EP1663554A1 - Method for the production of components - Google Patents

Method for the production of components

Info

Publication number
EP1663554A1
EP1663554A1 EP04786170A EP04786170A EP1663554A1 EP 1663554 A1 EP1663554 A1 EP 1663554A1 EP 04786170 A EP04786170 A EP 04786170A EP 04786170 A EP04786170 A EP 04786170A EP 1663554 A1 EP1663554 A1 EP 1663554A1
Authority
EP
European Patent Office
Prior art keywords
sintering
another
during
molded
injection molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04786170A
Other languages
German (de)
French (fr)
Other versions
EP1663554B1 (en
Inventor
Gerhard Andrees
Josef Kranzeder
Max Kraus
Raimund Lackermeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Publication of EP1663554A1 publication Critical patent/EP1663554A1/en
Application granted granted Critical
Publication of EP1663554B1 publication Critical patent/EP1663554B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/04Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • Powder-metallurgical injection molding has proven itself in the manufacture or manufacture of precision components from metallic or ceramic powders. Powder-metallurgical injection molding is related to plastic injection molding and is also known as metal mold injection or metal injection molding (MIM). Powder-metallurgical injection molding can be used to manufacture components that achieve almost the full density and approx. 95% of the static strength of forged parts. The reduced dynamic strength compared to forged parts can be compensated for by suitable material selection.
  • MIM metal mold injection or metal injection molding
  • a powder preferably a metal powder, hard metal powder or ceramic powder
  • a binder and optionally a plasticizer to form a homogeneous mass becomes.
  • Shaped bodies are produced from this homogeneous mass by injection molding.
  • the injection molded moldings already have the geometric shape of the component to be produced, but their volume is increased by the volume of the binder and plasticizer added.
  • the binder and plasticizer are removed from the injection molded moldings in a debinding process. Subsequently, the shaped body is compressed or shrunk to form the finished component during the sintering.
  • the volume of the molded body decreases, whereby it is crucial that the dimensions of the molded part must shrink uniformly in all three spatial directions.
  • the volume shrinkage is between 30% and 60% depending on the binder and plasticizer content.
  • powder metallurgical injection molding is usually carried out in such a way that each molded body is subjected to the debinding process and then sintered for itself. If necessary, only after the actual powder metallurgy injection molding are several components manufactured by powder metallurgy injection molding connected to one another using suitable joining methods. With the powder metallurgical injection molding processes known from the prior art, the production of components with a complex, three-dimensional shape is therefore only possible to a limited extent.
  • the present invention is based on the problem of proposing a novel method for producing components.
  • a plurality of moldings are connected to one another during the sintering by a diffusion process in order to produce a component.
  • the molded bodies to be connected to one another are brought into surface contact, at least during the sintering, on sections of the molded bodies to be connected, preferably into a form-fitting surface contact, pressure being exerted on the components to be connected during the sintering and during the simultaneous diffusion process Shaped body is exercised.
  • the method according to the invention is used in particular for producing blades or blade segments from a plurality of blades of an aircraft engine, these blades or blade segments being made of a nickel-based alloy or also a titanium-based alloy.
  • Fig. 1 a block diagram to illustrate the individual process steps in powder metallurgical injection molding
  • FIG. 2 shows a cross section through two molded bodies to be connected to one another with the aid of the method according to the invention
  • the present invention relates to the production of components, preferably a gas turbine, in particular an aircraft engine, by powder-metallurgical injection molding (PM). Powder metallurgical injection molding is also known as metal injection molding (MIM).
  • PM powder-metallurgical injection molding
  • MIM metal injection molding
  • a metal powder, hard metal powder or ceramic powder is provided in a first step 10.
  • a binder and optionally a plasticizer are provided in a second step 11.
  • the metal powder provided in process step 10 and the binder and plasticizer provided in process step 11 are mixed in process step 12 so that a homogeneous mass is formed.
  • the volume proportion of the metal powder in the homogeneous mass is preferably between 40% and 70%.
  • the proportion of binder and plasticizer in the homogeneous mass fluctuates approximately between 30% and 60%.
  • This homogeneous mass of metal powder, binder and plasticizer is further processed in the sense of step 13 by injection molding. Moldings are manufactured during injection molding. These moldings already have all the typical features of the components to be produced. In particular, the shaped bodies have the geometric shape of the component to be manufactured. However, they have a volume increased by the binder content and plasticizer content.
  • Process step 14 the binder and the plasticizer are expelled from the moldings.
  • Process step 14 can also be referred to as the final binding process. Binding agents and plasticizers can be driven out in different ways. This is usually done by fractional, thermal decomposition or evaporation. Another possibility is to suck out the thermally liquefied binding and plasticizing agents by capillary forces, by sublimation or by solvents.
  • the shaped bodies are sintered in the sense of step 15.
  • the Shaped body compressed to the components with the final, geometric properties. Accordingly, the shaped bodies shrink during sintering, the dimensions of the shaped bodies having to shrink uniformly in all three spatial directions.
  • the linear shrinkage is between 10% and 20% depending on the binder content and plasticizer content.
  • step 16 the finished component is present, which is represented by step 16 in FIG. 1.
  • the component can still be subjected to a finishing process in the sense of step 17.
  • the finishing process is optional.
  • a ready-to-install component can already be present immediately after sintering.
  • the component is formed from a plurality of moldings, the moldings being connected to one another by a diffusion process during powder-metallurgical injection molding.
  • the component to be manufactured can be composed of two shaped bodies, the two shaped bodies being connected to one another during the sintering by the diffusion process. It is also possible to connect a larger number of shaped bodies to one component during the sintering.
  • the shaped bodies are brought into surface contact at sections or surface areas thereof to be connected to one another.
  • a pressure is exerted on the touching shaped bodies or the touching sections of the shaped bodies during the diffusion process.
  • the surface contact between the molded bodies to be connected to one another and the application of pressure thereon takes place at least during the sintering.
  • the diffusion process therefore takes place during sintering.
  • the surface contact and the pressure on the molded bodies that are in contact and to be connected to one another already during a pre-sintering and / or during the debinding process are also possible to apply the surface contact and the pressure on the molded bodies that are in contact and to be connected to one another already during a pre-sintering and / or during the debinding process.
  • the preferred procedure is that the surface contact is already provided during the debinding process and during the pre-sintering as well as during the actual sintering, but the pressure is only exerted on the shaped bodies during the actual sintering.
  • the pre-sintering takes place between the debinding process and the actual sintering, wherein during the pre-sintering there is still no noticeable shrinkage process of the molded bodies to be joined together.
  • the molded bodies are brought into a form-fitting surface contact. This is explained below with reference to FIGS. 2 to 4.
  • FIG. 2 shows two molded bodies 18 and 19 to be connected to one another during powder metallurgical injection molding via a diffusion process.
  • the molded bodies 18 and 19 touch one another at sections or surface regions 20 and 21.
  • the surface region 20 is the Shaped body 18 is wedge-shaped in cross section.
  • This wedge-shaped surface area 20 of the molded body 18 engages in a form-fitting manner in the correspondingly formed surface area 21 of the molded body 19.
  • the surface area 21 of the molded body 19 accordingly forms a wedge-shaped groove in cross section.
  • FIG. 3 shows an alternative embodiment of two molded bodies 22 and 23 to be connected to one another. Also in the exemplary embodiment in FIG. 3, surface regions 24 and 25 of the molded bodies 22 and 23 to be connected to one another are in positive contact. For this purpose, a projection with a trapezoidal cross section is formed on the surface area 25 of the molded body 23, which engages in a correspondingly formed recess in the surface area 24 of the molded body 22.
  • FIG. 4 shows another possible embodiment of two molded bodies 26 and 27 to be connected to one another.
  • surface regions 28 and 29 of the two molded bodies 26 and 27 to be connected to one another are again in positive contact with one another, in contrast to the exemplary embodiment according to FIG. 3 in the exemplary embodiment according to FIG. 4, the projection or the recess in the area of the sections or the surface areas 28 and 29 is not trapezoidal in cross section, but rather rectangular in cross section.
  • the molded bodies 18 and 19 or 22 and 23 to be connected to one another are arranged laterally next to one another, in the exemplary embodiment in FIG. 4 the molded bodies 26 and 27 are positioned one above the other.
  • the positive connection between the molded bodies to be connected to one another during the sintering by the diffusion process improves the dimensional accuracy of the component to be produced.
  • the molded bodies to be connected to one another in the sense of the present invention can be designed identically both with regard to their material composition and / or with regard to their shrinkage properties, and can also have different properties in this regard. If the material compositions and the shrinking properties of the molded articles to be connected to one another are identical, a uniform shrinkage process occurs for the molded articles to be connected to one another during sintering.
  • Another alternative of the present invention is to compensate for the different shrinkage behavior when using shaped bodies with different shrinkage behavior in that the shaped bodies are processed by an upstream pre-sintering process before the actual sintering.
  • the different shrinkage behavior of the molded bodies to be connected to one another can be compensated for so that the shrinkage behavior of the molded bodies is matched to one another during the actual sintering.
  • the different shrinkage behavior can be compensated for by the fact that the shaped bodies, which consist, for example, of different metal powders, also differ in terms of their binders and optionally plasticizers or in terms of their percentage composition of metal powder, binders and optionally plasticizers.
  • This also makes it possible to compensate for the different shrinkage behavior if, for example, molded articles made of different metal powders are to be joined together.
  • the sintering temperature or diffusion temperature of the material compositions of the shaped bodies is of the same order of magnitude, so that the shrinkage of the shaped bodies also takes place at the same time.
  • the surfaces thereof touching one another can have a coating.
  • This coating then forms what is known as a sintering aid, which can be applied as a film or as a slip material or slip layer to the surface regions of the moldings to be brought into surface contact.
  • This coating which enhances the diffusion effect, can be applied to at least one of the surface areas or sections to be connected to one another or also to both or all sections to be connected to one another.
  • the sintering can also be carried out under a special gas atmosphere which supports the diffusion effect.
  • the method according to the invention is particularly suitable for producing components of a gas turbine, in particular an aircraft engine. It is within the scope of the present invention to manufacture blades or blade segments or rotors with integral blading - so-called blisks (B

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

The invention relates to a method for producing components preferably of a gas turbine, particularly an aircraft engine, by means of powder-metallurgical injection molding. In powder-metallurgical injection molding, a powder metal is first mixed with a binding agent so as to obtain a homogeneous mass, whereupon at least one molded body is produced from the homogeneous mass in an injection molding process, and the or each molded body is subsequently subjected to a debinding process. The or each molded body is then compressed by means of sintering to obtain at least one component having desired geometrical properties. According to the invention, several molded bodies are joined together by means of a diffusion process during sintering in order to produce a part. Preferably, the molded bodies that are to be joined together are brought into surface contact, preferably positive surface contact, in sections of the molded bodies, which are to be joined together, at least during sintering, pressure being applied to the molded bodies that are to be joined together during sintering.

Description

Verfahren zur Herstellung von Bauteilen Process for the production of components
Die Erfindung betrifft ein Verfahren zur Herstellung von Bauteilen vorzugsweise einer Gasturbine nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a method for producing components, preferably a gas turbine, according to the preamble of patent claim 1.
Moderne Gasturbinen, insbesondere Flugtriebwerke, müssen höchsten Ansprüchen im Hinblick auf Zuverlässigkeit, Gewicht, Leistung, Wirtschaftlichkeit und Lebensdauer gerecht werden. In den letzten Jahrzehnten wurden insbesondere auf dem zivilen Sektor Flugtriebwerke entwickelt, die den obigen Anforderungen voll gerecht werden und ein hohes Maß an technischer Perfektion erreicht haben. Bei der Entwicklung von Flugtriebwerken spielt unter anderem die Werkstoffauswahl, die Suche nach neuen, geeigneten Werkstoffen sowie die Suche nach neuen Fertigungsverfahren eine entscheidende Rolle.Modern gas turbines, especially aircraft engines, have to meet the highest demands in terms of reliability, weight, performance, economy and service life. In the past few decades, aircraft engines have been developed in particular in the civilian sector, which fully meet the above requirements and have achieved a high level of technical perfection. The material selection, the search for new, suitable materials and the search for new manufacturing processes play a decisive role in the development of aircraft engines.
Die wichtigsten, heutzutage für Flugtriebwerke oder sonstige Gasturbinen verwendeten Werkstoffe sind Titanlegierungen, Nickellegierungen (auch Superlegierungen genannt) und hochfeste Stähle. Die hochfesten Stähle werden für Wellenteile, Getriebeteile, Verdichtergehäuse und Turbinengehäuse verwendet. Titanlegierungen sind typische Werkstoffe für Verdichterteile. Nickellegierungen sind für die heißen Teile des Flugtriebwerks geeignet.The most important materials used today for aircraft engines or other gas turbines are titanium alloys, nickel alloys (also called super alloys) and high-strength steels. The high-strength steels are used for shaft parts, gear parts, compressor housings and turbine housings. Titanium alloys are typical materials for compressor parts. Nickel alloys are suitable for the hot parts of the aircraft engine.
Bei der Fertigung bzw. Herstellung von Präzisionsbauteilen aus metallischen oder auch keramischen Pulvern hat sich das pulvermetallurgische Spritzgießen bewährt. Das pulvermetallurgische Spritzgießen ist mit dem Kunststoffspritzguss verwandt und wird auch als Metallform-Spritzen oder Metal Injection Moulding-Verfahren (MIM-Verfahren) bezeichnet. Mit dem pulvermetallurgischen Spritzgießen können Bauteile hergestellt werden, die fast die volle Dichte sowie ca. 95% der statischen Festigkeit von Schmiedeteilen erreichen. Die gegenüber Schmiedeteilen verringerte dynamische Festigkeit kann durch geeignete Werkstoffauswahl kompensiert werden.Powder-metallurgical injection molding has proven itself in the manufacture or manufacture of precision components from metallic or ceramic powders. Powder-metallurgical injection molding is related to plastic injection molding and is also known as metal mold injection or metal injection molding (MIM). Powder-metallurgical injection molding can be used to manufacture components that achieve almost the full density and approx. 95% of the static strength of forged parts. The reduced dynamic strength compared to forged parts can be compensated for by suitable material selection.
Beim pulvermetallurgischen Spritzgießen wird nach dem Stand der Technik in groben Zügen so vorgegangen, dass in einem ersten Verfahrensschritt ein Pulver, vorzugsweise ein Metallpulver, Hartmetallpulver oder auch Keramikpulver, mit einem Bindemittel und gegebenenfalls einem Plastifizierer zu einer homogenen Masse vermischt wird. Aus dieser homogenen Masse werden durch Spritzgießen Formkörper gefertigt. Die spritzgegossenen Formkörper besitzen bereits die geometrische Form des herzustellenden Bauteils, ihr Volumen ist jedoch um das Volumen des zugesetzten Bindemittels und Plastifizierungsmittels vergrößert. Den spritzgegossenen Formkörpern wird in einem Entbinderungsprozess das Bindemittel sowie Plastifizierungsmittel entzogen. Darauffolgend wird während des Sinterns der Formkörper zum fertigen Bauteil verdichtet bzw. geschrumpft. Während des Sinterns verkleinert sich das Volumen des Formkörpers, wobei entscheidend ist, dass die Dimensionen des Formteils in allen drei Raumrichtungen gleichmäßig schwinden müssen. Der Volumenschwund beträgt abhängig vom Bindemittel- und Plastifizierungsmittelgehalt zwischen 30% und 60%.In powder-metallurgical injection molding, the state of the art is used roughly in such a way that in a first process step a powder, preferably a metal powder, hard metal powder or ceramic powder, is mixed with a binder and optionally a plasticizer to form a homogeneous mass becomes. Shaped bodies are produced from this homogeneous mass by injection molding. The injection molded moldings already have the geometric shape of the component to be produced, but their volume is increased by the volume of the binder and plasticizer added. The binder and plasticizer are removed from the injection molded moldings in a debinding process. Subsequently, the shaped body is compressed or shrunk to form the finished component during the sintering. During the sintering process, the volume of the molded body decreases, whereby it is crucial that the dimensions of the molded part must shrink uniformly in all three spatial directions. The volume shrinkage is between 30% and 60% depending on the binder and plasticizer content.
Nach dem Stand der Technik wird beim pulvermetallurgischen Spritzgießen üblicherweise so vorgegangen, dass jeder Formkörper für sich dem Entbinderungsprozess unterzogen und darauffolgend für sich gesintert wird. Gegebenfalls werden erst nach dem eigentlichen pulvermetallurgischen Spritzgießen mehrere durch pulvermetallurgisches Spritzgießen hergestellte Bauteile über geeignete Fügeverfahren miteinander verbunden. Mit den aus dem Stand der Technik bekannten pulvermetallurgischen Spritzgießverfahren ist demnach die Herstellung von Bauteilen mit einer komplexen, dreidimensionalen Gestalt nur in beschränktem Umfang möglich.According to the prior art, powder metallurgical injection molding is usually carried out in such a way that each molded body is subjected to the debinding process and then sintered for itself. If necessary, only after the actual powder metallurgy injection molding are several components manufactured by powder metallurgy injection molding connected to one another using suitable joining methods. With the powder metallurgical injection molding processes known from the prior art, the production of components with a complex, three-dimensional shape is therefore only possible to a limited extent.
Hiervon ausgehend liegt der vorliegenden Erfindung das Problem zu Grunde, ein neuartiges Verfahren zur Herstellung von Bauteilen vorzuschlagen.Proceeding from this, the present invention is based on the problem of proposing a novel method for producing components.
Dieses Problem wird dadurch gelöst, dass das eingangs genannte Verfahren durch die Merkmale des kennzeichnenden Teils des Patentanspruchs 1 weitergebildet ist.This problem is solved in that the method mentioned at the outset is further developed by the features of the characterizing part of patent claim 1.
Erfindungsgemäß werden zur Herstellung eines Bauteils mehrere Formkörper während des Sinterns durch einen Diffusionsprozess miteinander verbunden.According to the invention, a plurality of moldings are connected to one another during the sintering by a diffusion process in order to produce a component.
Im Sinne der hier vorliegenden Erfindung wird vorgeschlagen, ein Bauteil aus mehreren Formkörpern dadurch herzustellen, dass während des Sinterns, also während des pulvermetallurgischen Spritzgießens, die Formkörper zu dem herzustellenden Bauteil durch einen Diffusionsprozess miteinander verbunden werden. Hierdurch wird es möglich, mithilfe des pulvermetallurgischen Spritzgießens auch Bauteile mit einer komplexen, dreidimensionalen Gestalt schnell und kostengünstig herzustellen.In the sense of the present invention, it is proposed to produce a component from a plurality of shaped bodies by connecting the shaped bodies to one another by means of a diffusion process during the sintering, that is to say during the powder-metallurgical injection molding. hereby it will be possible to quickly and inexpensively manufacture components with a complex, three-dimensional shape using powder metallurgical injection molding.
Nach einer vorteilhaften Weiterbildung der Erfindung werden die miteinander zu verbindenden Formkörper zumindest während des Sinterns an miteinander zu verbindenden Abschnitten der Formkörper in Flächenkontakt, vorzugsweise in einen formschlüssigen Flächenkontakt gebracht, wobei während des Sinterns und während des gleichzeitig ablaufenden Diffusionsprozesses ein Druck auf die miteinander zu verbindenden Formkorper ausgeübt wird.According to an advantageous development of the invention, the molded bodies to be connected to one another are brought into surface contact, at least during the sintering, on sections of the molded bodies to be connected, preferably into a form-fitting surface contact, pressure being exerted on the components to be connected during the sintering and during the simultaneous diffusion process Shaped body is exercised.
Das erfindungsgemäße Verfahren wird insbesondere zur Herstellung von Schaufeln oder Schaufelsegmenten aus mehreren Schaufeln eines Flugtriebwerks verwendet, wobei diese Schaufeln oder Schaufelsegmente aus einer Nickelbasislegierung oder auch Titanbasislegierung bestehen.The method according to the invention is used in particular for producing blades or blade segments from a plurality of blades of an aircraft engine, these blades or blade segments being made of a nickel-based alloy or also a titanium-based alloy.
Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den abhängigen Unteransprüchen und der nachfolgenden Beschreibung.Preferred developments of the invention result from the dependent subclaims and the following description.
Ausführungsbeispiele der Erfindung werden, ohne hierauf beschränkt zu sein, an Hand der Zeichnung näher erläutert. In der Zeichnung zeigt:Exemplary embodiments of the invention are explained in more detail with reference to the drawing, without being restricted to this. The drawing shows:
Fig. 1 : ein Blockschaltbild zur Verdeutlichung der einzelnen Verfahrenschritte beim pulvermetallurgischen Spritzgießen;Fig. 1: a block diagram to illustrate the individual process steps in powder metallurgical injection molding;
Fig. 2: einen Querschnitt durch zwei mit Hilfe des erfindungsgemäßen Verfahrens miteinander zu verbindende Formkörper;2 shows a cross section through two molded bodies to be connected to one another with the aid of the method according to the invention;
Fig. 3: einen weiteren Querschnitt durch zwei mit Hilfe des erfindungsgemäßen Verfahrens miteinander zu verbindende Formkörper; und3: a further cross section through two molded bodies to be connected to one another with the aid of the method according to the invention; and
Fig. 4: einen weiteren Querschnitt durch zwei mit Hilfe des erfindungsgemäßen Verfahrens miteinander zu verbindende Formkörper. Die hier vorliegende Erfindung betrifft die Herstellung von Bauteilen vorzugsweise einer Gasturbine, insbesondere eines Flugtriebwerks, durch pulvermetallurgisches Spritzgießen (PM). Pulvermetallurgisches Spritzgießen wird auch als Metal Injection Moulding (MIM) bezeichnet.4: a further cross section through two molded bodies to be connected to one another with the aid of the method according to the invention. The present invention relates to the production of components, preferably a gas turbine, in particular an aircraft engine, by powder-metallurgical injection molding (PM). Powder metallurgical injection molding is also known as metal injection molding (MIM).
Unter Bezugnahme auf Fig. 1 werden die einzelnen Verfahrensschritte des pulvermetallurgischen Spritzgießens erläutert. In einem ersten Schritt 10 wird ein Metallpulver, Hartmetallpulver oder Keramikpulver bereitgestellt. In einem zweiten Schritt 1 1 werden ein Bindemittel und ggf. ein Plastifizierungsmittel bereitgestellt. Das im Verfahrensschritt 10 bereitgestellte Metallpulver sowie das im Verfahrensschritt 1 1 bereitgestellte Bindemittel und Plastifizierungsmittel werden im Verfahrensschritt 12 gemischt, so dass sich eine homogene Masse ausbildet. Der Volumenanteil des Metallpulvers in der homogenen Masse beträgt dabei vorzugsweise zwischen 40% und 70%. Der Anteil von Bindemittel und Plastifizierungsmittel an der homogenen Masse schwankt demnach in etwa zwischen 30% und 60%.The individual process steps of powder metallurgical injection molding are explained with reference to FIG. 1. In a first step 10, a metal powder, hard metal powder or ceramic powder is provided. In a second step 11, a binder and optionally a plasticizer are provided. The metal powder provided in process step 10 and the binder and plasticizer provided in process step 11 are mixed in process step 12 so that a homogeneous mass is formed. The volume proportion of the metal powder in the homogeneous mass is preferably between 40% and 70%. The proportion of binder and plasticizer in the homogeneous mass fluctuates approximately between 30% and 60%.
Diese homogene Masse aus Metallpulver, Bindemittel und Plastifizierungsmittel wird im Sinne des Schritts 13 durch Spritzgießen weiterverarbeitet. Beim Spritzgießen werden Formkörper gefertigt. Diese Formkörper weisen schon alle typischen Merkmale der herzustellenden Bauteile auf. Insbesondere verfügen die Formkörper über die geometrische Form des zu fertigenden Bauteils. Sie verfügen jedoch über ein um den Bindemittelgehalt sowie Plastifizierungsmittelgehalt vergrößertes Volumen.This homogeneous mass of metal powder, binder and plasticizer is further processed in the sense of step 13 by injection molding. Moldings are manufactured during injection molding. These moldings already have all the typical features of the components to be produced. In particular, the shaped bodies have the geometric shape of the component to be manufactured. However, they have a volume increased by the binder content and plasticizer content.
Im nachgeschalteten Schritt 14 wird das Bindemittel und das Plastifizierungsmittel aus den Formkörpern ausgetrieben. Den Verfahrensschritt 14 kann man auch als Endbinderungsprozess bezeichnen. Das Austreiben von Bindemittel und Plastifizierungsmittel kann auf unterschiedliche Art und Weise erfolgen. Üblicherweise erfolgt dies durch fraktionierte, thermische Zersetzung bzw. Verdampfung. Eine weitere Möglichkeit besteht durch Heraussaugen der thermisch verflüssigten Binde- und Plastifizierungsmittel durch Kapillarkräfte, durch Sublimation oder durch Lösungsmittel.In the subsequent step 14, the binder and the plasticizer are expelled from the moldings. Process step 14 can also be referred to as the final binding process. Binding agents and plasticizers can be driven out in different ways. This is usually done by fractional, thermal decomposition or evaporation. Another possibility is to suck out the thermally liquefied binding and plasticizing agents by capillary forces, by sublimation or by solvents.
Im Anschluss an den Entbinderungsprozess im Sinne des Schritts 1 werden die Formkörper im Sinne des Schritts 15 gesintert. Während des Sinterns werden die Formkörper zu den Bauteilen mit den endgültigen, geometrischen Eigenschaften verdichtet. Während des Sinterns verkleinern sich demnach die Formkörper, wobei die Dimensionen der Formkörper in allen drei Raumrichtungen gleichmäßig schwinden müssen. Der lineare Schwund beträgt abhängig vom Bindemittelgehalt und Plastifizierungsmittelgehalt zwischen 10% und 20%.Following the debinding process in the sense of step 1, the shaped bodies are sintered in the sense of step 15. During the sintering, the Shaped body compressed to the components with the final, geometric properties. Accordingly, the shaped bodies shrink during sintering, the dimensions of the shaped bodies having to shrink uniformly in all three spatial directions. The linear shrinkage is between 10% and 20% depending on the binder content and plasticizer content.
Nach dem Sintern liegt das fertige Bauteil vor, was in Fig. 1 durch den Schritt 16 dargestellt ist. Falls erforderlich, kann nach dem Sintern (Schritt 15) das Bauteil noch einem Veredelungsprozess im Sinne des Schritts 17 unterzogen werden. Der Veredelungsprozess ist jedoch optional. Es kann bereits auch unmittelbar nach dem Sintern ein einbaufertiges Bauteil vorliegen.After sintering, the finished component is present, which is represented by step 16 in FIG. 1. If necessary, after the sintering (step 15), the component can still be subjected to a finishing process in the sense of step 17. However, the finishing process is optional. A ready-to-install component can already be present immediately after sintering.
Es liegt im Sinne der hier vorliegenden Erfindung, ein Bauteil mithilfe des pulvermetallurgischen Spritzgießens dadurch herzustellen, dass das Bauteil aus mehreren Formkörpern gebildet wird, wobei die Formkörper während des pulvermetallurgischen Spritzgießens durch einen Diffusionsprozess miteinander verbunden werden. So kann zum Beispiel das herzustellende Bauteil aus zwei Formkörpern zusammengesetzt werden, wobei die beiden Formkörper während des Sinterns durch den Diffusionsprozess miteinander verbunden werden. Es ist auch möglich, eine höhere Anzahl von Formkörpern zu einem Bauteil während des Sinterns miteinander zu verbinden.It is within the meaning of the present invention to produce a component using powder-metallurgical injection molding in that the component is formed from a plurality of moldings, the moldings being connected to one another by a diffusion process during powder-metallurgical injection molding. For example, the component to be manufactured can be composed of two shaped bodies, the two shaped bodies being connected to one another during the sintering by the diffusion process. It is also possible to connect a larger number of shaped bodies to one component during the sintering.
Zum Verbinden der Formkörper bei der Herstellung des Bauteils werden die Formkörper an miteinander zu verbindenden Abschnitten bzw. Oberflächenbereichen derselben in einen Flächenkontakt gebracht. Dies bedeutet, dass die miteinander zu verbindenden Formkörper sich an den Abschnitten bzw. Oberflächenbereichen einander berühren. Auf die sich berührenden Formkörper bzw. die sich berührenden Abschnitte der Formkörper wird während des Diffusionsprozesses ein Druck ausgeübt. Der Flächenkontakt zwischen den miteinander zu verbindenden Formkörpern sowie das Ausüben des Drucks auf dieselben, erfolgt zumindest während des Sinterns. Der Diffusionsprozess erfolgt demnach während des Sinters.In order to connect the shaped bodies in the production of the component, the shaped bodies are brought into surface contact at sections or surface areas thereof to be connected to one another. This means that the molded bodies to be connected to one another touch one another at the sections or surface regions. A pressure is exerted on the touching shaped bodies or the touching sections of the shaped bodies during the diffusion process. The surface contact between the molded bodies to be connected to one another and the application of pressure thereon takes place at least during the sintering. The diffusion process therefore takes place during sintering.
Es ist auch möglich, den Flächenkontakt sowie den Druck auf die sich berührenden und miteinander zu verbindenden Formkörper bereits während eines Vorsinterns und/oder während des Entbinderungsprozesses herzustellen. Bevorzugt ist die Vorgehensweise, dass der Flächenkontakt bereits während des Entbinderungsprozesses und während des Vorsinters sowie während des eigentlichen Sinters bereitgestellt wird, der Druck jedoch lediglich während des eigentlichen Sinterns auf die Formkörper ausgeübt wird. An dieser Stelle sei der Vollständigkeit halber angemerkt, dass das Vorsintern zwischen dem Entbinderungsprozess und dem eigentlichen Sintern stattfindet, wobei beim Vorsintern noch kein merklicher Schrumpfungsprozess der miteinander zu verbindenden Formkörper stattfindet.It is also possible to apply the surface contact and the pressure on the molded bodies that are in contact and to be connected to one another already during a pre-sintering and / or during the debinding process. The preferred procedure is that the surface contact is already provided during the debinding process and during the pre-sintering as well as during the actual sintering, but the pressure is only exerted on the shaped bodies during the actual sintering. At this point, for the sake of completeness, it should be noted that the pre-sintering takes place between the debinding process and the actual sintering, wherein during the pre-sintering there is still no noticeable shrinkage process of the molded bodies to be joined together.
Nach einer vorteilhaften Weiterbildung des erfindungsgemäßen Verfahrens werden die Formkörper in einen formschlüssigen Flächenkontakt gebracht. Dies wird anhand der Fig. 2 bis 4 nachfolgend erläutert.According to an advantageous development of the method according to the invention, the molded bodies are brought into a form-fitting surface contact. This is explained below with reference to FIGS. 2 to 4.
So zeigt Fig. 2 zwei während des pulvermetallurgischen Spritzgießens über einen Diffusionsprozess miteinander zu verbindende Formkörper 18 und 19. Die Formkörper 18 und 19 berühren einander an Abschnitten bzw. Oberflächenbereichen 20 und 21. Wie Fig. 2 entnommen werden kann, ist der Oberflächenbereich 20 des Formkörpers 18 im Querschnitt keilförmig ausgebildet. Dieser keilförmige Oberflächenbereich 20 des Formkörpers 18 greift formschlüssig in den korrespondierend ausgebildeten Oberflächenbereich 21 des Formkörpers 19 ein. Der Oberflächenbereich 21 des Formkörpers 19 bildet demnach im Querschnitt eine keilförmige Nut.2 shows two molded bodies 18 and 19 to be connected to one another during powder metallurgical injection molding via a diffusion process. The molded bodies 18 and 19 touch one another at sections or surface regions 20 and 21. As can be seen in FIG. 2, the surface region 20 is the Shaped body 18 is wedge-shaped in cross section. This wedge-shaped surface area 20 of the molded body 18 engages in a form-fitting manner in the correspondingly formed surface area 21 of the molded body 19. The surface area 21 of the molded body 19 accordingly forms a wedge-shaped groove in cross section.
Fig. 3 zeigt eine alternative Ausgestaltung von zwei miteinander zu verbindenden Formkörpern 22 und 23. Auch beim Ausführungsbeispiel der Fig. 3 sind miteinander zu verbindende Oberflächenbereiche 24 und 25 der Formkörper 22 und 23 in formschlüssigem Kontakt. Hierzu ist am Oberflächenbereich 25 des Formkörpers 23 ein im Querschnitt trapezförmiger Vorsprung ausgebildet, der in eine entsprechend ausgebildete Ausnehmung im Oberflächenbereich 24 des Formkörpers 22 eingreift.3 shows an alternative embodiment of two molded bodies 22 and 23 to be connected to one another. Also in the exemplary embodiment in FIG. 3, surface regions 24 and 25 of the molded bodies 22 and 23 to be connected to one another are in positive contact. For this purpose, a projection with a trapezoidal cross section is formed on the surface area 25 of the molded body 23, which engages in a correspondingly formed recess in the surface area 24 of the molded body 22.
Eine weitere mögliche Ausgestaltung zweier miteinander zu verbindender Formkörper 26 und 27 zeigt Fig. 4. Beim Ausführungsbeispiel der Fig. 4 sind miteinander zu verbindende Oberflächenbereiche 28 und 29 der beiden Formkörper 26 und 27 wiederum in formschlüssigem Kontakt miteinander, im Unterschied zum Ausführungsbeispiel gemäß Fig. 3 sind im Ausführungsbeispiel gemäß Fig. 4 der Vorsprung bzw. die Ausnehmung im Bereich der Abschnitte bzw. der Oberflächenbereiche 28 bzw. 29 im Querschnitt nicht trapezförmig, sondern vielmehr im Querschnitt rechteckig. Bei den Ausführungsbeispielen gemäß Fig. 2 und 3 sind die miteinander zu verbindender Formkörper 18 und 19 bzw. 22 und 23 seitlich nebeneinander angeordnet, bei Ausführungsbeispiel der Fig. 4 sind die Formkörper 26 und 27 übereinander positioniert.FIG. 4 shows another possible embodiment of two molded bodies 26 and 27 to be connected to one another. In the exemplary embodiment in FIG. 4, surface regions 28 and 29 of the two molded bodies 26 and 27 to be connected to one another are again in positive contact with one another, in contrast to the exemplary embodiment according to FIG. 3 in the exemplary embodiment according to FIG. 4, the projection or the recess in the area of the sections or the surface areas 28 and 29 is not trapezoidal in cross section, but rather rectangular in cross section. In the exemplary embodiments according to FIGS. 2 and 3, the molded bodies 18 and 19 or 22 and 23 to be connected to one another are arranged laterally next to one another, in the exemplary embodiment in FIG. 4 the molded bodies 26 and 27 are positioned one above the other.
Der Formschluss zwischen den während des Sinterns durch den Diffusionsprozess miteinander zu verbindenden Formkörpem verbessert die Maßhaltigkeit des herzustellenden Bauteils.The positive connection between the molded bodies to be connected to one another during the sintering by the diffusion process improves the dimensional accuracy of the component to be produced.
An dieser Stelle sei angemerkt, dass die miteinander zu verbindenden Formkörper im Sinne der hier vorliegenden Erfindung sowohl hinsichtlich ihrer Materialzusammensetzung und/oder hinsichtlich ihrer Schrumpfungseigenschaften identisch ausgebildet sein können, als auch diesbezüglich unterschiedliche Eigenschaften aufweisen können. Sind die Materialzusammensetzungen sowie die Schrumpfeigenschaften der miteinander zu verbindenden Formkörper identisch, so stellt sich während des Sinterns für die miteinander zu verbindenden Formkörper ein gleichmäßiger Schrumpfungsprozess ein.At this point it should be noted that the molded bodies to be connected to one another in the sense of the present invention can be designed identically both with regard to their material composition and / or with regard to their shrinkage properties, and can also have different properties in this regard. If the material compositions and the shrinking properties of the molded articles to be connected to one another are identical, a uniform shrinkage process occurs for the molded articles to be connected to one another during sintering.
Es können jedoch auch Formkörper mit unterschiedlichen Schrumpfungseigenschaften im Sinne der hier vorliegenden Erfindung über den Diffusionsprozess während des Sinterns miteinander verbunden werden. So liegt es auch im Sinne der hier vorliegenden Erfindung, einen Formkorper mit einem größeren Schrumpfungsumfang während des Sinterns auf einen Formkörper mit einem kleineren Schrumpfungsumfang aufzusintern. Bei den in Fig. 2 bis 4 gezeigten Ausführungsbeispielen würde dies bedeuten, dass die Formkörper 19, 22 und 26 einen größeren Schrumpfungsumfang aufweisen und damit stärker schrumpfen als die Formkörper 18, 23 bzw. 27.However, shaped bodies with different shrinkage properties in the sense of the present invention can also be connected to one another via the diffusion process during sintering. It is also within the meaning of the present invention to sinter a molded article with a larger shrinkage amount during sintering onto a molded article with a smaller shrinkage amount. In the exemplary embodiments shown in FIGS. 2 to 4, this would mean that the shaped bodies 19, 22 and 26 have a larger amount of shrinkage and thus shrink more than the shaped bodies 18, 23 and 27.
Formkörper mit unterschiedlichen Schrumpfungseigenschaften können dadurch bereitgestellt werden, dass Formkörper mit unterschiedlichen Materialzusammensetzungen verwendet werden. So können zum Beispiel Formkörper verwendet werden, die aus unterschiedlichen Metallpulvern und damit unterschiedlichen Metalllegierungen gebildet sind. Sollen Formkörper aus unterschiedlichen Metallpulvern miteinan- der verbunden werden, so ist darauf zu achten, dass die Sintertemperatur bzw. Diffusionstemperatur der Metallpulver in der selben Größenordnung liegt, damit die Schrumpfung der Formkörper auch gleichzeitig erfolgt. Die Materialzusammensetzung zur Bereitstellung von Formkörpern mit unterschiedlichen Schrumpfungseigenschaften kann auch durch Variation in der Art und im Umfang des Bindemittels geändert werden. Unterschiedliche Schrumpfungseigenschaften können des weiteren bei gleicher Materialzusammensetzung dadurch erreicht werden, dass Formkörper mit gleicher Materialzusammensetzung unterschiedlich vorgesintert werden.Shaped bodies with different shrinkage properties can be provided by using shaped bodies with different material compositions. For example, molded bodies can be used which are formed from different metal powders and thus different metal alloys. Shaped bodies made of different metal powders which are connected, it must be ensured that the sintering temperature or diffusion temperature of the metal powder is of the same order of magnitude, so that the shrinkage of the shaped bodies also takes place at the same time. The material composition for providing shaped articles with different shrinkage properties can also be changed by varying the type and extent of the binder. Different shrinkage properties can also be achieved with the same material composition by pre-sintering moldings with the same material composition.
Eine weitere Alternative der hier vorliegenden Erfindung liegt darin, bei Verwendung von Formkörpern mit unterschiedlichem Schrumpfungsverhalten das unterschiedliche Schrumpfungsverhalten dadurch auszugleichen, dass vor dem eigentlichen Sintern die Formkörper durch einen vorgeschalteten Vorsinterprozess bearbeitet werden. Das unterschiedliche Schrumpfverhalten der miteinander zu verbindenden Formkörper kann so ausgeglichen werden, so dass während des eigentlichen Sinterns das Schrumpfverhalten der Formkörper aufeinander angepasst ist.Another alternative of the present invention is to compensate for the different shrinkage behavior when using shaped bodies with different shrinkage behavior in that the shaped bodies are processed by an upstream pre-sintering process before the actual sintering. The different shrinkage behavior of the molded bodies to be connected to one another can be compensated for so that the shrinkage behavior of the molded bodies is matched to one another during the actual sintering.
Nach einer anderen Alternative des erfindungsgemäßen Verfahrens kann das unterschiedliche Schrumpfverhalten dadurch ausgeglichen werden, dass die Formkörper, die zum Beispiel aus unterschiedlichen Metallpulvern bestehen, sich auch hinsichtlich ihrer Bindemittel und gegebenenfalls Plastifizierungsmittel bzw. hinsichtlich ihrer prozentualen Zusammensetzung von Metallpulver, Bindemittel und gegebenenfalls Plastifizierungsmittel unterscheiden. Auch hierdurch kann dann, wenn zum Beispiel Formkörper aus unterschiedlichen Metallpulvern miteinander verbunden werden sollen, das unterschiedliche Schrumpfungsverhalten ausgeglichen werden. Es ist jedoch wieder darauf zu achten, dass die Sintertemperatur bzw. Diffusionstempera- tur der Materialzusammensetzungen der Formkörper in der selben Größenordnung liegt, damit die Schrumpfung der Formkörper auch gleichzeitig erfolgt.According to another alternative of the method according to the invention, the different shrinkage behavior can be compensated for by the fact that the shaped bodies, which consist, for example, of different metal powders, also differ in terms of their binders and optionally plasticizers or in terms of their percentage composition of metal powder, binders and optionally plasticizers. This also makes it possible to compensate for the different shrinkage behavior if, for example, molded articles made of different metal powders are to be joined together. However, it must again be ensured that the sintering temperature or diffusion temperature of the material compositions of the shaped bodies is of the same order of magnitude, so that the shrinkage of the shaped bodies also takes place at the same time.
Mithilfe der hier vorliegenden Erfindung ist es möglich, während des Sinterns pulvermetallurgische Formkörper unmittelbar miteinander zu verbinden. Hierdurch werden neue Gestaltungsmöglichkeiten für pulvermetallurgisch herzustellende Bauteile geschaffen. Weiterhin entfallen die nach dem Stand der Technik erforderlichen separaten Füge- bzw. Verbindungsprozesse nach dem eigentlichen pulvermetallurgischen Spritzgießen. Durch den Wegfall dieses nach dem Stand der Technik erforderlichen, zusätzlichen Verfahrensschritts ist die Herstellung der Bauteile schneller sowie kostengünstiger möglich.With the aid of the present invention, it is possible to connect powder-metallurgical moldings directly to one another during sintering. This creates new design options for powder metallurgy components. Furthermore, the separate joining or joining processes after the actual powder metallurgy required by the prior art are eliminated Injection molding. The elimination of this additional process step, which is required according to the prior art, enables the components to be produced more quickly and more cost-effectively.
Zur Verstärkung des Diffusionseffekts beim Sintern der miteinander zu verbindenden Formkörper können die einander berührenden Oberflächen derselben eine Beschichtung aufweisen. Diese Beschichtung bildet dann eine sogenannte Sinterhilfe, die als Folie oder als Schlickerwerkstoff bzw. Schlickerschicht auf die in Flächenkontakt zu bringenden Oberflächenbereiche der Formkörper aufgebracht werden kann. Diese den Diffusionseffekt verstärkende Beschichtung kann auf mindestens eine der miteinander zu verbindenden Oberflächenbereiche bzw. Abschnitte oder auch auf beide oder alle miteinander zu verbindenden Abschnitte aufgebracht werden.In order to reinforce the diffusion effect during the sintering of the molded bodies to be connected to one another, the surfaces thereof touching one another can have a coating. This coating then forms what is known as a sintering aid, which can be applied as a film or as a slip material or slip layer to the surface regions of the moldings to be brought into surface contact. This coating, which enhances the diffusion effect, can be applied to at least one of the surface areas or sections to be connected to one another or also to both or all sections to be connected to one another.
Zur Verstärkung des Diffusionseffekts beim Sintern kann das Sintern auch unter einer speziellen Gasatmosphäre durchgeführt werden, die den Diffusionseffekt unterstützt.To increase the diffusion effect during sintering, the sintering can also be carried out under a special gas atmosphere which supports the diffusion effect.
Das erfindungsgemäße Verfahren eignet sich besonders zur Herstellung von Bauteilen einer Gasturbine, insbesondere eines Flugtriebwerks. So liegt es im Sinne der hier vorliegenden Erfindung, Schaufeln oder Schaufelsegmente oder Rotoren mit integraler Beschaufelung - sogenannte Blisks (B|aded Disks) oder Blings (Bladed Rings) - einer Gasturbine mithilfe des erfindungsgemäßen Verfahrens herzustellen. Weiterhin können Dichtungsteile, Verstellhebel, Sicherungsteile oder andere Bauteile mit einer komplexen dreidimensionalen Gestalt durch das erfindungsgemäße Verfahren hergestellt werden. Derartige Bauteile für eine Gasturbine bestehen insbesondere aus einer Nickelbasislegierung oder Titanbasislegierung. Das erfindungsgemäße Verfahren ist jedoch nicht auf die Herstellung von Bauteilen für Gasturbinen beschränkt. Es können grundsätzlich auch Bauteile für den Kraftfahrzeugbereich, den allgemeinen Maschinenbau oder sonstige Anwendungsbereiche hergestellt werden. The method according to the invention is particularly suitable for producing components of a gas turbine, in particular an aircraft engine. It is within the scope of the present invention to manufacture blades or blade segments or rotors with integral blading - so-called blisks (B | aded disks) or blings (Bladed Rings) - of a gas turbine using the method according to the invention. Furthermore, sealing parts, adjusting levers, securing parts or other components with a complex three-dimensional shape can be produced by the method according to the invention. Such components for a gas turbine consist in particular of a nickel-based alloy or titanium-based alloy. However, the method according to the invention is not limited to the production of components for gas turbines. In principle, components for the motor vehicle sector, general mechanical engineering or other fields of application can also be produced.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung von Bauteilen vorzugsweise einer Gasturbine, insbesondere eines Flugtriebwerks, durch pulvermetallurgisches Spitzgießen, wobei beim pulvermetallurgischen Spitzgießen zuerst insbesondere ein Metallpulver mit zumindest einem Bindemittel zu einer homogenen Masse vermischt wird, wobei anschließend aus der homogenen Masse durch Spritzgießen mindestens ein Formkörper gefertigt und wobei der oder jeder Formkörper darauffolgend einem Entbinderungsprozess unterzogen wird, und wobei im Anschluss durch Sintern der oder jeder Formkörper zu mindestens einem Bauteil mit gewünschten geometrischen Eigenschaften verdichtet bzw. geschrumpft wird, dadurch gekennzeichnet, dass zur Herstellung eines Bauteils mehrere Formkörper während des Sinterns durch einen Diffusionsprozess miteinander verbunden werden.1. A process for the production of components, preferably a gas turbine, in particular an aircraft engine, by powder-metallurgical injection molding, wherein in the case of powder-metallurgical injection molding, in particular a metal powder is mixed with at least one binder to form a homogeneous mass, and at least one shaped body is subsequently produced from the homogeneous composition by injection molding and wherein the or each molded body is subsequently subjected to a debinding process, and wherein the or each molded body is subsequently compressed or shrunk to at least one component with desired geometric properties by sintering, characterized in that a plurality of molded bodies are produced during the sintering process to produce one component a diffusion process.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass hierzu die miteinander zu verbindenden Formkörper zumindest während des Sinterns an miteinander zu verbindenden Abschnitten der Formkörper in Flächenkontakt gebracht werden.2. The method according to claim 1, characterized in that for this purpose the molded articles to be connected to one another are brought into surface contact at least during sintering on sections of the molded articles to be connected to one another.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass hierzu die miteinander zu verbindenden Formkörper an den miteinander zu verbindenden Abschnitten in einen formschlüssigen Flächenkontakt gebracht werden.3. The method according to claim 2, characterized in that for this purpose the molded bodies to be connected to one another are brought into a form-fitting surface contact at the sections to be connected to one another.
4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die miteinander zu verbindenden Formkörper während des Sinterns sowie während eines Vorsintems und vorzugsweise während des Entbinderungsprozesses miteinander in Flächenkontakt gebracht werden.4. The method according to claim 2 or 3, characterized in that the molded bodies to be connected to one another are brought into surface contact with one another during the sintering and during a pre-sintering and preferably during the debinding process.
5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass während des Sinterns ein Druck auf die miteinander zu verbindenden Formkörper ausgeübt wird. 5. The method according to one or more of claims 1 to 4, characterized in that a pressure is exerted on the moldings to be joined together during the sintering.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der Druck während des Sinterns und des Diffusionsprozesses auf die miteinander zu verbindenden Formkörper ausgeübt wird.6. The method according to claim 5, characterized in that the pressure is exerted during the sintering and the diffusion process on the shaped bodies to be connected to one another.
7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass auf mindestens einen der miteinander zu verbindenden Abschnitte der Formkörper zur Unterstützung des Diffusionsprozesses eine Beschichtung aufgebracht wird.7. The method according to one or more of claims 1 to 6, characterized in that a coating is applied to at least one of the sections of the moldings to be joined together to support the diffusion process.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die oder jede Beschichtung als Folie oder Schlickerschicht aufgebracht wird.8. The method according to claim 7, characterized in that the or each coating is applied as a film or slip layer.
9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass dann, wenn die miteinander zu verbindenden Formkörper ein unterschiedliches Schrumpfverhalten während des Sinterns aufweisen, der Formkörper mit dem größeren Schrumpfumfang auf den Formkörper mit dem geringeren Schrumpfumfang aufgeschrumpft wird.9. The method according to one or more of claims 1 to 8, characterized in that when the molded bodies to be joined together have a different shrinkage behavior during sintering, the molded body with the larger shrinkage circumference is shrunk onto the molded body with the lower shrinkage circumference.
10. Verfahren nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass dasselbe der Herstellung von Schaufeln oder Schaufelsegmenten einer Gasturbine, insbesondere der Herstellung von Leitschaufeln, Leitschaufelsegmenten, Laufschaufeln oder Laufschaufelsegmenten eines Flugtriebwerks, oder der Herstellung von Rotoren mit integraler Beschaufelung dient. 10. The method according to one or more of claims 1 to 9, characterized in that the same serves the manufacture of blades or blade segments of a gas turbine, in particular the manufacture of guide vanes, guide blade segments, rotor blades or rotor blade segments of an aircraft engine, or the manufacture of rotors with integral blading ,
EP04786170A 2003-09-22 2004-08-24 Method for the production of components of a gas turbine Expired - Lifetime EP1663554B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10343782A DE10343782A1 (en) 2003-09-22 2003-09-22 Process for the production of components
PCT/DE2004/001872 WO2005030417A1 (en) 2003-09-22 2004-08-24 Method for the production of components

Publications (2)

Publication Number Publication Date
EP1663554A1 true EP1663554A1 (en) 2006-06-07
EP1663554B1 EP1663554B1 (en) 2007-03-07

Family

ID=34306008

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04786170A Expired - Lifetime EP1663554B1 (en) 2003-09-22 2004-08-24 Method for the production of components of a gas turbine

Country Status (3)

Country Link
EP (1) EP1663554B1 (en)
DE (2) DE10343782A1 (en)
WO (1) WO2005030417A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7282681B2 (en) 2005-05-05 2007-10-16 General Electric Company Microwave fabrication of airfoil tips
DE102005022730A1 (en) 2005-05-18 2006-11-23 Schaeffler Kg Rolling bearing ring, in particular for highly stressed roller bearings in aircraft engines, and method for its production
DE102006009860A1 (en) * 2006-03-03 2007-09-06 Mtu Aero Engines Gmbh Method for producing a sealing segment and sealing segment for use in compressor and turbine components
US20080237403A1 (en) * 2007-03-26 2008-10-02 General Electric Company Metal injection molding process for bimetallic applications and airfoil
US7543383B2 (en) * 2007-07-24 2009-06-09 Pratt & Whitney Canada Corp. Method for manufacturing of fuel nozzle floating collar
US10226818B2 (en) 2009-03-20 2019-03-12 Pratt & Whitney Canada Corp. Process for joining powder injection molded parts
FR2944724B1 (en) * 2009-04-24 2012-01-20 Snecma METHOD FOR MANUFACTURING AN ASSEMBLY COMPRISING A PLURALITY OF AUBES MOUNTED IN A PLATFORM
DE102013004807B4 (en) 2013-03-15 2018-12-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the production of sintered components
DE102013207440A1 (en) * 2013-04-24 2014-10-30 Bosch Mahle Turbo Systems Gmbh & Co. Kg Method for producing a lever of a variable turbine geometry
US9970318B2 (en) 2014-06-25 2018-05-15 Pratt & Whitney Canada Corp. Shroud segment and method of manufacturing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3601385A1 (en) * 1986-01-18 1987-07-23 Krupp Gmbh METHOD FOR PRODUCING SINTER BODIES WITH INNER CHANNELS, EXTRACTION TOOL FOR IMPLEMENTING THE METHOD, AND DRILLING TOOL
US5393484A (en) * 1991-10-18 1995-02-28 Fujitsu Limited Process for producing sintered body and magnet base
TW415859B (en) * 1998-05-07 2000-12-21 Injex Kk Sintered metal producing method
DE10053199B4 (en) * 1999-10-28 2008-10-30 Denso Corp., Kariya-shi Method for producing a metal composite compact

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005030417A1 *

Also Published As

Publication number Publication date
EP1663554B1 (en) 2007-03-07
WO2005030417A1 (en) 2005-04-07
DE10343782A1 (en) 2005-04-14
DE502004003171D1 (en) 2007-04-19

Similar Documents

Publication Publication Date Title
DE10259963B4 (en) honeycomb seal
EP1656233B1 (en) Method for the production and/or repair of structural components for gas turbines
WO2007085230A1 (en) Guide blade segment of a gas turbine and method for its production
EP1691946B1 (en) Method for producing gas turbine components and component for a gas turbine
EP2643111B1 (en) Method for producing engine components with a geometrically complex structure
EP3069803A1 (en) Blade for a turbine engine made from different materials and method for producing the same
DE102012206087A1 (en) Making component e.g. turbine of aircraft engine, by preparing first component part, injecting second component part to the first compact part to form multi-component part, removing binder from part to form brown part and then sintering
DE102006016147A1 (en) Method for producing a honeycomb seal
WO2011015187A1 (en) Blade tip coating that can be rubbed off
US20070202000A1 (en) Method For Manufacturing Components
EP1663554B1 (en) Method for the production of components of a gas turbine
WO2005008032A1 (en) Lightweight blade for gas turbine and method for making same
DE102004029789A1 (en) Production of a component of a gas turbine, especially of an aircraft engine, comprises forming a component using a metal injection molding method and processing the component formed on its surface
EP1644149A2 (en) Method for making gas turbine elements and corresponding element
DE102004057360A1 (en) Process to manufacture a seal forming part of a honeycomb structure in a gas turbine aero-engine by screen-print application of mantle to metal base
DE102005019077A1 (en) Process to modify or manufacture a gas turbine engine blade by attachment of supplementary tip
WO2005030415A2 (en) Method for the production of components, and holding device
DE102005033625B4 (en) Method for producing and / or repairing an integrally bladed rotor
EP3216554A1 (en) Component with wear- resistant openings and depressions and method for producing the same
DE10343781B4 (en) Process for the production of components
DE102004060023B4 (en) Method for producing a honeycomb seal segment
DE102005040184B4 (en) Shroud segment of a gas turbine and method for producing the same
DE10336701B4 (en) Process for the production of components
DE102004029547B4 (en) Process for the production of components of a gas turbine
DE102018212625A1 (en) Method for producing a component using a sintering process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

RTI1 Title (correction)

Free format text: METHOD FOR THE PRODUCTION OF COMPONENTS OF A GAS TURBINE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004003171

Country of ref document: DE

Date of ref document: 20070419

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070515

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080822

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080813

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080821

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090824

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090824