EP1678474A2 - Dispositif permettant de detecter les sollicitations subies par des parties structurales en composite a base de fibres - Google Patents

Dispositif permettant de detecter les sollicitations subies par des parties structurales en composite a base de fibres

Info

Publication number
EP1678474A2
EP1678474A2 EP04791066A EP04791066A EP1678474A2 EP 1678474 A2 EP1678474 A2 EP 1678474A2 EP 04791066 A EP04791066 A EP 04791066A EP 04791066 A EP04791066 A EP 04791066A EP 1678474 A2 EP1678474 A2 EP 1678474A2
Authority
EP
European Patent Office
Prior art keywords
fiber
fiber composite
strain gauges
evaluation device
designed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04791066A
Other languages
German (de)
English (en)
Inventor
Karl-Heinz Haase
Carsten Hecker
Sebastian Klein
Sigmund Glaser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hottinger Bruel and Kjaer GmbH
Original Assignee
Hottinger Baldwin Messtechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hottinger Baldwin Messtechnik GmbH filed Critical Hottinger Baldwin Messtechnik GmbH
Publication of EP1678474A2 publication Critical patent/EP1678474A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0041Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0033Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0017Tensile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0062Crack or flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0073Fatigue
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0617Electrical or magnetic indicating, recording or sensing means
    • G01N2203/0623Electrical or magnetic indicating, recording or sensing means using piezoelectric gauges

Definitions

  • the invention relates to a device for determining loads on fiber composite components according to the preamble of claim 1 and its manufacturing method according to the preamble of claim 9 and a sensor element for the device according to the preamble of claim 11.
  • fiber composite materials In vehicle and aircraft construction, more and more components made of fiber composite materials are used. These fiber composite materials preferably consist of glass, carbon or aramid fibers, which are made up of fiber layers and are connected to one another by polymeric materials. The components are generally manufactured by lainating the synthetic resin-impregnated fiber layers under pressure and heat in a press mold. These composite materials are usually lighter than comparable metal structural parts and have a high level of rigidity and strength and are therefore preferably used in aircraft construction.
  • the precise documentation of the operational loads is of great interest in order to be able to demonstrate the remaining lifespan of the structure as realistically as possible.
  • the permissible operating times for each structure can be optimally used economically.
  • the maintenance and service intervals and, on the other hand, the remaining service life can be adapted to the conditions that have actually occurred during operation, so that the structure can be operated in an economically optimal manner.
  • damage to the material can occur in the case of lightweight structures as a result of high loads or excessive manufacturing tolerances, such as cavities or fiber components. This damage can considerably weaken the mechanical rigidity and the strength of the components. In the case of aircraft in particular, such components are also exposed to the risk of impact damage from birds and pieces of ice during operation. These loads can 'lead, which are not visible from the outside and constitute a safety hazard to the aforementioned damage within the composites. In order to be able to determine such damage, it is known to recognize it during the regular maintenance work by means of non-destructive test methods such as X-ray or ultrasound tests.
  • a device for determining impact damage to fiber composite components is known.
  • a large number of distributed piezoelectric film pieces are fastened on a surface side of the body components, which are usually only a few millimeters thick, and are led to an electronic monitoring device via an electrical connection.
  • a capacitive charge change occurs in the nearby piezo pickup elements, which is essentially proportional to the impact pressure.
  • This change in charge is then recorded in a monitoring device and can be displayed in accordance with the impact pressure and location relevant to the damage in order to immediately initiate a targeted damage investigation. With such a monitoring device, however, only excessive impact stresses can be determined, which can lead to delamination.
  • the reflection grating can be illuminated with a laser light beam and its Radiation intensity can be detected in a specific direction of reflection. If the surface of the material changes due to stretching or compression, the diffraction angle and thus the radiation intensity in the detected directions also change. Such a radiation intensity is then measured by optoelectronic position detectors and can be displayed as a value of the surface stretch.
  • Such monitoring of the material surfaces is only possible where this surface can be irradiated with laser light and whose radiation intensity can be detected at a certain distance from the surface. In particular, if the surfaces are also provided with other protective or insulation layers that do not follow the stretch, such monitoring or strain analysis cannot be carried out.
  • strain gauges would have to be renewed after every test attempt or every exposure to surface strains that are susceptible to damage, which requires a considerable cost-intensive effort, particularly in the case of multi-point measurements.
  • Material analysis measurements are then no longer evaluated in the upper damage-prone area, so that even an inadequate analysis result can thus be achieved. It is conceivable to produce special strain gauges from wire measuring grids for such surface tension measurements, which also withstand larger strain ranges on composite fiber surfaces, but which would be uneconomical for multi-point measurements for component analysis or for monitoring large aircraft parts.
  • the invention is therefore based on the object of providing a device for measuring material stresses on fiber composite materials and suitable, inexpensive transducer components which are particularly suitable for multi-point measurements or for large-area monitoring of such components.
  • Strain gauges and methods for their production are known from EP 0 667 514 B1. These basically consist of a commercially available photolithographically produced measuring grid which is vapor-deposited on a carrier film and is additionally covered with a protective layer. For connection, this measuring grid has flat soldering surfaces which represent the beginning and the end of the measuring grid. Connection wires are soldered on for wiring and fed to the intended connection parts for connection. Such a strain gauge can basically only be applied to the surface of a strain gage, since otherwise subsequent wiring is no longer possible. Prior wiring would also be unrealistic, as economical manual Habung a large number of connecting wires in the known manufacturing processes of composite materials is hardly possible.
  • the invention has the advantage that, by integrating the strain gauges near the neutral fiber of the composite materials, very flat, almost commercially available foil measuring grids can be used, which are not destroyed by the material loads even at high surface tensions of the composite materials. This also enables cost-effective multi-point measurements on composite materials, which can be used both for analysis of the material components as well as for load monitoring and for permanent monitoring of large-area components, preferably of aircraft body components.
  • the invention has the advantage that, by integrating the strain gauges, they can be used at the factory in the manufacture of the composite components.
  • the sensor elements are also protected against external damage during component assembly, maintenance and operation.
  • the flat foil measuring grids of the strain gauges allow them to be inserted between the individual composite layers in a space-saving manner, which advantageously means that the matrix structure of the components is basically not weakened and, in addition, a non-positive connection between the transducer elements and the composite materials relevant to expansion can be achieved. Since such a connection also takes place on both sides, only slight hysteresis effects occur in the measuring operation, so that high measuring accuracies can be achieved.
  • the transducer elements according to the invention have the advantage that almost all types of loads on fiber composite materials can be determined inexpensively during operation with commercially available film measuring grids.
  • the connection pins provided at the same time provide an advantageous integration Possibility achieved by which a subsequent wiring via plug connections is made possible.
  • the design according to the invention with the connection pins provided permits a high degree of automation in the integrated composite material production, since no manufacturing technology has to be taken into account in connection wires to be led out and nevertheless a subsequent rapid connection possibility is available.
  • FIG. 2 a strain gauge for integration into a fiber composite part
  • 3 a side view of a strain gauge for integration into a fiber composite part with an enlarged section of a connecting pin
  • Fig. 4 a strain gauge with a fixed connection stamp in two mold halves
  • 5 an integration process of a strain gauge into a fiber composite part within a workpiece shape
  • FIG. 6 another preferred embodiment of the device with several integrated measuring points.
  • the fiber composite component 1 of the drawing shows a detail of a device for determining an elongation or for monitoring and for load monitoring on a fiber composite component 1 with film strain gauges 3 integrated in the fiber layers 2 with a connected evaluation device 4.
  • the fiber composite component 1 is shown only in part from a fiber composite material consisting of only two layers 2, between which the strain gauge 3 is arranged.
  • Such fiber composite materials 1 usually consist of several layers, preferably made of glass, carbon or aramid fiber. These are usually placed on top of each other and soaked in a polymer material and are thus firmly connected to each other. Depending on the desired strength requirements, fiber layers are placed on top of each other and oriented in the direction of force and tension.
  • Such fiber composite material components can usually be formed as thin shaped bodies or sheets in thicknesses from 1 to 50 mm with rib reinforcement or in sandwich construction in complex shapes. These are preferably used in the aviation and automotive industries as light, dimensionally stable structural components that are largely independent of aging and corrosion-resistant and are used as an alternative to common metallic materials.
  • the recording of the operating loads is of great interest in order to be able to demonstrate the life of the structure as realistically as possible. With this procedure, the permissible operating times for each structure can be optimally used economically.
  • the frequency and the level of the structural deformations are primarily recorded and documented by the evaluation device 4.
  • the device can be used to detect damage in such components at an early stage which cannot be recognized from the outside and which represents a potential hazard.
  • Fiber breaks, matrix failure, delamination or debonding damage can all occur inside the composite materials, all of which can be determined by their elongation behavior.
  • life tests and strength analyzes are carried out, in which the components are loaded in such a targeted manner that fatigue fractures and damage-related strains occur in order to be able to determine the permissible purposes.
  • surface strains occur that cannot be carried out with conventional film strain gauges, since the elongation capacity of conventional measuring grids is exceeded at these high strains.
  • the invention is based on the knowledge that the foil measuring grids are largely integrated into the so-called neutral fiber, approximately in the middle of the material thickness, in the composite material 1, at which the bending stresses due to expansion are lowest, particularly in the case of damage-prone loads. Furthermore, with this integration, a double-sided connection of the strain gauges 3 with the composite material 1 is possible, which in particular minimizes the hysteresis effect, so that very precise measurements, operating load determination and monitoring can be carried out. For this purpose, a large number of such strain gauges 3 are already integrated in the factory in the manufacture of the composite materials 1, in particular for monitoring large aircraft components, so that the strain gauges 3 are placed at predetermined intervals so that almost all types of damage can be identified at an early stage. This can significantly reduce the risk of plane crashes. When monitoring or examining such components, the distances between the strain gauges 3 to be used can differ depending on the load relevance of the components and can be optimally distributed according to empirical investigations or load calculations.
  • Such a monitoring device is shown schematically and in sections in FIG. 1 of the drawing, in which all strain gauges 3 arranged on component 1 are attached an electronic evaluation device 4 for monitoring and load monitoring are connected.
  • the same arrangement basically also results in an examination device in which the components 1 are subjected to a damage-prone load in order to analyze the load limits or the damage-prone construction requirements.
  • the two devices differ only in their evaluation, an electronic evaluation device being provided in the examination device, which takes into account in particular the predetermined loads during the determined elongation, while the load monitoring and monitoring device only from the determined elongation values for the service life or for one Damage or a damage-prone burden closes.
  • the strain gauge 3 shown in FIG. 1 of the drawing essentially consists of a measuring grid 5, which is applied to a carrier layer 6, as is shown in more detail in FIG. 2 of the drawing.
  • the carrier material 6 is electrically insulating and temperature-resistant, a polymeric material such as polyimide being preferably used.
  • the outer surface of the carrier material 6 is blasted and activated to improve the adhesion during the later structural integration.
  • the measuring grid 5 is provided on both sides with the carrier material 6, that is to say also covered on the upper side with a carrier layer 7.
  • the measuring grid 5 is electrically conductively connected to two connecting pins 8, which are arranged perpendicular to the measuring grid 5.
  • the connecting pins 8 are preferably soldered to the measuring grid 5 via a contact foot 9.
  • the pins 8 have at the end a wider foot area and preferably a height of approx. 5 to 20 mm.
  • the connecting pins 8 are connected to the measuring grid 5 via a strain relief 10.
  • the strain relief 10 represents an area in which the conductor track is designed as a loop, so that when the strain gauge 3 is stretched, the cross-sectional area of the conductor track and thus its electrical resistance does not change.
  • the special strain gauge 3 consisting of a measuring grid 5 and two carrier layers 6 is shown in side view, in particular the design of the contact pins 8 is shown enlarged in a side view. From this it can be seen that the contact pins 8 are provided with an insulating protective layer 20 in their manufacture, in order to be able to use electrically conductive composite layer materials 1 such. B. carbon fibers to prevent a current flow that falsifies the measured values.
  • This insulating layer 20 is preferably made of a polymeric temperature-resistant material.
  • the embodiments of the strain gauges 3 as sensor elements can also be produced as rosettes.
  • this embodiment of the strain gauges 3 can also be used for other transducer elements that can be integrated in fiber composite materials 1, such as piezo fiber modules.
  • this insulating layer is removed or scraped off by the provided clamping edges of the connecting stamp 11 when it is plugged in, in order to bring it to the electronic evaluation device 4 ' via a cable connection 12 which is to be subsequently produced.
  • the individual strain gauges 3 are first interconnected to form a Wheatstone bridge in order to be able to evaluate the detected strains.
  • the other strain gauges, not shown, in the other fiber composite areas are also connected to the electronic evaluation 4 or monitoring device performed.
  • fixed contact stamps 21 can also be attached to the contact pins, as is shown in the embodiment according to FIG. 4 of the drawing.
  • a recess 14 is provided in one of the two mold halves 13, into which the contact stamp 21 can be inserted.
  • the fixed connecting plunger 21 is now pressed onto the respective contact pin 8 and thus establishes a fixed electrical connection to the latter.
  • This fixed connecting stamp 21 can subsequently be electrically connected to the evaluation device 4 via plug contacts.
  • FIG. 5 of the drawing Another manufacturing method for integrating the strain gauges 3 as sensor elements is shown in FIG. 5 of the drawing.
  • a known pressure or vacuum method is used to manufacture the composite components 1.
  • the fiber layers 2 are successively in a predetermined shape 15 is placed and the sensor elements 3 are placed in between or previously connected to the respective fiber layer 2. It does not matter whether the fiber material 2 is dry or has already been impregnated with resin.
  • the strain gauge 3 is to be inserted into the fiber material 2 so that the connecting pins 8 protrude from the fiber material 2 on one side.
  • a stamp 22 made of a soft, porous material, such as preferably foam, is pressed over the connecting pins 8 under slight pressure.
  • the stamp 22 protects the connection pins 8 during the production of the fiber composite component 1 and thereby also fixes the strain gauges 3. After the production process, the stamp 22 can be removed.
  • the usual auxiliary materials for the production of fiber composite components 1 can be used, such as the tear-off film 16 provided and the suction fabric 17 with the vacuum film 18.
  • FIG. 6 shows a further preferred embodiment of the invention with a plurality of integrated strain gauges 3.
  • Three strain gauges 3 with measuring grids 5 are integrated in different layers at different points in the structure made of fiber composite material 1.
  • FIG. 6 shows the cross section through the structure, which consists of a cover skin and a stiffening rib arranged inwards.
  • the contact pins 8 are used to attach an electrical unit 28 to the inside of the structure, with the aid of which the evaluation device 4 can identify the measuring points.
  • the evaluation device 4 consists of a shielded housing 24 and a current source 25.
  • the measurement signals are amplified with an electrical module 26 and a data processor 22 which processes the current measurement value and stores it in the memory unit 27.
  • the evaluation device 4 is equipped with an internal timer 23, so that the level and frequency of expansion states can be recorded in the structure.
  • the current measured value can be compared with reference signals and thus the exceeding of limit values can be recognized.
  • the stored data can be read out, for example, by the service and the data can be evaluated to prove the remaining service life of the structure.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

Dispositif permettant de détecter les sollicitations subies par des parties structurales (1) à base de fibres, en particulier des parties structurales de voiture ou d'avion, lesdites parties structurales (1) étant pourvues d'un nombre prédéterminé d'éléments capteurs (3) destinés à détecter des extensions. Les éléments capteurs (3) sont reliés à un dispositif d'évaluation (4) conçu en particulier pour le contrôle et la surveillance des charges ainsi que pour la détection de sollicitations tendant à provoquer des dommages. Ledit dispositif est caractérisé en ce que les éléments capteurs sont conçus sous forme de bandes de mesure d'extension (3). Lesdites bandes de mesure d'extension (3) sont de préférence intégrées dans la partie structurale (1) en composite à base de fibres de manière telle que leurs grilles de mesure (5) sont placées entre les couches de fibres (2) individuelles et sont acheminées en vue de leur connexion hors de la partie structurale (1) en composite à base de fibres via des broches de connexion (8) spéciales. Les bandes de mesure d'extension (3) individuelles peuvent être connectées à l'aide de ces broches de connexion (8) au dispositif d'évaluation concerné (4) via des liaisons câblées flottantes (4).
EP04791066A 2003-10-30 2004-10-29 Dispositif permettant de detecter les sollicitations subies par des parties structurales en composite a base de fibres Withdrawn EP1678474A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10350974.7A DE10350974B4 (de) 2003-10-30 2003-10-30 Aufnehmerelement, Vorrichtung zur Feststellung von Belastungen an Faserverbundwerkstoffbauteilen und Herstellungsverfahren für die Vorrichtung
PCT/EP2004/012310 WO2005043107A2 (fr) 2003-10-30 2004-10-29 Dispositif permettant de detecter les sollicitations subies par des parties structurales en composite a base de fibres

Publications (1)

Publication Number Publication Date
EP1678474A2 true EP1678474A2 (fr) 2006-07-12

Family

ID=34529992

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04791066A Withdrawn EP1678474A2 (fr) 2003-10-30 2004-10-29 Dispositif permettant de detecter les sollicitations subies par des parties structurales en composite a base de fibres

Country Status (4)

Country Link
US (1) US7552644B2 (fr)
EP (1) EP1678474A2 (fr)
DE (1) DE10350974B4 (fr)
WO (1) WO2005043107A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111766146A (zh) * 2020-07-03 2020-10-13 浙江大学 一种固化土材料收缩开裂性能的测试评价方法及装置

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005063073A1 (de) 2005-12-29 2007-07-12 Airbus Deutschland Gmbh Verfahren zum Dimensionieren und Herstellen versteifter Strukturbauteile, Verwendung von Strukturzustandssensoren sowie Fluggerät
DE102006011513A1 (de) 2006-03-10 2007-09-13 Rolls-Royce Deutschland Ltd & Co Kg Einlaufkonus aus einem Faserverbundwerkstoff für ein Gasturbinentriebwerk und Verfahren zu dessen Herstellung
DE102006015838A1 (de) 2006-04-03 2007-10-04 Rolls-Royce Deutschland Ltd & Co Kg Axialkompressor für ein Gasturbinentriebwerk
DE102006031580A1 (de) 2006-07-03 2008-01-17 Faro Technologies, Inc., Lake Mary Verfahren und Vorrichtung zum dreidimensionalen Erfassen eines Raumbereichs
DE102006035274B4 (de) * 2006-07-31 2008-07-03 Technische Universität Dresden Faserverbundbauteil mit einer Sensor- und Anzeigeeinheit
WO2010055282A1 (fr) * 2008-11-12 2010-05-20 Qinetiq Limited Capteur composite
DE102009015920B4 (de) 2009-03-25 2014-11-20 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
DE102009018179B4 (de) * 2009-04-22 2014-07-10 Otto Bock Healthcare Gmbh Strukturelement für eine orthopädietechnische Einrichtung und orthopädische Einrichtung
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
DE102009057101A1 (de) 2009-11-20 2011-05-26 Faro Technologies, Inc., Lake Mary Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
US8630314B2 (en) 2010-01-11 2014-01-14 Faro Technologies, Inc. Method and apparatus for synchronizing measurements taken by multiple metrology devices
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US8832954B2 (en) 2010-01-20 2014-09-16 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
GB2489370B (en) 2010-01-20 2014-05-14 Faro Tech Inc Coordinate measuring machine having an illuminated probe end and method of operation
US8875409B2 (en) 2010-01-20 2014-11-04 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
US9163922B2 (en) 2010-01-20 2015-10-20 Faro Technologies, Inc. Coordinate measurement machine with distance meter and camera to determine dimensions within camera images
US8898919B2 (en) 2010-01-20 2014-12-02 Faro Technologies, Inc. Coordinate measurement machine with distance meter used to establish frame of reference
US8615893B2 (en) 2010-01-20 2013-12-31 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine having integrated software controls
US8677643B2 (en) 2010-01-20 2014-03-25 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
WO2011090895A1 (fr) 2010-01-20 2011-07-28 Faro Technologies, Inc. Machine de mesure de coordonnées à bras articulé portable ayant technologie de bras à multiples bus
US8028432B2 (en) 2010-01-20 2011-10-04 Faro Technologies, Inc. Mounting device for a coordinate measuring machine
US9879976B2 (en) 2010-01-20 2018-01-30 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
GB201006475D0 (en) 2010-04-19 2010-06-02 Wesby Philip System and method for a surface strain gauge
DE102010020925B4 (de) 2010-05-10 2014-02-27 Faro Technologies, Inc. Verfahren zum optischen Abtasten und Vermessen einer Umgebung
CN103003713B (zh) 2010-09-08 2015-04-01 法罗技术股份有限公司 具有投影器的激光扫描器或激光跟踪器
US9168654B2 (en) 2010-11-16 2015-10-27 Faro Technologies, Inc. Coordinate measuring machines with dual layer arm
DE102011122481B4 (de) 2011-12-20 2017-10-26 Barbara Renner Verfahren und Anordnung zur Überwachung und Lokalisierung von Materialschäden und Diskontinuitäten in Leichtbau-Verbundstrukturen
DE102011089605A1 (de) * 2011-12-22 2013-06-27 Zf Friedrichshafen Ag Vorrichtung mit Messeinrichtung zum Messen von Kräften und/ oder Belastungen
DE102012100609A1 (de) 2012-01-25 2013-07-25 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
US8997362B2 (en) 2012-07-17 2015-04-07 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with optical communications bus
DE102012014584A1 (de) * 2012-07-23 2014-01-23 Hottinger Baldwin Messtechnik Gmbh Messgrößenaufnehmer mit internem Datenspeicher
DE102012109481A1 (de) 2012-10-05 2014-04-10 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
GB201417781D0 (en) * 2014-10-08 2014-11-19 Rolls Royce Plc Composite component
DE102015215099B3 (de) * 2015-08-07 2016-12-08 Dr. Doll Holding Gmbh Kraft-Moment-Sensor sowie Dehnmessstreifen-System und Platinenanordnung für einen derartigen Kraft-Moment-Sensor
US10976205B2 (en) * 2015-09-30 2021-04-13 Hitachi Automotive Systems, Ltd. Dynamic quantity measuring apparatus having a strain sensor disposed in a groove
DE102015122844A1 (de) 2015-12-27 2017-06-29 Faro Technologies, Inc. 3D-Messvorrichtung mit Batteriepack
CN106153319B (zh) * 2016-07-01 2018-07-24 陕西飞机工业(集团)有限公司 一种用于飞机静力试验的模拟8框前机身载荷加载件
IL247408B (en) 2016-08-21 2018-03-29 Elbit Systems Ltd A system and method for identifying weaknesses in the adhesion between structural elements
CN106442151B (zh) * 2016-08-31 2023-10-13 中国铁路总公司 一种桥梁静载试验自动控制装置及检测方法
US10401239B2 (en) 2016-11-01 2019-09-03 The Boeing Company Integrated hyper-redundant tactile sensor network based on structural fibers
DE102016224719A1 (de) * 2016-12-12 2018-06-14 Zf Friedrichshafen Ag Faserverstärktes Fahrwerkbauteil für ein Kraftfahrzeug
CN108534662B (zh) * 2018-04-12 2024-06-25 湖南科技大学 一种基于压电纤维的主应变方向传感器及判定方法
CN108760488A (zh) * 2018-05-08 2018-11-06 泰山玻璃纤维有限公司 网格布接点定位性检测方法
CN108801779B (zh) * 2018-08-03 2023-08-18 中冶建筑研究总院有限公司 一种纤维复材网格材料性能的测试装置及测试方法
DE102019206234A1 (de) * 2019-04-30 2020-11-05 Zf Friedrichshafen Ag Bewegungssensorik für ein Fahrzeug basierend auf einem elektroaktiven Verbundmaterial
CN112414293B (zh) * 2020-10-27 2022-04-29 西安电子科技大学 一种传导冷却高温超导电缆的应变检测方法
IT202100001457A1 (it) * 2021-01-26 2022-07-26 Tikat S R L S Dispositivo per la rilevazione di una grandezza fisica e sistema per la rilevazione di una grandezza fisica comprendente una pluralità di siffatti dispositivi
FR3134138B1 (fr) * 2022-03-29 2024-04-19 Safran Aircraft Engines Pièce composite, notamment pour une turbomachine d’aéronef
CN114781234B (zh) * 2022-06-20 2022-09-13 中国飞机强度研究所 飞机冲击动力学测试用易损结构等效靶厚度确定方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2728916A1 (de) * 1977-06-27 1979-01-18 Hottinger Messtechnik Baldwin Verfahren und vorrichtung zum abdecken eines dehnungsmesstreifens

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3520664A1 (de) 1985-06-08 1986-12-11 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln Verfahren zum aufbringen duenner reflexionsbeugungsgitter auf ebenen probekoerpern zur verformungsmessung
DE3642780A1 (de) 1986-05-05 1987-11-12 Siemens Ag Detektormatte und verfahren zu ihrer herstellung
US4849668A (en) * 1987-05-19 1989-07-18 Massachusetts Institute Of Technology Embedded piezoelectric structure and control
EP0410133B1 (fr) 1989-07-24 1994-03-02 Roland Adam Renz Dispositif pour la détection du couple de rotation transféré dans un arbre, spécialement dans un arbre arrangé entre une pièce à essayer et une machine d'essais
CA2015184C (fr) * 1990-04-23 1993-12-21 Gerard Ballivy Structure en beton instrumentee et methode d'instrumentation
DE4025564C1 (en) * 1990-08-11 1991-09-19 Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De Impact damage registering appts. for laminated fibre components - uses piezoelectric foil pieces distributed over component and connected to monitor to ascertain changes in capacitative charge
CA2177162A1 (fr) * 1993-11-23 1995-06-01 Donald R. Lyons Piece pourvue d'instruments destinee a etre apliquee sur une structure sensible a la fatigue ou deterioree par la fatigue, afin de la reparer
DE4404716A1 (de) * 1994-02-15 1995-08-17 Hottinger Messtechnik Baldwin Dehnungsmeßstreifen und Verfahren zur Herstellung eines Dehnungsmeßstreifens sowie Meßgrößenaufnehmer
JP3131642B2 (ja) * 1994-09-14 2001-02-05 日本電子工業株式会社 応力複合化センサ及びこれを用いた構造体の応力測定装置
US5770155A (en) * 1995-11-21 1998-06-23 United Technologies Corporation Composite structure resin cure monitoring apparatus using an optical fiber grating sensor
US5747698A (en) * 1996-04-24 1998-05-05 Simmonds Precision Products Inc. Capacitive z-axis strain gauge
US5978693A (en) * 1998-02-02 1999-11-02 E.P. Limited Apparatus and method for reduction of motion artifact
US6370964B1 (en) 1998-11-23 2002-04-16 The Board Of Trustees Of The Leland Stanford Junior University Diagnostic layer and methods for detecting structural integrity of composite and metallic materials
DE19923143A1 (de) * 1999-05-20 2000-11-23 Univ Dresden Tech Anordnung zur Online-Überwachung von versagenstoleranten Hochleistungsrotoren
US6399939B1 (en) * 2000-06-13 2002-06-04 North Carolina A&T State University Sensor array system
EP1168463A1 (fr) * 2000-06-23 2002-01-02 DORNIER GmbH Matériau composite à fibres à actuateur ou senseur piézoélectrique intégré
US6555767B1 (en) * 2000-08-22 2003-04-29 Flintec, Inc. Composite load cell
US6769313B2 (en) * 2001-09-14 2004-08-03 Paricon Technologies Corporation Flexible tactile sensor
DE10153970A1 (de) 2001-11-06 2003-05-22 Zf Lemfoerder Metallwaren Ag Fahrwerksteil
US6909919B2 (en) * 2002-09-06 2005-06-21 Cardiac Pacemakers, Inc. Cardiac lead incorporating strain gauge for assessing cardiac contractility
US20040183648A1 (en) * 2003-03-21 2004-09-23 Weber Thomas E. Strain sensors and housings and circuit boards with integrated strain sensors
US7043997B2 (en) * 2003-07-09 2006-05-16 Cherry Corporation Seat for sensing a load

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2728916A1 (de) * 1977-06-27 1979-01-18 Hottinger Messtechnik Baldwin Verfahren und vorrichtung zum abdecken eines dehnungsmesstreifens
US4307371A (en) * 1977-06-27 1981-12-22 Hottinger Baldwin Measurements, Inc. Method and apparatus for covering a foil strain gauge

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111766146A (zh) * 2020-07-03 2020-10-13 浙江大学 一种固化土材料收缩开裂性能的测试评价方法及装置

Also Published As

Publication number Publication date
DE10350974A1 (de) 2005-06-02
US20080034881A1 (en) 2008-02-14
DE10350974B4 (de) 2014-07-17
US7552644B2 (en) 2009-06-30
WO2005043107A2 (fr) 2005-05-12
WO2005043107A3 (fr) 2005-10-27

Similar Documents

Publication Publication Date Title
EP1678474A2 (fr) Dispositif permettant de detecter les sollicitations subies par des parties structurales en composite a base de fibres
DE102005030971B4 (de) Kugelgelenk mit Sensoreinrichtung, Verfahren zur Belastungsmessung und Verfahren zur Verschleißmessung
EP2603430B1 (fr) Panneau de revêtement pour un élément de structure, corps d'écoulement comportant un tel panneau de revêtement et dispositif permettant de surveiller l'apparition d'un endommagement de matériau sur un panneau de revêtement
DE102012112947B3 (de) Montageverfahren für einen Dehnmessstreifen
DE102007040011B4 (de) Verwendung von netzartig angeordneten, elektrisch leitfähigen Fasern, die in ein Bauteil aus einem Faserverbundwerkstoff integriert sind
EP3564015B1 (fr) Composant structural ainsi que système et procédé de détection de dommages
EP2126511A1 (fr) Jauge optique d'allongement
EP1674541B1 (fr) Joint adhésif pour fixer des éléments dans des moyens de transports, en particulier dans un avion, et procédé pour la détermination de la force mécanique minimum et/ou de la résistance mécanique d'un joint adhésif
EP3211396B1 (fr) Capteur de mesure intégrale ou à résolution spatiale d'allongements sur la base de fibres de carbone déjà endommagées
DE102018131948B4 (de) Verfahren und Vorrichtung zum Detektieren eines Schlagereignisses sowie ein Fahrzeug hierzu
DE102009038746B3 (de) Verfahren und Vorrichtung zur Qualitätsprüfung eines umgeformten thermoplastischen faserverstärkten Kunststoffbauteils
DE102006026528A1 (de) Vorrichtung und Verfahren zum Prüfen von mono- oder polykristallinen Siliziumscheiben
EP3722768A1 (fr) Dispositif capteur permettant de détecter des forces de freinage dans un véhicule et système de mesure
DE102008006487B4 (de) Verfahren zur Erkennung von belastungsbedingten Deformationen eines Bremssattels einer Scheibenbremse sowie Scheibenbremse
EP2112458A2 (fr) Procédé et dispositif de contrôle de l'exactitude des mesures de garnitures de frein à tambour
WO2014131697A1 (fr) Dispositif d'essai et procédé de réalisation d'un essai de pression
DE102004008432A1 (de) Dehnungsmessstreifen zur Erfassung von Dehnungen oder Stauchungen an Verformungskörpern
DE102016219620A1 (de) Leiterplatte mit einem gebogenen Verbindungsabschnitt und Verfahren zum Testen bzw. Herstellen derselben sowie elektronisches Steuergerät und Verfahren zum Betrieb desselben
DE102020201911A1 (de) System zur Kontrolle des Vorliegens von Dickenverringerungen an mindestens einem mechanischen Bauteil und entsprechendes Kontrollverfahren
DE2802176A1 (de) Neuartiges kraftmessgeraet in dehnungsmesstreifentechnik, insbesondere fuer die untersuchung von werkstoffpruefmaschinen
DE102014117079A1 (de) Verfahren und System zum Bestimmen einer mechanischen Verformung und/oder eines Defekts eines Probenkörpers
DE102013213219B4 (de) Vorrichtung zur Bestimmung einer Verformungsinformation für ein mit einer Last beaufschlagtes Brett
EP3637086B1 (fr) Dispositif de corps d'échantillon destiné à la détermination des propriétés mécaniques et / ou thermiques d'un corps d'échantillon et procédé de détermination des propriétés mécaniques et / ou thermiques d'un corps d'échantillon
DE102019106425A1 (de) Messeinrichtung und Verfahren zur Feuchtigkeitsmessung
EP2720021A2 (fr) Dispositif de mesure de force

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060518

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150831

RIC1 Information provided on ipc code assigned before grant

Ipc: G01N 3/08 20060101AFI20170223BHEP

Ipc: G01L 1/22 20060101ALI20170223BHEP

Ipc: G01M 5/00 20060101ALI20170223BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170602