EP1666724B1 - Method of maximising the energy collection of a wind turbine - Google Patents

Method of maximising the energy collection of a wind turbine Download PDF

Info

Publication number
EP1666724B1
EP1666724B1 EP06110622.5A EP06110622A EP1666724B1 EP 1666724 B1 EP1666724 B1 EP 1666724B1 EP 06110622 A EP06110622 A EP 06110622A EP 1666724 B1 EP1666724 B1 EP 1666724B1
Authority
EP
European Patent Office
Prior art keywords
variation
setting
yield
time
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP06110622.5A
Other languages
German (de)
French (fr)
Other versions
EP1666724A2 (en
EP1666724A3 (en
Inventor
Aloys Wobben
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wobben Properties GmbH
Original Assignee
Wobben Properties GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7687372&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1666724(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Wobben Properties GmbH filed Critical Wobben Properties GmbH
Publication of EP1666724A2 publication Critical patent/EP1666724A2/en
Publication of EP1666724A3 publication Critical patent/EP1666724A3/en
Application granted granted Critical
Publication of EP1666724B1 publication Critical patent/EP1666724B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • F03D7/046Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic with learning or adaptive control, e.g. self-tuning, fuzzy logic or neural network
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/20Purpose of the control system to optimise the performance of a machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a method for controlling a wind energy installation and a wind energy installation with a control device for controlling the wind energy installation.
  • Wind turbines with controls have been well known for years and are now being used successfully.
  • the control system in particular has a major influence on the energy yield of a wind turbine.
  • the document DE 19 532 409 A1 relates to a method for operating a wind energy installation and an associated wind energy installation, in which the performance of the wind energy installation is reduced as a function of the wind speed from a predeterminable wind speed by reducing the operating speed of the rotor of the wind energy installation when a wind occurs with a wind speed above a limiting wind or inflow speed.
  • the document DE 19 934 415 A1 is an optimization device to increase the yield of wind turbines by more accurate azimuth tracking. Accordingly, an optimization strategy for increasing the yield in wind energy plants by more precise azimuth tracking is provided, in which the knowledge of an optimally adjustable angle between the rotor axis and wind direction is based on the detection and evaluation of wind direction, wind speed and generated power.
  • the object of the present invention is to develop a method and a wind energy installation of the type mentioned at the outset in such a way that yield losses, in particular as a result of deviations in the area of the conversion of the kinetic energy of the wind into electrical energy, that is to say in the area of the rotor, drive train and generator, are as small as possible are.
  • the method of the type mentioned at the outset is developed in such a way that at least one operating setting is varied within predetermined limits.
  • the invention is based on the knowledge that the tolerances move within known ranges and a variation of at least one operating setting such as, for. B. the blade angle, the azimuth position, the generator torque, etc. must therefore lead to the optimal setting within this tolerance range.
  • the time intervals are varied depending on predeterminable location and / or operating conditions, so that the location peculiarities, such as relatively uniform or turbulent wind flow, wind direction changes, or the like, can be taken into account.
  • the variation is carried out promptly after a change in the operating setting triggered by external influences. If the time is sufficiently short, the operating setting is varied beyond the predefined setting value and possibly a predetermined amount in the opposite direction until the optimal setting is found. This process corresponds approximately to a settling process.
  • the difference between the initial setting and the varied setting with the optimum yield is particularly preferably determined and taken into account in the subsequent changes and / or variations. In this way, the variation process and thus the achievement of maximum yield can be shortened.
  • a wind power installation according to the invention comprises a control device which is suitable for carrying out the method, the control device having a microprocessor or microcomputer and a storage device.
  • Figure 1 the basic principle of the method according to the invention for controlling a wind turbine is shown.
  • the time t is plotted on the abscissa
  • the variation of an operating setting such as the azimuth angle ( ⁇ ) of the nacelle and thus the rotor of a wind turbine, is shown in the upper part of the ordinate, and in the lower part is shown in for the sake of clarity a simplified representation of the course of the yield in the form of a performance curve (P).
  • the operating setting can be changed accordingly, so that the wind turbine delivers a higher yield.
  • the lower curve shows the yield, which varies depending on the operating setting.
  • the yield decreases until the maximum of the variation is reached at time t2, and while the setting is returned to the initial value (t3), the yield increases again until it also ends at t3 Baseline reached.
  • the yield also decreases again in the present example, reaches the minimum (the maximum of the decrease in yield) at time t4 and returns to its initial value at time t5. This clearly shows that the initial setting of the wind turbine was optimal.
  • the process can be repeated.
  • This method competes on the one hand with the possibility of an increase in yield and on the other hand with the loss in yield that occurs due to the variation of an optimal setting.
  • Figure 3 shows a further embodiment of the present invention, in which the yield losses are further reduced by varying the operating settings.
  • the division of the abscissa and ordinate corresponds to that in the other figures.
  • the variation in the operating setting begins at time t1.
  • the yield increases up to a maximum. If the amount of the variation is increased further, the yield drops again, i.e. the maximum yield and thus the optimal operating setting are exceeded. Therefore, in this method, the increase in the amount of the variation is discontinued and the setting is restored at which the maximum yield has been reached.
  • FIG. 4 Another embodiment of the invention is in Figure 4 shown.
  • the abscissa is the time axis and the ordinate shows the variation of the operating setting.
  • the main change compared to the methods described above is that the direction in which the previous variation has resulted in an increase in yield is used as the starting direction for the variation.
  • the variation in the operating setting begins at time t1, reaches its maximum at time t2 and in turn reaches its initial value at time t3. Since there was no increase in yield in the assumed example, the variation is now carried out with the opposite sign, that is, in the opposite direction. A yield maximum is reached at time t4, and this yield maximum is maintained after a brief overshoot.
  • the operating setting is again "rotated" at time t5 and the initial direction corresponds to the direction that led to an increase in yield in the previous variation, ie the negative half-wave.
  • time t6 a maximum yield is again reached, so that this setting is retained. This completely eliminates the loss of earnings that would have occurred with the positive half-wave.
  • the variation in the operating setting begins again at time t7.
  • This in turn begins with the negative half-wave, since this in turn led to an increase in yield with the previous variation.
  • the maximum is reached at time t8 and the initial value is restored at time t9.
  • the direction of the variation is reversed again and the negative half-wave is followed by a positive half-wave in which the yield maximum is reached at time t10, so that this value is now maintained.
  • Another variation begins at time t11, this time with the positive half-wave, since this led to an increase in yield in the previous variation.
  • the maximum is reached at time t12 and the initial setting is reached again at time t13. Since a yield maximum is again reached at time t14 in this example, this setting is retained, so that the subsequent variation will begin again with the negative half-wave.
  • Figure 5 shows a still further improved embodiment of the present invention.
  • the abscissa is again the time axis, while the ordinate in the upper part shows the change in an operating setting and in the lower part the yield curve.
  • yield losses due to the variation are reduced even further. This is achieved with the method according to the invention in that the direction of variation is reversed when a loss of yield is ascertained. If, after the direction of variation is reversed, there is again a loss in yield, the variation is terminated.
  • the variation begins again at time t1 with a positive half-wave and at time t2 the maximum yield is reached.
  • the maximum yield is set at time t4 and maintained for a predetermined time period until a variation begins again at time t5.
  • the predetermined variation limit (T) is entered in both directions from the initial setting in the figure. Due to the considerably smaller amplitude of the variation in the operating setting, the yield losses in this variation are also considerably less. The possibility of a significant increase in yield is countered by a negligible loss of income in the event that the initial operating setting is already the optimal operating setting.
  • the method proposed according to the invention can also result in an increase in yield when changing external operating conditions, such as the wind direction, if the change is still within the tolerance range of the system control. So changes e.g. the wind direction only by a small amount, then the azimuth adjustment is not activated as a result of the change in wind direction. Nevertheless, a slight change in the inflow angle results in a slight loss in yield. This can be compensated for by the method according to the invention if the azimuth setting is varied regularly.
  • a false display of the wind vane e.g. B. by an assembly error
  • the control according to the invention can be compensated for by the control according to the invention, provided that it is within the tolerance range of the system control.
  • a non-optimal energy yield can be optimized based on the display result of the wind vane.
  • the invention is preferably applicable to a set of operating parameter settings.
  • Preferred parameters here are the pitch setting (rotor blade angle setting), the azimuth setting (rotor setting) and the excitation current of the generator for determining the generator torque.
  • the generator torque is not adapted to the high-speed number, there are disadvantages. If the generator torque is too low, the high-speed number increases and the rotor accelerates undesirably because the wind supplies a corresponding amount of energy. If the generator torque is too high, the rotor is braked too far, so that the rotor runs too slowly and does not take the maximum possible energy from the wind. However, since the generator torque is directly dependent on the level of the excitation current, there is an adjustment option in order to influence the operation of the wind power plant in this way in the sense of optimization.
  • a further possibility of the application according to the invention relates to the azimuth adjustment, in order to make a possible yaw angle as small as possible, and the setting of the angle of attack of the rotor blades (pitch), in order in turn to achieve a maximum torque and accordingly to withdraw a maximum of energy from the wind.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Wind Motors (AREA)
  • Control Of Eletrric Generators (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Steuerung einer Windenergieanlage und eine Windenergieanlage mit einer Steuerungsvorrichtung zur Steuerung der Windenergieanlage.The present invention relates to a method for controlling a wind energy installation and a wind energy installation with a control device for controlling the wind energy installation.

Windenergieanlagen mit Steuerungen sind seit Jahren allgemein bekannt und werden inzwischen mit Erfolg eingesetzt. Dabei hat insbesondere die Steuerung einen großen Einfluss auf den Energieertrag einer Windenergieanlage.Wind turbines with controls have been well known for years and are now being used successfully. The control system in particular has a major influence on the energy yield of a wind turbine.

Durch eine kontinuierliche Weiterentwicklung der Windenergieanlagen haben sich diese zu komplexen Anlagen entwickelt, in denen eine Vielzahl von Parametern und Einstellwerten aufeinander abgestimmt sein müssen, um einen möglichst optimalen Betrieb zu ermöglichen.As a result of the continuous further development of the wind energy plants, these have developed into complex plants in which a large number of parameters and setting values have to be coordinated with one another in order to enable optimal operation.

Aufgrund der hohen Komplexität der Anlagen und der hohen Entwicklungskosten für die Entwicklung bzw. Weiterentwicklung solcher Anlagen müssen für den Kauf einer solchen Anlage erhebliche Beträge aufgewendet werden. Es ist leicht nachvollziehbar, dass solche Aufwendungen nur dann akzeptabel sind, wenn die Windenergieanlage während ihrer Lebensdauer aus den sich aus ihrem Betrieb ergebenden Erlösen zusätzlich zu der Amortisation einen möglichst großen Überschuss erwirtschaften lassen.Due to the high complexity of the systems and the high development costs for the development or further development of such systems, considerable amounts have to be spent on the purchase of such a system. It is easy to understand that such expenditures are only acceptable if the wind turbine during its lifetime is derived from its operation allow the resulting proceeds to generate as large a surplus as possible in addition to the amortization.

Dieser Überschuss ist aber untrennbar verbunden mit der Leistungsausbeute einer Windenergieanlage und daher hat insbesondere für den Besitzer / Betreiber einer solchen Anlage die Maximierung des Ertrages eine nachvollziehbar hohe Priorität.However, this excess is inextricably linked to the power yield of a wind energy plant and therefore maximizing the yield has a comprehensibly high priority, in particular for the owner / operator of such a plant.

Andererseits sind schon ganz allgemein bei allen Produktionsvorgängen und angesichts der Komplexität von Windenergieanlagen sowie deren Dimensionen Abweichungen vom Idealmaß unvermeidbar. Dabei wird durch Toleranzgrenzen festgelegt, innerhalb welchen Bereiches solche Abweichungen noch als hinnehmbar angesehen werden.On the other hand, deviations from the ideal dimension are inevitable in all production processes and in view of the complexity of wind turbines and their dimensions. Tolerance limits determine the range within which such deviations are still considered acceptable.

Unabhängig von der Frage, ob eine solche Abweichung tatsächlich hinnehmbar ist oder nicht, bedeutet sie in jedem Fall eine Ertragseinbuße, da sie eine Abweichung von der optimalen Anordnung darstellt.Regardless of the question of whether such a deviation is actually acceptable or not, it means a loss of income in any case, since it represents a deviation from the optimal arrangement.

Das Dokument DE 19 532 409 A1 betrifft ein Verfahren zum Betreiben einer Windenergieanlage und eine zugehörige Windenergieanlage, bei der die Leistung der Windenergieanlage windgeschwindigkeitsabhängig ab einer vorbestimmbaren Windgeschwindigkeit vermindert wird, indem die Betriebsdrehzahl des Rotors der Windenergieanlage beim Auftreten eines Windes mit einer Windgeschwindigkeit oberhalb einer Grenzwind- oder Anströmgeschwindigkeit reduziert wird. Dem Dokument DE 19 934 415 A1 ist eine Optimierungseinrichtung zur Ertragssteigerung bei Windenergieanlagen durch genauere Azimutnachführung zu entnehmen. Demnach ist eine Optimierungsstrategie zur Ertragssteigerung bei Windenergieanlagen durch genauere Azimutnachführung vorgesehen, bei der die Kenntnis eines optimal einzustellenden Winkels zwischen Rotorachse und Windrichtung auf der Erfassung und Auswertung von Windrichtung, Windgeschwindigkeit und erzeugter Leistung beruht.The document DE 19 532 409 A1 relates to a method for operating a wind energy installation and an associated wind energy installation, in which the performance of the wind energy installation is reduced as a function of the wind speed from a predeterminable wind speed by reducing the operating speed of the rotor of the wind energy installation when a wind occurs with a wind speed above a limiting wind or inflow speed. The document DE 19 934 415 A1 is an optimization device to increase the yield of wind turbines by more accurate azimuth tracking. Accordingly, an optimization strategy for increasing the yield in wind energy plants by more precise azimuth tracking is provided, in which the knowledge of an optimally adjustable angle between the rotor axis and wind direction is based on the detection and evaluation of wind direction, wind speed and generated power.

Das Dokument TANAKA T ET AL: "Output control by hill-climbing method for a small scale wind power generating system", RENEWABLE ENERGY, PERGAMON PRESS, OXFORD, GB, Bd. 12, Nr. 4, 1. Dezember 1997 (1997-12-01), Seiten 387-400, XP004101206, ISSN: 0960-1481, DOI: 10.1016/S0960-1481 (97)00055-4 beschreibt ein Steuerungsverfahren für ein Windenergie-Erzeugungssystem um Windenergie möglichst effektiv zu erzeugen, auch wenn die Charakteristik des Systems unbekannt ist.The document TANAKA T ET AL: "Output control by hill-climbing method for a small scale wind power generating system", RENEWABLE ENERGY, PERGAMON PRESS, OXFORD, GB, Vol. 12, No. 4, December 1, 1997 (1997-12- 01), pages 387-400, XP004101206, ISSN: 0960-1481, DOI: 10.1016 / S0960-1481 (97) 00055-4 describes a control method for a wind energy generation system in order to generate wind energy as effectively as possible, even if the characteristics of the system are unknown.

Aufgabe der vorliegenden Erfindung ist es, ein Verfahren und eine Windenergieanlage der eingangs genannten Art derart weiterzubilden, dass Ertragseinbußen insbesondere durch Abweichungen im Bereich der Umwandlung der kinetischen Energie des Windes in elektrische Energie, also im Bereich von Rotor, Antriebsstrang und Generator so gering wie möglich sind.The object of the present invention is to develop a method and a wind energy installation of the type mentioned at the outset in such a way that yield losses, in particular as a result of deviations in the area of the conversion of the kinetic energy of the wind into electrical energy, that is to say in the area of the rotor, drive train and generator, are as small as possible are.

Dazu wird das Verfahren der eingangs genannten Art derart weitergebildet, dass wenigstens eine Betriebseinstellung innerhalb vorgegebener Grenzen variiert wird.For this purpose, the method of the type mentioned at the outset is developed in such a way that at least one operating setting is varied within predetermined limits.

Dabei liegt der Erfindung die Erkenntnis zugrunde, dass sich die Toleranzen innerhalb bekannter Bereiche bewegen und eine Variation wenigstens einer Betriebseinstellung wie z. B. des Blattwinkels, der Azimutposition, des Generatormomentes, etc. innerhalb dieses Toleranzbereiches demnach zu der optimalen Einstellung führen muss.The invention is based on the knowledge that the tolerances move within known ranges and a variation of at least one operating setting such as, for. B. the blade angle, the azimuth position, the generator torque, etc. must therefore lead to the optimal setting within this tolerance range.

Um zu vermeiden, dass durch eine permanente Variation einer Betriebseinstellung letztlich eine größere Ertragseinbuße auftritt, werden diese Variationen in vorgebbaren Zeitabständen ausgeführt, so dass, wenn eine optimale Einstellung gefunden wurde, diese für einen vorgegebenen Zeitabschnitt beibehalten wird.In order to avoid that a permanent loss of yield ultimately results in a greater loss of yield, these variations are carried out at predeterminable time intervals, so that if an optimal setting has been found, it is retained for a predetermined period of time.

In einer besonders bevorzugten Ausführungsform der Erfindung werden die Zeitabstände abhängig von vorgebbaren Standort- und/oder Betriebsbedingungen variiert, so dass die Standortbesonderheiten, wie relativ gleichförmige oder turbulente Windströmung, Windrichtungswechsel, oder ähnliches berücksichtigt werden können.In a particularly preferred embodiment of the invention, the time intervals are varied depending on predeterminable location and / or operating conditions, so that the location peculiarities, such as relatively uniform or turbulent wind flow, wind direction changes, or the like, can be taken into account.

In einer besonders bevorzugten Weiterbildung der Erfindung wird die Variation nach einer durch äußere Einflüsse ausgelösten Veränderung der Betriebseinstellung zeitnah ausgeführt. Ist die Zeit dabei hinreichend kurz, wird die Betriebseinstellung über den vorgegebenen Einstellwert hinaus und ggf. einen vorbestimmten Betrag in der entgegengesetzten Richtung zurück variiert, bis die optimale Einstellung gefunden ist. Dieser Vorgang entspricht annähernd einem Einschwing-Vorgang.In a particularly preferred development of the invention, the variation is carried out promptly after a change in the operating setting triggered by external influences. If the time is sufficiently short, the operating setting is varied beyond the predefined setting value and possibly a predetermined amount in the opposite direction until the optimal setting is found. This process corresponds approximately to a settling process.

Besonders bevorzugt wird bei dem erfindungsgemäßen Verfahren die Differenz zwischen der Ausgangseinstellung und der variierten Einstellung mit dem optimalen Ertrag ermittelt und bei den nachfolgenden Veränderungen und/oder Variationen berücksichtigt. Auf diese Weise kann der Variationsvorgang, und damit die Erreichung maximalen Ertrages verkürzt werden.In the method according to the invention, the difference between the initial setting and the varied setting with the optimum yield is particularly preferably determined and taken into account in the subsequent changes and / or variations. In this way, the variation process and thus the achievement of maximum yield can be shortened.

In einer insbesondere bevorzugten Ausführungsform der Erfindung umfasst eine erfindungsgemäße Windenergieanlage eine Steuerungsvorrichtung, welche zur Ausführung des Verfahrens geeignet ist, wobei die Steuerungsvorrichtung einen Mikroprozessor oder Mikrocomputer und eine Speichervorrichtung aufweist.In a particularly preferred embodiment of the invention, a wind power installation according to the invention comprises a control device which is suitable for carrying out the method, the control device having a microprocessor or microcomputer and a storage device.

Weitere vorteilhafte Ausführungsformen der Erfindung sind in den Unteransprüchen angegeben.Further advantageous embodiments of the invention are specified in the subclaims.

Im Folgenden wird ein Ausführungsbeispiel anhand der Figuren näher erläutert. Dabei zeigen:

Figur 1
eine Darstellung des Grundprinzips der vorliegenden Erfindung an Hand eines Diagrammes;
Figur 2
eine Darstellung eines verbesserten Grundprinzips ;
Figur 3
eine weiter verbesserte Variante des erfindungsgemäßen Verfahrens;
Figur 4
ein weiter optimiertes Verfahren; und
Figur 5
ein zur Ertragsmaximierung noch weiter optimiertes, erfindungsgemäßes Verfahren.
An exemplary embodiment is explained in more detail below with reference to the figures. Show:
Figure 1
a representation of the basic principle of the present invention using a diagram;
Figure 2
an illustration of an improved basic principle;
Figure 3
a further improved variant of the method according to the invention;
Figure 4
a further optimized procedure; and
Figure 5
a method according to the invention which is further optimized for maximizing yield.

In Figur 1 ist das Grundprinzip des erfindungsgemäßen Verfahrens zur Steuerung einer Windenergieanlage dargestellt. In der Figur ist auf der Abszisse die Zeit t abgetragen, auf der Ordinate ist im oberen Teil die Variation einer Betriebseinstellung, wie z.B. des Azimutwinkels (α) der Gondel und damit des Rotors einer Windenergieanlage dargestellt, und im unteren Teil ist der Übersichtlichkeit halber in einer vereinfachten Darstellung der Verlauf des Ertrages in Form einer Leistungskennlinie (P) dargestellt.In Figure 1 the basic principle of the method according to the invention for controlling a wind turbine is shown. In the figure, the time t is plotted on the abscissa, the variation of an operating setting, such as the azimuth angle (α) of the nacelle and thus the rotor of a wind turbine, is shown in the upper part of the ordinate, and in the lower part is shown in for the sake of clarity a simplified representation of the course of the yield in the form of a performance curve (P).

Aus der oberen Kennlinie ist zu entnehmen, dass die Variation der Betriebseinstellung aus der Ausgangsposition heraus sinusförmig zunächst zum Zeitpunkt t1 in einer positiven Richtung beginnt, zum Zeitpunkt t2 einen Maximalwert erreicht und zum Zeitpunkt t3 wieder den Ausgangswert erreicht hat. Von dort wird nun die Variation in entgegengesetzter Richtung fortgesetzt, wobei sie zum Zeitpunkt t4 wiederum das Maximum erreicht und zum Zeitpunkt t5 wieder den Ausgangswert angenommen hat.It can be seen from the upper characteristic curve that the variation of the operating setting from the initial position begins sinusoidally in a positive direction at time t1, has reached a maximum value at time t2 and has reached the initial value again at time t3. From there, the variation is now continued in the opposite direction, again reaching the maximum at time t4 and again assuming the initial value at time t5.

Ergibt sich nun während dieser Variation eine Ertragssteigerung, so kann die Betriebseinstellung entsprechend verändert werden, so dass die Windenergieanlage einen höheren Ertrag liefert.If there is an increase in yield during this variation, the operating setting can be changed accordingly, so that the wind turbine delivers a higher yield.

Die untere Kennlinie zeigt den Ertrag, der in Abhängigkeit der Betriebseinstellung variiert. Zum Zeitpunkt t1, also mit Beginn der Variation nimmt der Ertrag bis zum Erreichen des Maximums der Variation zum Zeitpunkt t2 ab, und während die Einstellung wieder auf den Ausgangswert zurückgeführt wird (t3) nimmt der Ertrag wieder zu, bis auch er zum Zeitpunkt t3 seinen Ausgangswert erreicht. Bei der Umkehr der Variationsrichtung nimmt der Ertrag in dem vorliegenden Beispiel ebenfalls wieder ab, erreicht zum Zeitpunkt t4 das Minimum (das Maximum der Ertragsabnahme) und erreicht zum Zeitpunkt t5 wieder seinen Ausgangswert. Damit ist deutlich erkennbar, dass die Ausgangseinstellung der Windenergieanlage optimal war.The lower curve shows the yield, which varies depending on the operating setting. At time t1, i.e. at the beginning of the variation, the yield decreases until the maximum of the variation is reached at time t2, and while the setting is returned to the initial value (t3), the yield increases again until it also ends at t3 Baseline reached. When the direction of variation is reversed, the yield also decreases again in the present example, reaches the minimum (the maximum of the decrease in yield) at time t4 and returns to its initial value at time t5. This clearly shows that the initial setting of the wind turbine was optimal.

Zu einem vorgegebenen Zeitpunkt (in diesem Beispiel t6), nachdem ein vorgegebenes Intervall verstrichen ist, kann der Vorgang wiederholt werden.At a predetermined time (in this example t6) after a predetermined interval has elapsed, the process can be repeated.

Bei diesem Verfahren konkurrieren einerseits die Möglichkeit einer Ertragssteigerung und andererseits die durch die Variation einer optimalen Einstellung auftretenden Ertragseinbußen.This method competes on the one hand with the possibility of an increase in yield and on the other hand with the loss in yield that occurs due to the variation of an optimal setting.

Eine Möglichkeit zur Verringerung dieser Ertragseinbußen ist in Figur 2 dargestellt. In dieser Figur ist auf der Abszisse wiederum die Zeit abgetragen, während auf der Ordinate die obere Kennlinie die Variation der Betriebseinstellung und die untere Kennlinie den Verlauf des Ertrages wiedergeben.One way to reduce this loss in earnings is in Figure 2 shown. In this figure, the time is again plotted on the abscissa, while the upper characteristic curve shows the variation of the operating setting and the lower characteristic curve shows the course of the yield on the ordinate.

Während bei der Variation der Betriebseinstellung der Anstieg von dem Ausgangswert ausgehend nach wie vor sinusförmig ist, wird die Flankensteilheit des Signals nach Erreichen des Scheitelwertes erhöht, so dass die Rückkehr zum Ausgangswert schnellstmöglich erfolgt. Der Abstand zwischen den Zeitpunkten t1 und t2 bleibt im Vergleich zu Figur 1 im Wesentlichen unverändert; der Abstand zwischen den Zeitpunkten t2 und t3 wird jedoch deutlich verringert. Im Idealfall wird der Abstand zwischen t2 und t3 gegen Null gehen, so dass zumindest in einer ersten Näherung die Ertragseinbuße in diesem Abschnitt zwischen den Zeitpunkten t2 und t3 ebenfalls sehr klein wird.While the increase in the operating setting continues to be sinusoidal starting from the initial value, the edge steepness of the signal is increased after reaching the peak value, so that the return to the initial value takes place as quickly as possible. The distance between the times t1 and t2 remains compared to Figure 1 essentially unchanged; however, the distance between times t2 and t3 is significantly reduced. In the ideal case, the distance between t2 and t3 will approach zero, so that at least in a first approximation, the loss of yield in this section between times t2 and t3 will also be very small.

Das Gleiche wiederholt sich für die negative Halbwelle, deren Anstieg wiederum sinusförmig ist und zwischen den Zeitpunkten t3 und t4 erfolgt, während die Rückkehr zur Ausgangseinstellung wiederum in dem Zeitraum zwischen t4 und t5 mit einer möglichst großen Steilheit erfolgt. Entsprechend werden die Ertragseinbußen annähernd halbiert. Nach einem vorgegebenen Intervall wiederholt sich dieser Ablauf beginnend mit dem Zeitpunkt t6. Da mit dem jeweils sinusförmig ansteigenden Ablauf jeder Halbwelle in der Variation jede Einstellung innerhalb des Variationsbereiches (des Toleranzbandes) erreicht und bewertet werden kann, verringert diese Ausführungsform die Ertragseinbußen durch die Variation, ohne die Effizienz der Variation selbst zu verändern.The same is repeated for the negative half-wave, the rise of which is again sinusoidal and takes place between the times t3 and t4, while the return to the initial setting takes place again in the period between t4 and t5 with the greatest possible steepness. Accordingly, the loss of earnings will be halved. After a predetermined interval, this process is repeated starting at time t6. Since each setting within the range of variation (the tolerance band) can be reached and evaluated with the sinusoidally increasing course of each half-wave in the variation, this embodiment reduces the yield losses due to the variation without changing the efficiency of the variation itself.

Figur 3 zeigt eine weitere Ausführungsform der vorliegenden Erfindung, bei welcher die Ertragseinbußen durch die Variation der Betriebseinstellungen noch weiter verringert werden. Die Aufteilung von Abszisse und Ordinate entsprechen derjenigen in den anderen Figuren. Auch hier beginnt zum Zeitpunkt t1 die Variation der Betriebseinstellung. Figure 3 shows a further embodiment of the present invention, in which the yield losses are further reduced by varying the operating settings. The division of the abscissa and ordinate corresponds to that in the other figures. Here too, the variation in the operating setting begins at time t1.

In dem dargestellten Beispiel steigt gleichzeitig der Ertrag bis zu einem Maximum an. Wird der Betrag der Variation weiter erhöht, sinkt der Ertrag wieder ab, d.h., das Ertragsmaximum und damit die optimale Betriebseinstellung sind überschritten. Daher wird bei diesem Verfahren die Erhöhung des Betrages der Variation abgebrochen und die Einstellung wieder hergestellt, bei der sich das Ertragsmaximum eingestellt hat.In the example shown, the yield increases up to a maximum. If the amount of the variation is increased further, the yield drops again, i.e. the maximum yield and thus the optimal operating setting are exceeded. Therefore, in this method, the increase in the amount of the variation is discontinued and the setting is restored at which the maximum yield has been reached.

Hier ergibt sich in der oberen Kennlinie ein "Überschwingen", da nach Erreichen des Ertragsmaximum natürlich erst einmal das Absinken des Ertrages erkannt werden muss, bevor die Betriebseinstellung für das Ertragsmaximum dann eingestellt werden kann. Dies ist bereits zum Zeitpunkt t4 geschehen, so dass die Variation in entgegengesetzter Richtung nicht mehr ausgeführt werden muss, da ja das Ertragsmaximum bereits gefunden ist. Zum Zeitpunkt t5 beginnt nach einem vorgegebenen Zeitabschnitt wiederum die Variation der Betriebseinstellung, wobei zum Zeitpunkt t6 der Maximalbetrag der Variation erreicht ist und bis t7 der Ausgangswert wieder hergestellt ist. Da sich hier eine Ertragseinbuße ergeben hat, wird nun die Variation der entgegengesetzten Richtung ausgeführt und zum Zeitpunkt t9 stellt sich nach einem Überschwingen bei t8 wiederum ein Ertragsmaximum ein, so dass die entsprechende Einstellung beibehalten wird.Here there is an "overshoot" in the upper characteristic curve, since after the yield maximum has been reached, of course, the drop in yield must first be recognized before the operating setting for the yield maximum can then be set. This already happened at time t4, so that the variation in the opposite direction no longer has to be carried out, since the maximum yield has already been found. At time t5, the variation of the operating setting begins again after a predetermined time period, the maximum amount of the variation having been reached at time t6 and until t7 the initial value is restored. Since there was a loss of yield here, the variation of the opposite direction is now carried out and at time t9 there is again a maximum yield after an overshoot at t8, so that the corresponding setting is retained.

Eine weitere Ausführungsform der Erfindung ist in Figur 4 dargestellt. Hier ist die Abszisse wiederum die Zeitachse und die Ordinate zeigt die Variation der Betriebseinstellung. Die wesentliche Änderung gegenüber den oben beschriebenen Verfahren ist diejenige, dass als Anfangsrichtung für die Variation diejenige Richtung verwendet wird, bei der sich bei der vorherigen Variation eine Ertragssteigerung ergeben hat.Another embodiment of the invention is in Figure 4 shown. Here again the abscissa is the time axis and the ordinate shows the variation of the operating setting. The main change compared to the methods described above is that the direction in which the previous variation has resulted in an increase in yield is used as the starting direction for the variation.

Zum Zeitpunkt t1 beginnt die Variation der Betriebseinstellung, erreicht zum Zeitpunkt t2 ihrer Maximum und zum Zeitpunkt t3 wiederum ihren Ausgangswert. Da es in dem angenommenen Beispiel zu keiner Ertragssteigerung gekommen sei, wird die Variation nun mit umgekehrtem Vorzeichen, also in der entgegengesetzten Richtung ausgeführt. Zum Zeitpunkt t4 wird ein Ertragsmaximum erreicht, und nach einem kurzen Überschwinger dieses Ertragsmaximum beibehalten.The variation in the operating setting begins at time t1, reaches its maximum at time t2 and in turn reaches its initial value at time t3. Since there was no increase in yield in the assumed example, the variation is now carried out with the opposite sign, that is, in the opposite direction. A yield maximum is reached at time t4, and this yield maximum is maintained after a brief overshoot.

Nach einem vorgegebenen Zeitabschnitt wird zum Zeitpunkt t5 wiederum "turnusmäßig" die Betriebseinstellung variiert und die Anfangsrichtung entspricht hier derjenigen Richtung, die bei der vorherigen Variation zu einer Ertragssteigerung führte, also der negativen Halbwelle. Zum Zeitpunkt t6 wird wiederum ein Ertragsmaximum erreicht, so dass diese Einstellung beibehalten wird. Damit entfällt die Ertragseinbuße völlig, die bei der positiven Halbwelle aufgetreten wäre.After a predetermined period of time, the operating setting is again "rotated" at time t5 and the initial direction corresponds to the direction that led to an increase in yield in the previous variation, ie the negative half-wave. At time t6, a maximum yield is again reached, so that this setting is retained. This completely eliminates the loss of earnings that would have occurred with the positive half-wave.

Nach einem weiteren Zeitabschnitt beginnt zum Zeitpunkt t7 wiederum die Variation der Betriebseinstellung. Diese beginnt wiederum mit der negativen Halbwelle, da diese bei der vorherigen Variation wiederum zu einer Ertragssteigerung führte. In diesem Fall sei angenommen, dass dieses nicht der Fall ist, so dass zum Zeitpunkt t8 das Maximum erreicht wird und zum Zeitpunkt t9 der Ausgangswert wieder hergestellt ist. Nun wird wiederum die Richtung der Variation umgekehrt und an die negative Halbwelle schließt sich eine positive Halbwelle an, in der zum Zeitpunkt t10 das Ertragsmaximum erreicht wird, so dass dieser Wert nun beibehalten wird.After a further period of time, the variation in the operating setting begins again at time t7. This in turn begins with the negative half-wave, since this in turn led to an increase in yield with the previous variation. In this case it is assumed that this is not the case, so that the maximum is reached at time t8 and the initial value is restored at time t9. Now the direction of the variation is reversed again and the negative half-wave is followed by a positive half-wave in which the yield maximum is reached at time t10, so that this value is now maintained.

Zum Zeitpunkt t11 beginnt eine weitere Variation, dieses Mal mit der positiven Halbwelle, da diese bei der vorherigen Variation zu einer Ertragssteigerung führte. Zum Zeitpunkt t12 ist das Maximum erreicht und zum Zeitpunkt t13 wiederum die Ausgangseinstellung. Da zum Zeitpunkt t14 in diesem Beispiel wiederum ein Ertragsmaximum erreicht wird, wird diese Einstellung beibehalten, so dass die nachfolgende Variation wiederum mit der negativen Halbwelle beginnen wird.Another variation begins at time t11, this time with the positive half-wave, since this led to an increase in yield in the previous variation. The maximum is reached at time t12 and the initial setting is reached again at time t13. Since a yield maximum is again reached at time t14 in this example, this setting is retained, so that the subsequent variation will begin again with the negative half-wave.

Figur 5 zeigt eine noch weiter verbesserte Ausführungsform der vorliegenden Erfindung. In dieser Figur ist die Abszisse wiederum die Zeitachse, während die Ordinate im oberen Teil die Veränderung einer Betriebseinstellung und im unteren Teil wiederum den Ertragsverlauf zeigt. Bei dieser Ausführungsform des erfindungsgemäßen Verfahrens werden Ertragseinbußen infolge der Variation noch weiter verringert. Dieses wird mit dem erfindungsgemäßen Verfahren dadurch erreicht, das bei der Feststellung einer Ertragseinbuße die Variationsrichtung umgekehrt wird. Kommt es nach der Umkehr der Variationsrichtung wiederum zu einer Ertragseinbuße, wird die Variation abgebrochen. Figure 5 shows a still further improved embodiment of the present invention. In this figure, the abscissa is again the time axis, while the ordinate in the upper part shows the change in an operating setting and in the lower part the yield curve. In this embodiment of the method according to the invention, yield losses due to the variation are reduced even further. This is achieved with the method according to the invention in that the direction of variation is reversed when a loss of yield is ascertained. If, after the direction of variation is reversed, there is again a loss in yield, the variation is terminated.

In der Figur 5 beginnt die Variation wiederum zum Zeitpunkt t1 mit einer positiven Halbwelle und zum Zeitpunkt t2 wird das Ertragsmaximum erreicht. Nach einem "Überschwinger" (t3) wird das Ertragsmaximum zum Zeitpunkt t4 eingestellt und für einen vorgegebenen Zeitabschnitt beibehalten, bis zum Zeitpunkt t5 wiederum eine Variation beginnt.In the Figure 5 the variation begins again at time t1 with a positive half-wave and at time t2 the maximum yield is reached. After an "overshoot" (t3), the maximum yield is set at time t4 and maintained for a predetermined time period until a variation begins again at time t5.

Diese beginnt wiederum mit einer positiven Halbwelle. Allerdings zeigt sich zum Zeitpunkt t6 bereits eine Ertragseinbuße. Daher wird die Variationsrichtung umgekehrt und die negative Halbwelle der Variation der Betriebseinstellung beginnt zum Zeitpunkt t7. Zum Zeitpunkt t8 wird ein Ertragsmaximum erreicht und nach einem Überschwinger (t9) wird zum Zeitpunkt t10 diese Einstellung beibehalten. Nach einem weiteren, vorgegebenen Zeitabschnitt wird zum Zeitpunkt t11 wiederum die Betriebseinstellung variiert.This in turn begins with a positive half wave. However, there is already a loss of income at time t6. Therefore, the direction of variation is reversed and the negative half-wave of the variation in the operating setting begins at time t7. A yield maximum is reached at time t8 and, after an overshoot (t9), this setting is retained at time t10. After a further predetermined time period, the operating setting is again varied at time t11.

Da bei der vorherigen Variation die negative Halbwelle zu einer Ertragssteigerung führte, beginnt auch diese Variation mit der negativen Halbwelle. Bereits zum Zeitpunkt t12 wird erkannt, dass diese Variationsrichtung zu einer Ertragseinbuße führt und die Variationsrichtung wird umgekehrt, so dass zum Zeitpunkt t13 wiederum der Ausgangswert erreicht ist und die positive Halbwelle beginnt.Since the negative half-wave led to an increase in yield in the previous variation, this variation also begins with the negative half-wave. Already At time t12 it is recognized that this direction of variation leads to a loss of yield and the direction of variation is reversed, so that at time t13 the initial value is reached again and the positive half-wave begins.

Zum Zeitpunkt t14 wird erkannt, dass auch diese Variationsrichtung zu einer Ertragseinbuße führt, und der Variationsvorgang wird abgebrochen. Zum Zeitpunkt t15 ist die Ausgangs-Betriebseinstellung wieder hergestellt.At time t14 it is recognized that this variation direction also leads to a loss in yield, and the variation process is terminated. The output operating setting is restored at time t15.

Um den wesentlichen Vorteil dieser Ausführungsform zu verdeutlichen, ist in der Figur die vorgegebene Variationsgrenze (T) in beiden Richtungen von der Ausgangseinstellung eingetragen. Aufgrund der erheblich kleineren Amplitude der Variation der Betriebseinstellung sind auch die Ertragseinbuße bei dieser Variation erheblich geringer. Der Möglichkeit einer signifikanten Ertragssteigerung steht damit eine vernachlässigbare Ertragseinbuße für den Fall entgegen, dass die Ausgangs-Betriebseinstellung bereits die optimale Betriebseinstellung ist.In order to clarify the essential advantage of this embodiment, the predetermined variation limit (T) is entered in both directions from the initial setting in the figure. Due to the considerably smaller amplitude of the variation in the operating setting, the yield losses in this variation are also considerably less. The possibility of a significant increase in yield is countered by a negligible loss of income in the event that the initial operating setting is already the optimal operating setting.

Neben dem Ausgleich von unvermeidbaren Fertigungs- bzw. Montagetoleranzen, den diese Erfindung ermöglicht, kann durch das erfindungsgemäß vorgeschlagene Verfahren auch bei der Änderung äußerer Betriebsbedingungen, wie der Windrichtung eine Ertragssteigerung erfolgen, wenn die Änderung noch innerhalb der Toleranzbreite der Anlagen-Steuerung liegt. Ändert sich also z.B. die Windrichtung nur um einen geringen Betrag, dann wird die Azimutverstellung nicht in Folge der Windrichtungsänderung aktiviert. Trotzdem ergibt sich durch einen geringfügig veränderten Anström-Winkel eine geringe Ertragseinbuße. Diese kann durch das erfindungsgemäße Verfahren wieder ausgeglichen werden, wenn die Azimuteinstellung regelmäßig variiert wird.In addition to the compensation of unavoidable manufacturing or assembly tolerances that this invention enables, the method proposed according to the invention can also result in an increase in yield when changing external operating conditions, such as the wind direction, if the change is still within the tolerance range of the system control. So changes e.g. the wind direction only by a small amount, then the azimuth adjustment is not activated as a result of the change in wind direction. Nevertheless, a slight change in the inflow angle results in a slight loss in yield. This can be compensated for by the method according to the invention if the azimuth setting is varied regularly.

Weiterhin ist ein Ausgleich von Montagefehlern möglich. Eine Fehlanzeige der Windfahne, z. B. durch einen Montagefehler, kann durch die erfindungsgemäße Steuerung ausgeglichen werden, sofern sie innerhalb der Toleranzbreite der Anlagen-Steuerung liegt. Dadurch kann eine durch die auf dem Anzeigeergebnis der Windfahne basierende, nicht optimale Energieausbeute optimiert werden.Compensation for assembly errors is also possible. A false display of the wind vane, e.g. B. by an assembly error, can be compensated for by the control according to the invention, provided that it is within the tolerance range of the system control. As a result, a non-optimal energy yield can be optimized based on the display result of the wind vane.

Die Erfindung ist bevorzugt anzuwenden bei einem Satz von Betriebsparameter-Einstellungen. Bevorzugte Parameter sind hierbei die Pitch-Einstellung (Rotorblattwinkeleinstellung), die Azimuteinstellung (Rotoreinstellung) sowie der Erregerstrom des Generators zur Bestimmung des Generatormoments.The invention is preferably applicable to a set of operating parameter settings. Preferred parameters here are the pitch setting (rotor blade angle setting), the azimuth setting (rotor setting) and the excitation current of the generator for determining the generator torque.

Je nach Windbedingungen gibt es für die verschiedensten Parameter-Einstellungen einen Parametersatz, der zur Steuerung in Form einer Tabelle hinterlegt sein kann. Aus der dann gemessenen Windgeschwindigkeit ergibt sich für den konkreten Anlagetyp jeweils eine optimale Schnelllaufzahl (das Verhältnis der Umfangsgeschwindigkeit der Rotorblattspitze zur Windgeschwindigkeit) für einen maximalen Energieertrag. Da infolge der bekannten Rotor-Parameter das bei dieser Windgeschwindigkeit zur Verfügung stehende Drehmoment bekannt ist, kann ein optimales Generatormoment anhand der Vorgaben der Tabelle bestimmt werden.Depending on the wind conditions, there is a parameter set for a wide variety of parameter settings, which can be stored in the form of a table for control purposes. The wind speed measured then results in an optimal high-speed number (the ratio of the peripheral speed of the rotor blade tip to the wind speed) for a maximum energy yield for the specific system type. Since, due to the known rotor parameters, the torque available at this wind speed is known, an optimal generator torque can be determined using the specifications in the table.

Ist das Generatormoment nicht an die Schnelllaufzahl angepasst, ergeben sich daraus Nachteile. Bei zu niedrigem Generatordrehmoment erhöht sich die Schnelllaufzahl und der Rotor beschleunigt in unerwünschter Weise, weil der Wind eine entsprechende Energie zuführt. Bei zu hohem Generatormoment wird der Rotor hingegen zu weit gebremst, so dass der Rotor zu langsam läuft und dem Wind nicht die maximal mögliche Energie entnimmt. Da das Generatormoment aber von der Höhe des Erregerstroms direkt abhängig ist, ergibt sich eine Einstellmöglichkeit, um an dieser Stelle den Betrieb der Windenergieanlage im Sinne einer Optimierung zu beeinflussen.If the generator torque is not adapted to the high-speed number, there are disadvantages. If the generator torque is too low, the high-speed number increases and the rotor accelerates undesirably because the wind supplies a corresponding amount of energy. If the generator torque is too high, the rotor is braked too far, so that the rotor runs too slowly and does not take the maximum possible energy from the wind. However, since the generator torque is directly dependent on the level of the excitation current, there is an adjustment option in order to influence the operation of the wind power plant in this way in the sense of optimization.

Eine weitere Möglichkeit der erfindungsgemäßen Anwendung betrifft die Azimutanpassung, um einen eventuellen Gierwinkel möglichst gering ausfallen zu lassen, sowie die Einstellung des Anstellwinkels der Rotorblätter (Pitch), um wiederum ein maximales Drehmoment zu erreichen und dementsprechend dem Wind ein Maximum an Energie zu entziehen.A further possibility of the application according to the invention relates to the azimuth adjustment, in order to make a possible yaw angle as small as possible, and the setting of the angle of attack of the rotor blades (pitch), in order in turn to achieve a maximum torque and accordingly to withdraw a maximum of energy from the wind.

Claims (16)

  1. Method for controlling a wind turbine, characterised in that at least one operational setting (a) is varied within predetermined limits (T), wherein the variation is performed in predeterminable time intervals (t1, t2, t3, t4, t5, t6, t7, t8, t9, t10) so that, when an optimal setting has been found, this is maintained for a given period of time.
  2. Method according to claim 1,
    characterised in that the time intervals are varied in response to predefinable ambient and/or operating conditions.
  3. Method according to one of the preceding claims,
    characterised in that the variations are by a predefined amount in one direction, starting from the initial setting, or successively in two opposing directions.
  4. Method according to one of the preceding claims,
    characterised in that the variation is performed after a change in an operational setting (a) has been caused by external factors.
  5. Method according to one of the preceding claims,
    characterised in that a tip speed ratio of a rotor blade is detected contemporaneously with the variation of the operational setting (a).
  6. Method according to claim 5,
    characterised in that a difference between the initial setting and the varied setting with the highest tip speed ratio is quantified.
  7. Method according to claim 6,
    characterised in that the quantified difference is taken into account in every subsequent change of operational setting (a) in response to external factors.
  8. Method according to one of the preceding claims,
    characterised in that the rotor blade pith angle and/or the azimuth setting and/or the generator torque is varied.
  9. Method according to one of the preceding claims,
    characterised in that the varied setting, the direction and the amount of variation are stored and/or analysed.
  10. Method according to one of the preceding claims,
    characterised in that the amount of variation is increased with a first speed and reduced with a second speed.
  11. Method according to claim 10,
    characterised in that the first speed is less than the second speed.
  12. Method according to one of the preceding claims,
    characterised in that the direction of variation that led in the preceding variation phase to an increase in power yield is used as the direction for the variation.
  13. Method according to one of the preceding claims,
    characterised in that the direction of variation is reversed if the power yield has decreased.
  14. Method according to claim 13,
    characterised in that the variation is terminated after a power yield reduction occurs following a reversal of the direction of variation.
  15. Wind turbine for performing the method according to any one of the preceding claims, wherein the wind turbine comprises a rotor, a generator connected thereto and a controller for controlling each turbine parts, for example the pitch of the rotor blades of a rotor and/or of the generator and/or for setting the attitude of the rotor to the wind.
  16. Wind turbine according to claim 15,
    characterised in that the controller includes at least one microprocessor or microcontroller and a memory device.
EP06110622.5A 2001-06-07 2002-04-24 Method of maximising the energy collection of a wind turbine Expired - Lifetime EP1666724B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10127451.3A DE10127451C5 (en) 2001-06-07 2001-06-07 Method for controlling a wind energy plant
EP02732657.8A EP1399674B2 (en) 2001-06-07 2002-04-24 Method for maximizing the energy output of a wind turbine
PCT/EP2002/004485 WO2002099277A1 (en) 2001-06-07 2002-04-24 Method for maximizing the energy output of a wind turbine

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
EP02732657.8A Division-Into EP1399674B2 (en) 2001-06-07 2002-04-24 Method for maximizing the energy output of a wind turbine
EP02732657.8A Division EP1399674B2 (en) 2001-06-07 2002-04-24 Method for maximizing the energy output of a wind turbine
EP02732657.8 Division 2002-04-24

Publications (3)

Publication Number Publication Date
EP1666724A2 EP1666724A2 (en) 2006-06-07
EP1666724A3 EP1666724A3 (en) 2011-01-05
EP1666724B1 true EP1666724B1 (en) 2020-03-25

Family

ID=7687372

Family Applications (2)

Application Number Title Priority Date Filing Date
EP02732657.8A Expired - Lifetime EP1399674B2 (en) 2001-06-07 2002-04-24 Method for maximizing the energy output of a wind turbine
EP06110622.5A Expired - Lifetime EP1666724B1 (en) 2001-06-07 2002-04-24 Method of maximising the energy collection of a wind turbine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP02732657.8A Expired - Lifetime EP1399674B2 (en) 2001-06-07 2002-04-24 Method for maximizing the energy output of a wind turbine

Country Status (15)

Country Link
US (2) US7101152B2 (en)
EP (2) EP1399674B2 (en)
JP (2) JP2004530076A (en)
KR (1) KR100608089B1 (en)
AR (1) AR034591A1 (en)
AU (1) AU2002304687B2 (en)
BR (1) BR0210165B1 (en)
CA (1) CA2449218C (en)
DE (1) DE10127451C5 (en)
DK (2) DK1666724T3 (en)
ES (2) ES2792451T3 (en)
NZ (1) NZ529932A (en)
PL (1) PL206086B1 (en)
PT (2) PT1399674T (en)
WO (1) WO2002099277A1 (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10127451C5 (en) * 2001-06-07 2016-09-01 Aloys Wobben Method for controlling a wind energy plant
DE10300733B3 (en) * 2003-01-11 2004-07-15 Repower Systems Ag Management system for a wind turbine
DE10323785B4 (en) 2003-05-23 2009-09-10 Wobben, Aloys, Dipl.-Ing. Method for detecting an ice accumulation on rotor blades
DE102004054608B4 (en) * 2004-09-21 2006-06-29 Repower Systems Ag Method for controlling a wind turbine and wind turbine with a rotor
DE102004051843B4 (en) * 2004-10-25 2006-09-28 Repower Systems Ag Wind turbine and method for automatically correcting wind vane misadjustments
DE102004056254B4 (en) 2004-11-22 2006-11-09 Repower Systems Ag Method for optimizing the operation of wind turbines
DE102004056255B4 (en) * 2004-11-22 2007-02-08 Repower Systems Ag Method for optimizing operating parameters in wind turbines
US7633177B2 (en) * 2005-04-14 2009-12-15 Natural Forces, Llc Reduced friction wind turbine apparatus and method
DE102005028686B4 (en) * 2005-06-21 2007-06-14 Repower Systems Ag Method and arrangement for measuring a wind energy plant
US7420289B2 (en) * 2006-12-06 2008-09-02 General Electric Company Method for predicting a power curve for a wind turbine
US7883317B2 (en) 2007-02-02 2011-02-08 General Electric Company Method for optimizing the operation of a wind turbine
DE102007014863A1 (en) 2007-03-26 2008-10-02 Repower Systems Ag Method for operating a wind energy plant
EP2162620B1 (en) * 2007-04-30 2014-04-02 Vestas Wind Systems A/S A method of operating a wind turbine and a wind turbine
JP5022102B2 (en) * 2007-05-25 2012-09-12 三菱重工業株式会社 Wind power generator, wind power generator system, and power generation control method for wind power generator
US8362632B2 (en) 2007-11-30 2013-01-29 Vestas Wind Systems A/S Wind turbine, a method for controlling a wind turbine and use thereof
US7952217B2 (en) 2007-11-30 2011-05-31 Vestas Wind Systems A/S Wind turbine, a method for controlling a wind turbine and use thereof
DE102008012664A1 (en) * 2008-01-30 2009-08-06 Repower Systems Ag Wind turbine and a tower or tower segment and a door frame for it
US8215906B2 (en) * 2008-02-29 2012-07-10 General Electric Company Variable tip speed ratio tracking control for wind turbines
JP2011515624A (en) * 2008-03-24 2011-05-19 ノーディック ウィンドパワー リミテッド Turbine and system for generating electrical power from a fluid stream and method therefor
US8104631B2 (en) * 2008-07-24 2012-01-31 General Electric Company Portable crane system for wind turbine components
US8133025B2 (en) * 2008-07-29 2012-03-13 Ari Green Technology, Llc Turbine blade system
EP2175129A1 (en) 2008-10-10 2010-04-14 Siemens Aktiengesellschaft Adaptive adjustment of the blade pitch angle of a wind turbine
US8096761B2 (en) * 2008-10-16 2012-01-17 General Electric Company Blade pitch management method and system
JP5199828B2 (en) 2008-10-29 2013-05-15 三菱重工業株式会社 Wind power generator and control method thereof
DE102009015167A1 (en) * 2009-03-26 2010-09-30 Wilkens, Bodo, Dr. Method for tracking rotor level of wind turbine against wind direction, involves adjusting rotor level in azimuthal direction according to amount of correction value in adjustment direction that coincides with another adjustment direction
US8227929B2 (en) 2009-09-25 2012-07-24 General Electric Company Multi-use energy storage for renewable sources
DE102010011549A1 (en) * 2010-03-15 2011-09-15 Repower Systems Ag Maintenance azimuth angle
US7987067B2 (en) * 2010-03-26 2011-07-26 General Electric Company Method and apparatus for optimizing wind turbine operation
US8178989B2 (en) * 2010-12-15 2012-05-15 General Electric Company System and methods for adjusting a yaw angle of a wind turbine
DE102011119942A1 (en) * 2011-12-01 2013-06-06 Powerwind Gmbh Method for operating wind power plant, involves testing wind signal under consideration of signal course on tendency with respect to criterion, and changing setting of operational parameter depending of wind signal testing
US10473088B2 (en) * 2015-03-13 2019-11-12 General Electric Company System and method for variable tip-speed-ratio control of a wind turbine
US10712717B2 (en) 2015-05-15 2020-07-14 General Electric Company Condition-based validation of performance updates
DE102016121961A1 (en) * 2016-11-15 2018-05-17 Wobben Properties Gmbh Method for controlling a wind turbine and associated wind turbine
EP3336348A1 (en) 2016-12-14 2018-06-20 Siemens Wind Power A/S Operating a wind turbine
US11136961B2 (en) 2017-06-01 2021-10-05 General Electric Company System and method for optimizing power output of a wind turbine during an operational constraint

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4095120A (en) 1976-10-22 1978-06-13 Louis Michael Glick Load control for wind-driven electric generators
US4160170A (en) 1978-06-15 1979-07-03 United Technologies Corporation Wind turbine generator pitch control system
US4613762A (en) 1984-12-11 1986-09-23 The United States Of America As Represented By The Secretary Of Agriculture Output responsive field control for wind-driven alternators and generators
WO1987000312A1 (en) 1985-07-11 1987-01-15 Allan Russell Jones Electronic control circuit
DE4019710A1 (en) 1990-06-21 1992-01-02 Telefunken Systemtechnik Energy source and load adaptor control method - involving iterative comparison of actual and pre-established source power levels until max. power point is attained
US5155375A (en) * 1991-09-19 1992-10-13 U.S. Windpower, Inc. Speed control system for a variable speed wind turbine
DE4220255C1 (en) * 1992-06-23 1993-12-23 Voith Gmbh J M Efficiency improvement method for water turbine generating set - uses results from model testing to determine pitch angles for guide wheel and runner
EP0644331B1 (en) * 1993-09-22 1997-11-12 Sulzer Hydro AG Method of efficiency optimisation for a water turbine
US5584655A (en) 1994-12-21 1996-12-17 The Wind Turbine Company Rotor device and control for wind turbine
US5652485A (en) 1995-02-06 1997-07-29 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Fuzzy logic integrated electrical control to improve variable speed wind turbine efficiency and performance
DE19532409B4 (en) 1995-09-01 2005-05-12 Wobben, Aloys, Dipl.-Ing. Method for operating a wind turbine and an associated wind turbine
US5798631A (en) 1995-10-02 1998-08-25 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Performance optimization controller and control method for doubly-fed machines
US5582426A (en) * 1995-10-24 1996-12-10 Trw Vehicle Safety Systems Inc. Vented ignition cup in stored fluid inflator
DE19628073C1 (en) 1996-07-12 1997-09-18 Aerodyn Energiesysteme Gmbh Wind-powered generation plant rotor blade angle correction method
US6320272B1 (en) * 1997-03-26 2001-11-20 Forskningscenter Riso Wind turbine with a wind velocity measurement system
DE19844258A1 (en) * 1998-09-26 2000-03-30 Dewind Technik Gmbh Wind turbine
DE19846818A1 (en) 1998-10-10 2000-04-13 Karl Swiontek Maximum regulator e.g. for regulating electrical power of solar cells, uses control value produced by conventional regulator, or another value derived from it, to influence demand value generation in demand value generator
DE19934415B4 (en) 1999-07-22 2005-03-17 Frey, Dieter, Dr.-Ing. Method for wind tracking in wind turbines
WO2001066940A1 (en) * 2000-03-08 2001-09-13 Forskningscenter Risø A method of operating a turbine
US6608397B2 (en) 2000-11-09 2003-08-19 Ntn Corporation Wind driven electrical power generating apparatus
DE10127451C5 (en) * 2001-06-07 2016-09-01 Aloys Wobben Method for controlling a wind energy plant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANAKA T ET AL: "Output control by hill-climbing method for a small scale wind power generating system", RENEWABLE ENERGY, PERGAMON PRESS, OXFORD, GB, vol. 12, no. 4, 1 December 1997 (1997-12-01), pages 387 - 400, XP004101206, ISSN: 0960-1481, DOI: 10.1016/S0960-1481(97)00055-4 *

Also Published As

Publication number Publication date
BR0210165A (en) 2004-08-24
US7484933B2 (en) 2009-02-03
JP4778015B2 (en) 2011-09-21
AR034591A1 (en) 2004-03-03
JP2008202601A (en) 2008-09-04
ES2792451T3 (en) 2020-11-11
PT1399674T (en) 2017-03-29
WO2002099277A1 (en) 2002-12-12
KR100608089B1 (en) 2006-08-02
ES2617082T3 (en) 2017-06-15
ES2617082T5 (en) 2020-10-29
CA2449218A1 (en) 2002-12-12
US7101152B2 (en) 2006-09-05
EP1399674B2 (en) 2020-02-26
DE10127451A1 (en) 2002-12-19
JP2004530076A (en) 2004-09-30
PL367189A1 (en) 2005-02-21
PT1666724T (en) 2020-05-27
AU2002304687B2 (en) 2006-06-08
DK1399674T4 (en) 2020-04-27
EP1666724A2 (en) 2006-06-07
US20060216148A1 (en) 2006-09-28
EP1399674A1 (en) 2004-03-24
DE10127451C5 (en) 2016-09-01
DK1399674T3 (en) 2017-03-20
EP1666724A3 (en) 2011-01-05
BR0210165B1 (en) 2011-03-09
DK1666724T3 (en) 2020-05-25
EP1399674B1 (en) 2016-12-21
US20040197186A1 (en) 2004-10-07
CA2449218C (en) 2006-10-17
KR20040011528A (en) 2004-02-05
PL206086B1 (en) 2010-06-30
NZ529932A (en) 2006-07-28
DE10127451B4 (en) 2009-09-24

Similar Documents

Publication Publication Date Title
EP1666724B1 (en) Method of maximising the energy collection of a wind turbine
EP2906824B1 (en) Method for operating a wind turbine
DE102005059888B4 (en) Method for torque and pitch control for a wind turbine depending on the speed
DE102004056255B4 (en) Method for optimizing operating parameters in wind turbines
EP2751422B1 (en) Method for operating a wind turbine
EP1339985A1 (en) Azimuthal control of a wind-energy turbine during a storm
EP1923568A2 (en) Method of operating a wind turbine in reduced output mode
EP3926162B1 (en) Method for operating a wind turbine, control device for operating a wind turbine and wind farm
EP3464887B1 (en) Method for controlling a wind turbine and wind turbine
WO2019134793A1 (en) Operation of a wind power plant during a storm
EP2745005A1 (en) Energy converting device for energy systems, and method for operating such a device
DE102006051352C5 (en) Method for operating a wind energy plant
DE102012224067A1 (en) Wind turbine and method for controlling the electrical torque of a wind turbine in the event of a network fault
EP2796710A1 (en) Method and control device for clamping a wind tracking assembly of a wind power plant
DE102012211578B4 (en) Device and method for using waste heat of an internal combustion engine, in particular of a motor vehicle, as well as a turbine for such a device
EP3775536A1 (en) Wind turbine, wind power plant and method for controlling a wind turbine and a wind power plant
DE102010026244A1 (en) Method for controlling e.g. rotor rotation of wind turbine in large wind farm, involves programming appropriate control system such that renouncement of yielding potential is performed as function of wind direction and position of turbine
EP3842633B1 (en) Method for operating a wind turbine, wind turbine and wind farm
EP4227523A1 (en) Method for operation of a wind farm, wind energy system and wind farm
EP3499023A1 (en) Method and system for operating a wind energy plant
EP3768970B1 (en) Method for operating a wind turbine, wind turbine, and wind park
EP2764234A1 (en) Method for primary adjustment of a hydroelectric power plant
EP3715624B1 (en) Method for operating a wind turbine
DE102018009232A1 (en) Method and system for operating a wind turbine
WO2020109219A1 (en) Method and system for operating a wind turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1399674

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17P Request for examination filed

Effective date: 20110705

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WOBBEN PROPERTIES GMBH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WOBBEN PROPERTIES GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WOBBEN PROPERTIES GMBH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WOBBEN PROPERTIES GMBH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DER ERFINDER HAT AUF SEINE NENNUNG VERZICHTET.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WOBBEN, ALOYS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170113

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191029

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 1399674

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50216357

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1248839

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20200520

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 1666724

Country of ref document: PT

Date of ref document: 20200527

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20200519

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200513

Year of fee payment: 19

Ref country code: ES

Payment date: 20200516

Year of fee payment: 19

Ref country code: PT

Payment date: 20200526

Year of fee payment: 19

Ref country code: FR

Payment date: 20200506

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200626

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20200507

Year of fee payment: 19

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2792451

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20201111

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50216357

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200424

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

26N No opposition filed

Effective date: 20210112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20200512

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200424

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210512

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210422

Year of fee payment: 20

Ref country code: DK

Payment date: 20210420

Year of fee payment: 20

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210501

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1248839

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210424

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210425

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50216357

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EUP

Expiry date: 20220424

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20220423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220126

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220504

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20220423

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210425