EP1675931A1 - Elektrolumineszierende vorrichtung mit anthracenderivat als wirt - Google Patents
Elektrolumineszierende vorrichtung mit anthracenderivat als wirtInfo
- Publication number
- EP1675931A1 EP1675931A1 EP04795481A EP04795481A EP1675931A1 EP 1675931 A1 EP1675931 A1 EP 1675931A1 EP 04795481 A EP04795481 A EP 04795481A EP 04795481 A EP04795481 A EP 04795481A EP 1675931 A1 EP1675931 A1 EP 1675931A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- light emitting
- oled device
- ring members
- carbon ring
- fused rings
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/20—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/615—Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2101/00—Properties of the organic materials covered by group H10K85/00
- H10K2101/10—Triplet emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
Definitions
- This invention relates to organic electroluminescent (EL) devices comprising a light-emitting layer containing a host and a dopant where the host comprises a monoanthracene compound with very good operational stability at room temperature and at 70 °C.
- EL organic electroluminescent
- OLEDs organic light-emitting diodes
- organic EL devices are also commonly referred to as organic light-emitting diodes, or OLEDs.
- organic EL devices Representative of earlier organic EL devices are Gurnee et al. U.S. Pat. No. 3,172,862, issued Mar. 9, 1965; Gurnee U.S. Pat. No. 3,173,050, issued Mar. 9, 1965; Dresner, "Double Injection Electroluminescence in Anthracene", RCA Review, Vol. 30, pp. 322-334, 1969; and Dresner U.S. Pat. No. 3,710,167, issued Jan. 9, 1973.
- the organic layers in these devices usually composed of a polycyclic aromatic hydrocarbon, were very thick (much greater than 1 ⁇ m).
- organic EL devices include an organic EL element consisting of extremely thin layers (e.g. ⁇ 1.0 ⁇ m ) between the anode and the cathode.
- organic EL element encompasses the layers between the anode and cathode electrodes. Reducing the thickness lowered the resistance of the organic layer and has enabled devices that operate much lower voltage.
- one organic layer of the EL element adjacent to the anode is specifically chosen to transport holes, therefore, it is referred to as the hole-transporting layer, and the other organic layer is specifically chosen to transport electrons, referred to as the electron-transporting layer. Recombination of the injected holes and electrons within the organic EL element results in efficient electroluminescence.
- three-layer organic EL devices that contain an organic light-emitting layer (LEL) between the hole- transporting layer and electron-transporting layer, such as that disclosed by Tang et al [J. Applied Physics, Nol. 65, Pages 3610-3616, 1989].
- LEL organic light-emitting layer
- the light-emitting layer commonly consists of a host material doped with a guest material.
- a four-layer EL element comprising a hole- injecting layer (HIL), a hole-transporting layer (HTL), a light-emitting layer (LEL) and an electron transport/injection layer (ETL).
- HIL hole- injecting layer
- HTL hole-transporting layer
- LEL light-emitting layer
- ETL electron transport/injection layer
- Anthracene based hosts are often used.
- An useful class of 9,10-di- (2-naphthyl)anthracene hosts has been disclosed in US 5,935,721.
- Bis-anthracene compounds used in the luminescent layer with an improved device half- life have been disclosed in US 6,534,199 and US 2002/136,922.
- Electroluminescent devices with improved luminance using anthracene compound have been disclosed in US 6,582,837. Anthracenes have also been used in the HTL as disclosed in US 6,465,115.
- anthracene materials in OLED devices US 5,972,247, JP2001-097897, JP2000- 273056, US 2002/0048687, WO 03/060956,WO 02/088274, EP 0429821, WO 03/007658, JP 2000-053677, and JP 2001-335516.
- the invention provides an OLED device having specified features and comprising an anode and a cathode and located there-between a light emitting layer containing a light emitting dopant or guest material and a host comprising a monoanthracene derivative of formula (I) as described more fully hereinafter.
- the invention provides OLED devices with improved operational stability and other advantages as recited hereinafter. It also provides displays and area lighting devices using such OLED devices.
- BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows a cross-section of a typical OLED device in which this invention may be used.
- R R 8 are H.
- R is a naphthyl group containing no fused rings with aliphatic carbon ring members; provided that R and R 10 are not the same, and are free of amines and sulfur compounds.
- R 9 is a substituted naphthyl group such that it forms a fused aromatic ring system, such as a phenanthryl, pyrenyl, fluoranthene, perylene, or substituted with one or more substituents such as fluorine, cyano group, hydroxy, alkyl, alkoxy, aryloxy, aryl, a heterotercyclic oxy group, carboxy, trimethylsilyl group, or an unsubstituted naphthyl group.
- R 9 is 2-naphthyl (Inv-1, Inv-3), 1-napthyl, substituted or unsubstituted in the para position (Inv-18, Inv-19).
- R 10 is a biphenyl group having no fused rings with aliphatic carbon ring members.
- Rio is a substituted biphenyl group, such that is forms a fused aromatic ring system including but not limited to a phenanthryl, perylene, or substituted with one or more substituents such as fluorine, cyano group, hydroxy, alkyl, alkoxy, aryloxy, aryl, a heterotercyclic oxy group, carboxy, trimethylsilyl group.
- R ⁇ 0 is 4-biphenyl (Inv-1), 3-biphenyl, unsubstituted (Inv-9) or substituted with another phenyl ring to form a terphenyl ring system (Inv-5), 2- biphenyl (Inv-3).
- substituted or “substituent” means any group or atom other than hydrogen.
- aromatic ring system means a system of one ring or more than one ring fused together, where the entire ring system is aromatic.
- substituted phenyl ring means a phenyl ring that is substituted and may be substituted to form one substituted or unsubstituted fused aromatic ring system, or more than one substituted or unsubstituted fused aromatic ring systems.
- group including a compound or complex
- substitutable hydrogen when referred to, it is also intended to encompass not only the unsubstituted form, but also form further substituted with any substituent group, or groups as herein mentioned, including a fused ring, so long as the substituent does not destroy properties necessary for utility.
- a substituent groxip may be halogen or may be bonded to the"remainder of the molecule by an atom of carbon, silicon, oxygen, or phosphorous. If desired, the substituents may themselves be further substituted one or more times with the described substituent groups.
- the particular substituents used may be selected by those skilled in the art to attain the desired desirable properties for a specific application and can include, for example, electron-withdrawing groups, electron-donating groups, and steric groups. It has been found that certain unsymmetric anthracenes are extremely useful in OLED devices that exhibit high efficiencies. These compounds are useful in OLED devices that produce white light as well as in full color OLED devices and motion imaging devices.
- Useful compounds of this invention include:
- Compounds of the invention are typically employed in a light emitting layer comprising a certain thickness, together with a dopant as defined below.
- useful emitting materials include derivatives of anthracene, fluorene, periflanthene, indenoperylene, bis(azinyl)amine boron compounds.
- the dopant comprises a quinacridone such as L7, or a perylene such as L2, a coumarin such as L30, bis(azinyl)methane or amine boron complexes such as L50, L51 and L52, aminostyryl derivatives such as L47.
- the dopants comprise a blue or blue-green dopant such as L2 and L50, and L47, or a green dopant such as the quinacridone L7.
- the host of the invention is useful in a white device architecture, in a combination with a blue-green dopant.
- the host of the invention can be used in combination with other blue or green co-host to improve the stability of a certain application.
- the co-host can be a small molecule or a polymeric material.
- Useful co-hosts include but are not limited to polyfluorenes, polyvinylarylenes, metal complexes of 8- hydroxyquinoline, benzazole derivatives, distyrylarylenes, carbazoles.
- the co-host is tris(8-quinolinolato)aluminum(III) (Alq). It is an advantage of the hosts of the invention that they are free of sulfur and amines. The process of preparing the materials as well as their purification is simple and efficient and environmentally friendly, thus making these compounds conveniently manufacturable.
- Embodiments of the Invention include those where -The naphthyl group is substituted with at least one substituent selected from fluorine, hydroxy, cyano, alkoxy, aryloxy, carboxy, trimethylsilyl and heterocyclic oxy groups; or the biphenyl is substituted with at least one substituent selected from fluorine, hydroxy, cyano, and alkyl, alkoxy, aryloxy, carboxy, trimethylsilyl and heterocyclic oxy groups.
- the guest emitting material or materials comprises a member selected from the group consisting of derivatives of tetracene, xanthene, perylene, rubrene, coumarin, rhodamine, and quinacridone, dicyanomethylenepyran compounds, thiopyran compounds, polymethine compounds, pyrilium and thiapyrilium compounds, fluorene derivatives, periflanthene derivatives, indenoperylene derivatives, bis(azinyl)amine boron compounds, and bis(azinyl)methane boron including:
- -Devices may include an aminostyrl derivative, a colored filter, a co-host such as polymeric material or an oxinoid compound such as Alq.
- the co-host may comprise, for example, a member selected from the group consisting of polyfluorenes, polyvinylarylenes, metal complexes of 8-hydroxyquinoline, benzazole derivatives, distyrylarylenes, and carbazoles.
- the device may include a hole-transporting layer comprising a tertiary amine compound of formula (A):
- QrG-Qz (A) wherein Qi and Q 2 are independently selected aromatic tertiary amine moieties, G is an aryl linking group, and at least one of Q ⁇ and Q 2 contains a polycyclic fused ring structure such as N,N,N',N'-tetra-l-naphthyl-4,4'-diaminobiphenyl,
- the OLED device may include a hole-blocking layer and may be a stacked OLED employing multiple emitting layers and may include an active matrix substrate having thin film transistors.
- the OLED device is desirably sealed in an inert atmosphere in the presence of a desiccant or is encapsulated using a barrier layer. It may include a dielectric mirror structure, a light-absorbing electrode, an anti-reflection coating, a polarizing medium, a colored filter, a neutral density filter, or a color conversion filter.
- - - It may be produced so that the light-emitting layer is pattern deposited using spatially-defined thermal dye transfer from a donor sheet.
- Particularly desirable compounds include the following:
- the present invention can be employed in most OLED device configurations. These include very simple structures comprising a single anode and cathode to more complex devices, such as passive matrix displays comprised of orthogonal arrays of anodes and cathodes to form pixels, and active-matrix displays where each pixel is controlled independently, for example, with thin film transistors (TFTs).
- TFTs thin film transistors
- the essential requirements of an OLED are an anode, a cathode, and an organic light-emitting layer located between the anode and cathode. Additional layers may be employed as more fully described hereafter.
- anode When the desired electroluminescent light emission (EL) is viewed through anode, the anode should be transparent or substantially transparent to the emission of interest.
- Common transparent anode materials used in this invention are indium-tin oxide (ITO), indium-zinc oxide (IZO) and tin oxide, but other metal oxides can work including, but not limited to, aluminum- or indium-doped zinc oxide, magnesium-indium oxide, and nickel-tungsten oxide.
- metal nitrides such as gallium nitride
- metal selenides such as zinc selenide
- metal sulfides such as zinc sulfide
- the transmissive characteristics of the anode are immaterial and any conductive material can be used, transparent, opaque or reflective.
- Example conductors for this application include, but are not limited to, gold, iridium, molybdenum, palladium, and platinum.
- Typical anode materials, transmissive or otherwise, have a work function of 4.1 eV or greater. Desired anode materials are commonly deposited by any suitable means such as evaporation, sputtering, chemical vapor deposition, or electrochemical means.
- Anodes can be patterned using well-known photolithographic processes. Optionally, anodes may be polished prior to application of other layers to reduce surface roughness so as to minimize shorts or enhance reflectivity.
- the cathode used in this invention can be comprised of nearly any conductive material. Desirable materials have good film-forming properties to ensure good contact with the underlying organic layer, promote electron injection at low voltage, and have good stability. Useful cathode materials often contain a low work function metal ( ⁇ 4.0 eN) or metal alloy.
- One useful cathode material is comprised of a Mg:Ag alloy wherein the percentage of silver is in the range of 1 to 20 %, as described in U.S. Patent No. 4,885,221.
- cathode materials includes bilayers comprising the cathode and a thin electron- injection layer (EIL) in contact with an organic layer (e.g., an electron transporting layer (ETL)) which is capped with a thicker layer of a conductive metal.
- EIL electron transporting layer
- the EIL preferably includes a low work function metal or metal salt, and if so, the thicker capping layer does not need to have a low work function.
- EIL electron transporting layer
- One such cathode is comprised of a thin layer of LiF followed by a thicker layer of Al as described in U.S. Patent No. 5,677,572.
- Other useful cathode material sets include, but are not limited to, those disclosed in U.S. Patent Nos.
- the cathode When light emission is viewed through the cathode, the cathode must be transparent or nearly transparent. For such applications, metals must be thin or one must use transparent conductive oxides, or a combination of these materials.
- Optically transparent cathodes have been described in more detail in US 4,885,211, US 5,247,190, JP 3,234,963, US 5,703,436, US 5,608,287, US 5,837,391, US 5,677,572, US 5,776,622, US 5,776,623, US 5,714,838, US 5,969,474, US 5,739,545, US 5,981,306, US 6,137,223, US 6,140,763, US 6,172,459, EP 1 076 368, US 6,278,236, and US 6,284,3936.
- Cathode materials are typically deposited by any suitable method such as evaporation, sputtering, or chemical vapor deposition.
- LED Light-Emitting Layer
- the light-emitting layer (LEL) of the organic EL element includes a luminescent fluorescent or phosphorescent material where electroluminescence is produced as a result of electron-hole pair recombination in this region.
- the light-emitting layer can be comprised of a single material, but more commonly consists of a host material doped with a guest emitting material or materials where light emission comes primarily from the emitting materials and can be of any color.
- the host materials in the light-emitting layer can be an electron-transporting material, as defined below, a hole-transporting material, as defined above, or another material or combination of materials that support hole-electron recombination.
- the emitting material is usually chosen from highly fluorescent dyes and phosphorescent compounds, e.g., transition metal complexes as described in WO 98/55561, WO 00/18851, WO 00/57676, and WO 00/70655.
- Emitting materials are typically incorporated at 0.01 to 10 % by weight of the host material.
- the host and emitting materials can be small non-polymeric molecules or polymeric materials such as polyfiuorenes and polyvinylarylenes (e.g., poly( ⁇ -phenylenevinylene), PPV).
- small molecule emitting materials can be molecularly dispersed into a polymeric host, or the emitting materials can be added by copolymerizing a minor constituent into a host polymer.
- An important relationship for choosing an emitting material is a comparison of the bandgap potential which is defined as the energy difference between the highest occupied molecular orbital and the lowest unoccupied molecular orbital of the molecule.
- a necessary condition is that the band gap of the dopant is smaller than that of the host material.
- the host triplet energy level of the host be high enough to enable energy transfer from host to emitting material.
- Host and emitting materials known to be of use include, but are not limited to, those disclosed in US 4,768,292, US 5,141,671, US 5,150,006, US 5,151,629, US 5,405,709, US 5,484,922, US 5,593,788, US 5,645,948, US 5,683,823, US 5,755,999, US 5,928,802, US 5,935,720, US 5,935,721, and US 6,020,078.
- Form E Metal complexes of 8-hydroxyquinoline and similar derivatives constitute one class of useful host compounds capable of supporting electroluminescence, and are particularly suitable for light emission of wavelengths longer than 500 nm, e.g., green, yellow, orange, and red.
- the metal can be monovalent, divalent, trivalent, or tetravalent metal.
- the metal can, for example, be an alkali metal, such as lithium, sodium, or potassium; an alkaline earth metal, such as magnesium or calcium; an earth metal, such aluminum or gallium, or a transition metal such as zinc or zirconium.
- alkali metal such as lithium, sodium, or potassium
- alkaline earth metal such as magnesium or calcium
- earth metal such aluminum or gallium, or a transition metal such as zinc or zirconium.
- any monovalent, divalent, trivalent, or tetravalent metal known to be a useful chelating metal can be employed.
- Z completes a heterocyclic nucleus containing at least two fused aromatic rings, at least one of which is an azole or azine ring. Additional rings, including both aliphatic and aromatic rings, can be fused with the two required rings, if required. To avoid adding molecular bulk without improving on function the number of ring atoms is usually maintained at 18 or less.
- CO-1 Aluminum trisoxine [alias, tris(8-quinolinolato)aluminum(III)]
- CO-2 Magnesium bisoxine [alias, bis(8-quinolinolato)magnesium(II)]
- CO-3 Bisfbenzo ⁇ f ⁇ -8-quinolinolato]zinc (II)
- CO-4 Bis(2-methyl-8-quinolinolato)aluminum(III)- ⁇ -oxo-bis(2-methyl-8- quinolinolato) aluminum(III)
- CO-6 Aluminum tris(5-methyloxine) [alias, tris(5-methyl-8-quinolinolato) aluminum(III)]
- CO-7 Lithium oxine [alias, (8-quinolinolato)lithium(I
- Form F Derivatives of 9,10-di-(2-naphthyl)anthracene (Formula F) constitute one class of useful host materials capable of supporting electroluminescence, and are particularly suitable for light emission of wavelengths longer than 400 nm, e.g., blue, green, yellow, orange or red.
- R , R , R 3 , R 4 , R 5 , and R represent one or more substituents on each ring where each substituent is individually selected from the following groups: Group 1 : hydrogen, or alkyl of from 1 to 24 carbon atoms; Group 2: aryl or substituted aryl of from 5 to 20 carbon atoms; Group 3 : carbon atoms from 4 to 24 necessary to complete a fused aromatic ring of anthracenyl; pyrenyl, or perylenyl; Group 4: heteroaryl or substituted heteroaryl of from 5 to 24 carbon atoms as necessary to complete a fused heteroaromatic ring of furyl, thienyl, pyridyl, quinolinyl or other heterocyclic systems; Group 5: alkoxylamino, alkylamino, or arylamino of from 1 to 24 carbon atoms; and Group 6: fluorine, chlorine, bromine or cyano.
- Illustrative examples include 9,10-di-(2-naphthyl)anthracene and 2- t-butyl-9,10-di-(2-naphthyl)anthracene.
- Other anthracene derivatives can be useful as a host in the LEL, including derivatives of 9,10-bis[4-(2,2- diphenylethenyl)phenyl]anthracene.
- Benzazole derivatives constitute another class of useful host materials capable of supporting electroluminescence, and are particularly suitable for light emission of wavelengths longer than 400 nm, e.g., blue, green, yellow, orange or red.
- n is an integer of 3 to 8;
- Z is O, NR or S; and
- R and R' are individually hydrogen; alkyl of from 1 to 24 carbon atoms, for example, propyl, t-butyl, heptyl, and the like; aryl or hetero-atom substituted aryl of from 5 to 20 carbon atoms for example phenyl and naphthyl, furyl, thienyl, pyridyl, quinolinyl and other heterocyclic systems; or halo such as chloro, fluoro; or atoms necessary to complete a fused aromatic ring;
- L is a linkage unit consisting of alkyl, aryl, substituted alkyl, or substituted aryl, which conjugately or unconjugately connects the multiple benzazoles together.
- Distyrylarylene derivatives are also useful hosts, as described in US 5,121,029. Carbazole derivatives are particularly useful hosts for phosphorescent emitters.
- Useful fluorescent emitting materials include, but are not limited to, derivatives of anthracene, tefracene, xanthene, perylene, rubrene, coumarin, rhodamine, and quinacridone, dicyanomethylenepyran compounds, thiopyran compounds, polymethine compounds, pyrilium and thiapyriliurn compounds, fluorene derivatives, periflanthene derivatives, indenoperylene derivatives, bis(azinyl)amine boron compounds, bis(azinyl)methane compounds, and carbostyryl compounds.
- useful materials include, but are not limited to, the following:
- the organic layers between the anode and cathode are conveniently referred to as the organic EL element. Also, the total combined thickness of the organic layers is preferably less than 500 nm.
- the anode and cathode of the OLED are connected to a voltage/current source 250 through electrical conductors 260.
- the OLED is operated by applying a potential between the anode and cathode such that the anode is at a more positive potential than the cathode. Holes are injected into the organic EL element from the anode and electrons are injected into the organic EL element at the anode.
- Enhanced device stability can sometimes be achieved when the OLED is operated in an AC mode where, for some time period in the cycle, the potential bias is reversed and no current flows.
- An example of an AC driven OLED is described in US 5,552,678.
- the OLED device of this invention is typically provided over a supporting substrate 101 where either the cathode or anode can be in contact with the substrate.
- the electrode in contact with the substrate is conveniently referred to as the bottom electrode.
- the bottom electrode is the anode, but this invention is not limited to that configuration.
- the substrate can either be light transmissive or opaque, depending on the intended direction of light emission. The light transmissive property is desirable for viewing the EL emission through the substrate. Transparent glass or plastic is commonly employed in such cases.
- the substrate may be a complex structure comprising multiple layers of materials. This is typically the case for active matrix substrates wherein TFTs are provided below the OLED layers.
- the substrate at least in the emissive pixilated areas, be comprised of largely transparent materials such as glass or polymers.
- the transmissive characteristic of the bottom support is immaterial, and therefore can be light transmissive, light absorbing or light reflective.
- Substrates for use in this case include, but are not limited to, glass, plastic, semiconductor materials, silicon, ceramics, and circuit board materials.
- the substrate may be a complex structure comprising multiple layers of materials such as found in active matrix TFT designs. Of course it is necessary to provide in these device configurations a light-transparent top electrode.
- hole-injecting layer 105 be provided between anode 103 and hole-transporting layer 107.
- the hole-injecting material can serve to improve the film formation property of subsequent organic layers and to facilitate injection of holes into the hole- transporting layer.
- Suitable materials for use in the hole-injecting layer include, but are not limited to, porphyrinic compounds as described in US 4,720,432, plasma-deposited fluorocarbon polymers as described in US 6,208,075, and some aromatic amines, for example, m-MTDATA (4,4',4"-tris[(3- methylphenyl)phenylamino]triphenylamine).
- the hole-transporting layer 107 of the organic EL device contains at least one hole-transporting compound such as an aromatic tertiary amine, where • the latter is understood to be a compound containing at least one trivalent nitrogen atom that is bonded only to carbon atoms, at least one of which is a member of an aromatic ring.
- the aromatic tertiary amine can be an arylamine, such as a monoarylamine, diarylamine, triarylamine, or a polymeric arylamine.
- Exemplary monomeric triarylamines are illustrated by Klupfel et al. US 3,180,730.
- Other suitable triarylamines substituted with one or more vinyl radicals and/or comprising at least one active hydrogen containing group are disclosed by Brantley et al US 3,567,450 and US 3,658,520.
- a more preferred class of aromatic tertiary amines are those which include at least two aromatic tertiary amine moieties as described in US 4,720,432 and US 5,061,569.
- Such compounds include those represented by structural formula (A).
- a Ql -o- Q2 A Ql -o- Q2
- Qi and Q 2 are independently selected aromatic tertiary amine moieties and G is a linking group such as an arylene, cycloalkylene, or alkylene group of a carbon to carbon bond.
- G is a linking group such as an arylene, cycloalkylene, or alkylene group of a carbon to carbon bond.
- at least one of Q ⁇ or Q contains a polycyclic fused ring structure, e.g., a naphthalene.
- G is an aryl group, it is conveniently a phenylene, biphenylene, or naphthalene moiety.
- a useful class of triarylamines satisfying structural formula (A) and containing two triaryl amine moieties is represented by structural formula (B): 2 B I Rl— -C— R 3 R 4
- Ri and R 2 each independently represents a hydrogen atom, an aryl group, or an alkyl group or R] and R 2 together represent the atoms completing a cycloalkyl group; and R and R 4 each independently represents an aryl group, which is in turn substituted with a diaryl substituted amino group, as indicated by structural formula (C):
- R 5 and R 6 are independently selected aryl groups.
- at least one of R 5 or R 6 contains a polycyclic fused ring structure, e.g., a naphthalene.
- Another class of aromatic tertiary amines are the tetraaryldiamines. Desirable tetraaryldiamines include two diarylamino groups, such as indicated by formula (C), linked through an arylene group.
- Useful tetraaryldiamines include those represented by formula (D).
- each Are is an independently selected arylene group, such as a phenylene or anthracene moiety, n is an integer of from 1 to 4, and
- Ar, R 7 , R 8 , and R are independently selected aryl groups.
- at least one of Ar, R 7 , R 8 , and R 9 is a polycyclic fused ring structure, e.g., a naphthalene
- the various alkyl, alkylene, aryl, and arylene moieties of the foregoing structural formulae (A), (B), (C), (D), can each in turn be substituted.
- Typical substituents include alkyl groups, alkoxy groups, aryl groups, aryloxy groups, and halogen such as fluoride, chloride, and bromide.
- the various alkyl and alkylene moieties typically contain from about 1 to 6 carbon atoms.
- the cycloalkyl moieties can contain from 3 to about 10 carbon atoms, but typically contain five, six, or seven ring carbon atoms—e.g., cyclopentyl, cyclohexyl, and cycloheptyl ring structures.
- the aryl and arylene moieties are usually phenyl and phenylene moieties.
- the hole-transporting layer can be formed of a single or a mixture of aromatic tertiary amine compounds. Specifically, one may employ a triarylamine, such as a triarylamine satisfying the formula (B), in combination with a tetraaryldiamine, such as indicated by formula (D).
- a triarylamine When a triarylamine is employed in combination with a tetraaryldiamine, the latter is positioned as a layer interposed between the triarylamine and the electron injecting and transporting layer.
- aromatic tertiary amines are the following: 1 , 1 -Bis(4-di- ;-tolylaminophenyl)cyclohexane 1 ,1 -Bis(4-di-/?-tolylaminophenyl)-4-phenylcyclohexane 4,4'-Bis(diphenylamino)quadriphenyl
- Another class of useful hole-transporting materials includes polycyclic aromatic compounds as described in EP 1 009 041. Tertiary aromatic amines with more than two amine groups may be used including oligomeric materials.
- polymeric hole-transporting materials can be used such as poly(N-vinylcarbazole) (PVK), polythiophenes, polypyrrole, polyaniline, and copolymers such as poly(3,4-ethylenedioxythiophene) / poly(4-styrenesulfonate) also called PEDOT/PSS.
- Electron-Transporting Layer (ETL) Preferred thin film-forming materials for use in forming the electron-transporting layer 111 of the organic EL devices of this invention are metal chelated oxinoid compounds, including chelates of oxine itself (also commonly referred to as 8-quinolinol or 8-hydroxyquinoline). Such compounds help to inject and transport electrons and exhibit both high levels of performance and are readily fabricated in the form of thin films.
- Exemplary of contemplated oxinoid compounds are those satisfying structural formula (E), previously described.
- Other electron-transporting materials include various butadiene derivatives as disclosed in US 4,356,429 and various heterocyclic optical brighteners as described in US 4,539,507. Benzazoles satisfying structural formula (G) are also useful electron transporting materials. Triazines are also known to be useful as electron transporting materials.
- layers 109 and 111 can optionally be collapsed into a single layer that serves the function of supporting both light emission and electron transportation. It also known in the art that emitting materials may be included in the hole-transporting layer, which may serve as a host. Multiple materials may be added to one or more layers in order to create a white-emitting OLED, for example, by combining blue- and yellow-emitting materials, cyan- and red-emitting materials, or red-, green-, and blue-emitting materials.
- White- emitting devices are described, for example, in EP 1 187 235, US 20020025419, EP 1 182 244, US 5,683,823, US 5,503,910, US 5,405,709, and US 5,283,182 and may be equipped with a suitable filter arrangement to produce a color emission. Additional layers such as electron or hole-blocking layers as taught in the art may be employed in devices of this invention. Hole-blocking layers are commonly used to improve efficiency of phosphorescent emitter devices, for example, as in US 20020015859. This invention may be used in so-called stacked device architecture, for example, as taught in US 5,703,436 and US 6,337,492.
- the organic materials are conveniently deposited through sublimation, but can be deposited by other means such as from a solvent with an optional binder to improve film formation. If the material is a polymer, solvent deposition is usually preferred.
- the material to be deposited by sublimation can be vaporized from a sublimator "boat" often comprised of a tantalum material, e.g., as described in US 6,237,529, or can be first coated onto a donor sheet and then sublimed in closer proximity to the substrate. Layers with a mixture of materials can utilize separate sublimator boats or the materials can be pre-mixed and coated from a single boat or donor sheet.
- Patterned deposition can be achieved using shadow masks, integral shadow masks (US 5,294,870), spatially- defined thermal dye transfer from a donor sheet (US 5,688,551 , US 5,851 ,709 and US 6,066,357) and inkjet method (US 6,066,357).
- OLED devices are sensitive to moisture or oxygen, or both, so they are commonly sealed in an inert atmosphere such as nitrogen or argon, along with a desiccant such as alumina, bauxite, calcium sulfate, clays, silica gel, zeolites, alkaline metal oxides, alkaline earth metal oxides, sulfates, or metal halides and perchlorates.
- a desiccant such as alumina, bauxite, calcium sulfate, clays, silica gel, zeolites, alkaline metal oxides, alkaline earth metal oxides, sulfates, or metal halides and perchlorates.
- Methods for encapsulation and desiccation include, but are not limited to, those described in U.S. Patent No. 6,226,890.
- barrier layers such as SiOx, Teflon, and alternating inorganic/polymeric layers are known in the art for encapsulation.
- Optical Optimization OLED devices of this invention can employ various well-known optical effects in order to enhance its properties if desired. This includes optimizing layer thicknesses to yield maximum light transmission, providing dielectric mirror structures, replacing reflective electrodes with light-absorbing electrodes, providing anti glare or anti-reflection coatings over the display, providing a polarizing medium over the display, or providing colored, neutral density, or color conversion filters over the display. Filters, polarizers, and antiglare or anti-reflection coatings may be specifically provided over the cover or as part of the cover.
- Examplel -Preparation of Inv-1 a) Preparation of 9-(2-naphthyl)anthracene. 9-Bromoanthracene (12g, 46mmol, leq) and 2-naphthalenboronic acid (8.0g, 46mmol, 1 eq) were combined in 100ml of toluene and the resulting mixture degassed by sonication for about 15min.
- the mixture was filtered hot, through a glass fiber filter paper to remove precipitated solid.
- the solid was re-dissolved in about IL of hot toluene and the solution was filtered through a glass fiber filter paper to remove palladium impurities.
- the filtrate was concentrated to yield 9.2g of off- white solid. From the original filtrate that contained the aqueous layer, the toluene layer was isolated, washed with H2O, dried with sat. brine, dried over MgSO4, concentrated and recrystallized to yield 1.3g of solid. Both solids batches were combined to yield 10.4g of clean product (98%).
- the material was sublimed at 260 °C to yield a very pure fraction (8.26g, 99.8% assay) and a pure fraction (1.45g, 99.3% assay).
- Inventive EL devices An EL device satisfying the requirements of the invention was constructed in the following manner: A glass substrate coated with a 42 nm layer of indium-tin oxide (ITO) as the anode was sequentially ulfrasonicated in a commercial detergent, rinsed in deionized water, degreased in toluene vapor and exposed to oxygen plasma for about 1 min. a) Over the ITO was deposited a 1 nm fluorocarbon hole-injecting layer (CFx) by plasma-assisted deposition of CHF 3 . b) A hole-transporting layer of N,N'-di-l -naphthalenyl-N,N'-diphenyl-4,
- ⁇ PB 4'-diaminobiphenyl
- doping percentage is reported based on volume/volume ratio.
- the specific dopants, percentages and host thicknesses are indicated in Tables 1 and 2.
- d) A 30 nm electron-transporting layer of tris(8-quinolinolato)aluminum (III) (Alq) was then deposited onto the light-emitting layer. This material was also evaporated from a tantalum boat.
- e) On top of the Alq layer was deposited a 220 nm cathode formed of a 10:1 volume ratio of Mg and Ag. The above sequence completed the deposition of the EL device. The device was then hermetically packaged in a dry glove box for protection against ambient environment. Examples 4. 7. 11. 12. 13. 14. 15 -Comparative EL devices EL devices of comparative examples were fabricated in the same manner as Example 2 except that, in place of Invl, other anthracene derivatives not part of this invention, were used as hosts.
- the cells thus formed in Examples 2 - 15 were tested for efficiency in the form of luminance yield (cd/A) measured at 20 mA/cm .
- CIE color x and y coordinates were determined. It is desirable to have a luminance yield of at least about 2.2 cd/A and preferably greater than about 3 cd/A, for a blue device.
- the luminance loss was measured by subjecting the cells to a constant current density of 20mA/cm 2 at 70 °C, or at 40mA/cm 2 at RT (room temperature), to various amounts of time that are specified for each individual cell/example. The extrapolated values are estimated based on real data at 20mA/cm and 70 °C, or at
- Table lb show a significant improvement in stability when Inv-1 is used as a host, while the efficiency remains high, at least the same as the check (Comp-1).
- Examples 2 and 3 and Examples 5 and 6 show a clear 2-2.5X improvement in stability relative to the check.
- Comp-1 was always used as a reference with each device set, to better make a comparison; the formulation for Comp-1 (host thickness and dopant level) is at an optimum to achieve the best combination of good stability and high efficiency.
- the devices in Table lb were faded at RT, 40mA/cm 2 .
- Compound Inv-3 also provides an advantage in stability over the check
- Example 14 illustrates the failure of Comp-4 in a device. Operational stability could not be measured, as the device degrades within a minute under 9V battery. The material was vapor deposited and a device fabricated twice to yield the same results. It is thought that the high crystallinity of the solid in the bulk state renders al very low propensity for glass forming in a device. The fact that the device is very grainy in appearance may support the same hypothesis. Comp-2 is also symmetrical with a high propensity to crystallize; although it appears to perform as well or better than its t-butyl analog Comp-1 (see Examplel2 versus Example4), often devices employing Comp-1 fail due to crystallization.
- Examples 2-15 show the significant improvement in stability of unsymmetrical monoanthracenes with two different blue dopants, L2 and L47. Comparing the data in Table lb and Table 3b, there is a clear correlation between structural attributes (symmetry/unsymmetry) and performance in a device. For example, the best performer Inv-1 (Example2) is a hybrid between Comp-2 and Comp-4 (Example 12 and 14), and yet its performance is better than either of the two.
- Example 16- Comparative EL device Example 16 was fabricated in the same manner as Example 2, with the exception of part c). A 37nm light-emitting layer of Alq was doped with a green dopant. These materials were co-evaporated from tantalum boats. Herein, doping percentage is reported based on volume/volume ratio. The specific dopants, percentages and host thicknesses are indicated in Table 4.
- Examples 17-21 were fabricated in the same manner as Example 16, except that the Alq was co-evaporated together with a host part of the invention, at various amounts (total thickness of the two hosts and dopant was 37.5nm). The specific dopants, percentages and host thicknesses are indicated in Table 4.
- Table 4 shows a significant improvement in the stability of L53 when a co-host of the invention is used in combination with Alq.
- the benefit of co-hosting Inv-1 into Alq is especially apparent in Examplesl8-20, at concentrations of Inv-1 between 40-80%, where an improvement of at least 3X is observed versus the check (Example 16).
- HIL Hole-Injecting layer
- HTL Hole-Transporting layer
- ETL Electron-Transporting layer
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electroluminescent Light Sources (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US69312103A | 2003-10-24 | 2003-10-24 | |
US10/950,614 US7887931B2 (en) | 2003-10-24 | 2004-09-27 | Electroluminescent device with anthracene derivative host |
PCT/US2004/034323 WO2005042668A1 (en) | 2003-10-24 | 2004-10-19 | Electroluminescent device with anthracene derivative host |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1675931A1 true EP1675931A1 (de) | 2006-07-05 |
Family
ID=34556629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04795481A Withdrawn EP1675931A1 (de) | 2003-10-24 | 2004-10-19 | Elektrolumineszierende vorrichtung mit anthracenderivat als wirt |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1675931A1 (de) |
JP (1) | JP2007511067A (de) |
KR (1) | KR20060120040A (de) |
WO (1) | WO2005042668A1 (de) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2005091686A1 (ja) * | 2004-03-19 | 2008-02-07 | チッソ株式会社 | 有機電界発光素子 |
JP4788202B2 (ja) * | 2004-07-09 | 2011-10-05 | Jnc株式会社 | 発光材料およびこれを用いた有機電界発光素子 |
KR20090018901A (ko) * | 2006-05-09 | 2009-02-24 | 이데미쓰 고산 가부시키가이샤 | 규소함유 화합물 및 그를 이용한 유기 전기발광 소자 |
KR101251655B1 (ko) | 2006-08-17 | 2013-04-05 | 주식회사 엘지화학 | 신규한 바이안트라센 유도체 및 이를 이용한 유기전자소자 |
KR101251656B1 (ko) | 2006-08-17 | 2013-04-05 | 주식회사 엘지화학 | 신규한 안트라센 유도체 및 이를 이용한 유기전자소자 |
KR100857023B1 (ko) * | 2007-05-21 | 2008-09-05 | (주)그라쎌 | 유기 발광 화합물 및 이를 포함하는 유기 발광 소자 |
TW200925239A (en) * | 2007-12-03 | 2009-06-16 | Tetrahedron Technology Corp | Organic electroluminescence apparatus and material thereof |
KR100901887B1 (ko) * | 2008-03-14 | 2009-06-09 | (주)그라쎌 | 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 발광소자 |
US8822041B2 (en) | 2008-03-19 | 2014-09-02 | Idemitsu Kosan Co., Ltd. | Anthracene derivatives, luminescent materials and organic electroluminescent devices |
JP5268840B2 (ja) | 2009-09-10 | 2013-08-21 | 株式会社東芝 | 有機電界発光素子 |
EP2390938A4 (de) * | 2009-12-16 | 2013-07-17 | Idemitsu Kosan Co | Organisches lumineszenzmedium |
TW201213502A (en) | 2010-08-05 | 2012-04-01 | Idemitsu Kosan Co | Organic electroluminescent element |
JP6370568B2 (ja) * | 2014-03-14 | 2018-08-08 | 出光興産株式会社 | インク組成物、インク組成物を用いた有機エレクトロルミネッセンス素子、及び電子機器 |
JP6331779B2 (ja) | 2014-07-02 | 2018-05-30 | セイコーエプソン株式会社 | 発光素子、発光装置、認証装置および電子機器 |
JP7325731B2 (ja) | 2018-08-23 | 2023-08-15 | 国立大学法人九州大学 | 有機エレクトロルミネッセンス素子 |
KR20220081442A (ko) * | 2020-12-08 | 2022-06-16 | 삼성디스플레이 주식회사 | 발광 소자 및 발광 소자용 아민 화합물 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5935721A (en) * | 1998-03-20 | 1999-08-10 | Eastman Kodak Company | Organic electroluminescent elements for stable electroluminescent |
DE60140720D1 (de) * | 2000-03-29 | 2010-01-21 | Idemitsu Kosan Co | Anthracenderivate und organische elektrolumineszente vorrichtung die unter verwendung dieser derivate hergestellt ist |
JP4094203B2 (ja) * | 2000-03-30 | 2008-06-04 | 出光興産株式会社 | 有機エレクトロルミネッセンス素子及び有機発光媒体 |
US7169482B2 (en) * | 2002-07-26 | 2007-01-30 | Lg.Philips Lcd Co., Ltd. | Display device with anthracene and triazine derivatives |
-
2004
- 2004-10-19 KR KR1020067007649A patent/KR20060120040A/ko not_active Application Discontinuation
- 2004-10-19 WO PCT/US2004/034323 patent/WO2005042668A1/en active Application Filing
- 2004-10-19 JP JP2006536686A patent/JP2007511067A/ja not_active Withdrawn
- 2004-10-19 EP EP04795481A patent/EP1675931A1/de not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO2005042668A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2005042668A1 (en) | 2005-05-12 |
KR20060120040A (ko) | 2006-11-24 |
JP2007511067A (ja) | 2007-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7887931B2 (en) | Electroluminescent device with anthracene derivative host | |
EP1680480B1 (de) | Oled-vorrichtung mit asymmetrischem wirt | |
EP1955385B1 (de) | Elektrolumineszenzvorrichtung mit einem phenanthrolinderivat | |
EP1955384B1 (de) | Elektrolumineszenzvorrichtung mit einem anthracen-derivat | |
EP1375624A1 (de) | Vorrichtung mit organischer grün-emittierender Diode | |
US6967062B2 (en) | White light-emitting OLED device having a blue light-emitting layer doped with an electron-transporting or a hole-transporting material or both | |
US7037601B2 (en) | White light-emitting device structures | |
WO2005080527A1 (en) | Anthracene derivative host having ranges of dopants | |
JP4680985B2 (ja) | エレクトロルミネッセンス・デバイスのための有機要素 | |
EP1675931A1 (de) | Elektrolumineszierende vorrichtung mit anthracenderivat als wirt | |
WO2005033246A1 (en) | Green organic light-emitting diodes | |
WO2005043640A2 (en) | A stabilized white-light emitting oled | |
EP1359629A2 (de) | Stabile elektrolumineszente Vorrichtung | |
US7645524B2 (en) | OLED device with improved high temperature operation | |
WO2004040669A1 (en) | Dopant in an electroluminescent device | |
US6680132B2 (en) | Red organic electroluminescent devices | |
WO2004107471A1 (en) | White light-emitting device structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060328 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
17Q | First examination report despatched |
Effective date: 20060907 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20091220 |