DE19628073C1 - Wind-powered generation plant rotor blade angle correction method - Google Patents

Wind-powered generation plant rotor blade angle correction method

Info

Publication number
DE19628073C1
DE19628073C1 DE19628073A DE19628073A DE19628073C1 DE 19628073 C1 DE19628073 C1 DE 19628073C1 DE 19628073 A DE19628073 A DE 19628073A DE 19628073 A DE19628073 A DE 19628073A DE 19628073 C1 DE19628073 C1 DE 19628073C1
Authority
DE
Germany
Prior art keywords
rotor
blade angle
wind turbine
rotor blades
adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE19628073A
Other languages
German (de)
Inventor
Soenke Siegfriedsen
Georg Boehmeke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerodyn Engineering GmbH
Original Assignee
AERODYN ENERGIESYSTEME GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AERODYN ENERGIESYSTEME GmbH filed Critical AERODYN ENERGIESYSTEME GmbH
Priority to DE19628073A priority Critical patent/DE19628073C1/en
Application granted granted Critical
Publication of DE19628073C1 publication Critical patent/DE19628073C1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/043Automatic control; Regulation by means of an electrical or electronic controller characterised by the type of control logic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/30Commissioning, e.g. inspection, testing or final adjustment before releasing for production
    • F03D13/35Balancing static or dynamic imbalances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/024Adjusting aerodynamic properties of the blades of individual blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/109Purpose of the control system to prolong engine life
    • F05B2270/1095Purpose of the control system to prolong engine life by limiting mechanical stresses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/335Output power or torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Wind Motors (AREA)

Abstract

The method detects the power output of the generation plant over a given time duration and evaluates the sections of the obtained power output characteristic corresponding to the different rotor blades, to calculate required rotor blade correction angles for minimising the power fluctuations. The rotor blades are corrected in accordance with the corresponding correction values and the measurement of the power output is repeated until the minimum aerodynamic imbalance is attained.

Description

Die Erfindung betrifft ein Verfahren zur Justierung der Blattwinkel der Rotorblätter einer Windkraftanlage.The invention relates to a method for adjusting the Blade angle of the rotor blades of a wind turbine.

Die Rotorblätter üblicher Windkraftanlagen werden im allgemeinen mit einer Nullmarkierung an der Blattwurzel auf einen bestimmten Einstellwinkel ausgerichtet. Tole­ ranzen in der Verwindung, gegebenenfalls sogar Alte­ rungsprozesse, führen dann zu einer Differenz der Blatt­ winkel im Betrieb. The rotor blades of conventional wind turbines are in the generally with a zero mark on the leaf root aligned to a certain setting angle. Tole satchel in the twist, possibly even old people processes, then lead to a difference in sheets angle in operation.  

Diese Differenz kann eine aerodynamische Unsymmetrie er­ geben, die die Betriebsfestigkeitslasten einer Wind­ kraftanlage unnötig erhöht und dynamisch eine Anregung einer Schwingung mit der Rotordrehzahl bewirkt. Dies ist unerwünscht.This difference can result in an aerodynamic asymmetry give that the durability loads of a wind power plant unnecessarily increased and dynamic a stimulus an oscillation with the rotor speed. This is undesirable.

Die Erfindung hat sich daher zur Aufgabe gestellt, die auftretenden unsymmetrischen Belastungen zu minimieren.The invention is therefore based on the task to minimize occurring asymmetrical loads.

Erfindungsgemäß wird dies durch die Merkmale des gelten­ den Anspruchs 1 gelöst. Die Unteransprüche geben vor­ teilhafte Ausführungsformen der Erfindung wieder.According to the invention, this will apply due to the features of solved the claim 1. The sub-claims specify partial embodiments of the invention again.

Insbesondere ist vorteilhaft für den Fall, daß die Anla­ ge eine Einzelblattverstellung besitzt, folgendes Ver­ fahren zur automatischen Symmetrierung zu verwenden:
Bei gleichmäßigem, also insbesondere bei mäßig starkem Wind registriert der Betriebsführungsrechner alle Lei­ stungsmaxima, die sich aus der natürlichen Windscherung ergeben und korreliert diese zur Rotorposition. Für je­ des Blatt werden die Maxima summiert. Nach einer vorbe­ stimmten Zeit wird dann durch Vergleich festgestellt, ob eines oder mehrere der Rotorblätter im Mittelungszeit­ raum überdurchschnittliche Leistungsmaxima erzeugt ha­ ben. Sofern dies der Fall ist, werden die entsprechenden Korrekturen am Blattwinkel vorgenommen. Beispielsweise wird dieses eine Blatt um einen vorgewählten Minimal­ schritt zurückgestellt, woraufhin die Messung erneut be­ ginnt.
In particular, it is advantageous to use the following procedure for automatic balancing in the event that the system has a single sheet adjustment:
In the case of a steady, that is to say in particular a moderately strong wind, the operational management computer registers all the power maxima which result from the natural wind shear and correlates them to the rotor position. The maxima are summed for each sheet. After a predetermined time, it is then determined by comparison whether one or more of the rotor blades has generated above-average power maxima in the averaging period. If this is the case, the corresponding corrections are made to the blade angle. For example, this one sheet is set back by a preselected minimum step, whereupon the measurement begins again.

Falls das Maximum sich vergrößert, wird ein beispiels­ weise doppelter Weg in die andere Richtung beschritten, falls in erwünschter Weise sich das Maximum verringert hat, wird so lange weitergestellt, bis eine gleichmäßige Ausbeute aller Rotorblätter erreicht wird.If the maximum increases, an example becomes wise double way in the other direction, if desired, the maximum decreases  has continued until an even one Yield of all rotor blades is achieved.

Selbstverständlich ist es auch möglich, statt einer Ver­ stellung eines Rotors, der ein Maximum aufweist, die an­ deren beiden Rotoren entsprechend zu verstellen. Durch die Verstellung jeweils nur eines Rotors ist es jedoch einfacher, die tatsächlichen Auswirkungen der Verstel­ lung zu überprüfen.Of course it is also possible to use a Ver position of a rotor that has a maximum, the to adjust their two rotors accordingly. By however, it is only the adjustment of one rotor at a time easier the actual impact of the Verstel check.

Weitere Vorteile der Erfindung ergeben sich aus nachfol­ gender Beschreibung eines bevorzugten Ausführungsbei­ spiels anhand der beigefügten Zeichnung.Further advantages of the invention result from the following Description of a preferred embodiment game based on the attached drawing.

Dabei zeigt:It shows:

Fig. 1 die sich tatsächlich ergebende Zuordnung der Leistungsmaxima zu den einzelnen Rotorpositio­ nen anhand eines beispielsweise über einen Zeitraum von mehreren Umdrehungen erfassenden Zeitbereiches anhand einer Kurve der Lei­ stungsabgabe, Fig. 1, the actually resulting assignment of power to the individual maxima Rotorpositio NEN by way of example, over a period of several revolutions detected time range based on a curve of the Lei stungsabgabe,

Fig. 2 eine graphische Darstellung, bei der die Lei­ stungsbeiträge, die jedem Rotorblatt zugeord­ net sind, aufsummiert sind, und Fig. 2 is a graphical representation in which the performance contributions which are assigned to each rotor blade are added up, and

Fig. 3 eine schematische Darstellung der mathemati­ schen Weiterbehandlung der Leistungsbeiträge, die jedem Rotorblatt zugeordnet sind. Fig. 3 is a schematic representation of the mathematical further processing of the contributions that are assigned to each rotor blade.

Sobald ein Rotorblatt nach oben steht, d. h. möglichst weit von dem die Luftbewegung bremsenden Boden entfernt ist, wird sich ein kleines lokales Maximum im Leistungs­ verlauf ergeben. Diese Maxima werden nun bei nicht ju­ stierten Anlagen für unterschiedliche Blätter des Rotors meist leider unterschiedliche Amplituden haben, d. h. die Blätter liefern leicht unterschiedliche Leistungsbeiträ­ ge.As soon as a rotor blade is up, i. H. if possible far from the floor that is stopping air movement is, there will be a small local maximum in performance  course. These maxima are now at not ju systems for different blades of the rotor mostly have different amplitudes, d. H. the Leaves provide slightly different contributions ge.

Durch zeitliche Mittelung für einen längeren Bereich von ca. zehn Minuten oder einer Stunde ergeben sich durch Integralbildung über jeweils einen Bereich, in dem das fragliche Rotorblatt nach oben steht, die beispielsweise in Fig. 2 dargestellten Säulendiagramme mit unterschied­ lichen Höhen für die Leistungskomponenten jeweils eines Rotorblattes.By time averaging for a longer range of about ten minutes or an hour, integral formation over a range in which the rotor blade in question stands up gives the column diagrams shown in FIG. 2 with different heights for the power components, one each Rotor blade.

Durch Auswertung der Differenzen der sich in diesem Säu­ lendiagramm ergebenden Werte können Blattwinkelkorrektu­ ren errechnet werden, die zu einer Verstellung des Kor­ rekturwinkels führen, so daß anschließend eine neue Mes­ sung vorgenommen werden kann. Ein selbstlernendes oder rekursives System läßt sich mit geeigneter Elektronik leicht herstellen.By evaluating the differences in this column Values resulting from the graph can correct the blade angle be calculated that lead to an adjustment of the Cor lead rectification angle, so that then a new measurement solution can be made. A self-learning or recursive system can be with suitable electronics easy to manufacture.

Einem ersten zeitaufgelösten Messen der Leistungsabgabe der Windkraftanlage schließt sich also eine (zunächst beliebige) Zuordnung der auf dem Leistungsverlauf auf­ tretenden zeitlichen Abschnitte zu den Leistungsbeiträ­ gen der einzelnen Rotorblätter an.A first time-resolved measurement of the power output the wind turbine therefore closes one (initially any) assignment on the performance history occurring time periods for the performance contributions against the individual rotor blades.

Daraufhin werden die einzelnen Blätter des Rotors zur Minimierung der aufgetretenen Differenzen der Leistungs­ beiträge zur Minimierung aerodynamischer Unwuchten nach dem Ergebnis justiert, das nach dem Aufsummieren der Zeitabschnitte auf dem Leistungsverlauf über jeweils ei­ nen Winkelbereich zu den Rotorblättern und Differenzbil­ dung ermittelt wird. Zu diesem Zweck werden die zur Sym­ metrie notwendigen Verstellwinkel aus den Leistungsdif­ ferenzen von der Betriebsführung errechnet.The individual blades of the rotor then become Minimize the differences in performance that occur contributes to minimizing aerodynamic imbalances adjusted the result after adding up the Periods of performance over each egg NEN angular range to the rotor blades and differential balance is determined. For this purpose, the Sym  necessary adjustment angle from the performance dif computed by the management.

Schwankende Windverhältnisse (Böen) während des Summati­ onszeitraums werden durch eine Mittelung über einen Be­ reich von. ca. 10 min-1 h mitberücksichtigt.Fluctuating wind conditions (gusts) during the summati ons period are averaged over a Be rich of. approx. 10 min-1 h also taken into account.

Das Einstellen der Blätter kann mit einem willkürlichen Verstellen eines Rotorblattes in eine erste Richtung (Rückstellung) begonnen werden, woraufhin der zugeordne­ te Leistungsbeitrag mit dem bisherigen Wert verglichen wird, zur Bestimmung ob die Differenz größer geworden ist und in eine andere Richtung gedreht werden muß, oder ob bessere Abstimmung erreicht ist. Alternativ kann auch durch erneutes zeitaufgelöstes Messen der zugeordneten Leistungsbeiträge bestimmt werden, ob die Differenz grö­ ßer geworden ist und in eine andere Richtung gedreht werden muß, oder ob bessere Abstimmung erreicht ist.The setting of the leaves can be done with an arbitrary Adjusting a rotor blade in a first direction (Default) are started, whereupon the assigned te performance contribution compared with the previous value is used to determine whether the difference has increased is and must be turned in a different direction, or whether better coordination has been achieved. Alternatively, too by measuring the assigned time again Performance contributions are determined whether the difference is large has grown and turned in a different direction must be, or whether better coordination has been achieved.

Claims (4)

1. Verfahren zur Justierung der Blattwinkel der Rotor­ blätter einer Windkraftanlage, gekennzeichnet durch
  • a) zeitaufgelöstes Messen der Leistungsabgabe der Windkraftanlage,
  • b) Zuordnung der auf dem Leistungsverlauf über die Zeit auftretenden zeitlichen Abschnitte zu den Lei­ stungsbeiträgen der einzelnen Rotorblätter,
  • c) Einstellung einzelner Blätter des Rotors zur Mini­ mierung der aufgetretenen Differenzen der Lei­ stungsbeiträge zur Minimierung aerodynamischer Un­ wuchten.
1. Method for adjusting the blade angle of the rotor blades of a wind turbine, characterized by
  • a) time-resolved measurement of the power output of the wind turbine,
  • b) assignment of the time segments occurring over time to the power contributions of the individual rotor blades,
  • c) Adjustment of individual blades of the rotor to minimize the differences in performance which have occurred to minimize aerodynamic imbalances.
2. Verfahren zur Justierung der Blattwinkel der Rotor­ blätter einer Windkraftanlage nach Anspruch 1, gekenn­ zeichnet durch den auf den obigen Schritt b) folgenden Schritt
  • - Aufsummieren einer Vielzahl von Leistungswerten über jeweils einen Winkelbereich, in dem ein zu­ geordnetes Rotorblatt annähernd vertikal nach oben steht, um damit eine Leistungsmittelung über schwankende Windverhältnisse während des Summati­ onszeitraums durchzuführen.
2. A method for adjusting the blade angle of the rotor blades of a wind turbine according to claim 1, marked by the step b) following the step below
  • - Sum up a large number of power values over an angular range in which an assigned rotor blade is approximately vertically upward, in order to carry out a power averaging over fluctuating wind conditions during the summation period.
3. Verfahren zur Justierung der Blattwinkel der Rotor­ blätter einer Windkraftanlage nach einem der vorange­ henden Ansprüche, dadurch gekennzeichnet, daß der Schritt c) des Einstellens der Blätter mit einem will­ kürlichen Verstellen eines Rotorblattes in eine erste Richtung beginnt, woraufhin der zugeordnete Leistungs­ beitrag mit dem bisherigen Wert verglichen wird, zur Bestimmung, ob die Differenz größer geworden ist und in eine andere Richtung gedreht werden muß, oder ob eine bessere Abstimmung erreicht ist.3. Procedure for adjusting the blade angle of the rotor leaves of a wind turbine according to one of the previous existing claims, characterized in that the Step c) of setting the sheets with a will artificial adjustment of a rotor blade in a first Direction begins, whereupon the assigned performance contribution to the previous value is compared to the Determine whether the difference has increased and in another direction has to be turned, or whether one better coordination has been achieved. 4. Verfahren zur Justierung der Blattwinkel der Rotor­ blätter einer Windkraftanlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Schritt c) des Einstel­ lens der Blätter mit einem willkürlichen Verstellen ei­ nes Rotorblattes in eine erste Richtung beginnt, wor­ aufhin durch erneutes zeitaufgelöstes Messen der zu­ geordneten Leistungsbeiträge bestimmt wird, ob die Dif­ ferenz größer geworden ist und in eine andere Richtung gedreht werden muß, oder ob bessere Abstimmung erreicht ist.4. Procedure for adjusting the blade angle of the rotor blades of a wind turbine according to claim 1 or 2, characterized in that step c) of the setting lens of the leaves with an arbitrary adjustment egg rotor blade begins in a first direction, wor thereupon by measuring the time again orderly performance contributions is determined whether the Dif ference has grown and in a different direction must be rotated, or whether better coordination is achieved is.
DE19628073A 1996-07-12 1996-07-12 Wind-powered generation plant rotor blade angle correction method Expired - Fee Related DE19628073C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19628073A DE19628073C1 (en) 1996-07-12 1996-07-12 Wind-powered generation plant rotor blade angle correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19628073A DE19628073C1 (en) 1996-07-12 1996-07-12 Wind-powered generation plant rotor blade angle correction method

Publications (1)

Publication Number Publication Date
DE19628073C1 true DE19628073C1 (en) 1997-09-18

Family

ID=7799608

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19628073A Expired - Fee Related DE19628073C1 (en) 1996-07-12 1996-07-12 Wind-powered generation plant rotor blade angle correction method

Country Status (1)

Country Link
DE (1) DE19628073C1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10032314C1 (en) * 2000-07-04 2001-12-13 Aloys Wobben Rotor blade angle evaluation method for wind-powered energy plant uses processor supplied with data for measured distance between rotor blade and mast of energy plant
WO2005090781A1 (en) 2004-03-22 2005-09-29 Sway As A method for reduction of axial power variations of a wind power plant
DE102008013392A1 (en) 2008-03-10 2009-09-17 Christoph Lucks Method for detecting spur running of rotor blade of tower of wind power plant, involves arranging enclosure opposite to tower in tilted manner, and arranging rotor with two rotor blades on wind-power plant
US7883317B2 (en) 2007-02-02 2011-02-08 General Electric Company Method for optimizing the operation of a wind turbine
US7887292B2 (en) 2007-03-16 2011-02-15 Vestas Wind Systems A/S Method for condition monitoring a rotor of a wind energy plant
CN102162425A (en) * 2010-02-23 2011-08-24 瑞能系统股份公司 Method and device for attaching a reference marking to a rotor blade of a wind turbine
DE102014118258A1 (en) 2014-12-09 2016-06-09 cp.max Rotortechnik GmbH & Co. KG Method for reducing aerodynamic imbalances of wind turbines
WO2016091254A1 (en) 2014-12-09 2016-06-16 Cp.Max Rotortechnik Gmbh & Co.Kg Method for the reduction of aerodynamic imbalances of wind turbines
EP2226501B1 (en) 2005-06-21 2016-08-10 Senvion GmbH Method and arrangement for measuring of a wind energy plant
EP1399674B1 (en) 2001-06-07 2016-12-21 Wobben Properties GmbH Method for maximizing the energy output of a wind turbine
WO2017028866A1 (en) * 2015-08-19 2017-02-23 Scada International A/S A method for the detection of an anomaly in a wind turbine blade

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NICHTS ERMITTELT *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10032314C1 (en) * 2000-07-04 2001-12-13 Aloys Wobben Rotor blade angle evaluation method for wind-powered energy plant uses processor supplied with data for measured distance between rotor blade and mast of energy plant
EP1399674B1 (en) 2001-06-07 2016-12-21 Wobben Properties GmbH Method for maximizing the energy output of a wind turbine
EP1399674B2 (en) 2001-06-07 2020-02-26 Wobben Properties GmbH Method for maximizing the energy output of a wind turbine
NO342746B1 (en) * 2004-03-22 2018-08-06 Sway As Procedure for reducing axial power variations in a wind turbine.
WO2005090781A1 (en) 2004-03-22 2005-09-29 Sway As A method for reduction of axial power variations of a wind power plant
AU2005224580B2 (en) * 2004-03-22 2011-02-24 Sway As A method for reduction of axial power variations of a wind power plant
EP2226501B1 (en) 2005-06-21 2016-08-10 Senvion GmbH Method and arrangement for measuring of a wind energy plant
EP2226501B2 (en) 2005-06-21 2020-12-09 Senvion GmbH Method and arrangement for measuring of a wind energy plant
US7883317B2 (en) 2007-02-02 2011-02-08 General Electric Company Method for optimizing the operation of a wind turbine
EP1959130B1 (en) 2007-02-02 2017-05-03 General Electric Company Method for optimizing the operation of a wind turbine
EP1959130A3 (en) * 2007-02-02 2015-06-24 General Electric Company Method for optimizing the operation of a wind turbine
EP2122430B1 (en) 2007-03-16 2017-12-06 Vestas Wind Systems A/S Method for condition monitoring a rotor of a wind energy plant
US7887292B2 (en) 2007-03-16 2011-02-15 Vestas Wind Systems A/S Method for condition monitoring a rotor of a wind energy plant
DE102008013392B4 (en) * 2008-03-10 2013-02-07 Windcomp Gmbh Method for detecting the tracking of the rotor blades of a wind turbine
DE102008013392A1 (en) 2008-03-10 2009-09-17 Christoph Lucks Method for detecting spur running of rotor blade of tower of wind power plant, involves arranging enclosure opposite to tower in tilted manner, and arranging rotor with two rotor blades on wind-power plant
DE102010002230B4 (en) * 2010-02-23 2014-11-27 Senvion Se Method and device for attaching a reference mark on a rotor blade for a wind turbine
US8585948B2 (en) 2010-02-23 2013-11-19 Repower Systems Se Method and device for applying a reference mark on a rotor blade for a wind power plant
CN102162425B (en) * 2010-02-23 2013-08-07 瑞能系统欧洲股份公司 Method and device for attaching a reference marking to a rotor blade of a wind turbine
EP2362094A2 (en) 2010-02-23 2011-08-31 REpower Systems AG Method and device for attaching a reference marking to a rotor blade of a wind turbine
DE102010002230A1 (en) 2010-02-23 2011-08-25 REpower Systems AG, 22297 Method and device for attaching a reference mark on a rotor blade for a wind turbine
CN102162425A (en) * 2010-02-23 2011-08-24 瑞能系统股份公司 Method and device for attaching a reference marking to a rotor blade of a wind turbine
WO2016091254A1 (en) 2014-12-09 2016-06-16 Cp.Max Rotortechnik Gmbh & Co.Kg Method for the reduction of aerodynamic imbalances of wind turbines
DE102014118258A1 (en) 2014-12-09 2016-06-09 cp.max Rotortechnik GmbH & Co. KG Method for reducing aerodynamic imbalances of wind turbines
WO2017028866A1 (en) * 2015-08-19 2017-02-23 Scada International A/S A method for the detection of an anomaly in a wind turbine blade

Similar Documents

Publication Publication Date Title
DE19628073C1 (en) Wind-powered generation plant rotor blade angle correction method
EP1817495B1 (en) Method for optimising operational parameters in a wind energy plant and a corresponding wind energy plant
WO2000077395A1 (en) Wind energy system with adjustment of the sound level
DE102009025857A1 (en) Wind turbine rotor blade floor plans with twisted and tapered tips
DE102010054013A1 (en) Method for operating a pitch-controlled wind turbine
EP3421784A1 (en) Method for operating a wind farm
DE102016103254A1 (en) Method for determining an equivalent wind speed
EP3548737B1 (en) Wind turbine and method for operating a wind turbine
WO2016091945A1 (en) Method and device for monitoring a wind turbine
WO2013034235A1 (en) Method and device for determining a yaw angle fault in a wind turbine and wind turbine
DE102011083178A1 (en) Method for operating a wind energy plant
DE112010002632T5 (en) Method for balancing a wind energy plant
WO2016091254A1 (en) Method for the reduction of aerodynamic imbalances of wind turbines
WO2015132187A1 (en) Rotor blade setting method and device for a wind turbine
DE102018115354A1 (en) Device and method for determining at least one rotation parameter of a rotating device
DE102008031484B4 (en) Method for determining and readjusting the relative wing setting angle on wind turbines with horizontal drive axles
EP2929179A1 (en) Wind turbine and method for operating a wind turbine
DE102016124703A1 (en) A method of operating a wind turbine and means for controlling and / or regulating a wind turbine and corresponding wind turbine with a rotor and a generator driven via the rotor for generating an electrical power
DE102017007132A1 (en) Provision of control power in the operation of a regenerative power generation unit, in particular wind turbine
DE19926553A1 (en) Wind turbine energy plant operating method regulates turbine revs dependent on wind direction, wind strength and/or wind direction for limiting plant operating noise
WO2016091933A9 (en) Method and device for monitoring a wind turbine
EP3839249B1 (en) Method for adjusting a pitch angle of a rotor blade, control device for adjusting a pitch angle and wind turbine therefor
DE102013204492A1 (en) Method and system for monitoring a single blade adjustment of a wind energy plant
DE102012024272A1 (en) Method and device for reducing a rotor of a wind turbine loading nosemoment
AT14998U1 (en) Method for determining a yaw rate error in a wind turbine

Legal Events

Date Code Title Description
8100 Publication of patent without earlier publication of application
D1 Grant (no unexamined application published) patent law 81
8364 No opposition during term of opposition
8327 Change in the person/name/address of the patent owner

Owner name: AERODYN ENGINEERING GMBH, 24768 RENDSBURG, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20130201