EP1674150A2 - Statischer Mikrovermischer - Google Patents

Statischer Mikrovermischer Download PDF

Info

Publication number
EP1674150A2
EP1674150A2 EP05027041A EP05027041A EP1674150A2 EP 1674150 A2 EP1674150 A2 EP 1674150A2 EP 05027041 A EP05027041 A EP 05027041A EP 05027041 A EP05027041 A EP 05027041A EP 1674150 A2 EP1674150 A2 EP 1674150A2
Authority
EP
European Patent Office
Prior art keywords
mixing chamber
junctions
fluid
static micromixer
symmetry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05027041A
Other languages
English (en)
French (fr)
Other versions
EP1674150B1 (de
EP1674150A3 (de
Inventor
Klaus Dr. Schubert
Jürgen Dr. Brandner
Manfred Kraut
Achim Wenka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karlsruher Institut fuer Technologie KIT
Original Assignee
Forschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35986618&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1674150(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Forschungszentrum Karlsruhe GmbH filed Critical Forschungszentrum Karlsruhe GmbH
Publication of EP1674150A2 publication Critical patent/EP1674150A2/de
Publication of EP1674150A3 publication Critical patent/EP1674150A3/de
Application granted granted Critical
Publication of EP1674150B1 publication Critical patent/EP1674150B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3142Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction
    • B01F25/31425Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction with a plurality of perforations in the axial and circumferential direction covering the whole surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3142Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/301Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions
    • B01F33/3012Interdigital streams, e.g. lamellae

Definitions

  • the invention relates to a static micromixer with a mixing chamber, feeds for at least two fluid fractions to be mixed or dispersed, each having at least one confluence with the mixing chamber and at least one orifice out of the mixing chamber according to claim 1.
  • a micromixer In a micromixer, the fluids to be mixed, each separately separated, are divided into a large number (often several thousand) of fluid flow filaments, all of which open into a mixing chamber via the inlets via the junctions.
  • a static micromixer is characterized by the fact that there are no moving parts in it except for the fluid fractions to be mixed.
  • such a micromixer with at least one mixing chamber and an upstream guide component for the separate supply of fluids to be mixed to a mixing chamber
  • the guide member with dimensions in the millimeter range of several superimposed films having a respective thickness of 100 microns thickness is composed, in which the channels are incorporated as microstructures.
  • the channels of a film comprise feeds for only one of the two fluid fractions.
  • a similar micromixer in which, with an otherwise identical structure and functional principle, the supply channels of two fluids to be mixed or discharged in an arcuate manner run parallel to one another into the mixing chamber is described in DE 195 40 292 C1.
  • the guide channels have a constant cross-section with widths less than 250 microns, the films in which the channel structures are incorporated, a thickness of about 100 microns.
  • DE 101 23 093 A1 also discloses a static micromixer for mixing at least two fluids, comprising a plurality of structured films stacked on top of each other.
  • the mixing chamber is formed by a circular breakthrough in a film, wherein the junctions of the two fluids on the same film incorporated in an alternating order in a plane over the entire mixing chamber height over the cylindrical wall of the mixing chamber are arranged.
  • a two-dimensional spiral flow arises in the mixing chamber, which opens into a bore arranged centrally around the axis of symmetry of the mixing chamber on an end face of the mixing chamber (formed by a film surface delimiting the mixing chamber).
  • a similar mixing apparatus for mixing at least two fluids with spiral flow guidance is also described in WO 02/089966 A2 .
  • the fluids are additionally mixed in separate mixers in the supply lines before entering the mixing chamber.
  • a spiral flow guide of the aforementioned type is naturally associated with a flow constriction, which significantly limits the possible throughput or causes an increasing flow velocity.
  • centrifugal forces of the basic flow direction towards the center of the mixing chamber counteract the fluid in the flow spiral. Both influences increase a certain back pressure in the mixing chamber and thus also the probability of turbulent flow components.
  • US 5,573,334 discloses a static mixer for two fluid fractions, comprising a cylindrical mixing chamber with two end portions, one per each confluence of fluid and a common orifice are positioned in each one of the end regions. Also realized here in the orifice by a concentric bore in the bottom of the cylindrical mixing chamber - in principle associated with the aforementioned effects.
  • the object of the invention is to propose a static micromixer of the generic type with an improved mixing efficiency already in the laminar fluid flow, said said obstructing the flow obstructing and limiting disadvantages should be reduced.
  • the invention comprises a rotationally symmetrical mixing chamber having an axis of symmetry and two end regions, a number of feeds for at least two fluid fractions to be mixed or dispersed, each having at least one confluence with the mixing chamber and at least one orifice from the mixing chamber. All junctions are located exclusively in one of the two end regions, while the orifices are positioned in the other end region. Preferably, the junctions of the fluid fractions are over the circumference of the shell surface of the mixing chamber, i. not arranged on the end face in alternating order in one or more planes.
  • An essential feature of the invention relates to the arrangement of the junctions of the fluid fractions in the mixing chamber, in alternating order.
  • the alternating sequence of the junctions and thus of the fluid flow filaments flowing into the mixing chamber thus ensures a high specific mixing surface between the fluid fractions to be mixed or dispersed in the mixing chamber.
  • An essential feature of the invention comprises a non-concentric arrangement of the orifice in the mixing chamber.
  • the orifices are arranged in the outer region of the mixing chamber, preferably the lateral surface.
  • turbulent flow components fundamentally improve the efficiency of a mixing or dispersion of the fluid flow filaments in the mixing chamber, however, they also cause larger residence time differences of the fluid mixtures in the mixing chamber to be avoided in certain, in particular reactive mixing processes. By avoiding or reducing turbulent flow, the abovementioned residence time differences also advantageously decrease, in particular in comparison with the devices according to the prior art.
  • each of the fluid flow filaments is completely adjacent, ie on all sides, to fluid flow filaments of another fluid fraction, thus providing the greatest possible mixing surface area between the fluid fractions and as a result a further improvement of the mixing efficiency can be achieved.
  • mixing or dispersing two fluid fractions is ideally created an arrangement of the individual junction cross-sections similar to a checkerboard arrangement.
  • junctions for generating a preferred helical fluid guide in the mixing chamber are arranged tangentially, preferably with a small pitch angle to the lateral surface of the mixing chamber serving as a wall.
  • the object is achieved in that the layers are formed by stacked films with grooves as fluid guides, wherein the feeds per fluid fraction via fluid channels, comprising superimposed openings in the films, are fluidly interconnected.
  • the superimposed openings form in the film stack, the fluid channels from which branch off the fluid guides to the mixing chamber.
  • the fluid connections to the fluid channels are preferably placed on the respective limiting outer cover film.
  • a feed can also be realized via channels on one or more foils, the preferably limiting outer cover foils sealingly covering the fluid channels.
  • the aforementioned low pitch angle of the junctions can be achieved, for example, by designing the foils completely or only in the area of the junctions, ie directly in the wall of the mixing chamber as a truncated cone lateral surfaces. This can be achieved, for example, via cold forming of the individual films or of the film stack prior to the connection of the films to one another with respect to the guide component, for example via diffusion bonding.
  • the fluid channels with appropriate means for measurements such as e.g. a thermocouple or for a temperature control or a pressure measurement such. equipped with a heating element or a fluidic heat exchanger and dimensioned accordingly, which can be tailored to the fluid fractions in an advantageous manner immediately before entering the fluid guides individually.
  • appropriate means for measurements such as e.g. a thermocouple or for a temperature control or a pressure measurement such. equipped with a heating element or a fluidic heat exchanger and dimensioned accordingly, which can be tailored to the fluid fractions in an advantageous manner immediately before entering the fluid guides individually.
  • the first embodiment acc. 1 schematically shows a micromixer of the first embodiment for the mixing of two fluid fractions A and B with a cylindrical mixing chamber 12 in the mixing chamber housing 14. Also shown is the basic arrangement of the guide member 1 with the feeders 5 and junctions 6 at the top and an orifice Feeders and junctions are arranged over the circumferential surface circumference of the one mixing chamber end in a plane, with respect to the fluids A and B in alternating sequence.
  • the guide member 1 is sealingly placed on a mixing chamber housing 14, -glued or -welded.
  • the axis of symmetry is orthogonal to the planes formed by the films.
  • the embodiments comprise a guide component 1, preferably consisting of a number of successively gas- and pressure-tight interconnected (eg via a diffusion welding process), alternately stacked films 2 and 3 (first film 2 and second film 3) between serving as a mixing chamber end (mixing chamber) Covering sheet 4 and a mixing chamber housing 14.
  • a guide component 1 preferably consisting of a number of successively gas- and pressure-tight interconnected (eg via a diffusion welding process), alternately stacked films 2 and 3 (first film 2 and second film 3) between serving as a mixing chamber end (mixing chamber) Covering sheet 4 and a mixing chamber housing 14.
  • Each plane is formed by one of the foils 2 or 3, ie the first embodiment comprises only one foil 2 or 3 (not explicitly shown in Fig.1 ).
  • the feeds 5 and the junctions 6 are incorporated as channel structures (preferably, cutting, erosive or chemically corrosive).
  • the cover films have connection openings 7 for the abovementioned fluid connections which are not shown in FIGS. 1 to 4 .
  • the connection openings adjoin the aforementioned fluid channels in the guide component, which form in the films in the film stack by a number of apertures 8 arranged congruently one above the other.
  • the fluids A and B are introduced into the fluid channels (shown in FIG. 2 by arrows on the cover film 4) and from there into the feeders 5 in order to leave the guide component via junctions 6 into the mixing chamber.
  • the surface of the guide member 1 in the region of the junctions 6 forms the flat wall 9 of the mixing chamber.
  • FIG. 3 shows detailed views of the films 2 and 3 with the apertures 8, as well as the channel structures, comprising the feeds 5 and the junctions 6 in the region of the wall 9.
  • only one feed 5 opens out of each opening 8 per film wherein the apertures form the fluid channels for the fluid fractions A and B in an alternating sequence.
  • Each foil thus forms a plane with junctions of the fluid fractions A and B in alternating sequence.
  • the channel structures of film 2 and 3 are not congruent, but have mutually arranged junctions 6 and 5 feeds. If the junctions of the first foils 2 and the second foils 3 are each offset by one junction, the checkerboard pattern of the junctions 6 of the fluids A and B shown in FIG . 3 is obtained, the junctions being oriented at an angle of 90 ° to the wall 9 ( FIG . see Fig.4).
  • junctions 6 of the fluid fractions A and B are oriented parallel to one another in the mixing chamber in favor of a laminar mixing of the abovementioned fluid flow filaments (see FIG. In principle, angles greater than 0 °, in particular between 45 and 90 °, are suitable.
  • an unequal angle and thus a crossing of the fluid flow filaments are to be striven for in principle, if a targeted adjustment of a turbulent flow state is desired directly at the junctions.
  • the angle difference is preferably above 10 °. If it is above 90 °, there will be a counterflow of the fluid flow filaments and thus in turn to an increased back pressure.
  • the foils 2 and 3 and thus the junctions (see Figures 2 and 3) and the orifices 11 (see Fig.2) are located in each one of these end portions, wherein the aforementioned guide member 1, the one end of the rotationally symmetric mixing chamber 12 completely encloses.
  • the feeds 5 shown on the second foil 3 have an offset to the openings 8, whereby the junctions 6 on the mixing chamber wall 9 with alternating sequence of the foils 2 and 3 and at a order each one confluence per plane (slide) staggered arrangement of the junctions according to a checkerboard pattern (see Fig.3 and 4).
  • the junctions are aligned with the axis of symmetry and form a right angle with each of these.
  • the junctions can be arranged askew to the axis of symmetry, whereby in a rotationally symmetrical mixing chamber, a flow direction, preferably a helical, in particular in the outer region of the mixing chamber, pretending. It makes sense to design the mixing chamber as an annular gap volume and / or to arrange the orifices in the flow direction.
  • the orifices are arranged outside the axis of symmetry.
  • FIG. 5 shows a sectional view of a further embodiment with annular gap volume as a rotationally symmetrical mixing chamber 12. It differs from the second embodiment illustrated in FIGS. 2 to 4 by the core 15 arranged around the axis of symmetry 13. If the junctions are skewed in the above-mentioned sense to the symmetry axis 13 and also aligned identically with this, the annular gap volume builds around the Core 15 in the direction of the outlet 11 a flow spiral on. 5 also shows, by way of example, the course of the fluid channels 16 formed by the openings of the foils 2 and 3.
  • FIG. 6 shows the embodiment according to FIG. 5, but with a tempering device in the mixing chamber housing-side mixing chamber wall.
  • the temperature device comprises a microfluidic heat exchanger having a microchannel structure and a flowing tempering medium, i. with two ports 1 and two distribution channels 18, between which a plurality of parallel individual channels 19 penetrates the mixing chamber housing 14.
  • other components of the static micromixer can also be tempered, i. heat or cool, such as in the region of the core, selectively the feeds and Einmündugen for a fluid fraction or the orifice.
  • tempered i. heat or cool, such as in the region of the core, selectively the feeds and Einmündugen for a fluid fraction or the orifice.
  • a temperature of the junctions can be undesirable effects of larger temperature and pressure gradients, such as cavitation or changes in the state of matter, reduce upon entry of fluid flow filaments of a fluid fraction from the junctions into the mixing chamber.
  • Fig. 7 shows a core 15 (see Fig. 5 and 6), which is divided as a double tube in two sub-volumes.
  • the annealing medium is guided axially in one direction to one end of the core in order to return it axially between the inner and outer tubes, with heat being released into the surrounding region of the mixing chamber 12.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Statischer Mikrovermischer umfassend eine Mischkammer, Zuführungen (5) für mindestens zwei zu mischende oder zu dispergierende Fluidfraktionen mit je mindestens einer Einmündung (6) in die Mischkammer sowie mindestens eine Ausmündung (11) aus der Mischkammer. Aufgabe ist es, einen statischen Mikrovermischer mit einer verbesserten Vermischungseffizienz vorzuschlagen. Die Aufgabe wird dadurch gelöst, dass die Einmündungen der Fluidfraktionen in abwechselnder Reihenfolge in mindestens einer Ebene angeordnet sind, die Mischkammer rotationssymmetrisch mit einer Symmetrieachse (13) und zwei Endbereichen gestaltet ist, wobei die Ausmündungen und die Einmündungen in je einem der Endbereiche positioniert sind sowie die Ausmündungen außerhalb der Symmetrieachse angeordnet sind.

Description

  • Die Erfindung betrifft einen statischen Mikrovermischer mit einer Mischkammer, Zuführungen für mindestens zwei zu mischende oder zu dispergierende Fluidfraktionen mit je mindestens einer Einmündung in die Mischkammer sowie mindestens eine Ausmündung aus der Mischkammer gemäß Anspruch 1.
  • Im einem Mikrovermischer werden die zu mischenden Fluide-jedes getrennt für sich - in eine große Anzahl (oftmals mehrere Tausend) von Fluidstromfäden aufgeteilt, die alle gemeinsam über die Zuführungen geführt über die Einmündungen in eine Mischkammer münden. Durch die so erreichte, eng benachbarte Anordnung der einzelnen Mikrostromfäden der beiden oder mehreren Fluidfraktionen wird auf kurzem Weg und in sehr kurze Zeit eine effektive Vermischung erzielt. Ein statischer Mikrovermischer kennzeichnet sich dadurch, dass in diesem außer den zu vermischenden Fluidfraktionen keine bewegten Teile vorgesehen sind.
  • Aus der DE 44 16 343 C2 ist ein derartiger Mikrovermischer mit wenigstens einer Mischkammer und einem vorgeschalteten Führungsbauteil für die getrennte Zufuhr von zu mischenden Fluiden zu einer Mischkammer bekannt, wobei das Führungsbauteil mit Ausdehnungen im Millimeterbereich aus mehreren, übereinander geschichteten Folien mit einer jeweiligen Dicke von ca. 100 µm Dicke zusammengesetzt ist, in die die Kanäle als Mikrostrukturen eingearbeitet sind. Die Kanäle einer Folie umfassen Zuführungen für nur eine der beiden Fluidfraktionen.
  • Ein ähnlicher Mikrovermischer, bei dem bei sonst gleichem Aufbau und Funktionsprinzip die Zuführungskanäle von für zwei zu mischenden oder zu dispergierenden Fluiden bogenförmig verlaufend parallel zueinander in die Mischkammer ausmünden, wird in DE 195 40 292 C1 beschrieben. Durch diese Anordnung verspricht man sich eine über den gesamten Ausströmquerschnitt gleichmäßig hohe und schnelle Vermischung in der Mischkammer. Die Führungskanäle haben einen gleich bleibenden Querschnitt mit Breiten kleiner 250 µm, die Folien, in denen die Kanalstrukturen eingearbeitet werden, eine Dicke von ca. 100 µm.
  • Auch in der DE 101 23 093 A1 wird ein statischer Mikrovermischer zum Mischen mindestens zweier Fluide offenbart, umfassend mehrere übereinander geschichteter strukturierter Folien. Die Mischkammer wird jedoch durch einen kreisförmigen Durchbruch in einer Folie gebildet, wobei die Einmündungen der beiden Fluide auf derselben Folie eingearbeitet in abwechselnder Reihenfolge in einer Ebene über die gesamte Mischkammerhöhe über die zylinderförmige Wandung der Mischkammer angeordnet sind. In der Mischkammer entsteht während der Vermischung eine zweidimensionale spiralförmige Strömung, die in eine mittig um die Symmetrieachse der Mischkammer angeordneten Bohrung auf einer Stirnfläche der Mischkammer (gebildet eine die Mischkammer begrenzenden Folienfläche) ausmündet.
  • Eine ähnliche Mischapparatur zur Vermischung von mindestens zwei Fluiden mit spiralförmiger Strömungsführung wird auch in der WO 02/089966 A2 beschrieben. Hier werden die Fluide jedoch in separaten Mischern in den Zuleitungen vor Eintritt in die Mischkammer zusätzlich gemischt.
  • Eine spiralförmige Strömungsführung der vorgenannten Art ist jedoch naturgemäß mit einer Strömungsverengung verbunden, die den möglichen Durchsatz signifikant begrenzt oder eine zunehmende Strömungsgeschwindigkeit bewirkt. Zudem wirken in der Strömungsspirale auf das Fluid Zentrifugalkräfte der grundlegenden Strömungsrichtung zur Mitte der Mischkammer hin entgegen. Beide Einflüsse erhöhen einen gewisser Staudruck in der Mischkammer und damit auch die Wahrscheinlichkeit von turbulenten Strömungsanteilen.
  • Auch die US 5.573.334 offenbart einen statischen Mischer für zwei Fluidfraktionen, umfassend eine zylinderförmige Mischkammer mit zwei Endbereichen, wobei je eine Einmündung pro Fluidfraktion sowie eine gemeinsame Ausmündung in je einem der Endbereiche positioniert sind. Auch hier in die Ausmündung durch eine konzentrische Bohrung im Boden der zylinderförmigen Mischkammer realisiert - grundsätzlich verbunden mit den vorgenannten Auswirkungen.
  • Davon ausgehend besteht die Aufgabe der Erfindung darin, einen statischen Mikrovermischer der gattungsgemäßen Bauart mit einer verbesserten Vermischungseffizienz bereits in der laminaren Fluidströmung vorzuschlagen, wobei die genannten den Durchfluss behindernden und -begrenzenden Nachteile reduziert werden sollen.
  • Diese Aufgabe wird durch die kennzeichnenden Merkmale in Anspruch 1 gelöst; die hierauf bezogenen Unteransprüche beinhalten vorteilhafte Ausführungsformen dieser Lösung.
  • Die Erfindung umfasst eine rotationssymmetrische Mischkammer mit einer Symmetrieachse und zwei Endbereichen, eine Anzahl von Zuführungen für mindestens zwei zu mischende oder zu dispergierende Fluidfraktionen mit je mindestens einer Einmündung in die Mischkammer sowie mindestens eine Ausmündung aus der Mischkammer. Alle Einmündungen befinden sich ausschließlich in einem der beiden Endbereiche, während die Ausmündungen im anderen Endbereich positioniert sind. Vorzugsweise sind die Einmündungen der Fluidfraktionen über dem Umfang der Mantelfläche der Mischkammer, d.h. nicht auf der Stirnfläche in abwechselnder Reihenfolge in einer oder mehreren Ebene angeordnet.
  • Ein wesentliches Merkmal der Erfindung betrifft die Anordnung der Einmündungen der Fluidfraktionen in die Mischkammer, und zwar in abwechselnder Reihenfolge. Die abwechselnde Reihenfolge der Einmündungen und damit der in die Mischkammer einströmenden Fluidstromfäden stellt damit eine hohe spezifische Vermischungsfläche zwischen den zu mischenden oder dispergierenden Fluidfraktionen in der Mischkammer sicher. Bei Anordnung der Einmündungen in mehreren Ebenen und bei einem zusätzlichen Versatz der Einmündungen in einer Ebene zu denen in der jeweils benachbarten Ebene, erhält man eine weitgehende, möglichst vollständige Ummantelung der Fluidstromfäden einer Fluidfraktion durch Fluidstromfäden der jeweils anderen Fraktion.
  • Ein wesentliches Merkmal der Erfindung umfasst eine nicht konzentrische Anordnung der Ausmündung in der Mischkammer. Vorzugsweise sind die Ausmündungen im außen liegenden Bereich der Mischkammer, vorzugsweise der Mantelfläche angeordnet. Somit sind von der Fluidmischung die vorgenannten möglichen Zentrifugalkräfte, die der Strömung entgegenwirken nicht in der Höhe, wie im Stand der Technik zu erwarten, zu überwinden. Ein sich bei rotationssymmetrischen Mischkammern gemäß des Stands der Technik einstellende und eine turbulente Vermischung fördernde Staudruck wird hier ebenfalls gezielt reduziert. Grundsätzlich ist der Staudruck bei der Erfindung auch nicht erforderlich, da die Vermischung in vorgenannter Weise im Bereich der laminaren Fluidstromfäden in ausreichender Weise erfolgt.
  • Turbulente Strömungsanteile verbessern zwar grundsätzlich die Effizienz einer Durchmischung oder Dispergierung der Fluidstromfäden in der Mischkammer, verursachen allerdings auch größere, bei bestimmten, insbesondere reaktiven Vermischungsvorgängen unbedingt zu vermeidenden Verweilzeitunterschiede der Fluidmischungen in der Mischkammer. Durch eine Vermeidung oder Reduzierung von turbulenter Strömung sinken in vorteilhafter Weise auch die vorgenannten Verweilzeitunterschiede, insbesondere im Vergleich zu den Vorrichtungen gemäß des Stands der Technik.
  • Sind die Einmündungen einer Ebene zu denen in der jeweils benachbarten Ebene um jeweils eine Einmündung versetzt angeordnet, erhält man eine Einbettung der in die Mischkammer einströmenden Fluidstromfäden in jeweils eine oder mehrere andere Fluidfraktionen. Idealerweise grenzt jeder der Fluidstromfäden vollständig, d.h. an allen Seiten an Fluidstromfäden einer anderen Fluidfraktion, womit eine größtmögliche spezifische Vermischungsfläche zwischen den Fluidfraktionen und in Folge dessen eine weitere Verbesserung der Vermischungseffizienz erzielbar ist. Bei der Vermischung oder Dispergierung von zwei Fluidfraktionen entsteht idealer weise eine Anordnung der einzelnen Einmündungsquerschnitte ähnlich einer Schachbrettanordnung.
  • Die Ausrichtung der Einmündungen zur Mischkammerwandung, d.h. der Einstrählungwinkel der Fluidstromfäden erfolgt zwischen 0° (parallel zur Mischkammerwandung) und 90° (orthogonal zu der Mischkammerwandung) vorzugsweise zugunsten einer laminaren Strömung parallel zueinander in Richtung des oder der Auslässe. Vorzugsweise sind die Einmündungen zur Erzeugung einer bevorzugten wendelförmigen Fluidführung in der Mischkammer tangential vorzugsweise mit einem geringen Steigungswinkel zu der als Wandung dienenden Mantelfläche der Mischkammer angeordnet.
  • Konstruktiv wird die Aufgabe dadurch gelöst, dass die Ebenen durch gestapelte Folien mit Rillen als Fluidführungen gebildet sind, wobei die Zuführungen pro Fluidfraktion über Fluidkanäle, umfassend übereinander liegende Durchbrüche in den Folien, fluidisch miteinander verbunden sind. Die übereinander liegenden Durchbrüche bilden im Folienstapel die Fluidkanäle, von denen sich die Fluidführungen zur Mischkammer abzweigen. Die Fluidanschlüsse an die Fluidkanäle sind vorzugsweise auf der jeweils begrenzenden äußeren Deckfolie aufgesetzt. Alternativ ist eine Zuführung auch über Kanäle auf einer oder mehreren Folien realisierbar, wobei vorzugsweise die jeweils begrenzenden äußeren Deckfolien dichtend die Fluidkanäle abdecken.
  • Der vorgenannte geringe Steigungswinkel der Einmündungen erzielt man beispielsweise durch eine Gestaltung der Folien ganz oder nur im Bereich der Einmündungen, d.h. unmittelbar in an der Wandung der Mischkammer als Kegelstumpfmantelflächen. Dies ist beispielsweise über eine Kaltumformung der Einzelfolien oder des Folienstapels vor der Verbindung der Folien untereinander zum Führungsbauteil z.B. über ein Diffusionsschweißen realisierbar.
  • Es bietet sich ferner an, die Fluidkanäle mit entsprechenden Mitteln für Messungen wie z.B. einem Thermoelement oder für eine Temperierung oder eine Druckmessung wie z.B. mit einem Heizelement oder einem fluidischen Wärmtauscher auszustatten und entsprechend zu dimensionieren, wodurch sich die die Fluidfraktionen in vorteilhafter Weise unmittelbar vor Eintritt in die Fluidführungen individuell konfektionieren lassen.
  • Die Erfindung sowie Details dieser werden beispielhaft anhand von Ausführungsformen und folgenden Figuren näher erläutert. Es zeigen
    • Fig.1a und b die prinzipielle Seiten- und Draufsicht einer ersten Ausführungsform,
    • Fig.2 die perspektivische Ansicht einer zweiten Ausführungsform eines Mikrovermischers,
    • Fig.3 eine perspektivische Detailansicht der Einmündungen in die Mischkammer mit zylindrischer Wandung der zweiten Ausführungsform,
    • Fig.4 die Aufsichten mehrerer Folien der zweiten Ausführungsform,
    • Fig.5 eine Schnittdarstellung einer dritten Ausführungsform mit einem Ringspaltvolumen als Mischkammer,
    • Fig.6 eine perspektivische Detailschnittansicht eines Mischkammerabschnitts mit einer fluidischen Temperierungsvorrichtung sowie
    • Fig.7 eine perspektivische Schnittdarstellung einer Temperierungsvorrichtung für ein Ringspaltvolumen gemäß der dritten Ausführungsform.
  • Die erste Ausführungsform gem. Fig.1 zeigt schematisch einen Mikrovermischer der ersten Ausführungsform für die Vermischung von zwei Fluidfraktionen A und B mit einer zylinderförmigen Mischkammer 12 im Mischkammergehäuse 14. Dargestellt ist ferner die prinzipielle Anordnung des Führungsbauteils 1 mit den Zuführungen 5 und Einmündungen 6 am oberen Ende sowie einer Ausmündung 11 am unteren Ende des Mischkammergehäuses 14. Zuführungen und Einmündungen sind über den Mantelflächenumfang des einen Mischkammerendes in einer Ebene angeordnet, und zwar in Bezug auf die Fluide A und B in abwechselnder Reihenfolge. Das Führungsbauteil 1 ist dichtend auf ein Mischkammergehäuse 14 aufgesetzt, -geklebt oder -geschweißt. Vorzugsweise ist die Symmetrieachse orthogonal zu den Ebenen, die durch die Folien gebildet werden ausgerichtet.
  • Eine zweite Ausführungsform des statischen Mikrovermischers geben Fig.2 bis 4 wieder. Sie unterscheidet sich durch die erste Ausführungsform gem. Fig.1 im Wesentlichen durch die Anordnung der Einmündungen und Zuführungen in mehreren Ebenen. Beide Ausführungsformen zeichnen sich durch eine um eine Symmetrieachse 13 rotationssymmetrische vorzugsweise zylinderförmige Mischkammer 12 mit zwei Endbereichen aus.
  • Beide vorgenannten Ausführungsformen sind grundsätzlich ähnlich aufgebaut. Dieser Aufbau wird anhand der zweiten Ausführungsform wie folgt näher erläutert (vgl. Fig.2 bis 4). Die Ausführungsformen umfassen ein Führungsbauteil 1, vorzugsweise bestehend aus einer Anzahl von aufeinander gas- und druckdicht miteinander verbundener (z.B. über einen Diffusionsschweißprozess), abwechselnd gestapelter Folien 2 und 3 (erste Folie 2 und zweite Folie 3) zwischen einer als Mischkammerabschluss (Mischkammerende) dienende Deckfolie 4 und einem Mischkammergehäuse 14. Jede Ebene wird durch eine der Folien 2 oder 3 gebildet, d.h. die erste Ausführungsform umfasst nur eine Folie 2 oder 3 (in Fig.1 nicht explizit dargestellt). Auf den Folien 2 und 3 sind die Zuführungen 5 und die Einmündungen 6 als Kanalstrukturen eingearbeitet (vorzugsweise spangebend, erosiv oder chemisch ätzend). Die Deckfolien weisen Anschlussöffnungen 7 für die vorgenannten, in Fig.1 bis 4 aber nicht weiter dargestellte Fluidanschlüsse auf. Die Anschlussöffnungen schließen sich im Führungsbauteil an die vorgenannten Fluidkanäle an, welche sich durch eine Anzahl übereinander deckungsgleich angeordneter Durchbrüche 8 in den Folien im Folienstapel bilden. Durch diese Anschlussöffnungen erfolgt eine Einleitung der Fluide A und B in die Fluidkanäle (dargestellt in Fig.2 durch Pfeile auf der Deckfolie 4) und von dort in die Zuführungen 5, um das Führungsbauteil über Einmündungen 6 in die Mischkammer zu verlassen. Die Fläche des Führungsbauteils 1 im Bereich der Einmündungen 6 bildet dabei die ebene Wandung 9 der Mischkammer.
  • Fig.3 zeigt anhand Detailansichten die Folien 2 und 3 mit den Durchbrüchen 8, sowie die Kanalstrukturen, umfassend die Zuführungen 5 und die Einmündungen 6 im Bereich der Wandung 9. Im Rahmen dieser Ausführungsform mündet je Folie nur eine Zuführung 5 aus jeden Durchbruch 8 aus, wobei die Durchbrüche die Fluidkanäle für die Fluidfraktionen A und B in abwechselnder Reihenfolge bilden. Jede Folie bildet somit eine Ebene mit Einmündungen der Fluidfraktionen A und B in abwechselnder Reihenfolge. Andererseits sind die Kanalstrukturen von Folie 2 und 3 nicht deckungsgleich, sondern weisen versetzt zueinander angeordnete Einmündungen 6 und Zuführungen 5 auf. Sind die Einmündungen der ersten Folien 2 und der zweiten Folien 3 um jeweils eine Einmündung versetzt, erhält man das in Fig.3 dargestellte Schachbrettmuster der Einmündungen 6 der Fluide A und B, wobei die Einmündungen im Winkel von 90° zur Wandung 9 orientiert sind (vgl. Fig.4).
  • Idealerweise sind die Einmündungen 6 der Fluidfraktionen A und B zugunsten einer laminaren Vermischung der vorgenannten Fluidstromfäden aber in der Mischkammer parallel zueinander orientiert (vgl. Fig.2). Dabei bieten sich grundsätzlich Winkel größer 0° vorzugsweise zwischen 45 und 90° an.
  • Ein ungleicher Winkel und damit ein Überkreuzen der Fluidstromfäden sind dagegen grundsätzlich anzustreben, wenn eine gezielte Einstellung eines turbulenten Strömungszustands unmittelbar an den Einmündungen angestrebt wird. Der Winkelunterschied liegt dabei bevorzugt oberhalb 10°. Liegt er oberhalb von 90°, kommt es zu einem Gegeneinanderströmen der Fluidstromfäden und damit wiederum zu einem erhöhten Staudruck.
  • Die Folien 2 und 3 und damit die Einmündungen (vgl. Fig.2 und 3) und die Ausmündungen 11 (vgl. Fig.2) befinden sich in je einem dieser Endbereiche, wobei das vorgenannte Führungsbauteil 1 das eine Ende der rotationssymmetrischen Mischkammer 12 vollständig umschließt. Analog zu den in Fig.2 dargestellten Folien 2 und 3 weisen die dargestellten Zuführungen 5 auf der zweiten Folie 3 einen Versatz zu den Durchbrüchen 8 auf, womit sich die Einmündungen 6 an der Mischkammerwandung 9 bei abwechselnder Reihenfolge der Folien 2 und 3 und bei einer um je eine Einmündung pro Ebene (Folie) versetzter Anordnung der Einmündungen gemäß eines Schachbrettmusters anordnen (vgl. Fig.3 und 4).
  • In der dargestellten Form sind die Einmündungen zur Symmetrieachse hin ausgerichtet und bilden mit dieser jeweils einen rechten Winkel. Alternativ lassen sich die Einmündungen windschief zu der Symmetrieachse anordnen, womit man in einer rotationssymmetrischen Mischkammer eine Strömungsrichtung, vorzugsweise eine wendelförmige insbesondere im außen liegenden Bereich der Mischkammer, vorgibt. Dabei bietet es sich an, die Mischkammer als Ringspaltvolumen zu gestalten und/oder die Ausmündungen in Strömungsrichtung anzuordnen. Vorzugsweise sind die Ausmündungen außerhalb der Symmetrieachse angeordnet. Eine möglichst strickte gleichartige geometrische Ausrichtung aller Einmündungen in ihrer Anordnung zu der Symmetrieachse für beide der Fluidfraktionen begünstigt eine laminare Vermischung der Fluidstromfäden in vorgenannter Weise.
  • Fig.5 zeigt eine Schnittdarstellung einer weiteren Ausführungsform mit Ringspaltvolumen als rotationssymmetrische Mischkammer 12. Sie unterscheidet sich von der in Fig.2 bis 4 dargestellten zweiten Ausführungsform durch den um die Symmetrieachse 13 angeordneten Kern 15. Sind die Einmündungen im vorgenannten Sinne windschief zu der Symmetrieachse 13 und zu dieser auch gleichartig ausgerichtet, baut sich im Ringspaltvolumen um den Kern 15 in Richtung der Ausmündung 11 eine Strömungswendel auf. Fig.5 zeigt zudem beispielhaft den verlauf der durch die Durchbrüche der Folien 2 und 3 gebildeten Fluidkanäle 16.
  • Fig.6 zeigt die Ausführungsform gemäß Fig.5, jedoch mit einer Temperiervorrichtung in der Mischkammergehäuseseitigen Mischkammerwandung. In der dargestellten Ausführung umfasst die Temperaturvorrichtung einen mikrofluidischen Wärmetauscher mit Mikrokanalstruktur und einem durchfließenden Temperiermedium, d.h. mit zwei Anschlüssen 1 und zwei Verteilerkanälen 18, zwischen denen eine Vielzahl von parallel geschalteten Einzelkanälen 19 das Mischkammergehäuse 14 durchdringt.
  • Alternativ lassen sich auch andere Komponenten des statischen Mikrovermischers temperieren, d.h. heizen oder kühlen, wie z.B. im Bereich des Kerns, selektiv die Zuführungen und Einmündugen für eine Fluidfraktion oder die Ausmündung. Insbesondere bei einer Temperierung der Einmündungen lassen sich unerwünschte Auswirkungen von größeren Temperatur- und Druckgradienten, beispielsweise Kavitation oder Änderungen des Aggregatzustands, bei Eintritt von Fluidstromfäden einer Fluidfraktion aus den Einmündungen in die Mischkammer reduzieren.
  • Fig.7 zeigt einen Kern 15 (vgl. Fig.5 und 6), welcher als doppeltes Rohr in zwei Teilvolumina unterteilt ist. Im Innenrohr 20 wird das Tempereiermedium axial in eine Richtung zum einen Ende des Kerns geführt, um es zwischen Innen- und Außenrohr unter Wärmeabgabe in den umgebenden Bereich der Mischkammer 12 axial wieder zurück zuleiten.
  • Bezugszeichenliste
  • 1
    Führungsbauteil
    2
    erste Folie
    3
    zweite Folie
    4
    Deckfolie
    5
    Zuführung
    6
    Einmündung
    7
    Anschlussöffnung
    8
    Durchbruch
    9
    Wandung
    11
    Ausmündung
    12
    Mischkammer
    13
    Symmetrieachse
    14
    Mischkammergehäuse
    15
    Kern
    16
    Fluidkanal

Claims (13)

  1. Statischer Mikrovermischer umfassend
    a) eine Mischkammer (12),
    b) Zuführungen (5) für mindestens zwei zu mischende oder zu dispergierende Fluidfraktionen mit je mindestens einer Einmündung (6) in die Mischkammer sowie
    c) mindestens eine Ausmündung (11) aus der Mischkammer wobei
    d) die Einmündungen der Fluidfraktionen in abwechselnder Reihenfolge in mindestens einer Ebene angeordnet sind,
    e) die Mischkammer rotationssymmetrisch mit einer Symmetrieachse (13) und zwei Endbereichen gestaltet ist, wobei die Ausmündungen und die Einmündungen in je einem der Endbereiche positioniert sind sowie
    f) die Ausmündungen außerhalb der Symmetrieachse angeordnet sind.
  2. Statischer Mirkovermischer nach Anspruch 1, dadurch gekennzeichnet, dass Einmündungen (6) in mindestens zwei Ebenen angeordnet sind, wobei die Einmündungen einer Ebene zu denen in der jeweils benachbarte Ebene versetzt angeordnet sind.
  3. Statischer Mikrovermischer nach Anspruch 2, dadurch gekennzeichnet, dass die Einmündungen (6) einer Ebene zu denen in der jeweils benachbarten Ebene um jeweils eine Einmündung versetzt angeordnet sind.
  4. Statischer Mikrovermischer nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass alle Einmündungen (6) je Fluidfraktion in einem Winkel zur Wandung der Mischkammer ausgerichtet sind, wobei dieser Winkel zwischen 0 und 90° liegt.
  5. Statischer Mikrovermischer nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Ebenen durch gestapelte Folien (2, 3) mit Rillen als Fluidführungen gebildet sind, wobei die Zuführungen (5) pro Fluidfraktion über Fluidkanäle, umfassend übereinander liegende Durchbrüche (8) in den Folien (2, 3), fluidisch miteinander verbunden sind.
  6. Statischer Mikrovermischer nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Symmetrieachse (13) orthogonal zu den Ebenen ausgerichtet ist.
  7. Statischer Mikrovermischer nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Einmündungen (6) windschief zu der Symmetrieachse (13) angeordnet sind.
  8. Statischer Mikrovermischer nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Mischkammer (12) ein Ringspaltvolumen ist.
  9. Statischer Mikrovermischer nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass alle Einmündungen (6) in ihrer Anordnung zu der Symmetrieachse (13) für jede Fluidfraktion gleichartig ausgerichtet sind.
  10. Statischer Mikrovermischer nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Einmündungen (6) in der Mischkammer (12) eine Strömungsrichtung vorgeben sowie die Ausmündungen (11) in ihrer Anordnung zu der Symmetrieachse (13) gleichartig ausgerichtet sind.
  11. Statischer Mikrovermischer nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Ausmündungen (11) in einer Strömungsrichtung ausgerichtet sind.
  12. Statischer Mikrovermischer nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Mischkammer Wandungen (9) mit einer Temperierungsvorrichtung aufweist.
  13. Statischer Mikrovermischer nach Anspruch 13, dadurch gekennzeichnet, dass die Temperierungsvorrichtung eine Mikrokanalstruktur mit einem durchfließenden Temperiermedium umfasst.
EP05027041A 2004-12-23 2005-12-10 Statischer Mikrovermischer Active EP1674150B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004062076A DE102004062076A1 (de) 2004-12-23 2004-12-23 Statischer Mikrovermischer

Publications (3)

Publication Number Publication Date
EP1674150A2 true EP1674150A2 (de) 2006-06-28
EP1674150A3 EP1674150A3 (de) 2006-07-05
EP1674150B1 EP1674150B1 (de) 2007-06-13

Family

ID=35986618

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05027041A Active EP1674150B1 (de) 2004-12-23 2005-12-10 Statischer Mikrovermischer

Country Status (3)

Country Link
EP (1) EP1674150B1 (de)
AT (1) ATE364438T1 (de)
DE (2) DE102004062076A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009124531A2 (de) * 2008-04-11 2009-10-15 Fa. Jarus Gmbh Mischkopf für flüssige und pastöse komponenten
FR2936959A3 (fr) * 2008-10-14 2010-04-16 Renault Sas Dispositif de melange de gaz.
WO2011091962A1 (en) 2010-01-28 2011-08-04 Cargill, Incorporated Microprocessing for preparing a polycondensate
EP2433970A1 (de) 2010-09-28 2012-03-28 Cargill, Incorporated Mikroprozesstechnik zur Herstellung eines Polykondensats
WO2021195534A1 (en) 2020-03-26 2021-09-30 Cargill, Incorporated Microprocessing for preparing modified protein
WO2023159172A1 (en) 2022-02-17 2023-08-24 Cargill, Incorporated Resistant dextrins and methods of making resistant dextrins
WO2023159171A1 (en) 2022-02-17 2023-08-24 Cargill, Incorporated Resistant dextrins and methods of making resistant dextrins
WO2023159173A1 (en) 2022-02-17 2023-08-24 Cargill, Incorporated Resistant dextrins and methods of making resistant dextrins
WO2023159175A1 (en) 2022-02-17 2023-08-24 Cargill, Incorporated Resistant dextrins and methods of making resistant dextrins

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008009199A1 (de) 2008-02-15 2009-08-27 Forschungszentrum Karlsruhe Gmbh Reaktionsmischersystem zur Vermischung und chemischer Reaktion von mindestens zwei Fluiden
JP2010000428A (ja) * 2008-06-19 2010-01-07 Hitachi Plant Technologies Ltd マイクロリアクタ
DE102010051225A1 (de) * 2010-11-12 2012-05-16 Dental Care Innovation Gmbh Ausspülkammer für Reinigungstabletten
USD825741S1 (en) 2016-12-15 2018-08-14 Water Pik, Inc. Oral irrigator handle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002089966A2 (en) * 2001-05-07 2002-11-14 Uop Llc Apparatus for mixing and reacting at least two fluids
US20030039169A1 (en) * 1999-12-18 2003-02-27 Wolfgang Ehrfeld Micromixer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523063A (en) * 1992-12-02 1996-06-04 Applied Materials, Inc. Apparatus for the turbulent mixing of gases
DE4416343C2 (de) * 1994-05-09 1996-10-17 Karlsruhe Forschzent Statischer Mikro-Vermischer
DE19540292C1 (de) * 1995-10-28 1997-01-30 Karlsruhe Forschzent Statischer Mikrovermischer
DE10041823C2 (de) * 2000-08-25 2002-12-19 Inst Mikrotechnik Mainz Gmbh Verfahren und statischer Mikrovermischer zum Mischen mindestens zweier Fluide
DE10123093A1 (de) * 2001-05-07 2002-11-21 Inst Mikrotechnik Mainz Gmbh Verfahren und statischer Mikrovermischer zum Mischen mindestens zweier Fluide
DE10123092B4 (de) * 2001-05-07 2005-02-10 INSTITUT FüR MIKROTECHNIK MAINZ GMBH Verfahren und statischer Mischer zum Mischen mindestens zweier Fluide
JP4431857B2 (ja) * 2003-05-30 2010-03-17 富士フイルム株式会社 マイクロデバイス

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030039169A1 (en) * 1999-12-18 2003-02-27 Wolfgang Ehrfeld Micromixer
WO2002089966A2 (en) * 2001-05-07 2002-11-14 Uop Llc Apparatus for mixing and reacting at least two fluids

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009124531A2 (de) * 2008-04-11 2009-10-15 Fa. Jarus Gmbh Mischkopf für flüssige und pastöse komponenten
WO2009124531A3 (de) * 2008-04-11 2010-01-28 Fa. Jarus Gmbh Mischkopf für flüssige und pastöse komponenten
FR2936959A3 (fr) * 2008-10-14 2010-04-16 Renault Sas Dispositif de melange de gaz.
WO2011091962A1 (en) 2010-01-28 2011-08-04 Cargill, Incorporated Microprocessing for preparing a polycondensate
EP2433970A1 (de) 2010-09-28 2012-03-28 Cargill, Incorporated Mikroprozesstechnik zur Herstellung eines Polykondensats
WO2021195534A1 (en) 2020-03-26 2021-09-30 Cargill, Incorporated Microprocessing for preparing modified protein
WO2023159172A1 (en) 2022-02-17 2023-08-24 Cargill, Incorporated Resistant dextrins and methods of making resistant dextrins
WO2023159171A1 (en) 2022-02-17 2023-08-24 Cargill, Incorporated Resistant dextrins and methods of making resistant dextrins
WO2023159173A1 (en) 2022-02-17 2023-08-24 Cargill, Incorporated Resistant dextrins and methods of making resistant dextrins
WO2023159175A1 (en) 2022-02-17 2023-08-24 Cargill, Incorporated Resistant dextrins and methods of making resistant dextrins

Also Published As

Publication number Publication date
DE102004062076A1 (de) 2006-07-06
ATE364438T1 (de) 2007-07-15
EP1674150B1 (de) 2007-06-13
EP1674150A3 (de) 2006-07-05
DE502005000859D1 (de) 2007-07-26

Similar Documents

Publication Publication Date Title
EP1674150B1 (de) Statischer Mikrovermischer
EP1674152B1 (de) Statischer Mikrovermischer
EP1866066B1 (de) Mischersystem, Reaktor und Reaktorsystem
EP0758917B1 (de) Statischer mikro-vermischer
DE19536856C2 (de) Mikromischer und Mischverfahren
EP0857080B1 (de) Statischer mikrovermischer
EP1242171B1 (de) Mikrovermischer
DE10041823C2 (de) Verfahren und statischer Mikrovermischer zum Mischen mindestens zweier Fluide
EP1525426B1 (de) Mikrostrukturapparat zum erhitzen und zerstäuben eines fluids
EP0879083B1 (de) Vorrichtung zum mischen kleiner flüssigkeitsmengen
DE19917148C2 (de) Verfahren und Mikrovermischer zur Herstellung einer Dispersion
DE19604289C2 (de) Mikromischer
EP1572335A2 (de) Statischer laminationsmikrovermischer
DE10296876T5 (de) Mikro-Mischer
EP2090353B1 (de) Reaktionsmischersystem zur Vermischung und chemischer Reaktion von mindestens zwei Fluiden
EP1703969B1 (de) Verfahren und vorrichtung zum mischen wenigstens zweier fluide in einem mikromischreaktor
EP2321538A1 (de) Mikrofluidvorrichtung
DE3920123C1 (de)
EP2662131B1 (de) Emulgiervorrichtung
DE10356369B4 (de) Vorrichtungen und Verfahren zum Erzeugen von Fluidanordnungen aus Fluiden
EP3822569A1 (de) Wärmetauscher
DE102009039397A1 (de) Mikrostrukturverdampfer
DE10206708B4 (de) Mikrokanalsystem
EP4089357A1 (de) Wärmetauscher
DE10206707A1 (de) Mehrstufiges Kanalsystem für Fluide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20060720

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005000859

Country of ref document: DE

Date of ref document: 20070726

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070913

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070913

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070924

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071013

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: INSTITUT FUER MIKROTECHNIK MAINZ GMBH

Effective date: 20080313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070914

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

NLR1 Nl: opposition has been filed with the epo

Opponent name: INSTITUT FUER MIKROTECHNIK MAINZ GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071214

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070613

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KARLSRUHER INSTITUT FUER TECHNOLOGIE

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: KARLSRUHER INSTITUT FUER TECHNOLOGIE

Effective date: 20091209

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLAO Information deleted related to despatch of communication that opposition is rejected

Free format text: ORIGINAL CODE: EPIDOSDREJ1

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20100309

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: FORSCHUNGSZENTRUM KARLSRUHE GMBH

Free format text: FORSCHUNGSZENTRUM KARLSRUHE GMBH#WEBERSTRASSE 5#76133 KARLSRUHE (DE) -TRANSFER TO- FORSCHUNGSZENTRUM KARLSRUHE GMBH#WEBERSTRASSE 5#76133 KARLSRUHE (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: GARTENSTRASSE 28 A, 5400 BADEN (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502005000859

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01F0005040000

Ipc: B01F0025300000

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231219

Year of fee payment: 19

Ref country code: FR

Payment date: 20231219

Year of fee payment: 19

Ref country code: DE

Payment date: 20231214

Year of fee payment: 19

Ref country code: AT

Payment date: 20231214

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231218

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240110

Year of fee payment: 19