EP1673491A2 - Konstruktionseinheit für bipolare elektrolyseure - Google Patents

Konstruktionseinheit für bipolare elektrolyseure

Info

Publication number
EP1673491A2
EP1673491A2 EP04765737A EP04765737A EP1673491A2 EP 1673491 A2 EP1673491 A2 EP 1673491A2 EP 04765737 A EP04765737 A EP 04765737A EP 04765737 A EP04765737 A EP 04765737A EP 1673491 A2 EP1673491 A2 EP 1673491A2
Authority
EP
European Patent Office
Prior art keywords
shells
shell
electrode
unit according
construction unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04765737A
Other languages
English (en)
French (fr)
Inventor
Fritz Gestermann
Andreas Bulan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Publication of EP1673491A2 publication Critical patent/EP1673491A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/036Bipolar electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Definitions

  • the invention relates to a construction unit for bipolar electrolysers according to the filter press technology, in particular for the electrolysis of an aqueous solution of hydrogen chloride according to the membrane process.
  • electrochemical cells for the electrolysis of aqueous solutions of hydrogen chloride usually consist of titanium or a titanium alloy, for example a titanium-palladium alloy.
  • an oxidizing agent with a redox potential of preferably 0.3-0.6 V compared to the normal hydrogen electrode is added to the hydrochloric acid as corrosion protection.
  • Trivalent iron is chosen as the preferred oxidizing agent.
  • the object of the present invention is therefore to provide a design unit for bipolar electrolysers for the electrolysis of aqueous solutions of hydrogen chloride by the membrane process, which is less susceptible to corrosion, leads to less voltage losses and at the same time consists of less expensive materials. Is ben operated with bipolar circuit are the Konstrul tion unit is according to the 'filter press technology incorporated into an electrolyzer.
  • the invention relates to a construction unit for bipolar electrolyzers according to the filter press technology, at least comprising a first half-shell, a second half-shell and a frame-shaped support element, at least one of the half-shells containing plastic, the two half-shells being arranged within the support element such that the rear wall of the first th half-shell and the rear wall of the second half-shell lie against one another, the support element and the two half-shells have at least two openings for the supply and discharge of electrolyte and / or gas, and the two half-shells have openings in the bottom one above the other for receiving at least one electrically conductive
  • a connecting element to which a first electrode is fastened in the first half-shell and a second electrode in the second half-shell
  • an electrochemical cell consisting of an anode half element, a cathode half element and one of the two half elements from each other separating ion exchange membrane, form a construction unit for the construction of an electrolyser
  • the construction unit in filter press technology is formed from an anode half-element of an electrochemical cell and a cathode half-element of an adjacent electrochemical cell, the two half-elements being arranged back to back to each other.
  • an electrochemical cell is therefore formed from a half element of one Konsu ⁇ itechnischsemheit and a half element of the adjacent construction unit, the two half elements, which form an electrochemical cell, are separated from each other with an ion exchange membrane.
  • the frame-shaped support element into which the two half-shells of two adjacent electrochemical cells are inserted and which together with the two half-shells and the connecting elements and the two electrodes, which serve as cathode and anode, form the constructional unit according to the invention, preferably consists of metal, in particular made of steel or one with plastic, e.g. Polyvinylidene fluoride (PVDF) or polyvinyl chloride (PNC), coated steel.
  • PVDF Polyvinylidene fluoride
  • PNC polyvinyl chloride
  • the half-shells each consist of a base and a circumferential, preferably angled, edge with which they are inserted into the carrier element.
  • the peripheral edge lies on the support element.
  • the two half-shells, the anode half-shell and the cathode half-shell, are inserted into the carrier element in such a way that the half-shells lie back to back to one another, i.e. the bottoms of the half-shells lie against one another with their outer sides (rear walls).
  • the half-shells can be manufactured as two separate components, which are connected to one another either releasably or non-releasably. Alternatively, the half-shells can also be formed in one piece.
  • the half-shells are preferably releasably connected to one another.
  • the bottoms of the half-shells have openings for receiving the connecting elements. If the half-shells are placed together with their rear walls, the openings in the half-shells come to lie on top of one another. This makes it possible to guide the connecting elements through the half shells.
  • the openings can be of any shape, e.g. to be round, angular.
  • the two half-shells of the half elements can be identical. But they can also have different depths.
  • a gas diffusion electrode is preferably used as the cathode in the construction unit. In this case, the cathode half-shell is preferably less deep than the anode half-shell, which saves material on the one hand and space for the electrolyzer on the other.
  • the electrolysis of an aqueous solution of hydrogen chloride is preferably carried out at temperatures from 30 to 70 ° C.
  • At least one of the half-shells contains plastic.
  • Both half shells are preferably made of plastic, in particular polyvinyl fluoride (PVDF), polytetrafluoroethylene (PTFE) or chlorinated polyvinyl chloride (CPVC).
  • PVDF polyvinyl fluoride
  • PTFE polytetrafluoroethylene
  • CPVC chlorinated polyvinyl chloride
  • the connecting elements can be bolts, pins, screws or the like. his.
  • the two half-shells are preferably on at least one end of the connecting elements, e.g. releasably connected by means of a screw-nut connection.
  • the connecting elements are preferably bolts, pins or the like, which have an external thread on at least one end and are connected with a threaded nut to the anode half-shell on the one hand and the cathode half-shell on the other.
  • the connecting elements also take over the function of the StiOm supply to the electrodes in the two half-elements.
  • the connecting elements are therefore electrically conductive.
  • the connecting elements are made of titanium, an acid-resistant titanium alloy or coated with an acid-resistant titanium alloy.
  • the connecting elements preferably have a core made of a metal with high electrical conductivity, in particular copper, and a sleeve made of titanium or a titanium alloy, in particular a titanium-palladium alloy or titanium-ruthenium alloy. This embodiment of the connecting elements advantageously uses the high conductivity of the copper.
  • the two electrodes, which serve as an anode and cathode, are attached to the connecting elements with low resistance.
  • the connecting elements can be welded to the connecting elements, ie they cannot be releasably connected.
  • This can be done, for example, by using a screw-like or bolt-like connecting element, in which the screw head fits into one of the half shells, for example. the anode half-shell, and the other end of the threaded connection element with the threaded nut in the other half-shell, for example the cathode half-shell, protrudes.
  • the electrode for example the anode
  • the electrodes are detachably attached to the connecting elements, for example by screwing.
  • the connecting elements have a thread on at least one end.
  • the detachable connection of the electrodes to the connecting elements is advantageous because the electrodes can be installed and removed with relatively little effort if they have to be replaced due to wear of the electrochemically active coating or damage.
  • the electrode serving as the anode is not detachably connected to the connecting elements, for example by means of welding, while the electrode serving as the cathode, in particular a gas diffusion electrode, is detachably connected to the connecting elements, for example by means of screws.
  • the number of connecting elements depends on the material and thickness they are made of and the transverse conductivity of the anode and cathode. The higher the electrical conductivity of the material and the transverse conductivity of the electrodes, the fewer bolts are required. In addition, the thinner the connecting elements, the more connecting elements are used. The distance between two adjacent connecting elements is in the range of 10 to 20 cm.
  • the anode consists, for example, of titanium, a titanium alloy, in particular a titanium-palladium alloy, which consists, for example, with an acid-resistant coating based on a ruthenium-titanium mixed oxide or ruthenium-titanium-iridium oxide.
  • the cathode can be constructed similarly to the anode. However, it can also be equipped with other coatings' depending on the application.
  • a gas diffusion electrode as the cathode, a material corresponding to the anode can be used as a carrier for the coating containing the catalyst.
  • a gas diffusion electrode can be used which contains a platinum group catalyst, preferably platinum or rhodium.
  • Examples include gas diffusion electrodes from E-TEK (USA), which have 30% by weight platinum as a catalyst on a carbon substrate with a noble metal coating of 1.2 mg Pt / cm 2 .
  • the gas diffusion electrode is operated as an oxygen consumable cathode.
  • pin-shaped spacer elements are preferably provided between the anode half-shell and the anode and / or between the cathode half-shell and the cathode. These spacer elements prevent any deformation of the electrodes or the half-shells, so that the distance between the anode and cathode remains constant.
  • the spacer elements can, for example, be pin-shaped or the like as T or Z profiles. be trained.
  • the spacer elements can consist of plastic and be made in one piece with the half-shells. However, they can also be connected to the half-shells on the one hand and the electrodes on the other hand in any other way. If the spacer elements are also used for better current distribution, they are electrically conductive.
  • the spacer elements can be connected to one another by means of cross-connection elements.
  • the cross-connection elements can be wires, nets, fabrics or the like. his.
  • the cross-connection elements can be electrically conductive in order to improve the current distribution.
  • the frame-shaped support element has e.g. channel-shaped openings for the supply and discharge of electrolyte and / or gas.
  • a supply and discharge of electrolyte as well as a discharge of the chlorine is required for each half-shell and in the anode half-element. If necessary, the chlorine can also be removed together with the electrolyte.
  • a gas diffusion electrode is used as the cathode, gas must be fed into the cathode half element and excess gas and liquid must be removed from the cathode half element.
  • channel-shaped openings in the carrier element are e.g.
  • Pipes introduced which are either releasably or non-releasably connected to the respective half-shell.
  • the tube can be flanged at the end lying inside the half-shell, so that it is pushed into the opening from the inside of the half-shell.
  • the frame-shaped carrier elements are pressed against one another.
  • the construction units can be sealed off from one another with commercially available media-resistant seals, such as PTFE or PTFE-containing sealing materials.
  • Fig. 1 shows a schematic cross section through the coristruction element according to the invention
  • FIG. La shows an enlarged detail from FIG. 1 2 shows a schematic section of the design element according to FIG. 1, which shows in cross section the half shells, a first preferred embodiment of a connecting element and the electrodes.
  • FIG. 1 shows in cross section a frame-shaped support element 10 and two half-shells 12, 14 which are inserted back to back into the support element 10 in the area of the base 11, 13.
  • the circumferential, angled edge 17, 18 of the half-shells 12, 14 lies on the carrier element 10.
  • Openings 16, 19 in the carrier element and openings in the half-shells are provided for the supply and / or discharge of electrolyte and / or gas.
  • 1 shows a channel-shaped opening 16 in the carrier element 10 and an opening 19 in the edge 18 of the half-shell 14.
  • the two half-shells 12, 14 are detachably connected to one another with the aid of connecting elements 30.
  • the connecting elements 30 pass through openings 15, 15 'lying one above the other in the bottoms 11, 13 of the half-shells 12, 14 and protrude into the half-cells which are formed by the half-shells 12, 14. Electrodes 42, 44 are attached to the connecting elements.
  • FIG. 1 a shows an embodiment of a supply or discharge of electrolyte and / or gas in an enlargement of a section from FIG. 1.
  • a channel-shaped opening 16 is arranged in the carrier element 10.
  • the half-shell 14 has an opening 19 in its edge 18, which coincides with the opening 16.
  • the tube 23 has a flange 25 at the end which points into the half-shell.
  • the tube 23 is at the edge 18 of the half-shell 14 by means of a screw 22 attached.
  • a seal 24 is provided between the screw 22 and the edge 18 of the half-shell 14.
  • FIG. 2 shows an exclusion from the construction element according to the invention according to FIG. 1.
  • the half-shells 12, 14 lie against one another in the area of the bases 11, 13 and have openings 15, 15 'which overlap.
  • the openings 15, 15 ' accommodate a connecting element 30.
  • the embodiment of the connecting element 30 shown in FIG. 2 is similar to a screw.
  • the two ends of the screw-like connecting element 30 protrude into the space formed by the respective half-shells 12, 14.
  • the two half-shells 12, 14 are detachably connected to one another with the aid of the connecting elements 30.
  • the connecting element 30 has an external thread 32 at one end 31, so that the connection is made at this end 31 by means of a screw-nut connection 34.
  • the other end 33 of the connecting element 30 has a head 35, whose diameter is larger than the diameter of the openings 15, 15 '. It prevents the connecting element 30 from sliding through the openings 15, 15 'of the half-shells 12, 14.
  • a seal 52 is provided between the half-shell 12 and the nut 34. •
  • both ends 31, 33 of the connecting element 30 analog with an external thread to provide 32 and the two half shells 12, 14 by means of a Screw-nut connection analog 34 to connect.
  • the connecting element 30 has a core 38 made of copper and a shell 39 made of titanium or a titanium alloy, which completely surrounds the core 38.
  • FIG. 2 also shows an embodiment of a detachable connection of the electrodes 42, 44 to the connecting element 30.
  • the connecting element 30 has an internal thread 36, 37 at both ends 31, 33, so that the electrodes 42, 44 are connected to the Connecting element 30 are connected.
  • at least one of the electrodes 42, '44 can also be connected to the connecting element 30 by welding.
  • the electrode serving as the anode is preferably connected to the connecting element 30 by means of welding. .
  • spacer elements 52, 54 and cross-connection elements 53, 55 are also shown.
  • The, for example, electrically conductive spacer elements 52, 54 are each located between the half-shells 12, 14 and the electrodes 42, 44. They are essentially perpendicular to the half-shells 12, 14 and the electrodes 42, 44. They prevent the electrodes 42 from bending, 44 between the connecting elements 30 and thus ensure a uniform distance between the half-shells 12, 14 and the electrodes 42, 44.
  • the spacing elements 52, 54 are pin-shaped in the embodiment shown.
  • the cross-connection elements 53, 55 can e.g. also be electrically conductive and connect the spacing elements 52, 54 to one another. This increases the current distribution.
  • the cross-connection elements are wires, nets, fabrics or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)

Abstract

Die Erfindung beschreibt eine Konstruktionseinheit für bipolare Elektrolyseure nach der Filterpressentechnik, wenigstens umfassend eine erste Halbschale (12), eine zweite Halbschale (14) und ein rahmenförmiges Trägerelement (10), wobei wenigstens eine der Halbschalen (12, 14) Kunststoff enthält, die beiden Halbschalen (12, 14) innerhalb des Trägerelements (10) so angeordnet sind, dass die Rückwand der ersten Halbschale (12) und die Rückwand der zweiten Halbschale (14) aneinander liegen, das Trägerelement (10) sowie die beiden Halbschalen (12, 14) wenigstens zwei Öffnungen (16, 19) für die Zuführung und Abführung von Elektrolyt und/oder Gas aufweisen und die beiden Halbschalen (12, 14) im Boden (11, 13) übereinander liegende Durchbrüche (15, 15') für die Aufnahme von wenigstens einem elektrisch leitfähigen Verbindungselement (30) aufweisen, an dem in der ersten Halbschale (12) eine erste Elektrode (42) und in der zweiten Halbschale (14) eine zweite Elektrode (44) befestigt ist.

Description

Konstruktionseinheit für bipolare Elektrolyseure
Die Erfindung betrifft eine Konstruktionseinheit für bipolare Elektrolyseure nach der Filterpressentechnik, insbesondere zur Elektrolyse einer wässrigen Lösung von Chlorwasserstoff nach dem Membranverfahren. Wie z.B. in EP-A 0 785 294 beschrieben, bestehen elektrochemische Zellen zur Elektrolyse von wässrigen Lösungen von Chlorwasserstoff (Salzsäure) üblicherweise aus Titan oder einer Titan- Legierung, beispielsweise einer Titan-Palladium-Legierung. Als Korrosionsschutz wird in EP-A 0 785 294 der Salzsäure ein Oxydationsmittel mit einem Redoxpotential von vorzugsweise 0,3-0,6 V gegenüber der Normalwasserstoffelektrode zugesetzt. Als bevorzugtes Oxydationsmittel wird dreiwertiges Eisen gewählt. Die Korrosivität in Gegenwart von Salzsäure ist jedoch nur ein Nachteil des Titans als Werkstoff für elektrochemische Zellen. Ein weiterer Nachteil liegt in der schlechten Leitfähigkeit, wodurch es zu Spannungsverlusten bei der Stromzuf hrung zu den Elektroden und bei der Stromverteilung innerhalb der Zelle kommt. Hinzu kommt schließlich, dass Titan ein sehr teurer Werkstoff ist. Aufgabe der vorliegenden Erfindung ist es daher, eine Konstruktionseinheit für bipolare Elektrolyseure zur Elektrolyse wässriger Lösungen von Chlorwasserstoff nach dem Membranverfahren zur Verfügung zu stellen, die weniger korrosionsanfällig ist, zu weniger Spannungsverlusten führt und gleichzeitig aus kostengünstigeren Werkstoffen besteht. Die Konstrul tionseinheit soll nach der ' Filterpressentechnik in einen Elektrolyseur eingebaut werden, der mit bipolarer Schaltung betrie- ben wird.
Gegenstand der Erfindung ist eine Konsfruktionseinheit für bipolare Elektrolyseure nach der Filterpressentechnik, wenigstens umfassend eine erste Halbschale, eine zweite Halbschale und ein rahmenförmiges Trägerelement, wobei wenigstens eine der Halbschalen Kunststoff enthält, die beiden Halbschalen innerhalb des Trägerelements so angeordnet sind, dass die Rückwand der ers- ten Halbschale und die Rückwand der zweiten Halbschale aneinander liegen, das Trägerelement sowie die beiden Halbschalen wenigstens zwei Öffnungen für die Zuführung und Abführung von Elektrolyt und/oder Gas aufweisen und die beiden Halbschalen im Boden übereinander liegende Durchbrüche für die Aufnahme von wenigstens einem elektrisch leitfähigen Verbindungselement aufweisen, an dem in der ersten Halbschale eine erste Elektrode und in der zweiten Halbschale eine zweite Elektrode befestigt ist,
Während bei der Einzelelementtechnik eine elektrochemische Zelle, bestehend aus einem Ano- denhalbelement, einem Kathodenhalbelement und einer die beiden Halbelemente voneinander trennende Ionenaustauschermembran, eine Konstruktionseinheit für den Bau eines Elektrolyseurs bilden, wird die Konstruktionseinheit bei der Filterpressentechnik gebildet, aus einem Anodenhalb- element einer elektrochemischen Zelle und einem Kathodenhalbelement einer benachbarten elel trochemischen Zelle, wobei die beiden Halbelemente Rücken an Rücken zueinander angeord- net sind. Bei der Filteψressentechnik wird demnach eine elektrochemische Zelle aus einem Halbelement der einen Konsuτiktionsemheit und einem Halbelement der benachbarten Konstruktionseinheit gebildet, wobei die beiden Halbelemente, welche eine elektrochemische Zelle bilden, mit einer Ionenaustauschermembran voneinander getrennt sind.
Das rahmenförmige Trägerelement, in das die beiden Halbschalen zweier benachbarter elektro- chemischer Zellen eingelegt werden und welches zusammen mit den beiden Halbschalen sowie der Verbindungselemente und den beiden Elektroden, welche als Kathode und Anode dienen, die erfindungsgemäße Konstruktionseinheit bilden, besteht bevorzugt aus Metall, insbesondere aus Stahl oder aus einem- mit Kunststoff, z.B. Polyvinylidenfluorid (PVDF) oder Polyvinylchlorid (PNC), beschichteten Stahl.
Die Halbschalen bestehen jeweils aus einem Boden und einem umlaufenden, vorzugsweise abgewinkelten, Rand, mit dem sie in das Trägerelement eingelegt werden. Der umlaufende Rand liegt auf dem Trägerelement auf. Die beiden Halbschalen, die Anodenhalbschale und Kathodenhalb- schale, werden so in das Trägerelement eingelegt, dass die Halbschalen Rücken an Rücken zueinander liegen, d.h. die Böden der Halbschalen liegen mit ihren Außenseiten (Rückwänden) anein- ander. Die Halbschalen können als zwei getrennte Bauteile gefertigt sein, die entweder lösbar oder nicht lösbar miteinander verbunden sind. Alternativ können die Halbschalen auch einstückig ausgebildet sein. Vorzugsweise sind die Halbschalen lösbar miteinander verbunden.
Die Böden der Halbschalen weisen Durchbrüche zur Aufnahme der Verbindungselemente auf. Werden die Halbschalen mit ihren Rückwänden aneinander gelegt, so kommen die Durchbrüche in den Halbschalen übereinander zu liegen. Dies ermöglicht es, die Verbindungselemente durch die Halb schalen hindurch zu führen. Die Durchbrüche können von beliebiger Form, z.B. rund,- eckig, sein.
Die beiden Halbelemente einer Konstruktionseinheit gemäß einer bevorzugten Ausführungsform durch zwei Halbschalen auszubilden und diese mittels einer lösbaren Verbindung zu verbinden, hat gegenüber einer einfachen Trennwand zwischen den beiden Halbelementen, wie z.B. aus EP-A 0 999 294 bekannt, den Vorteil, dass eine einzelne Halbschale aus der Konstrul tionseinheit herausgenommen und gegen eine andere ausgetauscht werden kann. Dies erleichtert die Umrüstung oder die Reparatur bei Beschädigung des Elektrolyseurs. Die beiden Halbschalen der Hälbelemente können baugleich sein. Sie können aber auch unterschiedliche Tiefen aufweisen. Bevorzugt wird in die Konstruktionseinheit als Kathode eine Gas- diffusionselektrode eingesetzt. Vorzugsweise ist in diesem Fall die Kathodenhalbschale weniger tief als die Anodenhalbschale, was einerseits Material und andererseits Raum für den Elektroly- seur einspart.
Werden für die Halbschalen und das Trägerelement unterschiedliche Werkstoffe eingesetzt, ist die unterschiedliche thermische Ausdehnung der Werkstoffe zu berücksichtigen. Dies gilt insbesondere für die Wähl .der Abmaße der beiden Halbschalen aus Kunststoff im Verhältnis zu den Abmaßen des ralimenförmigen Trägerelements aus Metall und ihren Öffnungen zur Aufnahme der Verbindungselemente aus Metall im Verhältnis zum Durchmesser der Verbindungselemente. Die Elektrolyse einer wässrigen Lösung von Chlorwasserstoff wird bevorzugt bei Temperaturen von 30 bis 70 °C betrieben.
Erfindungsgemäß enthält wenigstens eine der Halbschalen Kunststoff. Bevorzugt werden beide Halbschalen aus Kunststoff, insbesondere Polyvinylfluorid (PVDF), Polytetrafluorethylen (PTFE) oder Chloriertes Polyvinylchlorid (CPVC), gefertigt. Der Vorteil der vorliegenden Erfindung liegt somit darin, dass wesentliche strukturgebende Bauteile des Elektrolyseurs aus korrosionsbeständigen, insbesondere salzsäurebeständigen, und zugleich kostengünstigen Werkstoffen bestehen.
Die Verbindungselemente können Bolzen, Stifte, Schrauben o.dgl. sein. Bevorzugt sind die beiden Halbschalen an wenigstens einem Ende der Verbindungselemente z.B. mittels einer Schraube- Mutter- Verbindung lösbar verbunden. Die Verbindungselemente sind vorzugsweise Bolzen, Stifte o.dgl., welche an wenigstens einem Ende ein Außengewinde aufweisen und mit einer Gewindemutter mit der Anodenhalbschale einerseits und der Kathodenhalbschale andererseits verbunden sind.
Die Verbindungselemente übernehmen außerdem die Funktion der StiOmzuführung zu den Elektroden in den beiden Halbelementen. Die Verbindungselemente sind daher elektrisch leitfähig. Insbesondere sind die Verbindungselemente aus Titan, einer säurefesten Titan-Legierung oder mit einer säurefesten Titan-Legierung beschichtet. Bevorzugt besitzen die Verbindungselemente einen Kern aus einem Metall hoher elektrischer Leitfähigkeit, insbesondere Kupfer, und eine Hülle aus Titan oder einer Titan-Legierung, insbesondere einer Titan-Palladium-Legiprung oder Titan- Ruthenium-Legierung. Diese Ausführungsform der Verbindungselemente nutzt vorteilhaft die hohe Leitfähigkeit des Kupfers. Die beiden Elektroden, die als Anode und Kathode dienen, sind an den Verbindungselementen niederohmig befestigt. Sie können beispielsweise mit den Verbindungselementen verschweißt werden, d.h. nicht lösbar verbunden werden. Dies kann z.B. dadurch erfolgen, dass ein schraüben- oder bolzenähnliches Verbindungselement eingesetzt wird, bei dem der Schraubenlcopf in eine der Halbschalen, z.B.. die Anodenhalbschale, und das andere Ende des Verbindungselements mit Gewinde mit der Gewindemutter in die andere Halbschale, z.B. die Kathodenhalbschale, ragt. Dann kann die Elektrode, z.B. die Anode, mit dem Schraubenlcopf des Verbindungselements verschweißt werden. In einer bevorzugten Ausführungsform sind die Elektroden lösbar, beispielsweise durch Verschrauben, an den Verbindungselementen befestigt. Dazu weisen die Verbin- dungselemente an wenigstens einem Ende ein hmengewinde auf. Die lösbare Verbindung der Elektroden mit den Verbindungselementen ist von Vorteil, da die Elektroden mit relativ geringem Aufwand ein- und ausgebaut werden können, falls sie aufgrund von Verschleiß der elektrochemisch aktiven Beschichtung oder Beschädigung ausgewechselt werden müssen. In einer weiteren bevorzugten Ausführungsform ist die als Anode dienende Elektrode mit den Verbindungsele- menten nicht lösbar, z.B. mittels Schweißen, verbunden, während die als Kathode dienende Elektrode, insbesondere eine Gasdiffusionselektrode, lösbar, z.B. mittels Schrauben, mit den Ver- bindungselementen verbunden ist.
Die Anzahl der Verbindungselemente ist abhängig davon, aus welchem Werkstoff und in welcher Dicke sie gefertigt sind sowie von der Querleitfähigkeit der Anode und Kathode. Je höher die elelctiische Leitfähigkeit des Werkstoffs und die Querleitfähigkeit der Elektroden, desto weniger Bolzen werden benötigt. Außerdem werden umso mehr Verbindungselemente eingesetzt, je dünner die Verbindungselemente sind. Der Abstand zwischen zwei benachbarten Verbindungselementen liegt im Bereich von 10 bis 20 cm.
Die Anode besteht beispielsweise aus Titan, einer Titanlegierung insbesondere einer Titan-Palla- dium-Legierung, die z.B. mit einer säurefesten Beschichtung auf Basis eines Ruthenium-Titan- Mischoxids oder Ruthenium-Titan-Iridiumoxids besteht. Die Kathode kann ähnlich der Anode aufgebaut sein. Sie kann jedoch je nach Einsatz auch mit anderen Beschichtungen' ausgerüstet werden. Im Fall einer Gasdiffusionselektrode als Kathode kann ein der Anode entsprechendes Material als Träger für die den Katalysator enthaltende Beschichtung eingesetzt werden. Bei- spielsweise kann eine Gasdiffusionselektrode eingesetzt werden, die einen Katalysator der Platingruppe, vorzugsweise Platin oder Rhodium, enthält. Beispielhaft seien Gasdifffusionselektroden der Firma E-TEK (USA) genannt, die 30 Gew.% Platin als Katalysator auf einem Kohlenstoffsubstrat mit einer Edelmetallbeschichtung von 1,2 mg Pt/cm2 aufweisen. In einer bevorzugten Ausführungsform wird die Gasdiffusionselektrode als Sauerstoffverzehrkathode betrieben. Vorzugsweise sind zusätzlich zu den Verbindungselementen stiftförmige Abstandselemente zwischen der Anodenhalbschale und der Anode und/oder zwischen der Kathodenhalbschale und der Kathode vorgesehen. Diese Abstandselemente verhindern eine eventuelle Deformation der Elektroden bzw. der Halbschalen, so dass der Abstand zwischen Anode und Kathode konstant bleibt. Die Abstandselemente können z.B. stiftförmig sein oder als T- oder Z-Profile o.dgl. ausgebildet sein. Sie können z.B. aus Kunststoff bestehen und einstückig mit den Halbschalen gefertigt sein. Sie können jedoch auch auf beliebige andere Weise mit den Halbschalen einerseits und den Elektroden andererseits verbunden sein. Sollen die Abstandselemente zusätzlich der besseren Stromverteilung dienen, sind sie elektrisch leitfähig. Die Abstandselemente können mittels Quer- verbindungselementen miteinander verbunden sein. Die Querverbindungselemente können Drähte, Netze, Gewebe o.dgl. sein. Die Querverbindungselemente können elektrisch leitfähig sein, um die Stromverteilung zu verbessern.
Das rahmenförmige Trägerelement weist z.B. kanalförmige Durchbrüche auf für die Zuführung und Abführung von Elektrolyt und/oder Gas. Im Falle von herkömmlichen Elektroden als Katho- den und Anoden wird für jede Halbschale eine Zufuhr und eine Abfuhr von Elektrolyt sowie im Anodenhalbelement zusätzlich eine Abführung des Chlors benötigt. Gegebenenfalls kann das Chlor auch mit dem Elektrolyten gemeinsam abgeführt werden. Wird eine Gasdiffusionselektrode als Kathode eingesetzt, so muss Gas in das Kathodenhalbelement zugeführt und überschüssiges Gas sowie Flüssigkeit aus dem Kathodenhalbelement entfernt werden. In die z.B. kanalförmigen Durchbrüche in dem Trägerelement werden z.B. Rohre eingeführt, welche entweder lösbar oder nicht lösbar mit der jeweiligen Halbschale verbunden sind. Beispielsweise kann das Rohr an dem im Inneren der Halbschale liegenden Ende gebördelt sein, so dass es vom Inneren der Halbschale in den Durchbruch geschoben wird.
Beim Zusammenbau mehrerer erfindungsgemäßer Konstruktionseinheiten zu einem Elelctrolyseur nach dem Filterpressenprinzip werden die rahmenförmigen Trägerelemente gegeneinander ge- presst. Zusätzlich kann eine Abdichtung der Konstrulctionseinheiten gegeneinander mit handelsüblichen medienbeständigen Dichtungen, wie z.B. PTFE oder PTFE-haltige Dichtungsmaterialien, erfolgen.
Die Erfindung wird nachfolgend unter Bezugnahme auf die anliegenden Zeichnungen näher er- läutert. Es zeigen:
Fig. 1 einen schematischen Querschnitt durch das erfindungsgemäße Koristruktionselement
Fig. la einen vergrößerten Ausschnitt aus Fig. 1 Fig. 2 einen schematischen Ausschnitt aus dem Konstrulctionselement gemäß Figur 1, welcher im Querschnitt die Halbschalen, eine erste bevorzugte Ausf hrungsform eines Verbindungselementes und die Elektroden darstellt.
Figur 1 zeigt im Querschnitt ein rahmenförmiges Trägerelement 10 sowie zwei Halbschalen 12, 14, welche im Bereich des Bodens 11, 13 Rücken an Rücken in das Trägerelement 10 eingelegt sind. Der umlaufende, abgewinkelte Rand 17, 18 der Halbschalen 12, 14 liegt auf dem Trägerelement 10 auf. Für die Zuführung und/oder Abführung von Elektrolyt und/oder Gas sind Durchbrüche 16, 19 in dem Trägerelement und Öffnungen in den Halbschalen vorgesehen. Beispielhaft dargestellt ist in Figur 1 ein kanalförmiger Durchbruch 16 in dem Trägerelement 10 und eine Öff- nung 19 in dem Rand 18 der Halbschale 14. In dem Durchbruch 16 und der Öffnung 19 ist ein Rohr 23 für die Zufuhrung oder Abführung von Elektrolyt und/oder Gas angeordnet. In der dargestellten Ausfuhrungsform sind die beiden Halbschalen 12, 14 mit Hilfe von Verbindungselementen 30 lösbar miteinander verbunden. Die Verbindungselemente 30 treten durch übereinander liegende Durchbrüche 15, 15' in den Böden 11, 13 der Halbschalen 12, 14 hindurch und ragen in die Halb- zellen, welche durch die Halbschalen 12, 14 gebildet werden, hinein. An den Verbindungselementen sind Elektroden 42, 44 befestigt.
Figur la zeigt in einer Vergrößerung eines Ausschnitts aus Figur 1 eine Ausführungsform einer Zuführung bzw. Abführung von Elektrolyt und/oder Gas. In dem Trägerelement 10 ist ein kanalförmiger Durchbruch 16 angeordnet. Die Halbschale 14 weist in ihrem Rand 18 eine Öffnung 19 auf, welche sich mit dem Durchbruch 16 deckt. In dem Durchbruch 16 und der Öffnung 19 steckt ein, insbesondere metallisches, Rohr 23. Das Rohr 23 besitzt an dem Ende, welches in die Halbschale weist, eine Bördelung 25. Das Rohr 23 ist mittels einer Schraube 22 an dem Rand 18 der Halbschale 14 befestigt. Zwischen der Schraube 22 und dem Rand 18 der Halbschale 14 ist eine Dichtung 24 vorgesehen.
Figur 2 stellt einen Aussclmitt aus dem erfindungsgemäßen Konstrulctionselement gemäß Figur 1 dar. Die Halbschalen 12, 14 liegen im Bereich der Böden 11, 13 mit ihrer Rückwand aneinander und weisen Durchbrüche 15, 15' auf, welche sich decken. Die Durchbrüche 15, 15' nehmen ein Verbindungselement 30 auf. Die in Figur 2 dargestellte Ausführungsfoπn des Verbindungssle- ments 30 ähnelt einer Schraube. Die beiden Enden des schraubenartigen Verbindungselements 30 ragen in den von der jeweiligen Halbschäle 12, 14 gebildeten Raum hinein. Die beiden Halbschalen 12, 14 sind mit Hilfe der Verbindungselemente 30 lösbar miteinander verbunden. In der in Figur 2 dargestellten Ausführungsform weist das Verbindungselement 30 an einem Ende 31 ein Außengewinde 32 auf, so dass an diesem Ende 31 die Verbindung mittels einer Schraube-Mutter- Verbindung 34 erfolgt. Das andere Ende 33 des Verbindungselements 30 besitzt einen Kopf 35, dessen Durchmesser größer ist als der Durchmesser der Durchbrüche 15, 15'. Er verhindert, dass das Verbindungselement 30 durch die Durchbrüche 15, 15' der Halbschalen 12, 14 rutscht. Zwischen der Halbschale 12 und der Schraubenmutter 34 ist eine Dichtung 52 vorgesehen. In analoger Weise befindet sich eine Dichtung 54 zwischen der Halbschale 14 und dem Kopf 35 des Verbindungselements 30. Es ist auch möglich, beide Enden 31, 33 des Verbindungselementes 30 mit einem Außengewinde analog 32 zu versehen und die beiden Halbschalen 12, 14 mittels einer Schraube-Mutter- Verbindung analog 34 zu verbinden. In der dargestellten Ausföhrungsform besitzt das Verbindungselement 30 einen Kern 38 aus Kupfer und eine Hülle 39 aus Titan oder einer Titanlegierung, welche den Kern 38 vollständig umgibt.
Figur 2 zeigt außerdem eine Ausführungsform einer lösbaren Verbindung der Elektroden 42, 44 mit dem Verbindungselement 30. Das Verbindungselement 30 weist an beiden Enden 31, 33 ein Innengewinde 36, 37 auf, so dass die Elektroden 42, 44 mittels Schrauben 43, 45 mit dem Verbindungselement 30 verbunden sind. Alternativ kann auch wenigstens eine der Elektroden 42, '44 durch Schweißen mit dem Verbindungselement 30 verbunden sein. Vorzugsweise ist die als Anode dienende Elektrode mittels Schweißen mit dem Verbindungselement 30 verbunden. ,
In Figur 2 sind ferner Abstandselemente 52, 54 sowie Querverbindungselemente 53, 55 dargestellt. Die beispielsweise elektrisch leitfähigen Abstandselemente 52, 54 befinden sich jeweils zwischen den Halbschalen 12, 14 und den ElektiOden 42, 44. Sie stehen im Wesentlichen senkrecht auf den Halbschalen 12, 14 und den Elektroden 42, 44. Sie verhindern ein Durchbiegen der Elektroden 42, 44 zwischen den Verbindungselementen 30 und gewährleisten so einen gleichmäßigen Abstand zwischen den Halbschalen 12, 14 und den Elektroden 42, 44. Die Abstandselemente 52, 54 sind in der dargestellten Ausführungsform stiftförmig. Die Querverbindungselemente 53, 55 können z.B. ebenfalls elektrisch leitfähig sein und verbinden die Abstandselemente 52, 54 untereinander. Dadurch wird die Stromverteilung erhöht. Die Querverbindungselemente sind Drähte, Netze, Gewebe o.dgl.

Claims

Patentansprüche
1. Konstrulctionseinheit für bipolare Elelctiolyseure nach der Filteipressentechnik, wenigstens umfassend eine erste Halbschale (12), eine zweite Halbschale (14) und ein ralxmenförmi- ges Trägerelement (10), wobei wenigstens eine der Halbschalen (12, 14) Kunststoff ent- hält, die beiden Halbschalen (12, 14) innerhalb des Trägerelements (10) so angeordnet sind, dass die Rückwand der ersten Halbschale (12) und die Rückwand der zweiten Halbschale (14) aneinander liegen, das Trägerelement (10) sowie die beiden Halbschalen (12, 14) wenigstens zwei Öffnungen (16, 19) für die Zuführung und Abführung von Elektrolyt und/oder Gas aufweisen und die beiden Halbschalen (12, 14) im Boden (11, 13) überein- ander liegende Durchbrüche (15, 15') für die Aufnahme von wenigstens einem elektrisch leitfähigen Verbindungselement (30) aufweisen, an dem in der ersten Halbschale (12) eine erste Elektrode (42) und in der zweiten Halbschale (14) eine zweite Elektrode (44) befestigt ist.
2. Konstrulctionseinheit nach Anspruch 1, dadurch gekennzeichnet, dass die beiden Halb- schalen (12, 14) lösbar verbunden sind.
3. Konstruktionseinheit nach Anspruch 2, dadurch gekennzeichnet, dass die beiden Halbschalen (12, 14) an wenigstens einem Ende der Verbindungselemente (30) mittels einer Schraube-Mutter- Verbindung (34) lösbar verbunden sind.
4. Konsü-uktionseinheit nach Anspruch 1, dadurch gekennzeichnet, dass die beiden Halb- schalen (12, 14) einstüclcig ausgebildet sind.
5. Konsti-ulctionseinheit nach einem der Ansprüche 1-4, dadurch gekennzeichnet, dass die erste Elektrode (42) und/oder die zweite Elektrode (44) lösbar mit den Verbindungselementen (30) verbunden sind.
6. Konstrulctionseinheit nach Anspruch 5, dadurch gekennzeichnet, dass die Verbindungs- elemente (30) an wenigstens einem Ende ein Innengewinde (36) aufweisen und die erste Elektrode (42) und/oder zweite Elektrode (44) mit Schrauben (43, 45) lösbar mit' den Verbindungselementen (30) verbunden sind.
7. Konstrulctionseinheit nach einem der Ansprüche 1-6, dadurch gekennzeichnet, dass Abstandselemente (52, 54) zwischen der ersten Halbschale (12) und der ersten Elektrode (42) und/oder zwischen der zweiten Halbschale (14) und der zweiten Elektrode (44) vorgesehen sind.
8. Konstrulctionseinheit nach Anspruch 7, dadurch gekennzeichnet, dass die Abstandselemente (52, 54) elektrisch leitfähig sind und mittels elektrisch leitfähiger Querverbindungselemente (53, 55) miteinander verbunden sind.
9. Konstrulctionseinheit nach einem der Ansprüche 1-8, dadurch gekennzeiclmet, dass beide Halbschalen (12, 14) Kunststoff, vorzugsweise Polytetrafluorethylen, PVDF oder CPVC, enthalten.
10. Konstrulctionseinheit nach einem der Ansprüche 1-9, dadurch gekennzeichnet, dass das Trägerelement (10) aus Metall, insbesondere Stahl, ist.
11. Konstrulctionseinheit nach einem der Anspräche 1-10, dadurch gekennzeichnet, dass die Verbindungselemente (30) aus einem Kern (38) aus Kupfer und einer Hülle (39) aus Titan oder einer Titan-Legierung, insbesondere einer Titan-Palladium-Legierung oder Titan- Ruthenium-Legierung, aufgebaut sind.
12. Konstruktionseinheit nach einem der Ansprüche 1-11, dadurch gekennzeichnet, dass eine der beiden Elektroden (42; 44) eine Gasdiffusionselektrode ist.
EP04765737A 2003-10-14 2004-10-01 Konstruktionseinheit für bipolare elektrolyseure Withdrawn EP1673491A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10347703A DE10347703A1 (de) 2003-10-14 2003-10-14 Konstruktionseinheit für bipolare Elektrolyseure
PCT/EP2004/010966 WO2005038090A2 (de) 2003-10-14 2004-10-01 Konstruktionseinheit für bipolare elektrolyseure

Publications (1)

Publication Number Publication Date
EP1673491A2 true EP1673491A2 (de) 2006-06-28

Family

ID=34399494

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04765737A Withdrawn EP1673491A2 (de) 2003-10-14 2004-10-01 Konstruktionseinheit für bipolare elektrolyseure

Country Status (7)

Country Link
US (1) US20050077068A1 (de)
EP (1) EP1673491A2 (de)
JP (1) JP2007508456A (de)
CN (1) CN1867701A (de)
DE (1) DE10347703A1 (de)
TW (1) TW200523403A (de)
WO (1) WO2005038090A2 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7323090B2 (en) * 2002-11-27 2008-01-29 Asahi Kasei Chemicals Corporation Bipolar zero-gap type electrolytic cell
DE102006020374A1 (de) * 2006-04-28 2007-10-31 Uhdenora S.P.A. Mikrostrukturierter Isolierrahmen für Elektrolysezellen
DE102006023261A1 (de) 2006-05-18 2007-11-22 Bayer Materialscience Ag Verfahren zur Herstellung von Chlor aus Chlorwasserstoff und Sauerstoff
SG174714A1 (en) 2010-03-30 2011-10-28 Bayer Materialscience Ag Process for preparing diaryl carbonates and polycarbonates
SG174715A1 (en) 2010-03-30 2011-10-28 Bayer Materialscience Ag Process for preparing diaryl carbonates and polycarbonates
DE102010043085A1 (de) * 2010-10-28 2012-05-03 Bayer Materialscience Aktiengesellschaft Elektrode für die elektrolytische Chlorherstellung
WO2013191140A1 (ja) * 2012-06-18 2013-12-27 旭化成株式会社 複極式アルカリ水電解ユニット、及び電解槽
WO2024110992A1 (en) * 2022-11-24 2024-05-30 Brise Chemicals Private Limited Alkaline electrolyser system and process of manufacturing thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE790369A (fr) * 1971-10-21 1973-04-20 Diamond Shamrock Corp Procede et appareil pour la preparation d'hydroxydes de metaux alcalins de haute purete dans une cuve electrolytique.
ES450933A1 (es) * 1975-08-29 1977-09-01 Hoechst Ag Aparato para electrolisis.
US4107023A (en) * 1976-07-09 1978-08-15 Hooker Chemicals & Plastics Corporation Filter press halate cell
US4121994A (en) * 1977-11-17 1978-10-24 Hooker Chemicals & Plastics Corp. Anode support means for an electrolytic cell
US4402813A (en) * 1982-07-26 1983-09-06 Olin Corporation Composite fiber reinforced plastic electrode frame
JPS63230893A (ja) * 1985-12-16 1988-09-27 ザ ダウ ケミカル カンパニ− 電気化学槽用の構造フレ−ム
US4927509A (en) * 1986-06-04 1990-05-22 H-D Tech Inc. Bipolar electrolyzer
JPH07207482A (ja) * 1994-01-14 1995-08-08 Tanaka Kikinzoku Kogyo Kk ソーダ電解セル用ガス拡散電極
IT1282367B1 (it) * 1996-01-19 1998-03-20 De Nora Spa Migliorato metodo per l'elettrolisi di soluzioni acquose di acido cloridrico
JP2000192276A (ja) * 1998-12-25 2000-07-11 Asahi Glass Co Ltd 複極型イオン交換膜電解槽
US6761808B1 (en) * 1999-05-10 2004-07-13 Ineos Chlor Limited Electrode structure
ATE256768T1 (de) * 1999-05-10 2004-01-15 Ineos Chlor Ltd Elektrodenstruktur
JP3707778B2 (ja) * 1999-08-27 2005-10-19 旭化成ケミカルズ株式会社 塩化アルカリ金属水溶液電解槽用の単位セル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005038090A2 *

Also Published As

Publication number Publication date
WO2005038090A3 (de) 2005-07-07
DE10347703A1 (de) 2005-05-12
US20050077068A1 (en) 2005-04-14
JP2007508456A (ja) 2007-04-05
WO2005038090A2 (de) 2005-04-28
TW200523403A (en) 2005-07-16
CN1867701A (zh) 2006-11-22

Similar Documents

Publication Publication Date Title
DE2355876C2 (de) Bipolare Elektrode
EP1417356B1 (de) Elektrolysezelle, insbesondere zur elektrochemischen herstellung von chlor
DE2646463A1 (de) Plattenelektrode fuer eine elektrolysezelle
DE2821984A1 (de) Elektrodenelement fuer monopolare elektrolysezellen
DE2262173A1 (de) Auseinandernehmbare bipolare elektrode
DE2545339A1 (de) Bipolare elektrolysezellen
DE3420483A1 (de) Bipolarer elektrolyseapparat mit gasdiffusionskathode
DE69007205T2 (de) Rahmen für Elektrolyseur der Filterpressenbauart und monopolarer Elektrolyseur der Filterpressenbauart.
DE2031525A1 (de) Anode fur Elektrolysezellen
DD204949A5 (de) Elektrolytzelle des filterpressentyps
DE2538000C3 (de) Bipolare Elektrodenkonstruktion für eine membranlose Elektrolysezelle
EP1673491A2 (de) Konstruktionseinheit für bipolare elektrolyseure
DE2645121C3 (de) Elektrolysezelle
DE3011643A1 (de) Elektrolysezelle
DD242642A5 (de) Anschlussvorrichtung fuer unipolare oder bipolare elektrochemische zellen
DE2841148C2 (de)
DE2125941C3 (de) Bipolare Einheit und damit aufgebaute elektrolytische Zelle
EP0022445B1 (de) Elektrolyseapparat zur Herstellung von Chlor aus wässrigen Alkalihalogenidlösungen
DE2828621A1 (de) Elektrolysezelle und elektrolyseverfahren
DD250138A5 (de) Elektrolytische zelle
DE2653538C3 (de) Elektrolytische Diaphragma-Zelle und Verfahren zu ihrer Montage
DE3406797A1 (de) Beschichtete ventilmetallanode zur elektrolytischen gewinnung von metallen oder metalloxiden
DE2148337A1 (de) Bipolare mehrfach-elektrolysezelle mit diaphragma
DE1567964A1 (de) Kathodenstruktur fuer elektrolytische Zellen
DE2119423A1 (de) Elektrolysezelle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060515

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE ES IT NL

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): BE DE ES IT NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100320