EP1665300B1 - Transformateur tournant inductif - Google Patents

Transformateur tournant inductif Download PDF

Info

Publication number
EP1665300B1
EP1665300B1 EP04765457A EP04765457A EP1665300B1 EP 1665300 B1 EP1665300 B1 EP 1665300B1 EP 04765457 A EP04765457 A EP 04765457A EP 04765457 A EP04765457 A EP 04765457A EP 1665300 B1 EP1665300 B1 EP 1665300B1
Authority
EP
European Patent Office
Prior art keywords
inductive
coil
rotating
transformer according
rotating transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP04765457A
Other languages
German (de)
English (en)
Other versions
EP1665300A1 (fr
Inventor
Jens Makuth
Jürgen SCHIMMER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34353019&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1665300(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1665300A1 publication Critical patent/EP1665300A1/fr
Application granted granted Critical
Publication of EP1665300B1 publication Critical patent/EP1665300B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/18Rotary transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • H01F17/062Toroidal core with turns of coil around it
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F19/00Fixed transformers or mutual inductances of the signal type
    • H01F19/04Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range
    • H01F19/08Transformers having magnetic bias, e.g. for handling pulses
    • H01F2019/085Transformer for galvanic isolation

Definitions

  • the invention relates to an inductive rotary transformer.
  • Data and energy transmission (telemetry) to moving machine parts is a central problem, above all in industry, in particular in and / or in distributed automation systems.
  • Production processes primarily in machine tools, robots, etc. take place on rotating or generally moving workpieces, or the tools rotate and / or move around the workpiece to be machined.
  • Data networks needed.
  • bus systems such as e.g. Fieldbus, Profibus, Ethernet, Industrial Ethernet, or FireWire, but also increasingly switchable high-performance data networks, so point-to-point connections, especially real-time Ethernet (RTE) or isochronous RTE (IRTE) used.
  • RTE real-time Ethernet
  • IRTE isochronous RTE
  • the cable drag solution prevents endless rotation and limits the production speed by the necessary reverse rotation, eg of the tools (otherwise shearing of the cables).
  • minimizing non-productive time in the system plays a crucial role in productivity.
  • a preferred solution to this secondary problem is the replacement of cable tractors by rotary joints.
  • Rotary joints are available in various designs. Applicable are touch-type transformers, e.g. mechanical slip rings, brushes or liquid mercury transformers but also non-contact transformers, such. optical, capacitive, inductive or based on radio transmission realized transformer.
  • touch-type transformers e.g. mechanical slip rings, brushes or liquid mercury transformers
  • non-contact transformers such. optical, capacitive, inductive or based on radio transmission realized transformer.
  • Capacitive transformers are expensive and are used e.g. used for military applications.
  • transmission techniques which inductively transmit or couple by means of a transformer from moving to stationary components, for example video heads.
  • this transmission technology can also be used for rotary joints.
  • Rotary transducers can be further subdivided into on-axis or off-axis systems.
  • on-axis systems the rotation axis of the rotary transformer is reserved as a data transmission path for transmitting the data.
  • this is the subject of the invention in an optical rotary transformer.
  • on-axis systems Disadvantage of on-axis systems is in particular the pre-assignment of the space, or about the rotation axis for data transmission, if this space is to be used instead of data transmission for feedthroughs, such as cables, pneumatics, hydraulics, etc. or needed.
  • From the EP 0 926 690 A1 is a transformer with a fixed part on which a primary winding is mounted, and a rotating part on which a secondary winding is mounted known.
  • the primary and secondary sides each have an iron core, the respective iron cores being separated by an air gap.
  • primary-side and secondary-side windings are also separated via a further air gap.
  • the fact that the air gap between the iron cores and the air gap between the windings can be selected independently, the transformer can be designed with a high magnetic coupling, without causing too high a magnetic resistance.
  • the magnetic coupling between primary and secondary side takes place in these transformers outside the axis of rotation of the rotary transformer.
  • US Pat. No. 5,412,266 A is a rotary transformer with a rotating part and a stationary part known. On the opposite sides of the rotating part and the stationary part are trenches in which are made of a composite material manufactured coils can be inserted. Between the coils of the rotating part and the fixed part, data transmission takes place by electromagnetic means.
  • Object of the present invention is to provide a rotary transformer for bidirectional data transmission, in which the data transmission takes place by means of inductive elements and outside the space of the rotational axis of the Drehübertragers, wherein the diameter or depth of the data transmitter should be as low as possible.
  • the two parts of the rotary transformer, the fixed and the rotating part, have a common, virtual axis of rotation, wherein the rotating part about this virtual axis of rotation rotates and the direction of rotation is arbitrary.
  • the rotary transformer preferably has a rotationally symmetrical to the virtual axis of rotation housing, which also includes the corresponding mechanism with housing, storage and seal.
  • the inductive rotary transformer has a housing which has a the virtual axis of rotation enclosing implementation.
  • the inductive rotary transformer has at the location of the axis of rotation or axis of rotation space for the realization of the implementation, since the data transmission takes place outside of this space.
  • a hollow cylindrical structure of the housing allows the spatial use about the axis of rotation for feedthroughs.
  • the space available within the bushing can be used, for example, for cables, pneumatics or hydraulics.
  • the inductive element is designed as a transformer with at least a first and a second coil, wherein the first coil is assigned to the fixed part and the second coil to the rotating part.
  • first coil is assigned to the fixed part and the second coil to the rotating part.
  • first coil is assigned to the fixed part and the second coil to the rotating part.
  • first coil can also be assigned to the rotating part and the second coil to the fixed part.
  • an inductive rotary transformer for example, a known technique, such as the video head technique, modified accordingly in a new application.
  • new production techniques are used for the production of subcomponents.
  • the rotary transformer can be realized with a very small installation depth by arranging the first coil coaxially around the second coil.
  • first and / or the second coil are designed as a toroidal coil.
  • Such an arrangement may also be referred to as a ring transformer with mutually movable windings.
  • a particularly compact construction of the inductive rotary transformer can be realized by using particularly flat coils for the inductive rotary transformer.
  • a very advantageous embodiment of the invention is in this sense characterized in that the first and / or the second coil are designed as a planar coil. Planar coils are particularly well suited for miniaturization of the inductive rotary transformer according to the invention.
  • the inductive element has means for field concentration.
  • Such agents may be, for example, ferrites, which are attached at suitable positions for guiding the magnetic flux.
  • strong field coupling between the primary and secondary windings is important.
  • a pot or Becherkern can be used to couple the first and the second coil of the transformer use.
  • various other embodiments for generating the largest possible coupling factor between primary and secondary side winding by means of field concentration conceivable.
  • the inductive rotary transformer according to the invention is provided for bidirectional data transmission and has an inductive element for each transmission direction.
  • only one inductive element can be used if a so-called hybrid circuit is used.
  • the smallest possible diameter of an inductive rotary transformer with two or more than two inductive elements is achieved when the inductive elements are arranged side by side with respect to the direction of the virtual axis of rotation.
  • an inductive rotary transformer can be realized with the smallest possible installation depth if the inductive elements are arranged coaxially interlaced.
  • the means for decoupling may be simple geometric arrangements, which are seconded between the inductive elements and there ensure a minimum distance of the inductive elements to each other
  • a particularly advantageous application results for the transformer according to the invention in that the transmitter is provided for the transmission of bus protocols, in particular Fast Ethernet protocols.
  • bus protocols such as Profibus and (Fast) Ethernet can be transmitted.
  • rotary converters for Fast Ethernet are in the focus, i. for a transmission rate of 100 Mbaud.
  • Other bus protocols, in particular other fieldbus protocols would also be transferable by modifying the input or output circuit.
  • Another advantage is the transparency in data transmission. Additional protocol layers are not necessary.
  • the field-coupled or passive rotary transformer according to the invention is designed as an integrated unit. Externally connected elements are the corresponding bus cables on both sides. A preferred embodiment allows the use of connectors.
  • the method for data transmission is then, with appropriate preparation in the fixed or in the rotating part of the optical rotary transformer, solved very easily and inexpensively.
  • all possible data buses for example Ethernet, in particular fieldbuses, for example Profibus, but also point-to-point connections, for example IRTE, can be connected, the corresponding data protocols transmitted and thus the inductive rotary transformer according to the invention integrated into any automation systems.
  • the invention can be used or used in particular in and in packaging machines, presses, plastic injection molding machines, textile machines, printing machines, machine tools, robots, handling systems, woodworking machines, glass processing machines, ceramic processing machines and hoists.
  • the rotary transformer 100 consists of a fixed part 101 and a rotating part 102. Both parts of the rotary transformer 100 have a common, imaginary, virtual axis of rotation 201, wherein the rotating part 102 rotates about this virtual axis of rotation 200, where the direction of rotation is arbitrary. Because of the rotation about the virtual axis of rotation 201, the housing of the rotary transformer 100 is preferably rotationally symmetrical, for example cylindrical, with respect to the axis of rotation 201.
  • the fixed part 101 is referred to in the mechanical sense as "stator” and the rotating part 102 as "rotor". It does not matter which part moves and which part of the rotary transformer 100 is fixed.
  • the rotary transformer 100 may be rigidly fixed mechanically, the other, second part must be rotatably mounted free of tension and must be "taken free of stress" can be. This can be achieved for example by a plastic or rubber coupling. Other Seals are also conceivable and possible. Depending on the design, any desired degree of sealing can be achieved. In addition, the maximum rotational speed depends inter alia on the quality of the storage.
  • Rotary transmitters are used in particular for data transmission, whereby corresponding cables 301, 302 lead into the two parts 101, 102 of the rotary transmitter 100, wherein, for example, a cable 302, as in FIG FIG. 1 shown, along with the rotating part 102 of the rotary transformer 100 rotates with.
  • a cable 302 as in FIG FIG. 1 shown
  • the cables are preferably by means of connectors, of which in the FIG. 1 only one plug 401 is visible, connected to the rotary transformer 100.
  • the shape of the plug is essentially arbitrary.
  • the two housing parts of the rotary transformer 100 can for example be made of steel, especially stainless steel, ceramic or plastic.
  • steel especially stainless steel, ceramic or plastic.
  • other materials such as aluminum alloys, brass, etc. are conceivable and usable.
  • the use of inexpensive materials for example ceramics or plastics, is preferred.
  • cost-effective production techniques for example injection molding technology, can be used.
  • FIG. 2 shows a schematic diagram of an inductive rotary transformer 100 according to the invention in axial design, which works with conventional coil technology, in particular conventional windings.
  • the field-coupled rotary transformer 100 according to the invention consists in principle of two tubes 101, 102 which can be rotated relative to one another.
  • the rotary transformer 100 has two inductive elements 500, 800 for data transmission, each element being assigned a channel.
  • An inductive element 500,800 consists of two coils 501,502 or coil parts with cup or pot cores 503, for example with a ferrite shell, which are separated by an air gap.
  • the inductive elements 500, 800 are located axially next to one another, which makes possible a construction with a small diameter 202. Between the inductive elements 500, 800 there is a "spacer" 600, which serves to separate the channels, and thus in particular to prevent the field coupling between the inductive elements 500, 800.
  • FIG. 3 shows a schematic diagram of an inventive inductive Drehübertragers 100 in radial design, which operates with conventional coil technology. It consists in principle of two mutually rotatable tubes 101,102.
  • the rotary transformer 100 has two inductive elements 500, 800 for data transmission, each element 500, 800 being assigned a channel.
  • An inductive element 500,800 consists of two coils 501,502 or coil parts with cup or pot cores 503, for example with a ferrite shell, which are separated by an air gap.
  • the channels or the inductive elements 500,800 are radially adjacent to each other, whereby a construction with a small installation depth 203 is possible. There may again be a spacer between the channels, which improves the separation of the channels.
  • FIG. 4 shows a schematic diagram of an inductive rotary transformer according to the invention with planar coils 501,502.
  • These coils are in principle made like printed circuit boards, ie printed circuit boards on substrate 504, made with the processes of conventional LP production.
  • the properties of coils 502,503 are simple by mechanical parameters can be calculated or simulated.
  • the finished planar coil 502, 501 is then embedded only in cup or cup cores 503.
  • the planar coils 502, 501 are in turn physically separated from one another by an air gap.
  • FIG. 5 shows a schematic diagram of a Planarspulentowns.
  • the properties of coils 501, 505 are largely determined by their geometry. For radially arranged coils with the same inductance, in principle the same coil areas are necessary with the same conductor cross section.
  • FIG. 6 shows a schematic diagram of an inductive rotary transformer according to the invention as an MID variant (molded interconnect device).
  • the MID variant offers the greatest potential in the direction of low-cost and miniaturization.
  • an inductive element 500, 800 having an inner coil body 702 and an outer coil body 701 is embodied, the outer coil body 701 concentrically enclosing the inner coil body 702.
  • coils 501 are embedded, the windings in the axial direction, d. h in the direction of the virtual axis of rotation, are arranged side by side.
  • coils 502 are embedded in the inner bobbin 702, whose windings in the axial direction, d. h in the direction of the virtual axis of rotation, are arranged side by side.
  • the coils 501 of the outer bobbin 701 may be considered as a primary winding of a transformer whose secondary side windings are represented by the coils 502 on the inner bobbin 702.
  • the primary and secondary sides of the inductive element 500 are separated by an air gap 704, within which a bearing is provided which allows a rotation of one of the bobbins 701, 702.
  • the rotary transformer is designed with two axially juxtaposed inductive elements 500.800, whereby two transmission channels can be realized.
  • the number of channels or inductive elements is of course scalable.
  • the production of Drehfaners is particularly cost.
  • the HF magnets 705 and the coils 502 are positioned and overmoulded with plastic.
  • Post-processing such as Etching (in terms of ablation) of auxiliary structures is possible.
  • the recordings for storage can be produced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Near-Field Transmission Systems (AREA)
  • Coils Or Transformers For Communication (AREA)

Claims (11)

  1. Transmetteur (100) tournant inductif pour la transmission de données, comprenant une partie (101) à poste fixe et une partie (102) rotative, la partie (102) rotative et la partie (101) à poste fixe ayant un axe (201) de rotation virtuel commun, et la partie (102) rotative tournant autour de la partie (101) à poste fixe, et la transmission de données s'effectuant sur au moins un parcours de transmission de données au moyen d'au moins un élément (500, 800) inductif, et le parcours de transmission de données étant disposé en dehors de l'axe (201) de rotation du transmetteur (100) tournant, et le transmetteur (100) étant prévu pour la transmission bidirectionnelle de données et comportant un élément inductif pour chaque sens de transmission,
    caractérisé en ce que les éléments (500, 800) inductifs sont disposés les uns à côté des autres par rapport à la direction de l'axe (201) de rotation virtuel, ou bien les éléments (500, 800) inductifs sont disposés en étant coaxialement imbriqués les uns dans les autres.
  2. Transmetteur tournant inductif suivant la revendication 1, caractérisé en ce que le transmetteur (100) tournant inductif comporte un boîtier qui comprend un passage entourant l'axe (201) de rotation virtuel.
  3. Transmetteur tournant inductif suivant la revendication 1 ou 2, caractérisé en ce que l'élément (500, 800) inductif est réalisé sous forme de transformateur doté d'au moins une première et une deuxième bobines, la première (501, 502, 503) bobine étant associée à la partie à poste fixe et la deuxième bobine à la partie rotative.
  4. Transmetteur tournant inductif suivant la revendication 3, caractérisé en ce que la première et la deuxième bobines (501, 502, 503) sont disposés les unes à côté des autres par rapport à la direction de l'axe de rotation virtuel.
  5. Transmetteur tournant inductif suivant la revendication 3 ou 4, caractérisé en ce que la première bobine est disposée coaxialement autour de la deuxième bobine (501, 502, 503).
  6. Transmetteur tournant inductif suivant l'une des revendications 3 à 5, caractérisé en ce que la première et/ou la deuxième bobines (501, 502, 503) sont réalisées sous la forme de bobines toroïdales.
  7. Transmetteur tournant inductif suivant l'une des revendications 3 à 5, caractérisé en ce que la première et/ou la deuxième bobines (501, 502, 503) sont réalisées sous la forme de bobines planaires.
  8. Transmetteur tournant inductif suivant l'une des revendications précédentes, caractérisé en ce que l'élément (500, 800) inductif comprend des moyens (705) de concentration de champ.
  9. Transmetteur tournant inductif suivant l'une des revendications précédentes, caractérisé en ce que des moyens de découplage de champs magnétiques sont disposés entre les éléments (500, 800) inductifs.
  10. Transmetteur tournant inductif suivant l'une des revendications précédentes, caractérisé en ce que le transmetteur (100) est prévu pour transmettre des protocoles de bus, notamment des protocoles Ethernet rapides.
  11. Transmetteur tournant inductif suivant l'une des revendications précédentes, caractérisé en ce que le transmetteur (100) tournant inductif est réalisé sous la forme d'une unité intégrée.
EP04765457A 2003-09-23 2004-09-21 Transformateur tournant inductif Revoked EP1665300B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10344055A DE10344055A1 (de) 2003-09-23 2003-09-23 Induktiver Drehübertrager
PCT/EP2004/010581 WO2005031770A1 (fr) 2003-09-23 2004-09-21 Emetteur tournant inductif

Publications (2)

Publication Number Publication Date
EP1665300A1 EP1665300A1 (fr) 2006-06-07
EP1665300B1 true EP1665300B1 (fr) 2008-07-16

Family

ID=34353019

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04765457A Revoked EP1665300B1 (fr) 2003-09-23 2004-09-21 Transformateur tournant inductif

Country Status (5)

Country Link
US (1) US7663462B2 (fr)
EP (1) EP1665300B1 (fr)
CN (1) CN1856849B (fr)
DE (2) DE10344055A1 (fr)
WO (1) WO2005031770A1 (fr)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005009866B4 (de) * 2005-03-04 2007-03-22 Dannenmaier, Udo, Dipl.-Ing. Vorrichtung zur Einspeisung elektrischer Leistung in Geräteträger
EP1772940A3 (fr) * 2005-10-04 2011-05-18 Prüftechnik Dieter Busch AG Coupleur rotatif pour la transmission d'énergie électrique ou information
DE102006056682B4 (de) 2006-01-13 2018-10-11 Sew-Eurodrive Gmbh & Co Kg System zur berührungslosen Energieübertragung
JP4924122B2 (ja) * 2007-03-16 2012-04-25 富士ゼロックス株式会社 非接触伝送装置
KR101359435B1 (ko) * 2007-10-04 2014-02-10 삼성전자주식회사 스크롤 기능을 갖는 링 형상의 무선 입력 장치
GB0802553D0 (en) * 2008-02-12 2008-03-19 Sentec Ltd Planar rotary data transformer for spinning high definition display system
JP2009231803A (ja) 2008-02-29 2009-10-08 Seiko Epson Corp 回転装置およびロボットアーム装置
DE102008000644A1 (de) * 2008-03-13 2009-09-17 Zf Friedrichshafen Ag Drehübertragungsanordnung
US20100224356A1 (en) * 2009-03-06 2010-09-09 Smith International, Inc. Apparatus for electrical power and/or data transfer between rotating components in a drill string
US7847671B1 (en) * 2009-07-29 2010-12-07 Perry Slingsby Systems, Inc. Subsea data and power transmission inductive coupler and subsea cone penetrating tool
DE102010021642A1 (de) * 2010-05-26 2011-12-01 Robert Bosch Gmbh Übertragungsvorrichtung
US8344843B2 (en) * 2010-09-03 2013-01-01 Solid State Magnetics Corporation Flux transfer device
US8390419B2 (en) * 2010-12-21 2013-03-05 General Electric Company Electrical assembly and method for making the same
FR2971882A1 (fr) 2011-02-22 2012-08-24 Vam Drilling France Coupleur electromagnetique
DE102013002052B4 (de) 2013-01-15 2018-10-11 Sew-Eurodrive Gmbh & Co Kg Drehübertrager
US9793046B2 (en) 2013-10-24 2017-10-17 Rosemount Aerospace Inc. Rotating transformers for electrical machines
US9520229B2 (en) * 2014-02-12 2016-12-13 Hamilton Sundstrand Corporation Rotary transformers for electrical machines
DE102014105261B3 (de) * 2014-04-14 2015-02-19 Sick Ag Optoelektronischer Sensor und Verfahren zur Erfassung von Objekten in einem Überwachungsbereich
JP6494606B2 (ja) * 2014-05-13 2019-04-03 三菱電機エンジニアリング株式会社 無線電力伝送による可動部伝送システム
DE102015003794A1 (de) * 2015-03-24 2016-10-20 Frank Appel Drehübertrager mit Hochfrequenz-Kurzdistanz-Funkstrecke
CN114128036B (zh) * 2019-05-28 2023-06-09 莫戈公司 分级频率响应非接触式滑环探针
CN111479175B (zh) * 2020-04-17 2020-12-22 中国科学院地质与地球物理研究所 一种非接触连接器、信号处理方法及存储介质
JP2022064593A (ja) * 2020-10-14 2022-04-26 キヤノン株式会社 無線伝送システム、制御方法、およびプログラム
JP2022080160A (ja) * 2020-11-17 2022-05-27 キヤノン株式会社 無線伝送システム、制御方法、およびプログラム
DE102021212148A1 (de) 2021-10-27 2023-04-27 Mahle International Gmbh System mit elektrischem Drehtransformator

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2428821A1 (fr) 1978-06-12 1980-01-11 Electricite De France Dispositif de transmission inductif sans contact de signal numerique pour appareillage tournant
US4754180A (en) * 1985-04-01 1988-06-28 Honeywell Inc. Forceless non-contacting power transformer
JPS6423401A (en) 1987-07-20 1989-01-26 Victor Company Of Japan Magnetic recording and reproducing device
DE3908982A1 (de) 1989-03-18 1990-09-27 Scherz Michael Uebertragungsvorrichtung
JPH04326709A (ja) * 1991-04-26 1992-11-16 Matsushita Electric Ind Co Ltd 回転トランス
US5814900A (en) 1991-07-30 1998-09-29 Ulrich Schwan Device for combined transmission of energy and electric signals
CA2109652A1 (fr) * 1992-11-25 1994-05-26 Richard J. Becker Dynamoteur
JP2901035B2 (ja) 1992-12-21 1999-06-02 株式会社日立製作所 回転トランス
US5455729A (en) 1993-08-30 1995-10-03 Conner Peripherals, Inc. Multi-channel rotating transformer
KR200153822Y1 (ko) * 1995-02-15 1999-08-02 전주범 로터리 트랜스
JP3725177B2 (ja) 1997-07-03 2005-12-07 古河電気工業株式会社 分離型トランスと分離型トランスを用いた伝送制御装置
US6512437B2 (en) 1997-07-03 2003-01-28 The Furukawa Electric Co., Ltd. Isolation transformer
EP1005052B1 (fr) 1998-06-10 2012-11-28 The Furukawa Electric Co., Ltd. Procede d'assemblage d'un transformateur d'isolation
JP3533376B2 (ja) * 2001-03-16 2004-05-31 多摩川精機株式会社 回転型非接触コネクタ
JP2002280801A (ja) 2001-03-16 2002-09-27 Mitsubishi Electric Corp アンテナ装置及び導波管回転結合器
DE10230537A1 (de) 2002-07-05 2004-01-15 Siemens Ag Drehübertrager mit optischen Komponenten und Verfahren zur Datenübertragung über Drehübertrager mit optischen Komponenten
EP1772940A3 (fr) * 2005-10-04 2011-05-18 Prüftechnik Dieter Busch AG Coupleur rotatif pour la transmission d'énergie électrique ou information

Also Published As

Publication number Publication date
WO2005031770A1 (fr) 2005-04-07
DE10344055A1 (de) 2005-04-21
US7663462B2 (en) 2010-02-16
EP1665300A1 (fr) 2006-06-07
CN1856849A (zh) 2006-11-01
US20070024575A1 (en) 2007-02-01
CN1856849B (zh) 2012-04-04
DE502004007626D1 (de) 2008-08-28

Similar Documents

Publication Publication Date Title
EP1665300B1 (fr) Transformateur tournant inductif
DE69526770T2 (de) Resolver für Reluktanzmotor für Lenkhilfe mit Ringen und sinusförmigen Leitern
EP1705673B1 (fr) Transformateur rotatif inductif
EP2409306B1 (fr) Transmetteur de rotation et machine synchrone à excitation indépendante
EP2087260A1 (fr) Dispositif pour détecter des positions de changement de vitesse
EP2714319B1 (fr) Dispositif de soudure par ultrasons comprenant un coupleur rotatif
DE60311955T2 (de) Apparat und Verfahren zur Herstellung einer Mehrleiter-Wicklung
EP3963617B1 (fr) Système d'entraînement conçu pour un commutateur et procédé pour entraîner un commutateur
EP0897999B1 (fr) Procédé et appareil pour le transfert sans contact d'energie et de signal dans des machines textiles, en particulier dans des machines de retordage
EP1772940A2 (fr) Coupleur rotatif pour la transmission d'énergie électrique ou information
DE102005051462A1 (de) Vorrichtung zur induktiven Leistungsüberwachung, Verfahren zur Herstellung einer solchen Vorrichtung, Drehübertrager
WO2015161859A1 (fr) Actionneur, système d'actionnement et procédé permettant de faire fonctionner un système d'actionnement
DE112016006658B4 (de) Elektromagnetischer Aktor und Verfahren zur Herstellung desselben
EP1056989B1 (fr) Procede permettant de faire fonctionner un systeme de mesure de position et systeme de mesure de position approprie
DE102018111039A1 (de) Vorrichtung zum rotatorischen Antrieb eines Werkzeugs und Spindel dafür
DE102013111405A1 (de) Steckverbindungseinheit zur Verbindung einer Kabelschaltung mit einemSensormodul
EP1130739A2 (fr) Stator pour une machine électrique
DE102004017089A1 (de) Betätigungsvorrichtung, insbesondere Proportional-Doppelhubmagnet
DE102018107150A1 (de) Getriebe, Motor-Getriebe-Kombination und Welle-Getriebe-Kombination
DE4230943C2 (de) Spulenanordnung und Verfahren zu ihrer Herstellung
DE2409724C2 (de) Verfahren und Vorrichtung zum Einbau einer Wicklung in den nutenlosen Ständer einer elektrischen Maschine
DE102019115117A1 (de) Getriebeaktuator
DE102023203490A1 (de) Stator für einen Drehtransformator
WO2021121700A1 (fr) Dispositif de détection d'un signal d'événement haute fréquence dans une machine électrique rotative
WO2024217788A1 (fr) Stator pour transformateur rotatif

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20070105

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: INDUCTIVE ROTATING TRANSFORMER

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004007626

Country of ref document: DE

Date of ref document: 20080828

Kind code of ref document: P

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: FIRMA DITTEL MESSTECHNIK GMBH

Effective date: 20090408

26 Opposition filed

Opponent name: SCHLEIFRING UND APPARATEBAU GMBH

Effective date: 20090415

Opponent name: FIRMA DITTEL MESSTECHNIK GMBH

Effective date: 20090408

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091120

Year of fee payment: 6

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20101004

Year of fee payment: 7

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100916

Year of fee payment: 7

27W Patent revoked

Effective date: 20100918

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20100918

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100928

Year of fee payment: 7