EP1662105B1 - Système de traitement des NOx de gaz d'échappement d'un moteur thermique de véhicule automobile - Google Patents

Système de traitement des NOx de gaz d'échappement d'un moteur thermique de véhicule automobile Download PDF

Info

Publication number
EP1662105B1
EP1662105B1 EP05292350A EP05292350A EP1662105B1 EP 1662105 B1 EP1662105 B1 EP 1662105B1 EP 05292350 A EP05292350 A EP 05292350A EP 05292350 A EP05292350 A EP 05292350A EP 1662105 B1 EP1662105 B1 EP 1662105B1
Authority
EP
European Patent Office
Prior art keywords
plasma
temperature
catalyst
catalytic
temperatures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05292350A
Other languages
German (de)
English (en)
Other versions
EP1662105A1 (fr
Inventor
François Baudin
Stéphanie Schneider
Yvane Lendresse
Sabine Calvo
Patrick Da Costa
Gérald DJEGA-MARIADASSOU
Cyril Thomas
Ahmed Khacef
Jean-Marie Cormier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite Pierre et Marie Curie Paris 6
Original Assignee
Universite Pierre et Marie Curie Paris 6
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Pierre et Marie Curie Paris 6 filed Critical Universite Pierre et Marie Curie Paris 6
Publication of EP1662105A1 publication Critical patent/EP1662105A1/fr
Application granted granted Critical
Publication of EP1662105B1 publication Critical patent/EP1662105B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0892Electric or magnetic treatment, e.g. dissociation of noxious components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/28Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a plasma reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification

Definitions

  • the present invention relates to a system for treating the nitrogen oxides of the exhaust gas of a motor vehicle engine, comprising, in an exhaust line thereof, means for producing non-thermal plasma at from the exhaust gases they receive at the inlet and the nitrogen oxide reduction catalyst forming means arranged at the outlet of the plasma production means.
  • the combustion of an air / fuel mixture in a motor vehicle engine produces oxides of nitrogen (nitrogen monoxide NO and nitrogen dioxide NO 2 ).
  • a technology for the treatment of NOx present in the exhaust gas uses a catalyst arranged in the exhaust line of the engine.
  • a catalyst has a permanent catalytic activity during the operation of the engine.
  • Such a catalyst uses unburnt hydrocarbons from the exhaust gases to reduce NOx at catalytic sites provided for this purpose.
  • the thermal window of catalytic activity of such a catalyst i.e., the temperature range where the catalyst is effective in reducing NOx, is relatively low.
  • its use is incompatible with the operation of a vehicle engine for particular whose exhaust temperature can vary widely.
  • the document WO 00/43469 A discloses a device and method for removing at least a portion of at least one pollutant in an exhaust gas stream containing an exhaust gas formed from the combustion of fuel in a lean-burn engine.
  • the document BE 1006164A discloses a catalyst device for the reduction of nitrogen oxides in an exhaust gas which occurs in a wide range of temperatures.
  • the object of the present invention is to solve the aforementioned problem by proposing a NOx treatment system emitted by a motor vehicle engine having a thermal window of significant catalytic activity and compatible with a substantially permanent operation of the engine lean mixture, so that such a system can be implanted in motor vehicles for particular for effective treatment of NOx.
  • a motor vehicle engine 10 is associated with means 12 for supplying fuel to its cylinders and means 14 for admitting air at its inlet.
  • the engine 10 is also associated with an exhaust line 16 of its exhaust gas comprising a reactor 18 for producing non-thermal plasma.
  • the reactor 18 comprises a cylindrical body comprising at least a first peripheral electrode connected to the ground of high voltage electrical supply means and a second central electrode, in the form of a wire, connected to a terminal of setpoint voltage of the high voltage supply means.
  • the power supply means 20 are controllable and connected to the vehicle battery, for example. They comprise a waveform generator suitable for forming electric discharges in the exhaust gas passing through the reactor 18 to thereby produce a non-thermal plasma.
  • the means 20 are adapted to deliver predetermined voltage pulses to the reactor electrodes or a sinusoidal voltage.
  • the catalyst 22 comprises a plurality of successive separate catalytic elements 22a, 22b, 22c arranged in series.
  • Each of these catalytic elements has a catalytic activity (NOx conversion rate) in a variable thermal window depending on the nature of the gases they treat, that is to say depending in particular on the composition of the gases. unburned hydrocarbon exhaust and plasma exhaust gas characteristics, as will be explained in more detail later.
  • the thermal windows of the elements 22a, 22b, 22c of the catalyst 22 are complementary, a first window being in low temperatures, a second in intermediate temperatures and a third in high temperatures.
  • the total thermal window of catalytic activity of the catalyst 22 is important, as will be explained in more detail later.
  • the operation of the motor 10 and of the components which have just been described is controlled by a unit 24 implementing a NOx treatment control strategy which maximizes the catalytic activity of the catalyst 22 for the exhaust gas temperature, while by minimizing the fuel consumption induced by the reactor 18 power supply.
  • a first temperature sensor 26 is arranged upstream of the catalyst 22 to acquire the temperature of the exhaust gas at the inlet thereof and delivers the upstream temperature acquired to the unit 24.
  • a second temperature sensor 28 is also provided downstream of the catalyst 22 to acquire the temperature of the exhaust gas leaving the latter, and delivers the downstream temperature acquired to the unit 24.
  • Means 30 for acquiring the operating point of the motor 10, for example the rotational speed thereof, the motor torque required by the driver and / or the air flow at the input of the motor 10, are also provided and deliver the operating point acquired to the unit 24.
  • These means 30 comprise for example a speed sensor for the acquisition of the rotational speed of the motor 10, a position sensor of the accelerator pedal for the acquisition of the requested torque and a flowmeter arranged at the inlet of the intake means 14 for acquiring the air flow admitted into the engine 10.
  • a second embodiment of the reactor and the catalyst is schematically presented on the figure 2 .
  • identical or similar elements are referenced by the same number.
  • the reactor 18 and the catalyst 22 are structurally similar to those of the figure 1 but are incorporated in the same body 32, that is to say that the reactor 18 is arranged inside the catalyst 22.
  • the non-thermal plasma is directly produced from the gases present in the catalyst.
  • the reaction medium bathing the catalytic elements of the catalyst comprises a concentration of reactive elements, such as free radicals for example, greater because of the time of transport thereof to the catalytic elements with respect to to this one of the embodiment of the figure 1 .
  • the catalytic element 22a upstream of the catalyst has a catalytic activity in a high temperature window, that is to say having a main catalytic activity between about 300 ° C and about 500 ° C without plasma in the treated gases, and between about 200 ° C and about 400 ° C with plasma in the treated gases.
  • the upstream catalytic element is Al 2 O 3 alumina.
  • Table 1 presents the main characteristics of alumina Al 2 O 3 illustrated in FIGS. 3A, 3B, 4A and 4B .
  • the nature of the exhaust gas treated with alumina depends on their unburned hydrocarbon composition at the engine outlet.
  • the unburned hydrocarbons present at the outlet of the engine in the exhaust gas are substantially propene.
  • the unburned hydrocarbons present at the engine outlet are a mixture of propene, propane, toluene and decane in the standard proportions of exhaust gas of a heat engine.
  • the nature of the treated exhaust gas also depends on the presence or absence of non-thermal plasma in the alumina-treated gases.
  • a first main column “Propene” of Table 1 refers to the catalytic properties of Al 2 O 3 alumina in the presence of propene as a major reducer in the exhaust gas at the engine outlet.
  • a second main column “Hydrocarbon mixture” refers to these same properties in the presence of the mixture of unburned hydrocarbons in the exhaust gas leaving the engine.
  • a first main line of Table 1 “Plasma-free” refers to the catalytic properties of alumina Al 2 O 3 in the absence of plasma in the treated exhaust gas and a second main line “With plasma” refers these same properties in the presence of plasma.
  • Each of the first and second main columns of Table 1 is divided between a first column "Window (° C)", which lists thermal windows of catalytic activities of alumina Al 2 O 3 , and a column “AC (%) which lists the minimal catalytic activities of alumina Al 2 O 3 corresponding to these thermal windows.
  • Table 1 Catalytic activity of alumina Al ⁇ sub> 2 ⁇ / sub> O ⁇ sub> 3 ⁇ / sub> depending on the temperature and the nature of the treated gases.
  • the intermediate catalytic element 22b of the catalyst 22, downstream of the upstream catalytic element 22a, has a thermal window of intermediate catalytic activity, lower than that of the first upstream catalytic element, that is to say having a catalytic activity main between about 200 ° C and about 300 ° C with or without plasma in the treated gases.
  • This intermediate catalytic element 22b is for example formed of a transition metal deposit on cerium and zirconium oxides.
  • the intermediate catalytic element 22b is of the Rh / Ce0 2 -Zr0 2 and / or Pd / Ce0 2 -Zr0 2 type .
  • Table 2 organized identically in Table 1, shows the main catalytic characteristics, as illustrated in FIGS. 5A, 5B, 6A and 6B of an element of the type Pd-Rh / Ce0 2 -Zr0 2 as a function of the temperature and the nature of the gases described previously.
  • Table 2 Catalytic activity of Pd-Rh / Ce0 ⁇ sub> 2 ⁇ / sub> -Zr0 ⁇ sub> 2 ⁇ / sub> as a function of the temperature and the nature of the gases treated.
  • the catalytic element 22c downstream of the catalyst 22, downstream of the intermediate catalytic element 22b, has a thermal window of low catalytic activity, lower than that of the intermediate catalytic element 22b, that is to say having a main catalytic activity between about 150 ° C and about 300 ° C with or without plasma in the treated gases.
  • This downstream element 22c is for example formed of a deposit of precious metal on cerium and zirconium oxides.
  • the catalytic element 22c downstream is Ag / Ce0 2 -Zr0 2 type .
  • Table 3 organized identically in Table 1, shows the main catalytic characteristics, as illustrated in FIGS. 7A, 7B, 8A and 8B of an element of the Ag / Ce0 2 -Zr0 2 type as a function of the temperature and the nature of the gases described previously.
  • Table 3 Catalytic activity of Ag / Ce0 ⁇ sub> 2 ⁇ / sub> -Zr0 ⁇ sub> 2 ⁇ / sub> as a function of the temperature and the nature of the gases treated.
  • propene Hydrocarbon mixture Window (° C) AC (%) Window (° C) AC (%) Without plasma 200-250 10 200-250 10 300-400 300-400 250-300 18 250-300 18 With plasma 150-400 20
  • thermal windows of catalytic activity of the various elements 22a, 22b, 22c are complementary and decrease in the direction of the flow of the exhaust gases in the exhaust line 16.
  • each of the elements 22a, 22b, 22c of the catalyst 22 exhibits a total catalytic activity as a function of the temperature and the nature of the treated exhaust gases as illustrated in FIGS. FIGS. 9A, 9B, 10A and 10B .
  • Table 4 organized in a manner identical to Table 1, summarizes the main characteristics of the catalyst 22.
  • Table 4 total catalytic activity of the catalyst, formed successively, in the gas flow direction, of Al ⁇ sub> 2 ⁇ / sub> O ⁇ sub> 3 ⁇ / sub>, of Pd-Rh / Ce0 ⁇ sub > 2 ⁇ / sub> -Zr0 ⁇ sub> 2 ⁇ / sub> and Ag / Ce0 ⁇ sub> 2 ⁇ / sub> -Zr0 ⁇ sub> 2 ⁇ / sub> depending on the temperature and nature of the gases treaties.
  • the catalyst 22 thus has a catalytic activity in a thermal window at least equal to [200-500] ° C., which makes it possible to obtain NOx treatment in a wide operating range of a particular vehicle engine.
  • the three catalytic elements Al 2 O 3 , Ph-Rh / CeO 2 -ZrO 2 and Ag / CeO 2 -ZrO 2 are deposited on a single support, such as cordielite, mullite, carborundum (SiC ), metal, or any type of substrate suitable for use as a catalyst support.
  • the unit 24 comprises means 40 for storing a first and a second threshold temperature T1, T2.
  • the storage means 40 are connected to first and second comparison means 42, 44 of the threshold temperatures T1, T2 at the upstream temperatures Td and downstream Td respectively acquired.
  • T1, T2 threshold temperatures are for example determined experimentally and depend in particular on the composition of catalytic elements, their precious metal charge and the catalyst volume, as well as the adjustment of the engine.
  • T1 is for example equal to 200 ° C and T2 is for example equal to 350 ° C.
  • the activation / deactivation means 46 activate the high voltage power supply of the plasma production reactor if this activation has the effect of a significant catalytic activity increase of the catalyst, for example greater than 10%.
  • the activation / deactivation means 46 does not energize the plasma generating reactor, an activation condition of this reactor being that at least one type of catalyst element present in the catalyst 22 is in a primed state.
  • the NOx are then not treated by the non-primed catalytic elements and thus pass through the catalyst without reduction in nitrogen. Indeed, the activation of the reactor would have substantially no effect on the catalytic activity of the catalyst. This phase corresponds to the cold start of the vehicle.
  • the catalytic elements are ignited and the means 46 activate the reactor for the production of plasma.
  • the three catalytic elements including alumina whose thermal window is located in the high temperatures in the absence of plasma with an evolution thereof to lower temperatures in the presence of plasma discharges in the exhaust gas, participate in the reduction of NOx exhaust gas.
  • the activation of the reactor thus results in a significant gain in the total catalytic activity of the catalyst greater than 10%, thus justifying the overconsumption of fuel induced by the activity of the reactor.
  • the means 46 control the means 20 for supplying the reactor steadily.
  • the supply means 20 are controlled by the activation / deactivation means 46 so that they deliver to the electrodes of the reactor a power of between 250 and 300 W, for example.
  • the means 46 control the supply means 20 according to the amount of NOx present in the exhaust gas and / or the temperature thereof.
  • the means 46 receive the operating point Pf of the engine and determine, for example by means of a predetermined map and stored therein, the amount of NOx emitted by the engine for the operating point. The means 46 then control the feed means 20 of the reactor so that they deliver a modulated power according to the amount of NOx determined, for example increasing in function of an increasing amount of NOx emitted by the engine.
  • the means 46 deactivate the plasma production reactor. Indeed, for temperatures greater than T2, only the high temperature catalytic element, that is to say alumina, has a catalytic activity. However, for these temperatures, the thermal window of catalytic activity of alumina is significantly greater without plasma than with plasma in the presence of the hydrocarbon mixture in the exhaust gases, as is illustrated in FIGS. Figures 4A and 4B . Since the activity gain by activation of the reactor is zero, the reactor is not activated for temperatures greater than T2. This makes it possible to reduce the fuel consumption of the engine for the production of energy necessary for the operation of the reactor supply means.
  • the means 46 are also adapted to control the operation of the motor supply means and / or the air inlet intake means of the engine in order to modify the unburned hydrocarbon composition of the exhaust gases and thus modulate the catalytic activity of the catalyst as a function of the composition of the exhaust gas in propene or in a mixture of hydrocarbons.
  • the means 46 is capable of modifying the fuel injection strategy in the engine cylinders by controlling a late injection of fuel therein, or post-injection.
  • the post-injection of fuel into the engine cylinders has the effect of significantly increasing the amount of unburned hydrocarbons in the exhaust gas, which leads to a temporary increase in the HC / NOx ratio of the amount of unburned hydrocarbons the amount of NOx in the exhaust gas, and therefore to an improvement in the conversion of NOx into nitrogen.
  • This unit implements in a simple manner a control strategy which maximizes, as a function of temperature, the catalytic activity of a catalyst comprising three complementary catalytic elements, in a broad thermal window of approximately [200, 500] ° C. while minimizing fuel over-consumption induced by the use of a plasma generating reactor.
  • system according to the invention may comprise a single sensor placed upstream of the catalyst, and the control unit is adapted to compare this acquired temperature with the aforementioned threshold temperatures for a control of the reactor supply means similar to that described previously.
  • the acquired downstream temperature being substantially that of the last catalytic element of the catalyst, which allows a control closer to the temperature thereof.
  • the catalyst may comprise 2 or more portions of catalytic element types.
  • Another variant consists in replacing the catalytic elements of Ag / CeO 2 -ZrO 2 and Pd-Rh / CeO 2 -ZrO 2 type with a material containing no precious metals, namely two elements of CeO 2 -ZrO 2 , so that the cost of the system is significantly reduced due to the absence of precious metals.
  • the catalyst comprises an alumina Al 2 O3 portion upstream of a portion of CeO 2 -ZrO 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Treating Waste Gases (AREA)
  • Control Of Eletrric Generators (AREA)
  • Hybrid Electric Vehicles (AREA)

Description

  • La présente invention concerne un système de traitement des oxydes d'azote de gaz d'échappement d'un moteur thermique de véhicule automobile, comprenant, dans une ligne d'échappement de celui-ci, des moyens de production de plasma non-thermique à partir des gaz d'échappement qu'ils reçoivent en entrée et des moyens formant catalyseur de réduction d'oxydes d'azote agencés en sortie des moyens de production de plasma.
  • La combustion de mélange air/carburant dans un moteur thermique de véhicule automobile produit des oxydes d'azotes (monoxyde d'azote NO et dioxyde d'azote NO2).
  • Une technologie pour le traitement des NOx présents dans les gaz d'échappement, connue sous le nom de DeNOx permanente, utilise un catalyseur agencé dans la ligne d'échappement du moteur. Un tel catalyseur présente une activité catalytique permanente pendant le fonctionnement du moteur. Un tel catalyseur utilise les hydrocarbures imbrûlés des gaz d'échappement pour réduire les NOx sur des sites catalytiques prévus à cet effet. Toutefois, la fenêtre thermique d'activité catalytique d'un tel catalyseur, c'est-à-dire la plage de températures où le catalyseur est efficace pour réduire les NOx, est relativement faible. Aussi, son utilisation est peu compatible avec le fonctionnement d'un moteur de véhicule pour particulier dont la température des gaz d'échappement peut varier dans de larges mesures.
  • Il est également connu de disposer un générateur de plasma en amont du catalyseur. Un tel générateur produit du plasma à partir des gaz d'échappement afin d'augmenter l'efficacité catalytique du catalyseur. Toutefois, la fenêtre thermique d'activité catalytique de cet agencement reste relativement faible, de sorte que son utilisation est également peu compatible avec le fonctionnement d'un moteur de véhicule pour particulier.
  • Le document WO 00/43469 A décrit un dispositif et un procédé pouf enlever au moins une partie d'au moins un polluant dans un flux de gaz d'échappement contenant un gaz d'échappement formé à partir de la combustion de carburant dans un moteur en mélange pauvre.
  • Le document BE 1006164A décrit un dispositif de catalyseur pour la réduction des oxydes d'azote dans un gaz d'échappement qui se présente dans une large gamme de températures.
  • Le but de la présente invention est de résoudre le problème susmentionné en proposant un système de traitement des NOx émis par un moteur thermique de véhicule automobile présentant une fenêtre thermique d'activité catalytique importante et compatible avec un fonctionnement sensiblement permanent du moteur en mélange pauvre, de sorte qu'un tel système peut être implanté dans des véhicules automobiles pour particulier pour un traitement efficace des NOx.
  • A cet effet, l'invention a pour objet un système de traitement des NOx de gaz d'échappement d'un moteur thermique de véhicule automobile, comprenant, dans une ligne d'échappement de celui-ci, des moyens de production de plasma non-thermique à partir des gaz d'échappement qu'ils reçoivent en entrée et des moyens formant catalyseur DeNOx agencés en sortie des moyens de production de plasma, caractérisé en ce que les moyens formant catalyseur comprennent des éléments catalytiques de types différents présentant des fenêtres thermiques d'activités catalytiques complémentaires et variables en fonction de la nature des gaz qu'ils traitent, ledit système comprenant en outre :
    • des premiers moyens d'acquisition de la température des gaz d'échappement en amont des moyens formant catalyseur ; et
    • des moyens de commande des moyens de production de plasma en fonction de la température acquise pour optimiser la réduction des NOx à cette température,
    lesdits moyens de commande activant lesdits moyens de production de plasma si, pour la température amont acquise, le gain d'activité catalytique totale d'une telle activation est supérieur à un seuil prédéterminé.
  • Selon d'autres caractéristiques :
    • les types d'éléments catalytiques sont sélectionnés pour que la fenêtre thermique totale d'activité catalytique des moyens formant catalyseur comprennent la fenêtre de 200°C à 500°C ;
    • les éléments catalytiques sont choisis dans le groupe consistant en du Al2O3, et du CeO2-ZrO2 imprégné d'un élément métallique de transition ou précieux ;
    • les éléments catalytiques sont successivement, dans le sens de l'écoulement des gaz d'échappement, de l'Al2O3, du Rh-Pd/CeO2-ZrO2 et du Ag/CeO2-ZrO2 ;
    • les éléments catalytiques sont déposés sur un support unique ;
    • le support unique est choisi dans le groupe consistant en de la cordierite, de la mullite, du SiC et du métal ;
    • les éléments catalytiques sont choisis dans le groupe consistant en du Al2O3 et du CeO2-ZrO2 ;
    • les moyens de production de plasma non-thermique sont agencés à l'intérieur des moyens formant catalyseur ;
    • il comprend des seconds moyens d'acquisition de la température en aval des moyens formant catalyseur, et les moyens de commande comprennent des moyens de détermination de l'état d'amorçage des types d'éléments catalytiques en fonction de ces températures acquises, et une condition d'activation des moyens de production de plasma est qu'au moins un type d'éléments catalytiques soit amorcé ;
    • les moyens de commande comprennent des moyens de comparaison des températures amont et aval acquises à des première et seconde températures de seuil prédéterminées respectivement, et :
      • lorsque les températures amont et aval sont inférieures à leurs températures de seuil respectives, les moyens de production de plasma sont inactifs ;
      • lorsque la température amont est supérieure à la première température de seuil et la température aval inférieure à la seconde température de seuil, les moyens de production de plasma sont actifs ; et
      • lorsque les températures amont et aval sont supérieures à leurs températures de seuil respectives, les moyens de production de plasma sont inactifs ;
    • les première et seconde températures de seuil sont respectivement d'environ 200°C et 350°C ; et
    • les moyens de commande sont en outre adaptés pour commander l'alimentation de carburant dans les cylindres du moteur et/ou le débit d'air admis dans le moteur pour modifier la composition en hydrocarbure des gaz d'échappement en sortie de celui-ci.
  • L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en relation avec les dessins annexés, dans lesquels :
    • la figure 1 est une vue schématique d'un système conforme à l'invention associé à une unité de propulsion à moteur thermique d'un véhicule automobile ;
    • la figure 2 est une vue schématique d'un second mode de réalisation de la ligne d'échappement du système de la figure 1 ;
    • les figures 3A et 3B sont des graphiques illustrant l'activité catalytique de l'Al2O3 en fonction de la température, en présence de propène en tant que réducteur de NOx, sans et avec traitement plasmatique des gaz d'échappement respectivement ;
    • les figures 4A et 4B sont des graphiques illustrant l'activité catalytique de l'Al2O3 en fonction de la température, en présence d'un mélange d'hydrocarbures en tant que réducteur de NOx, sans et avec traitement plasmatique des gaz d'échappement respectivement;
    • les figures 5A et 5B sont des graphiques illustrant l'activité catalytique du Rh-Pd/CeO2-ZrO2 en fonction de la température, en présence de propène en tant que réducteur de NOx, sans et avec traitement plasmatique des gaz d'échappement respectivement;
    • les figures 6A et 6B sont des graphiques illustrant l'activité catalytique du Rh-Pd/CeO2-ZrO2 en fonction de la température, en présence du mélange d'hydrocarbures en tant que réducteur de NOx, sans et avec traitement plasmatique des gaz d'échappement respectivement;
    • les figures 7A et 7B sont des graphiques illustrant l'activité catalytique du Ag/CeO2-ZrO2 en fonction de la température, en présence de propène en tant que réducteur de NOx, sans et avec traitement plasmatique des gaz d'échappement respectivement;
    • les figures 8A et 8B sont des graphiques illustrant l'activité catalytique du Ag/CeO2-ZrO2 en fonction de la température, en présence du mélange d'hydrocarbures en tant que réducteur de NOx, sans et avec traitement plasmatique des gaz d'échappement respectivement;
    • les figures 9A et 9B sont des graphiques illustrant l'activité catalytique totale d'un catalyseur entrant dans la constitution de la figure 1 ou la figure 2 en fonction de la température, en présence de propène en tant que réducteur de NOx, sans et avec traitement plasmatique des gaz d'échappement respectivement;
    • les figures 10A et 10B sont des graphiques illustrant l'activité catalytique totale d'un catalyseur entrant dans la constitution de la figure 1 ou de la figure 2 en fonction de la température, en présence du mélange d'hydrocarbures en tant que réducteur de NOx, sans et avec traitement plasmatique des gaz d'échappement respectivement; et
    • la figure 11 est une vue schématique d'une unité de contrôle entrant dans la constitution du système de la figure 1.
  • Sur la figure 1, un moteur thermique 10 de véhicule automobile est associé à des moyens 12 d'alimentation en carburant de ses cylindres et des moyens 14 d'admission d'air en entrée de celui-ci.
  • Le moteur 10 est également associé à une ligne d'échappement 16 de ses gaz d'échappement comprenant un réacteur 18 de production de plasma non-thermique.
  • Le réacteur 18 est par exemple constitué d'un corps cylindrique comprenant au moins une première électrode périphérique connectée à la masse de moyens 20 d'alimentation électrique haute tension et d'une seconde électrode centrale, en forme de fil, connectée à une borne de tension de consigne des moyens 20 d'alimentation haute tension.
  • Les moyens 20 d'alimentation sont commandables et connectés à la batterie du véhicule par exemple. Ils comprennent un générateur de formes d'onde appropriées pour la formation de décharges électriques dans les gaz d'échappement traversant le réacteur 18 pour ainsi produire un plasma non-thermique.
  • Par exemple, les moyens 20 sont adaptés pour délivrer des impulsions de tension prédéterminées aux électrodes du réacteur ou une tension sinusoïdale.
  • Un catalyseur 22 de réduction des NOx, agencé en aval du réacteur 18 dans la ligne d'échappement 16, reçoit les gaz d'échappement en sortie du réacteur 18, c'est-à-dire directement les gaz d'échappement du moteur ou le plasma non-thermique produit par le réacteur 18 selon que celui-ci est actif ou non.
  • Le catalyseur 22 comprend une pluralité d'éléments catalytiques 22a, 22b, 22c distincts successifs agencés en série.
  • Chacun de ces éléments catalytiques présente une activité catalytique (taux de conversion des NOx) dans une fenêtre thermique variable en fonction de la nature des gaz qu'ils traitent, c'est-à-dire en fonction notamment de la composition des gaz d'échappement en hydrocarbures imbrûlés et des caractéristiques plasmatiques des gaz d'échappement, comme cela sera expliqué plus en détail par la suite.
  • De manière avantageuse, les fenêtres thermiques des éléments 22a, 22b, 22c du catalyseur 22 sont complémentaires, une première fenêtre étant comprise dans des températures basses, une seconde dans des températures intermédiaires et une troisième dans les hautes températures. Ainsi, la fenêtre thermique totale d'activité catalytique du catalyseur 22 est importante, comme cela sera également expliqué plus en détail par la suite.
  • Le fonctionnement du moteur 10 et des organes qui viennent d'être décrits est commandé par une unité 24 mettant en oeuvre une stratégie de contrôle du traitement des NOx qui maximise l'activité catalytique du catalyseur 22 pour la température des gaz d'échappement, tout en minimisant la consommation de carburant induite par l'alimentation en énergie du réacteur 18.
  • Un premier capteur de température 26 est agencé en amont du catalyseur 22 pour acquérir la température des gaz d'échappement en entrée de celui-ci et délivre la température amont acquise à l'unité 24.
  • Dans le mode de réalisation préféré de l'invention, un second capteur de température 28 est également prévu en aval du catalyseur 22 pour acquérir la température des gaz d'échappement en sortie de celui-ci, et délivre la température aval acquise à l'unité 24.
  • Des moyens 30 d'acquisition du point de fonctionnement du moteur 10, par exemple le régime de rotation de celui-ci, le couple moteur demandé par le conducteur et/ou le débit d'air en entrée du moteur 10, sont également prévus et délivrent le point de fonctionnement acquis à l'unité 24.
  • Ces moyens 30 comprennent par exemple un capteur de régime pour l'acquisition du régime de rotation du moteur 10, un capteur de la position de la pédale d'accélérateur pour l'acquisition du couple demandé et un débitmètre agencée en entrée des moyens 14 d'admission pour l'acquisition du débit d'air admis dans le moteur 10.
  • Un second mode de réalisation du réacteur et du catalyseur est présenté de manière schématique sur la figure 2. Sur les figures 1 et 2, les éléments identiques ou analogues sont référencés par le même numéro.
  • Dans ce mode de réalisation, le réacteur 18 et le catalyseur 22 sont structurellement analogues à ceux de la figure 1, mais sont incorporés dans un même corps 32, c'est-à-dire que le réacteur 18 est agencé à l'intérieur du catalyseur 22.
  • Ainsi, le plasma non-thermique est directement produit à partir des gaz présents dans le catalyseur. Ceci présente l'avantage que le milieu réactionnel baignant les éléments catalytiques du catalyseur comporte une concentration d'éléments réactifs, tels que des radicaux libres par exemple, plus importante du fait du temps de transport de ceux-ci vers les éléments catalytiques minimal par rapport à celui-ci du mode de réalisation de la figure 1.
  • Il va maintenant être expliqué plus en détail la constitution du catalyseur 22 de la figure 1 ou de la figure 2 en relation avec les figures 3 à 10 qui illustrent l'activité catalytique de différents types d'éléments catalytiques en fonction de la température et de la nature des gaz traités par ceux-ci.
  • L'élément catalytique 22a amont du catalyseur présente une activité catalytique dans une fenêtre de températures hautes, c'est-à-dire présentant une activité catalytique principale entre environ 300°C et environ 500°C sans plasma dans les gaz traités, et entre environ 200°C et environ 400°C avec plasma dans les gaz traités.
  • Par exemple, l'élément catalytique amont est de l'alumine Al2O3.
  • Le tableau 1 présente les principales caractéristiques de l'alumine Al2O3 illustrées sur les figures 3A, 3B, 4A et 4B.
  • La nature des gaz d'échappement traités par l'alumine dépend de leur composition en hydrocarbures imbrûlés en sortie de moteur.
  • Dans une première variante, les hydrocarbures imbrûlés présents en sortie du moteur dans les gaz d'échappement sont sensiblement du propène.
  • Dans une seconde variante, les hydrocarbures imbrûlés présents en sortie du moteur sont un mélange de propène, de propane, de toluène et de décane dans les proportions classiques de gaz d'échappement d'un moteur thermique.
  • La nature des gaz d'échappement traités dépend également de la présence ou l'absence de plasma non-thermique dans les gaz traités par l'alumine.
  • Une première colonne principale « Propène » du tableau 1 référence les propriétés catalytiques de l'alumine Al2O3 en présence de propène en tant que réducteur majoritaire dans les gaz d'échappement en sortie du moteur. Une seconde colonne principale « Mélange d'hydrocarbures » référence ces mêmes propriétés en présence du mélange d'hydrocarbures imbrûlés dans les gaz d'échappement en sortie du moteur.
  • Une première ligne principale du tableau 1 « Sans plasma » référence les propriétés catalytiques de l'alumine Al2O3 en absence de plasma dans les gaz d'échappement traités et une seconde ligne principale « Avec plasma » référence ces mêmes propriétés en présence de plasma.
  • Chacune des première et seconde colonnes principales du tableau 1 est partagée entre une première colonne « Fenêtre (°C) », qui répertorie des fenêtres thermiques d'activités catalytiques de l'alumine Al2O3, et une colonne « AC (%) », qui répertorie les activités catalytiques minimales de l'alumine Al2O3 correspondants à ces fenêtres thermiques. Tableau 1 : activité catalytique de l'alumine Al2O3 en fonction de la température et de la nature des gaz traités.
    Propène Mélange d'hydrocarbures
    Fenêtre (°C) AC (%) Fenêtre (°C) AC (%)
    Sans plasma 400-500 10 300-340 10
    480-500
    340-355 30
    440-480
    355-440 40
    Avec plasma 200-250 20 200-250 20
    345-375 350-500
    250-295 30 250-275 30
    305-345 325-350
    295-305 40 275-325 40
  • L'élément catalytique 22b intermédiaire du catalyseur 22, en aval de l'élément catalytique 22a amont, présente une fenêtre thermique d'activité catalytique intermédiaire, inférieure à celle du premier élément catalytique amont, c'est-à-dire présentant une activité catalytique principale entre environ 200°C et environ 300°C avec ou sans plasma dans les gaz traités.
  • Cet élément catalytique 22b intermédiaire est par exemple formé d'un dépôt de métal de transition sur des oxydes de cérium et de zirconium.
  • De manière préférentielle, l'élément catalytique 22b intermédiaire est du type Rh/Ce02-Zr02 et/ou Pd/Ce02-Zr02.
  • Le tableau 2, organisé de manière identique au tableau 1, présente les principales caractéristiques catalytiques, telles qu'illustrées sur les figures 5A, 5B, 6A et 6B, d'un élément du type Pd-Rh/Ce02-Zr02 en fonction de la température et de la nature des gaz décrite précédemment. Tableau 2 : activité catalytique du Pd-Rh/Ce02-Zr02 en fonction de la température et de la nature des gaz traités.
    Propène Mélange d'hydrocarbures
    Fenêtre (°C) AC (%) Fenêtre (°C) AC (%)
    Sans plasma 210-300 10 225-250 10
    300-350
    250 15 250-270 20
    280-300
    270-280 23
    Avec plasma 200-245 20 150-230 10
    255-280 355-450
    245-255 30 230-270 20
    280-355
    270-280 23
  • L'élément catalytique 22c aval du catalyseur 22, en aval de l'élément catalytique 22b intermédiaire, présente une fenêtre thermique d'activité catalytique basse, inférieure à celle de l'élément catalytique 22b intermédiaire, c'est-à-dire présentant une activité catalytique principale entre environ 150°C et environ 300°C avec ou sans plasma dans les gaz traités.
  • Cet élément 22c aval est par exemple formé d'un dépôt de métal précieux sur des oxydes de cérium et de zirconium.
  • De manière préférentielle, l'élément catalytique 22c aval est du type Ag/Ce02-Zr02.
  • Le tableau 3, organisé de manière identique au tableau 1, présente les principales caractéristiques catalytiques, telles qu'illustrées sur les figures 7A, 7B, 8A et 8B, d'un élément du type Ag/Ce02-Zr02 en fonction de la température et de la nature des gaz décrite précédemment. Tableau 3 : activité catalytique du Ag/Ce02-Zr02 en fonction de la température et de la nature des gaz traités.
    Propène Mélange d'hydrocarbures
    Fenêtre (°C) AC (%) Fenêtre (°C) AC (%)
    Sans plasma 200-250 10 200-250 10
    300-400 300-400
    250-300 18 250-300 18
    Avec plasma 150-400 20 150-400 20
  • Ainsi, les fenêtres thermiques d'activité catalytique des différents éléments 22a, 22b, 22c sont complémentaires et décroissent dans le sens de l'écoulement des gaz d'échappement dans la ligne d'échappement 16.
  • Ainsi, en combinant l'activité catalytique de chacun des éléments 22a, 22b, 22c du catalyseur 22, ce dernier présente une activité catalytique totale en fonction de la température et de la nature des gaz d'échappement traités telles qu'illustrées sur les figures 9A, 9B, 10A et 10B.
  • Le tableau 4, organisé d'une manière identique au tableau 1, récapitule les principales caractéristiques du catalyseur 22. Tableau 4 : activité catalytique totale du catalyseur, formé successivement, dans le sens d'écoulement des gaz, d'Al2O3, de Pd-Rh/Ce02-Zr02 et de Ag/Ce02-Zr02 en fonction de la température et de la nature des gaz traités.
    Propène Mélange d'hydrocarbures
    Fenêtre (°C) AC (%) Fenêtre (°C) AC (%)
    Sans plasma 200-240 10 220-225 20
    290-500 310-450
    240-255 20 225-260 30
    265-290 270-310
    255-265 25 260-270 40
    Avec plasma 150-180 10 200-220 20
    340-400 300-450
    180-255 20 220-250 40
    265-340 290-300
    255-265 55 250-255 50
    265-290
    255-265 55
  • Le catalyseur 22 présente ainsi une activité catalytique dans une fenêtre thermique au moins égale à [200 - 500]°C, ce qui permet d'obtenir un traitement des NOx dans une large gamme de fonctionnement d'un moteur thermique de véhicule pour particulier.
  • De manière avantageuse, les trois éléments catalytiques Al2O3, Ph-Rh/Ce02-Zr02 et Ag/Ce02-Zr02 sont déposés sur un support unique, comme de la cordielite, de la mullite, du carborundum (SiC), du métal, ou tout type de substrat propre à servir comme support de catalyseur.
  • Il va maintenant être décrit avec la figure 11, l'agencement et le fonctionnement de l'unité 24 de contrôle du traitement des NOx des gaz d'échappement émis par le moteur 10.
  • L'unité 24 comprend des moyens 40 de mémorisation d'une première et d'une seconde températures de seuil T1, T2.
  • Les moyens 40 de mémorisation sont raccordés à des premiers et seconds moyens de comparaison 42, 44 des températures de seuil T1, T2 aux températures amont Tu et aval Td acquises respectivement.
  • Les températures T1, T2 de seuil sont par exemple déterminées expérimentalement et dépendent notamment de la composition en éléments catalytiques, de leur charge en métaux précieux et du volume du catalyseur, ainsi que du réglage du moteur.
  • Dans le cas d'un catalyseur formé successivement, dans le sens d'écoulement des gaz, d'Al2O3, de Pd-Rh/Ce02-Zr02 et de Ag/Ce02-Zr02, T1 est par exemple égale à 200°C et T2 est par exemple égale à 350°C.
  • Le résultat des comparaisons des moyens 42, 44 est délivré à des moyens 46 d'activation/désactivation du réacteur de production de plasma.
  • Les moyens 46 d'activation/désactivation activent l'alimentation électrique haute tension du réacteur de production de plasma si cette activation a pour effet un gain d'activité catalytique du catalyseur important, par exemple supérieur à 10%.
  • Si les températures amont et aval Tu, Td acquises sont inférieures à leurs températures de seuil T1, T2 respectives, aucune des portions du catalyseur n'est amorcée. Les moyens 46 d'activation/désactivation n'activent pas le réacteur de production de plasma, une condition d'activation de ce réacteur étant qu'au moins un type d'éléments catalytiques présent dans le catalyseur 22 soit dans un état amorcé.
  • Les NOx ne sont alors pas traités par les éléments catalytiques non amorcés et traversent donc le catalyseur sans réduction en azote. En effet, l'activation du réacteur n'aurait sensiblement aucun effet sur l'activité catalytique du catalyseur. Cette phase correspond au démarrage à froid du véhicule.
  • Si la température amont Tu acquise est supérieure à la température T1 et que la température aval Td acquise est inférieure à la température T2, les éléments catalytiques sont amorcés et les moyens 46 activent le réacteur pour la production de plasma.
  • En effet, dans la fenêtre thermique [200, 350]°C, les trois éléments catalytiques, y compris l'alumine dont la fenêtre thermique est située dans les hautes températures en absence de plasma avec une évolution de celle-ci vers les plus basses températures en présence de décharges plasma dans les gaz d'échappement, participent à la réduction des NOx des gaz d'échappement. L'activation du réacteur a ainsi pour effet un gain important de l'activité catalytique totale du catalyseur supérieur à 10%, justifiant ainsi de la surconsommation de carburant induite par l'activité du réacteur.
  • Dans un mode de réalisation de l'invention, les moyens 46 commandent les moyens 20 d'alimentation du réacteur de manière constante. Par exemple, les moyens 20 d'alimentation sont commandés par les moyens 46 d'activation/désactivation pour qu'ils délivrent aux électrodes du réacteur une puissance comprise entre 250 et 300W, par exemple.
  • Dans le mode de réalisation de la figure 11, les moyens 46 commandent les moyens 20 d'alimentation en fonction de la quantité de NOx présente dans les gaz d'échappement et/ou de la température de ceux-ci.
  • Les moyens 46 reçoivent le point de fonctionnement Pf du moteur et déterminent, par exemple à l'aide d'une cartographie prédéterminée et mémorisée dans ceux-ci, la quantité de NOx émise par le moteur pour le point de fonctionnement. Les moyens 46 commandent alors les moyens 20 d'alimentation du réacteur pour qu'ils leur délivrent une puissance modulée en fonction de la quantité de NOx déterminée, par exemple croissante en fonction d'une quantité croissante de NOx émise par le moteur.
  • Si les températures amont et aval Tu, Td acquises sont supérieures à leurs températures seuil T1, T2 respectives, alors les moyens 46 désactivent le réacteur de production de plasma. En effet, pour des températures supérieures à T2, seul l'élément catalytique haute température, c'est-à-dire l'alumine, présente une activité catalytique. Or pour ces températures, la fenêtre thermique d'activité catalytique de l'alumine est significativement plus grande sans plasma qu'avec plasma en présence du mélange d'hydrocarbures dans les gaz d'échappement comme cela est illustré sur les figures 4A et 4B. Le gain d'activité par activation du réacteur étant nulle, le réacteur n'est donc pas activé pour des températures supérieures à T2. Ceci permet de réduire la consommation de carburant du moteur pour la production d'énergie nécessaire au fonctionnement des moyens 20 d'alimentation du réacteur.
  • Les moyens 46 sont également adaptés pour commander le fonctionnement des moyens d'alimentation du moteur et/ou des moyens d'admission d'air en entrée du moteur afin de modifier la composition en hydrocarbures imbrûlés des gaz d'échappement et ainsi moduler l'activité catalytique du catalyseur en fonction de la composition des gaz d'échappement en propène ou en mélange d'hydrocarbures.
  • Par exemple, les moyens 46 sont propres à modifier la stratégie d'injection de carburant dans les cylindres du moteur, en commandant une injection tardive de carburant dans ceux-ci, ou post-injection. La post-injection de carburant dans les cylindres du moteur a pour effet d'augmenter significativement la quantité d'hydrocarbures imbrûlés dans les gaz d'échappement, ce qui conduit à une augmentation temporaire du rapport HC/NOx de la quantité d'hydrocarbures imbrûlés sur la quantité de NOx des gaz d'échappement, et donc à une amélioration de la conversion des NOx en azote.
  • Il vient d'être décrit un mode de réalisation de l'unité de contrôle du traitement des NOx des gaz d'échappement d'un moteur thermique.
  • Cette unité met en oeuvre de manière simple une stratégie de contrôle qui maximise, en fonction de la température, l'activité catalytique d'un catalyseur comprenant trois éléments catalytiques complémentaires, dans une large fenêtre thermique d'environ [200, 500]°C, tout en minimisant la surconsommation de carburant induite par l'utilisation d'un réacteur de production de plasma.
  • En variante, le système conforme à l'invention peut comprendre un unique capteur placé en amont du catalyseur, et l'unité de contrôle est adaptée pour comparer cette température acquise aux températures seuil susmentionnées pour une commande des moyens d'alimentation du réacteur analogue à celle décrite précédemment.
  • Prévoir deux capteurs en amont et en aval permet cependant une commande plus précise, la température aval acquise étant sensiblement celle du dernier élément catalytique du catalyseur, ce qui permet ainsi une commande au plus près de la température de celui-ci.
  • En variante, le catalyseur peut comprendre 2 ou plus de portions de types d'éléments catalytiques.
  • Une autre variante consiste à remplacer les éléments catalytiques de type Ag/CeO2-ZrO2 et Pd-Rh/CeO2-ZrO2 par un matériau ne contenant pas de métaux précieux, à savoir deux éléments de CeO2-ZrO2, de sorte que le coût du système est significativement réduit du fait de l'absence de métaux précieux.
  • Par exemple, le catalyseur comprend une portion d'alumine Al2O3 en amont d'une portion de CeO2-ZrO2.

Claims (12)

  1. Système de traitement des oxydes d'azote, ou NOx, de gaz d'échappement d'un moteur thermique (10) de véhicule automobile, comprenant, dans une ligne d'échappement (16) de celui-ci, des moyens (18) de production de plasma non-thermique à partir des gaz d'échappement qu'ils reçoivent en entrée et des moyens (22) formant catalyseur de réduction des NOx agencés en sortie des moyens de production de plasma, caractérisé en ce que les moyens formant catalyseur comprennent des éléments catalytiques de types différents présentant des fenêtres thermiques d'activité catalytique différentes, les éléments catalytiques étant disposés suivant le sens d'écoulement des gaz par ordre décroissant des températures des fenêtres thermiques d'activité catalytique, ledit système comprenant en outre :
    - des premiers moyens (26) d'acquisition de la température des gaz d'échappement en amont des moyens formant catalyseur : et
    - des moyens (24) de commande des moyens (18) de production de plasma en fonction de la température acquise pour optimiser la réduction des NOx à cette température,
    lesdits moyens (24) de commande activant les moyens (18) de production de plasma si, pour la température amont acquise, le gain d'activité catalytique totale d'une telle activation est supérieur à un seuil prédéterminé.
  2. Système selon la revendication 1, caractérisé en ce que les types d'éléments catalytiques sont sélectionnés pour que la fenêtre thermique totale d'activité catalytique des moyens formant catalyseur comprennent la fenêtre de 200°C à 500°C.
  3. Système selon la revendication 1 ou 2, caractérisé en ce que les éléments catalytiques sont choisis dans le groupe consistant en du Al2O3, et du CeO2-ZrO2 imprégné d'un élément métallique de transition ou précieux.
  4. Système selon la revendication 3, caractérisé en ce que les éléments catalytiques sont successivement, dans le sens de l'écoulement des gaz d'échappement, de l'Al2O3, du Rh-Pd/CeO2-ZrO2 et du Ag/CeO2-ZrO2.
  5. Système selon la revendication 3 ou 4, caractérisé en ce que les éléments catalytiques sont déposés sur un support unique.
  6. Système selon la revendication 5, caractérisé en ce que le support unique est choisi dans le groupe consistant en de la cordierite, de la mullite, du SiC et du métal.
  7. Système selon la revendication 1 ou 2, caractérisé en ce que les éléments catalytiques sont choisis dans le groupe consistant en du Al2O3 et du CeO2-ZrO2.
  8. Système selon l'une quelconque des revendications 1 à 7, caractérisé en ce que les moyens (18) de production de plasma non-thermique sont agencés à l'intérieur des moyens (22) formant catalyseur.
  9. Système selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend des seconds moyens (28) d'acquisition de la température en aval des moyens (22) formant catalyseur, et en ce que les moyens (24) de commande comprennent des moyens (46) de détermination de l'état d'amorçage des types d'éléments catalytiques en fonction de ces températures acquises, et en ce qu'une condition d'activation des moyens (18) de production de plasma est qu'au moins un type d'éléments catalytiques soit amorcé.
  10. Système selon la revendication 9, et l'une quelconque des revendications 4 à 6 prises ensemble, caractérisé en ce que les moyens de commande comprennent des moyens (42, 44) de comparaison des températures amont et aval acquises à des première et seconde températures de seuil prédéterminées respectivement, et en ce que :
    - lorsque les températures amont et aval sont inférieures à leurs températures de seuil respectives, les moyens de production de plasma sont inactifs ;
    - lorsque la température amont est supérieure à la première température de seuil et la température aval inférieure à la seconde température de seuil, les moyens de production de plasma sont actifs ; et
    - lorsque les températures amont et aval sont supérieures à leurs températures de seuil respectives, les moyens de production de plasma sont inactifs.
  11. Système selon la revendication 10, caractérisé en ce que les première et seconde températures de seuil sont respectivement d'environ 200°C et 350°C.
  12. Système selon l'une quelconque des revendications précédentes, caractérisé en ce que les moyens (24) de commande sont en outre adaptés pour commander l'alimentation de carburant dans les cylindres du moteur (10) et/ou le débit d'air admis dans le moteur (10) pour modifier la composition en hydrocarbure des gaz d'échappement en sortie de celui-ci.
EP05292350A 2004-11-08 2005-11-07 Système de traitement des NOx de gaz d'échappement d'un moteur thermique de véhicule automobile Not-in-force EP1662105B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0411882A FR2877693B1 (fr) 2004-11-08 2004-11-08 SYSTEME DE TRAITEMENT DES NOx DE GAZ D'ECHAPPEMENT D'UN MOTEUR THERMIQUE DE VEHICULE AUTOMOBILE

Publications (2)

Publication Number Publication Date
EP1662105A1 EP1662105A1 (fr) 2006-05-31
EP1662105B1 true EP1662105B1 (fr) 2008-04-30

Family

ID=34950949

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05292350A Not-in-force EP1662105B1 (fr) 2004-11-08 2005-11-07 Système de traitement des NOx de gaz d'échappement d'un moteur thermique de véhicule automobile

Country Status (4)

Country Link
EP (1) EP1662105B1 (fr)
AT (1) ATE393872T1 (fr)
DE (1) DE602005006363T2 (fr)
FR (1) FR2877693B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8438842B2 (en) 2008-04-08 2013-05-14 Mitsubishi Electric Corporation Exhaust gas purification device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2912385B1 (fr) 2007-02-13 2011-05-06 Gaz Transport & Technigaz Structure cylindrique composee d'elements rectangulaires.

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4032085A1 (de) * 1990-10-10 1992-04-16 Didier Werke Ag Katalysatoranordnung zur reduktion von stickoxiden
JP3922408B2 (ja) * 1997-09-16 2007-05-30 株式会社デンソー 内燃機関の排気浄化装置
EP1095702B1 (fr) * 1998-06-30 2005-02-23 Toyota Jidosha Kabushiki Kaisha Catalyseur pour la purification des gaz d'echappement, procede de production dudit catalyseur et procede de purification de gaz d'echappement
WO2000043469A2 (fr) * 1999-01-21 2000-07-27 Litex, Inc. Systemes catalyseurs combines a reacteur a plasma destines a la reduction efficace des emissions dans de multiples conditions de fonctionnement
JP3642032B2 (ja) * 2001-03-02 2005-04-27 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2004305841A (ja) * 2003-04-03 2004-11-04 Honda Motor Co Ltd NOx浄化システム
JP4222064B2 (ja) * 2003-03-06 2009-02-12 マツダ株式会社 排気ガス浄化用触媒

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8438842B2 (en) 2008-04-08 2013-05-14 Mitsubishi Electric Corporation Exhaust gas purification device

Also Published As

Publication number Publication date
ATE393872T1 (de) 2008-05-15
DE602005006363D1 (de) 2008-06-12
EP1662105A1 (fr) 2006-05-31
DE602005006363T2 (de) 2009-06-10
FR2877693A1 (fr) 2006-05-12
FR2877693B1 (fr) 2007-04-13

Similar Documents

Publication Publication Date Title
EP1815112B1 (fr) Systeme d'echappement a catalyseur generant un exotherme
FR2540177A1 (fr) Regeneration des filtres catalytiques a particules et appareil pour sa mise en oeuvre
CN1540143A (zh) 内燃机的排气净化装置
FR2792036A1 (fr) Systeme d'aide a la regeneration d'un filtre a particules integre dans une ligne d'echappement d'un moteur diesel notamment de vehicule automobile
EP1581727B1 (fr) Systeme d aide a la regeneration d un filtre a particul es d une ligne d echappement d un moteur diesel
FR2892766A1 (fr) Dispositif de traitement d'oxydes d'azote pour gaz d'echappement de vehicule automobile
WO2020079134A1 (fr) Système de purification de gaz d'échappement pour moteur à essence
FR2831208A1 (fr) Dispositif de maitrise pour les emissions d'echappement pour un moteur a combustion interne
EP1662105B1 (fr) Système de traitement des NOx de gaz d'échappement d'un moteur thermique de véhicule automobile
EP1680584B1 (fr) Systeme d'aide a la regeneration de moyens de depollution integres dans une ligne d'echappement d' un vehicule
WO2006048572A1 (fr) Dispositif de controle de l'etat de fonctionnement d'un convertisseur catalytique d'une ligne d'echappement d'un moteur a combustion interne et moteur comprenant un tel dispositif
WO2010139875A1 (fr) Moteur a combustion interne
FR2831077A1 (fr) Installation et procede pour l'epuration des gaz d'echappement avec un catalyseur d'emmagasinage des oxydes d'azote et un catalyseur a rcs
FR2873158A1 (fr) Ligne d'echappement d'un moteur a combustion interne, et systeme d'epuration des gaz d'echappement la comprenant
EP2439385B1 (fr) Procédé de post-traitement de gaz d'échappement d'un moteur à combustion interne
FR2981862A3 (fr) Controle du ratio no2/nox pour la scr par procede plasma
WO2008142324A1 (fr) Systeme de traitement des oxydes d'azote pour moteur a combustion interne
EP1625296B1 (fr) Procede et systeme de gestion de la regenation d'un filtre a particules et moteur a combustion interne equipe d'un tel filtre a particules
FR2801635A1 (fr) Procede de gestion du fonctionnement d'un filtre a particules pour moteur a combustion
FR2802572A1 (fr) Dispositif de regeneration d'un filtre a particules d'une ligne d'echappement d'un moteur diesel
FR2943095A1 (fr) Procede de regeneration d'un filtre a particules
EP1375885B1 (fr) Procédé de traitement des gaz d'échappement d'un moteur à combustion à essence
FR2926518A1 (fr) Procede de commande d'un moteur hybride et moteur correspondant
EP1827893A1 (fr) Procede de controle de la regeneration d'un filtre a particules electrostatique
FR2846038A1 (fr) Procede de determination de la temperature interne d'un filtre a particules, procede de commande de la generation du filtre a particules, systeme de commande et filtre a particules correspondant.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20061104

17Q First examination report despatched

Effective date: 20061207

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CALVO, SABINE

Inventor name: KHACEF, AHMED

Inventor name: DJEGA-MARIADASSOU, GERALD

Inventor name: THOMAS, CYRIL

Inventor name: LENDRESSE, YVANE

Inventor name: DA COSTA, PATRICK

Inventor name: BAUDIN, FRANCOIS

Inventor name: SCHNEIDER, STEPHANIE

Inventor name: CORMIER, JEAN-MARIE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNIVERSITE PIERRE ET MARIE CURIE (PARIS VI)

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602005006363

Country of ref document: DE

Date of ref document: 20080612

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080430

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080430

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080430

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080930

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080810

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080430

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080430

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080430

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080430

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080731

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080430

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080430

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080430

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080430

BERE Be: lapsed

Owner name: UNIVERSITE PIERRE ET MARIE CURIE (PARIS VI)

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080430

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081101

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120910

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121113

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20121123

Year of fee payment: 8

Ref country code: GB

Payment date: 20121127

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131107

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005006363

Country of ref document: DE

Effective date: 20140603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140603

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131202

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131107