gruppe NR' stehen, in der R' Wasserstoff, ggf. substituiertes CrC6-Alkyl oder ggf. substituiertes Aryl bedeutet, wobei die Substituenten beispielsweise ausgewählt sein können aus F, Cl, Br, I, OH, NO2, CN, Carboxyl, Carbonyl, Sulfonyl, Silyl, CF3, NRaRb, worin Ra und R wie R1 definiert sein können, R1 und R2 für C2-C22-Alkylen, vorzugsweise Ethylen, n-Propylen, iso-Propylen, n-wherein L 1 , L 2 , L 3 , L 4 , L 1 , L 2 , L 3 , L 4 , L 5 and L 6 can each be the same or different and at least one of L 1 , L 2 , L 3 and L 4 in formula I or at least one of L 1 , L 2 , L 3 , L 4 , L 5 and L 6 in formula II represent a chiral radical, where L 1 and L 2 , L 3 and L 4 , L 1 and L 2 , L 3 and L 4 , and L 5 and L 8 can be connected to one another, Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , Y 1 ' , Y 2' , Y 3 ' , Y 4 ' , Y 5' , Y 6 ' , Y 7 Y 8 Y 9 may be the same or different and represent O, S or a group NR' in which R 'is hydrogen, optionally substituted CrC 6 alkyl or, if appropriate substituted aryl, where the substituents can be selected, for example, from F, Cl, Br, I, OH, NO 2 , CN, carboxyl, carbonyl, sulfonyl, silyl, CF 3 , NR a R b , where R a and R are like R 1 can be defined, R 1 and R 2 for C 2 -C 22 alkylene, preferably ethylene, n-propylene, iso-propylene, n-
Butylen, iso-Butylen, sec.-Butylen, Phenylen, Diphenylen, die ggf. Substituenten aufweisen können, wie F, Cl, Br, I, OH, NO2, CN, CF3, NH2, Sulfonyl, Silyl, Mono- oder Di(C1-C6)-Alkylamino, CrC6-Alkyl, C C6-Alkoxy, Carboxyl oder Carbonyl, die ggf. wiederum Substituenten aufweisen können, stehen und m und m' eine Zahl zwischen 1 und 1000 bedeuten, mit der Maßgabe, dass, wenn einer von Y5 und Y6 O und der andere N(CH2CH3) ist und die Gruppen L1Y1 und L2Y2 sowie L3Y3 und L4Y4 jeweils gemeinsam einen Binolrest bilden und m gleich 1 ist, ist R1 nicht Ethylen, und wenn Y5 und Y8 O sind und die Gruppen L1Y1 und L2Y2 sowie L3Y3 und L4Y4 jeweils gemeinsam einen Binolrest bilden, ist m nicht 4 oder 5, und wenn in der Verbindung mit der Formel I die Gruppierung Y5 - [RV]™ für -N(CH3)- C2H4-N(CH3), -N(CH(CH3)2)-C3H6-N(CH(CH3)2) oder -N(CHPhCH3)-C3H6- N(CHPhCH3) steht, bilden die Gruppen L1Y1 und L2Y2 sowie L3Y3 und LV nicht jeweils gemeinsam einen Binolrest.Butylene, isobutylene, sec-butylene, phenylene, diphenylene, which may optionally have substituents, such as F, Cl, Br, I, OH, NO 2 , CN, CF 3 , NH 2 , sulfonyl, silyl, mono- or di (C 1 -C 6 ) alkylamino, CrC 6 alkyl, CC 6 alkoxy, carboxyl or carbonyl, which in turn may optionally have substituents, and m and m 'represent a number between 1 and 1000, with the proviso that when one of Y 5 and Y 6 is O and the other is N (CH 2 CH 3 ) and the groups L 1 Y 1 and L 2 Y 2 and L 3 Y 3 and L 4 Y 4 are each together form a binol residue and m is 1, R 1 is not ethylene, and when Y 5 and Y 8 are O and the groups L 1 Y 1 and L 2 Y 2 and L 3 Y 3 and L 4 Y 4 each together form a binol residue form, m is not 4 or 5, and if in the compound with the formula I the group Y 5 - [RV] ™ for -N (CH 3 ) - C 2 H 4 -N (CH 3 ), -N (CH (CH 3 ) 2 ) -C 3 H 6 -N (CH (CH 3 ) 2 ) or -N (CHPhCH 3 ) -C 3 H 6 - N (CHPhCH 3 ), the groups L 1 Y 1 and L form 2 Y 2 as well as L 3 Y 3 and LV do not together form a binol residue.
Verbindungen nach Anspruch 1 , dadurch gekennzeichnet, dass die Gruppen R1Y* und R2Y6 von Ethylenoxid oder Propylenoxid abgeleitet sind.Compounds according to claim 1, characterized in that the groups R 1 Y * and R 2 Y 6 are derived from ethylene oxide or propylene oxide.
Verbindungen nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass L1 und L2, und L 4 , i L V und L 2 , , L 3' und L , sowie L und L verbrückt sind.Compounds according to claim 1 or 2, characterized in that L 1 and L 2 , and L 4, i LV and L 2,, L 3 'and L, and L and L are bridged.
5. Verbindungen nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass Y1, Y2, Y3, Y4, Y5, Y8, Y1', Y2', Y3', Y4', Y5', Y8', Y7 Y8 Y9 Sauerstoff oder Schwefel bedeuten.5. Compounds according to any one of claims 1 to 3, characterized in that Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 8 , Y 1 ' , Y 2' , Y 3 ' , Y 4' , Y 5 ' , Y 8' , Y 7 Y 8 Y 9 mean oxygen or sulfur.
6. Verbindungen nach Anspruch 5, dadurch gekennzeichnet, dass die verbrückten Liganden ausgewählt sind aus6. Compounds according to claim 5, characterized in that the bridged ligands are selected from
R = H, Alkyl, Aryl, Sulfonyl R = H, Alkyl, Aryl, Sulfonyl R = H, alkyl, aryl, sulfonyl R = H, alkyl, aryl, sulfonyl
R = H, Alkyl, Aryl, Sulfonyl R = H, Alkyl, Aryl, Sulfonyl R = H, alkyl, aryl, sulfonyl R = H, alkyl, aryl, sulfonyl
X = F, Cl, Br, I X = F, Cl, Br, I R = Alkyl, Aryl, Alkoxy, CarboxylX = F, Cl, Br, I X = F, Cl, Br, I R = alkyl, aryl, alkoxy, carboxyl
X = F, Cl, Br, I X = F, Cl, Br, I R = Alkyl, Aryl, Alkoxy,X = F, Cl, Br, I X = F, Cl, Br, I R = alkyl, aryl, alkoxy,
R = H, Alkyl, Aryl, Sulfonyl R = H, Alkyl, Aryl, Sulfonyl Carboxyl R'= H, Alkyl, Aryl, SulfonylR = H, alkyl, aryl, sulfonyl R = H, alkyl, aryl, sulfonyl carboxyl R ' = H, alkyl, aryl, sulfonyl
X = F, Cl, Br, I X = F, Cl, Br, I R = Alkyl, Aryl, Alkoxy,X = F, Cl, Br, I X = F, Cl, Br, I R = alkyl, aryl, alkoxy,
R = H, Alkyl, Aryl, Sulfonyl R = H, Alkyl, Aryl, Sulfonyl Carboxyl R'= H, Alkyl, Aryl, SulfonylR = H, alkyl, aryl, sulfonyl R = H, alkyl, aryl, sulfonyl carboxyl R ' = H, alkyl, aryl, sulfonyl
R = H, Alkyl, Aryl, Sulfonyl R = H, Alkyl, Aryl, Sulfonyl R = H, alkyl, aryl, sulfonyl R = H, alkyl, aryl, sulfonyl
R = H, Alkyl, Aryl X = F, Cl, Br, I R = H, Alkyl, ArylR = H, alkyl, aryl X = F, Cl, Br, I R = H, alkyl, aryl
R = H, Alkyl, Aryl R = H, Alkyl, Aryl X = F, Cl, Br, I R'= H, Alkyl, Aryl, Sulfonyl R = H, Alkyl, Aryl, SulfonylR = H, alkyl, aryl R = H, alkyl, aryl X = F, Cl, Br, IR ' = H, alkyl, aryl, sulfonyl R = H, alkyl, aryl, sulfonyl
R = H, Alkyl, Aryl R = H, Alkyl, Aryl R = H, Alkyl, ArylR = H, alkyl, aryl R = H, alkyl, aryl R = H, alkyl, aryl
R'= H, Alkyl, Aryl, Sulfonyl R'= H, Alkyl, Aryl, Sulfonyl R'= H, Alkyl, Aryl, Sulfonyl X = F, Cl, Br, IR ' = H, alkyl, aryl, sulfonyl R ' = H, alkyl, aryl, sulfonyl R ' = H, alkyl, aryl, sulfonyl X = F, Cl, Br, I
X = F, Cl, Br, I R = H, Alkyl, Aryl R = H, Alkyl, ArylX = F, Cl, Br, I R = H, alkyl, aryl R = H, alkyl, aryl
R = H, Alkyl, Aryl, Sulfonyl R'= H, Alkyl, Aryl, Sulfonyl R'= H, Alkyl, Aryl, Sulfonyl X = F, Cl, Br, I R = H, alkyl, aryl, sulfonyl R ' = H, alkyl, aryl, sulfonyl R ' = H, alkyl, aryl, sulfonyl X = F, Cl, Br, I
R = Alkyl R = H, Alkyl, Aryl, Sulfonyl R = H, Alkyl, Aryl, SulfonylR = alkyl R = H, alkyl, aryl, sulfonyl R = H, alkyl, aryl, sulfonyl
R = Aryl R = aryl
Verfahren zur Herstellung von Verbindungen mit der allgemeinen Formel I oder II,Process for the preparation of compounds of general formula I or II,
l \ Y! X \ P- Y' - tR ], - Ps X (i) ,/ ,Y2 L4 l \ Y! X \ P- Y '- tR], - P s X (i), /, Y 2 L 4
in denenin which
L1, L2, L3, L4, L1', L2', L3', L4', L5, Y1, Y2, Y3, Y4, Y5, Y8, Yr, Y2', Y3', Y4', Y5', Y6', Y7 Y8 Y9,L 1 , L 2 , L 3 , L 4 , L 1 ' , L 2' , L 3 ' , L 4' , L 5 , Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 8 , Y r , Y 2 ' , Y 3' , Y 4 ' , Y 5' , Y 6 ' , Y 7 Y 8 Y 9 ,
R1, R2, m und m' wie oben definiert sind, worin Verbindungen mit den folgenden allgemeinen Formel MI g1 PCI (III) Lg2 in der Lg1 und Lg2 gleich oder verschieden sein können und für eine Gruppe ausgewählt aus L1 _ γ L2 - Y2, L3 - Y3, L4 - Y4, L - Y1', L2' - Y2', L3' - Y3', L4' - Y4', L5 - Y8, oder L8 - Y9 stehen, in Gegenwart einer Base einer Verbindung mit der allgemeinen Formel IV oder VR 1 , R 2 , m and m 'are as defined above, wherein compounds having the following general formula MI g 1 PCI (III) Lg 2 in which Lg 1 and Lg 2 can be the same or different and selected for a group from L 1 _ γ L 2 - Y 2 , L 3 - Y 3 , L 4 - Y 4 , L - Y 1 ' , L 2' - Y 2 ' , L 3' - Y 3 ' , L 4' - Y 4 ' , L 5 - Y 8 , or L 8 - Y 9 , in the presence of a base of a compound with the general formula IV or V
H -Y5 - [R1Y8]m - H (IV)H -Y 5 - [R 1 Y 8 ] m - H (IV)
H - Y5' - [R2Y6']m. - H (V) zur Reaktion gebracht werden.H - Y 5 ' - [R 2 Y 6' ] m . - H (V) are reacted.
8. Verfahren zur Herstellung von Verbindungen mit der allgemeinen Formel I oder II,8. Process for the preparation of compounds of the general formula I or II,
■ 1 ■ 3 N ' - Y1 s P_ γ5 _ [R 1γβjm _ p (|) ι 2 X \ . 4■ 1 ■ 3 N '- Y 1 s P_ γ 5 _ [ R 1 γ β j m _ p (|) ι 2 X \. 4
3 Yl \ , \/5' ,2\/δ'ι / Y3 ;p- γ - [RΎ°W -P (ii) . .7 . Λ' L2 3 Yl \, \ / 5 ', 2 \ / δ'ι / Y 3 ; p- γ - [RΎ ° W -P (ii). .7. L 'L 2
in denen L1, L2, L3, L4, L1', L2', L3', L4', L5, Y1, Y2, Y3, Y4, Y5, Y6, Y1', Y2', Y3', Y4', Y5', Y6', Y7 Y8 Y9, R1, R2, m und m' wie oben definiert sind, Verbindungen mit der allgemeinen Formel VI oder VII in which L 1 , L 2 , L 3 , L 4 , L 1 ' , L 2' , L 3 ' , L 4' , L 5 , Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , Y 1 ' , Y 2' , Y 3 ' , Y 4' , Y 5 ' , Y 6' , Y 7 Y 8 Y 9 , R 1 , R 2 , m and m 'as defined above, compounds with the general formula VI or VII
CI2P- Y5 - [R1Y8]m -PCI2 (VI) CI2P- Y5' - [R2Y6]m-PCI2 (VII) I PCI2 mit Liganden der Formel Lg1 oder Lg2 unter Bildung von Verbindungen mit den allgemeinen Formeln I oder II umgesetzt werden.CI 2 P- Y 5 - [R 1 Y 8 ] m -PCI 2 (VI) CI 2 P- Y 5 ' - [R 2 Y 6 ] m -PCI 2 (VII) I PCI 2 with ligands of the formula Lg 1 or Lg 2 are reacted to form compounds of the general formulas I or II.
9. Katalysatoren enthaltend Übergangsmetallkomplexe von chiralen Verbindungen mit der Formel I und/oder II, 1χ "Yl Y3 P_ γ5 _ rR γ6]m - p; (la) , "9. Catalysts containing transition metal complexes of chiral compounds with the formula I and / or II, 1 χ " Yl Y 3 P_ γ 5 _ r R γ 6 ] m - p; (la),"
(Ma)(Ma)
worin L1, L2, L3, L4, L1 , L2 , L3 , L4 , L5 und L8 jeweils gleich oder verschieden sein können und mindestens einer von L1, L2, L3 und L4 in Formel I bzw. mindestens einer von L1 , L2 , L3 , L4 , L5 und L6 in Formel II einen chiralen Rest darstellen, wobei L1 und L2, L3 und L4, L1 und L2 , L3 und L4 , sowie L5 und L6 miteinander verbunden sein können, Y1, Y2, Y3, Y4, Y5, Y6, Y1', Y2', Y3', Y4', Y5', Y8', Y7 Y8 Y9 gleich oder verschieden sein können und für O, S oder eine Gruppe NR' stehen, in der R' Wasserstoff oder ggf. substituiertes C C6-Alkyl, ggf. substituiertes Aryl bedeutet, wobei die Substituenten beispielsweise ausgewählt sein können aus F, Cl, Br, I, OH, NO2, CN, Carboxyl, Carbonyl, Sulfonyl, Silyl, CF3, NRaRb, worin Ra und Rb wie R' definiert sein können, R1 und R2 für C2-C22-Alkylen, vorzugsweise Ethylen, n-Propylen, iso-Propylen, n- Butylen, iso-Butylen, sec.-Butylen, Phenylen, Diphenylen, die ggf. Substituenten aufweisen können, wie F, Cl, Br, I, OH, NO2, CN, NH2, Mono- oder Di(C C6)- Alkylamino, C C6-Alkyl, C C6-Alkoxy, Carboxyl, die wiederum Substituenten aufweisen können, stehen und m und nϊ eine Zahl zwischen 1 und 1000 bedeuten. wherein L 1 , L 2 , L 3 , L 4 , L 1 , L 2 , L 3 , L 4 , L 5 and L 8 can each be the same or different and at least one of L 1 , L 2 , L 3 and L 4 in formula I or at least one of L 1 , L 2 , L 3 , L 4 , L 5 and L 6 in formula II represent a chiral radical, where L 1 and L 2 , L 3 and L 4 , L 1 and L 2 , L 3 and L 4 , and L 5 and L 6 can be connected to one another, Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , Y 1 ' , Y 2' , Y 3 ' , Y 4 ' , Y 5' , Y 8 ' , Y 7 Y 8 Y 9 may be the same or different and represent O, S or a group NR' in which R 'is hydrogen or optionally substituted CC 6 alkyl, if necessary substituted aryl, where the substituents can be selected, for example, from F, Cl, Br, I, OH, NO 2 , CN, carboxyl, carbonyl, sulfonyl, silyl, CF 3 , NR a R b , where R a and R b as R 'can be defined, R 1 and R 2 for C 2 -C 22 alkylene, preferably ethylene, n-propylene, iso-propylene, n-butylene, iso-butylene, sec-butylene, phenylene, diphe nylene, which may optionally have substituents, such as F, Cl, Br, I, OH, NO 2 , CN, NH 2 , mono- or di (CC 6 ) alkylamino, CC 6 alkyl, CC 6 alkoxy, carboxyl , which in turn can have substituents, are and m and nϊ represent a number between 1 and 1000.
10. Verfahren zur Herstellung von Übergangsmetall-Katalysatoren, enthaltend Übergangsmetallkomplexe von chiralen Verbindungen mit der allgemeinen Formel la und/oder lla, worin Übergangsmetallsalze in an sich bekannter Weise mit chiralen Verbindungen mit den Formeln I und/oder II umgesetzt werden.10. A process for the preparation of transition metal catalysts containing transition metal complexes of chiral compounds of the general formula Ia and / or Ila, in which transition metal salts are reacted in a manner known per se with chiral compounds of the formulas I and / or II.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Übergangsmetallsalze ausgewählt sind aus Übergangsmetallen der Gruppen VIII und Ib des Periodensystems.11. The method according to claim 10, characterized in that the transition metal salts are selected from transition metals of groups VIII and Ib of the periodic table.
12. Verfahren zur asymmetrischen Übergangsmetall-katalysierten Hydrierung, Hydroborierung, Hydrocyanierung, 1 ,4-Addition, Hydroformylierung, Hydrosilylierung, Hydrovinylierung und Heck-Reaktion von prochiralen Olefinen, Ketonen oder Ketiminen, dadurch gekennzeichnet, das die Katalysatoren chirale Liganden mit den folgenden Formeln I und/oder II aufweisen12. A process for asymmetric transition metal-catalyzed hydrogenation, hydroboration, hydrocyanation, 1, 4 addition, hydroformylation, hydrosilylation, hydrovinylation and Heck reaction of prochiral olefins, ketones or ketimines, characterized in that the catalysts have chiral ligands with the following formulas I and / or II
(la) (La)
(lla)(IIa)
in denen L1, L2, L3, L4, L1', L2', L3', L4', L5, Y1, Y2, Y3, Y4, Y5, Y6, Y1', Y2', Y3', Y4', Y5', Y6', Y7 Y8 Y9 R1, R2, m und m' wie in Anspruch 9 definiert sind. in which L 1 , L 2 , L 3 , L 4 , L 1 ' , L 2' , L 3 ' , L 4' , L 5 , Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , Y 1 ' , Y 2' , Y 3 ' , Y 4' , Y 5 ' , Y 6' , Y 7 Y 8 Y 9 R 1 , R 2 , m and m 'as defined in claim 9.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass der Katalysator ausgewählt ist aus den folgenden Komplexen, in denen Z ein Anion aus der Reihe BF4 ", BAr4 ", SbF6 ", und PF6 " ist, wobei Ar für Phenyl, Benzyl oder 3,5- Bistrifluormethylphenyl steht.13. The method according to claim 12, characterized in that the catalyst is selected from the following complexes, in which Z is an anion from the series BF 4 " , BAr 4 " , SbF 6 " , and PF 6 " , where Ar is phenyl, benzyl or 3,5-bistrifluoromethylphenyl.
14. Verfahren zur Herstellung von chiralen Verbindungen, in welchem die prochirale Vorstufe ausgewählt ist aus Olefinen, Ketonen oder Ketiminen, in Gegenwart eines Übergangsmetall-Katalysators der Hydrierung, Hydroborierung oder Hydrocyanierung 1 ,4-Addition, Hydroformylierung, Hydrosilylierung, Hydrovinylierung und Heck- Reaktionen unterworfen wird, dadurch gekennzeichnet, dass der Übergangsmetall- Katalysator Liganden aufweist, die ausgewählt sind aus Verbindungen mit den allgemeinen Formeln I und/oder II. 14. A process for the preparation of chiral compounds in which the prochiral precursor is selected from olefins, ketones or ketimines, in the presence of a transition metal catalyst for hydrogenation, hydroboration or hydrocyanation 1, 4 addition, hydroformylation, hydrosilylation, hydrovinylation and Heck reactions is subjected to, characterized in that the transition metal catalyst has ligands which are selected from compounds with the general formulas I and / or II.
EP04802710A 2003-11-12 2004-11-11 Chiral di- and triphosphites Withdrawn EP1689761A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10352757A DE10352757A1 (en) 2003-11-12 2003-11-12 Chiral di- and triphosphites
PCT/DE2004/002493 WO2005047299A2 (en) 2003-11-12 2004-11-11 Chiral di- and triphosphites

Publications (1)

Publication Number Publication Date
EP1689761A2 true EP1689761A2 (en) 2006-08-16

Family

ID=34584998

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04802710A Withdrawn EP1689761A2 (en) 2003-11-12 2004-11-11 Chiral di- and triphosphites

Country Status (6)

Country Link
US (1) US20060224002A1 (en)
EP (1) EP1689761A2 (en)
JP (1) JP2007512245A (en)
CA (1) CA2546218A1 (en)
DE (1) DE10352757A1 (en)
WO (1) WO2005047299A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006052514A1 (en) * 2004-11-04 2006-05-18 Merck & Co., Inc. Asymmetric hydrogenation of enamides
DE102005025797A1 (en) * 2005-06-02 2006-12-07 Studiengesellschaft Kohle Mbh Chiral diphosphonites as ligands in the ruthenium-catalyzed enantioselective reduction of ketones, β-ketoesters, and ketimines
ITMI20131612A1 (en) * 2013-09-30 2015-03-31 Maurizio Benaglia BIETEROAROMATIC DIOLS AND THEIR DERIVATIVES.
CN105753906A (en) * 2014-12-18 2016-07-13 中国科学院兰州化学物理研究所 Chiral bidentate phosphite ligand derived from cyclohexanediol and preparation method and application of ligand
DE102015207870A1 (en) * 2015-04-29 2016-11-03 Evonik Degussa Gmbh New monophosphite compounds with a sulfonate group
CN105037442B (en) * 2015-07-17 2017-05-10 华中师范大学 Chiral thioether-phosphine ligand and preparation method and application thereof
CN111203277B (en) * 2020-02-27 2022-11-18 郑州大学 Application of chiral bidentate phosphite ligand, conia-Ene reaction catalyst and method for constructing chiral quaternary carbon center
CN112538095B (en) * 2020-12-14 2022-08-05 万华化学集团股份有限公司 Chiral tetradentate ligand, chiral ruthenium complex and method for preparing (R) - (-) -1, 3-butanediol

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374219A (en) * 1980-11-24 1983-02-15 Ciba-Geigy Corporation Alkanolamine ester of 1,1-biphenyl-2,2-diyl-and alkylidene-1,1-biphenyl-2,2-diyl-cyclic phosphites
US4668651A (en) * 1985-09-05 1987-05-26 Union Carbide Corporation Transition metal complex catalyzed processes
US5360938A (en) * 1991-08-21 1994-11-01 Union Carbide Chemicals & Plastics Technology Corporation Asymmetric syntheses
JPH10509973A (en) * 1994-11-25 1998-09-29 ディーエスエム エヌ.ブイ. Preparation of aldehyde
US5886235A (en) * 1995-12-06 1999-03-23 Union Carbide Chemicals & Plastics Technology Corporation. Metal-ligand complex catalyzed processes
US5892119A (en) * 1996-11-26 1999-04-06 Union Carbide Chemicals & Plastics Technology Corporation Metal-ligand complex catalyzed processes
ZA986369B (en) * 1997-07-29 2000-01-17 Du Pont Hydrocyanation of diolefins and isomerization of nonconjugated 2-alkyl-3-monoalkenenitriles.
MY124674A (en) * 1998-12-10 2006-06-30 Mitsubishi Chem Corp Process for producing aldehyde
EP1212134A4 (en) * 1999-07-21 2003-01-22 Uab Research Foundation Metallacrown ether catalysts for hydroformylation
DE10005794A1 (en) * 2000-02-10 2001-08-16 Basf Ag New diaryl-anellated bicyclo phosphorus, arsenic and antimony compounds are used as hydroformylation, hydrocyanation, carbonylization, hydrogenation, polymerization or metathesis catalyst or ligand in metal complex catalyst
DE10023471A1 (en) * 2000-05-12 2001-11-15 Basf Ag Hydroformylation of olefin for production of aldehyde, using a Sub-Group VIII metal complex catalyst with a special ligand in which two phosphorus-substituted phenyl groups are attached to a non-aromatic cyclic group
DE10046026A1 (en) * 2000-09-18 2002-03-28 Basf Ag Process for hydroformylation, xanthene-bridged ligands and catalyst comprising a complex of these ligands
EP1341797A4 (en) * 2000-11-17 2005-06-15 Penn State Res Found Ortho substituted chiral phosphines and phosphinites and their use in asymmetric catayltic reactions
BE1014966A3 (en) * 2001-02-13 2004-07-06 Basf Ag Process hydroformylation ethylenically unsaturated compounds and catalysts used for that purpose.
US6664427B1 (en) * 2002-08-29 2003-12-16 E. I. Du Pont De Nemours And Company Process for preparing aldehyde compounds
US7015360B2 (en) * 2003-03-28 2006-03-21 Dow Global Technologies, Inc. Asymmetric catalysts prepared from optically active bisphosphites bridged by achiral diols

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005047299A3 *

Also Published As

Publication number Publication date
WO2005047299A3 (en) 2005-09-09
DE10352757A1 (en) 2005-06-16
CA2546218A1 (en) 2005-05-26
JP2007512245A (en) 2007-05-17
US20060224002A1 (en) 2006-10-05
WO2005047299A2 (en) 2005-05-26

Similar Documents

Publication Publication Date Title
EP1558384B1 (en) Mixtures of chiral monophosphorus compounds used as ligand systems for asymmetric transition metal catalysis
DE60123093T2 (en) CATALYST FOR ASYMMETRIC HYDROGENATION
DE69114986T2 (en) A phosphino-binapthyl compound and transition metal complexes thereof.
DE60023914T2 (en) CHIRAL LIGANDS, THEIR TRANSITION METAL COMPLEXES AND THE APPLICATION THEREOF IN ASYMMETRIC REACTIONS
EP1507783B1 (en) Hydroxy diphosphines and their use in catalysis
DE102005044355A1 (en) Chiral phosphoramidites
US20060224002A1 (en) Chiral di- and triphosphites
WO2003018192A2 (en) Method for the production of 2-propylheptanol and hydroformylating catalysts and the further use thereof for carbonylation, hydrocyanation and hydrogenation
DE69713841T2 (en) Optically active diphospin compounds, processes for their preparation, transition metal complexes which contain these compounds as ligand and processes for the production of optically active substances using these complexes
DE69631016T2 (en) METHOD FOR PRODUCING AN OPTICALLY ACTIVE PHOSPHINE
DE69111358T2 (en) Optically active iridium phosphine complex and its use for the catalytic production of optically active alcohols.
DE60004759T2 (en) Optically active diphosphine compound, intermediates for its preparation, transition metal complex containing the compound as a ligand and catalyst for asymmetric hydrogenations, which contains the complex
EP0803510B1 (en) 2,2'-Disubstituted 1,1'-diphosphino ferrocenes and 1',2-disubstituted 1-phosphino ferrocenes, their preparation and use and transition metal complexes containing them
EP1200452B1 (en) Novel chiral phosphorus ligands and the use thereof in the production of optically active products
DE60102587T2 (en) CHIRAL LIGANDS FOR ASYMMETRIC CATALYSTS
Gladiali et al. Synthesis of P, P′‐Heterotopic Binaphthyldiphosphanes (BINAPP′) Devoid of C2 Symmetry from 2, 2′‐Binaphthol
EP3957643B1 (en) New diphosphites based on cis-butene-1,4-diol
DE69403697T2 (en) Phosphine compounds and transition metal-phosphine complex compounds containing these as ligands
EP1436305A1 (en) Novel chiral ligands, transition metal complexes thereof, and the catalytic use of the same
EP1201673A1 (en) Bidentate organophosphorous ligands and their use in catalysis
EP1119574B1 (en) Substituted isophosphindolines and their use
DE10148551A1 (en) Chiral monophosphorus compounds
DE19742904C1 (en) Phosphine-substituted cobalticinium salts, process for their preparation and use as a catalyst component
WO1999062917A1 (en) Production of optically active phospholanes
DE69913003T2 (en) 1,2-BIS (METHYL (1,1,3,3-TETRAMETHYLBUTYL) -PHOSPHINO) ETHANE, METHOD FOR THE PRODUCTION THEREOF, TRANSITION METAL COMPLEXES THAT CONTAIN THIS AS A LIGAND AND THEIR USE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060511

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080407

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100126