EP1658248A1 - Method for the production of porous carbon-based molded bodies, and use thereof as cell culture carrier systems and culture systems - Google Patents

Method for the production of porous carbon-based molded bodies, and use thereof as cell culture carrier systems and culture systems

Info

Publication number
EP1658248A1
EP1658248A1 EP04700670A EP04700670A EP1658248A1 EP 1658248 A1 EP1658248 A1 EP 1658248A1 EP 04700670 A EP04700670 A EP 04700670A EP 04700670 A EP04700670 A EP 04700670A EP 1658248 A1 EP1658248 A1 EP 1658248A1
Authority
EP
European Patent Office
Prior art keywords
carbon
fillers
carbonization
materials
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04700670A
Other languages
German (de)
French (fr)
Inventor
Jörg RATHENOW
Sohéil ASGARI
Jürgen Kunstmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cinvention AG
Original Assignee
Blue Membranes GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Blue Membranes GmbH filed Critical Blue Membranes GmbH
Priority to EP08169278A priority Critical patent/EP2025657A2/en
Publication of EP1658248A1 publication Critical patent/EP1658248A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/524Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/08Carbon ; Graphite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0072Inorganic membrane manufacture by deposition from the gaseous phase, e.g. sputtering, CVD, PVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/04Tubular membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/06Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on oxide mixtures derived from dolomite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/82Asbestos; Glass; Fused silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/04Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by dissolving-out added substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1203Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/14Scaffolds; Matrices
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00836Uses not provided for elsewhere in C04B2111/00 for medical or dental applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/56Compositions suited for fabrication of pipes, e.g. by centrifugal casting, or for coating concrete pipes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/10Mineral substrates

Definitions

  • the present invention relates to processes for the production of carbon-based molded articles.
  • the present invention relates to methods for producing porous, carbon-based shaped articles by carbonizing organic polymer materials which are mixed with non-polymeric fillers, and then removing the fillers from the carbonized shaped article.
  • the present invention relates to a method for producing porous, carbon-based shaped bodies by carbonizing organic polymer materials with polymer fillers, which are essentially completely degraded during carbonization.
  • the present invention relates to a method for producing porous, carbon-based shaped bodies by carbonizing organic polymer materials, the carbon-based shaped body being partially oxidized after the carbonization to produce pores.
  • the present invention relates to porous molded articles produced by one of the processes mentioned and to their use, in particular as cell culture carrier and / or cultivation systems.
  • Carbon-based materials are used in mechanical engineering, vehicle construction, as well as in medical technology and process engineering.
  • DE 35 28 185 describes a method for producing high-strength, high-density carbon materials from special powdered carbon-containing raw materials without the use of a binder.
  • DE 198 23 507 describes processes for the production of carbon-based molded articles by carbonizing biogenic precursors from natural vegetable fibers or wood products.
  • DE 100 11 013 and EP 0 543 752 describe processes for producing carbon-containing materials by carbonization or pyrolysis of foamed starting polymers such as
  • No. 3,342,555 also describes a process for producing light porous carbon by carbonizing foamed polymers based on phenol aldehyde resins of the resol or novolac type.
  • Another object of the present invention is to provide manufacturing processes for porous carbon-based molded articles, which enable the customized manufacture of corresponding molded articles in a variety of shapes and dimensions.
  • the present invention provides methods in which porous carbon-based shaped articles are produced from organic polymer materials by carbonizing semi-finished parts, the porosity of the shaped article being produced during or after pyrolysis.
  • a method for producing porous carbon-based shaped bodies comprises the following steps: Mixing organic carbon materials carbonizable with carbon with non-polymeric fillers; Producing a semi-finished molded part from the mixture; Carbonizing the semi-finished molded part in a non-oxidizing atmosphere at elevated temperature, a carbon-based molded body being obtained; Removing the fillers from the carbonized molded body with suitable solvents.
  • the organic polymer materials which can be carbonized to carbon are mixed or blended with non-polymeric fillers in a first step.
  • this can be done by suitable mixing processes known to the person skilled in the art, such as, for example, dry mixing of polymer pellets with filler powders or granules, mixing fillers into the polymer melt or mixing the fillers with polymer solutions or suspensions.
  • Suitable non-polymeric fillers are all substances which are essentially stable under carbonization conditions and which can be removed from the carbon-based shaped body with suitable solvents after carbonization. Also suitable are non-polymeric fillers which are converted to solvent-soluble substances under carbonization conditions.
  • Preferred fillers are selected from inorganic metal salts, in particular the salts of alkali and / or alkaline earth metals, preferably alkali or alkaline earth metal carbonates, sulfates, sulfites, nitrates, nitrites, phosphates, Phosphites, halides, sulfides, oxides, and mixtures of these.
  • suitable fillers are selected from organic metal salts, preferably those of the alkali, alkaline earth and / or transition metals, in particular their formates, acetates, propionates, aleates, malates, oxalates, tartrates, citrates, benzoates, salicylates, phthalates, stearates, phenolates, Sulfonates, amine salts and mixtures thereof.
  • organic metal salts preferably those of the alkali, alkaline earth and / or transition metals, in particular their formates, acetates, propionates, aleates, malates, oxalates, tartrates, citrates, benzoates, salicylates, phthalates, stearates, phenolates, Sulfonates, amine salts and mixtures thereof.
  • Suitable solvents for removing the fillers from the carbonized shaped body are, for example, water, in particular hot water, dilute or concentrated inorganic or organic acids, alkalis and the like.
  • Suitable inorganic acids in diluted or concentrated form are hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid and dilute hydrofluoric acid.
  • Suitable lyes are e.g. Sodium hydroxide solution, ammonia solution, carbonate solutions, but also organic amine solutions.
  • Suitable organic acids are formic acid, acetic acid, trichloromethanoic acid, trifluoromethanoic acid, citric acid, tartaric acid, oxalic acid and mixtures thereof.
  • the fillers can essentially or completely be removed from the carbonized shaped body, depending on the type and duration of use of the solvent. The essentially complete dissolution of the fillers is preferred.
  • the fillers can be used in suitable grain sizes.
  • Powders or granular fillers with average particle sizes of 3 are particularly preferred Angstroms to 2 mm, particularly preferably 1 nm to 500 ⁇ m and particularly preferably 10 nm to 100 ⁇ m.
  • Suitable solvents for removing the fillers are organic solvents, such as methanol, ethanol, N-propanol, isopropanol, butoxydiglycol, butoxyethanol, butoxyisopropanol, butoxypropanol, n-butyl alcohol, t-butyl alcohol, butylene glycol, butyl octanol, diethylene glycol, dimethoxydiglycol, Dimethyl ether, dipropylene glycol, ethoxydiglycol, ethoxyethanol, ethylhexanediol, glycol, hexanediol, 1, 2,6-hexanetriol, hexyl alcohol, hexylene glycol, isobutoxypropanol, isopentyldiol, 3-methoxybutanol, methoxydiglycol, methoxyethanol, methoxybutylene glycol, methyloxymethyl propanol, methyloxymethanol, methyl
  • a method for producing porous carbon-based molded articles comprising the following steps: mixing organic polymer materials which can be carbonized with carbon and polymeric fillers; - Production of a semi-finished molded part from the mixture; - Carbonization of the semi-finished molded part in a non-oxidizing atmosphere at elevated temperature, the polymer fillers being essentially completely broken down.
  • the pores in the carbon-based molded body are generated during the carbonization by incorporating polymeric fillers into the organic polymer materials to be carbonized, which are essentially completely degraded under carbonization conditions.
  • Temperatures and exclusion of oxygen by means of crack-analogous processes, can be substantially completely broken down into volatile hydrocarbons such as methane, ethane and the like, which then escape from the porous carbon structure of the carbonized shaped body during the pyrolysis or carbonization.
  • Suitable polymeric fillers can be selected from saturated, branched or unbranched aliphatic hydrocarbons, which homo- or can be copolymers.
  • Polyolefins such as polyethylene, polypropylene, polybutene, polyisobutene, polypentene and their copolymers and mixtures are preferred.
  • the polymeric fillers are mixed with the carbonizable organic polymer materials.
  • This can be done according to the prior art methods known in principle to the person skilled in the art, for example mixing polymer pellets or granules, mixing polymeric fillers in melts from carbonizable organic polymer materials or suspensions or solutions of these polymer materials, coextrusion of the polymeric fillers with the carbonizable organic polymer materials and the like ,
  • the carbonized can be any suitable selection of the molecular weight, the chain length and / or the degree of branching of the polymeric fillers.
  • Shaped pores produced are appropriately dimensioned or varied within wide limits.
  • the polymeric fillers can also be used in the form of thin fibers, which form suitably dimensioned pore channels during carbonization.
  • the porosity can be adjusted by the choice of the fiber diameter and the fiber length, whereby larger fiber diameters and lengths require a larger porosity.
  • the desired intermediate effects can also be achieved by suitable mixing of the fibers used, or asymmetrical porosity distributions and textures of the shaped bodies.
  • This embodiment of the method according to the invention using polymer fillers as pore former is particularly suitable for porous molded articles with small pore sizes in the nano to micrometer range, in particular with pore sizes of 3 angstroms to 2 mm, particularly preferably 1 nm to 500 ⁇ m and particularly preferably 10 nm to 100 ⁇ m.
  • the carbonized shaped body is after the carbonization with suitable oxidation and / or
  • a method for producing porous carbon-based shaped bodies which comprises the following steps:
  • a shaped body is formed by carbonization of suitable polymer materials, and after carbonization by means of suitable oxidizing agents in the carbonized
  • Shaped body porosity is generated and / or increased by "burning" pores in the carbon-based shaped body by partial oxidation of the carbon. Essentially all oxidation processes and oxidizing agents suitable for the oxidation of carbon materials are suitable for producing pores in the carbon-based shaped body.
  • the treatment of the carbonized shaped body is preferred in the case of elevated
  • Suitable oxidizing agents for the partial oxidation in the oxidizing gas phase are air, oxygen, carbon monoxide, carbon dioxide, nitrogen oxides and similar oxidizing agents. These gaseous oxidizing agents can be mixed with inert gases such as noble gases, in particular argon, or also nitrogen, and suitable volume concentrations of the oxidizing agent can be set exactly. By reaction with these oxidizing agents, holes or pores are burned into the porous molded body by way of partial oxidation.
  • the partial oxidation is preferably carried out at elevated temperatures, in particular in the range from 50 ° C. to 800 ° C.
  • the partial oxidation is carried out by treating the molded body with air which may flow, at room temperature or above.
  • liquid oxidizing agents can also be used, such as concentrated nitric acid, which is applied to the shaped body in a suitable manner.
  • concentrated nitric acid it may be preferred to add the concentrated nitric acid
  • the above-mentioned methods of creating pores can also be combined with one another according to the invention.
  • the coarser pores produced from the fillers can be linked to the micro- or nanopores of the polymeric fillers to form anisiotropic pore distributions.
  • the existing pores can also be expanded, linked or modified by partial oxidation.
  • ORGANIC POLYMER MATERIAL In all three of the above-mentioned embodiments of the method according to the invention, such materials are used as the organic polymer material which can be carbonized to carbon and which, under carbonization conditions, i. H. at elevated temperature and in a substantially oxygen-free atmosphere, carbon materials made of amorphous, partially crystalline and / or crystalline symmetrical or asymmetrical material remain.
  • unsaturated, branched aliphatic hydrocarbons in particular, branched or unbranched, crosslinked or uncrosslinked aromatic or partially aromatic hydrocarbons, and substituted derivatives thereof are suitable.
  • Unsaturated hydrocarbons, especially aromatic hydrocarbons are usually built under carbonization conditions to form graphite-like cross-linked six-ring structures, which form the basic structure of the carbonized molded body.
  • Saturated aliphatic and / or aromatic hydrocarbons with heteroatom components are also suitable as carbonizable organic polymer materials or in mixtures with other aliphatic or aromatic unsaturated hydrocarbons in the processes according to the invention.
  • carbonizable organic polymer materials are preferably selected from: polybutadiene; Polyvinyls such as polyvinyl chloride or polyvinyl alcohol, poly (meth) acrylic acid, polyacrylic cyanoacrylate; Polyacrylonitrile, polyamide, polyester, polyurethane, polystyrene, polytetrafluoroethylene; Polymers such as collagen, albumin, gelatin, hyaluronic acid, starch, celluloses such as methyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, carboxymethyl cellulose phthalate; Casein, Dextrans, Polysaccharides, Fibrinogen, Poly (D, L-Lactide), Poly (D, L-Lactide-Co-Glycolide), Polyglycolide, Polyhydroxybutylate, Polyalkylcarbonate, Polyorthoester, Polyester, Polyhydroxyvalerinchure, Polydioxanone, Polyethyleneterephthalate, Polymala
  • the carbonizable organic polymer materials can furthermore contain customary additives such as further in particular insoluble fillers, plasticizers, lubricants, flame retardants, glass, glass fibers, carbon fibers, cotton, fabrics, metal powders, metal compounds, silicon, silicon oxides, zeolites, titanium oxides, zirconium oxides, aluminum oxides, aluminosilicates, talc, Graphite, soot,
  • customary additives such as further in particular insoluble fillers, plasticizers, lubricants, flame retardants, glass, glass fibers, carbon fibers, cotton, fabrics, metal powders, metal compounds, silicon, silicon oxides, zeolites, titanium oxides, zirconium oxides, aluminum oxides, aluminosilicates, talc, Graphite, soot,
  • Contain clay materials, phyllosilicates and the like Contain clay materials, phyllosilicates and the like.
  • fibrous materials made of cellulose, cotton, textile fabrics, glass fibers, carbon fibers and the like as polymer additives are suitable in preferred embodiments of the present invention for improving the mechanical properties of the porous moldings produced.
  • the semi-finished molded parts can be produced according to the methods of the present invention by means of conventional shaping methods for polymer materials known to the person skilled in the art.
  • Suitable shaping processes are casting processes, extrusion processes, pressing processes, injection molding processes, coextrusion blow molding or other customary shaping processes, for example also winding processes or strand winding processes using flat starting materials.
  • Carbonization takes place in an essentially oxygen-free or oxidizer-free atmosphere.
  • suitable Carbonization atmospheres are, for example, protective gas, preferably nitrogen and / or argon, noble gases, SiF 6 and mixtures of these protective gases. If necessary, these protective gas atmospheres can be used for negative or positive pressure. Carbonation in a vacuum can also be used advantageously in the processes according to the invention.
  • reactive gases may be added to the inert gas atmosphere.
  • Preferred reactive gases for this are non-oxidizing gases such as hydrogen, ammonia, dC 6 saturated aliphatic hydrocarbons such as methane, ethane, propane and butane, mixtures of these, and the like.
  • Suitable temperatures for the carbonation step are in the range of 200 ° C to 4000 ° C or more.
  • carbon-containing molded articles can be produced, the base material of which ranges in structure from amorphous to ordered crystalline graphite-like structures or mixtures of both materials.
  • the atmosphere in the carbonization step of the process according to the invention is essentially free of oxygen, preferably with O 2 kept below 10 ppm, particularly preferably below 1 ppm.
  • O 2 oxygen
  • the carbonization step will preferably take place in a batch process in suitable furnaces, but can also take place in a continuous process
  • the semi-finished parts are fed to the furnace on one side and exit again at the other end of the furnace.
  • the semi-finished molded part can rest in the oven on a perforated plate, a sieve or the like, so that negative pressure can be applied through the polymer film during the pyrolysis or carbonization.
  • this enables simple fixation of the implants in the furnace, and on the other hand, suction and optimal flow of inert gas through the semi-finished parts during carbonization.
  • the furnace can be divided into individual segments by appropriate inert gas locks, in which one or more carbonization steps can be carried out in succession, optionally under different carbonization conditions such as different temperature levels, different inert gases or vacuum.
  • Post-treatment, activation or intermediate treatment steps, such as partial oxidation, reduction or also impregnation with metal salt solutions and the like, can also optionally be carried out in corresponding segments of the furnace.
  • the carbonization can be carried out in a closed furnace, which is particularly preferred if the carbonization is to be carried out in a vacuum.
  • a decrease in weight of the material of approximately 5% to 95%, preferably approximately 40% to 90%, in particular 50% to 70%.
  • the physical and chemical properties of the carbon-based shaped bodies or of the pores generated after the carbonization are further modified by suitable post-treatment steps and adapted to the particular intended use.
  • Suitable aftertreatments are, for example, reducing or oxidative aftertreatment steps in which the porous moldings are treated with suitable reducing agents and / or oxidizing agents such as hydrogen, carbon dioxide, nitrogen oxides such as N 2 O, water vapor, oxygen, air, nitric acid and the like, and, if appropriate, mixtures of these.
  • suitable reducing agents and / or oxidizing agents such as hydrogen, carbon dioxide, nitrogen oxides such as N 2 O, water vapor, oxygen, air, nitric acid and the like, and, if appropriate, mixtures of these.
  • the surfaces can be coated, which can be carried out on one side or on both sides.
  • Suitable coating materials can be, for example, the above-mentioned organic polymer materials, which, if appropriate, are subjected to a further carbonization or pyrolysis step in order to achieve asymmetrical textures in the shaped body.
  • Coating with inorganic substances, biocompatible polymers and substances is also possible according to the invention in order to give the surfaces of the moldings the desired properties.
  • the post-treatment steps may take place at elevated temperature, but below the carbonization temperature, for example from 15 ° C. to 1000 ° C., preferably 70 ° C. to 900 ° C., particularly preferably 100 ° C. to 850 ° C., particularly preferably 200 ° C.
  • the porous molded articles produced according to the invention are modified reductively or oxidatively, or with a combination of these post-treatment steps at room temperature.
  • the surface properties of the carbon-containing material can be made hydrophilic or hydrophobic.
  • porous shaped bodies can be coated by subsequent coating, e.g. with polymer solutions, closed on one or both sides.
  • This coating can optionally be carbonized again, for example to increase stability.
  • the porous moldings produced according to the invention can also be subsequently equipped with biocompatible outer and / or inner surfaces by incorporating suitable additives.
  • Shaped bodies modified in this way can be used, for example, as bioreactors, cell culture carrier or rearing systems, implants or as drug carriers or depots, in particular also systems which can be implanted in the body.
  • drugs or enzymes for example, can be introduced into the material. can be released in a controlled manner by suitable retardation and / or selective permeation properties of applied coatings.
  • the porous molded body can optionally also be subjected to a further optional process step, a so-called CVD process (Chemical Vapor Deposition, chemical vapor deposition) or CVI process (Chemical Vapor Infiltration) in order to further modify the surface or pore structure and its properties. if necessary, to superficially or completely close the pores
  • the carbonized coating is treated with suitable, carbon-releasing precursor gases at high temperatures.
  • Other elements can also be deposited with it, for example silicon, aluminum or titanium, in particular for producing the corresponding carbides. Such methods are known in the prior art. Appropriate pre-structuring of the shaped bodies, for example using fiber materials of different lengths and / or thicknesses, can thus
  • Gradient materials are obtained which have a concentration of certain intercalation or reaction compounds, for example the metal or non-metal carbides, nitrides or borides, which is distributed asymmetrically over the volume of the shaped body. Gradient materials can thus be obtained which are symmetrical or asymmetrical, isotropic or anisotropic, have closed pores, are porous or have fiber-like guide structures or any combination thereof.
  • saturated and unsaturated hydrocarbons with sufficient volatility under CVD conditions are suitable as carbon-releasing precursors.
  • Examples include methane, ethane, ethylene, acetylene, linear and branched alkanes, alkenes and alkynes with carbon numbers of Ci - C 20 , aromatic hydrocarbons such as benzene, naphthalene etc., and one and multi-alkyl, alkenyl and alkynyl-substituted aromatics such as toluene, xylene, cresol, styrene etc.
  • the ceramic precursor can BC1 3, NH 3, silanes such as SiH, tetraethoxysilane (TEOS), dichlorodimethylsilane (DDS), methyltrichlorosilane (MTS), Trichlorosilyl- dichloroboran (TDADB) Hexadichloromethylsilyloxid (HDMSO), A1C1 3, TiCl 3 or mixtures thereof be used.
  • TEOS tetraethoxysilane
  • DDS dichlorodimethylsilane
  • MTS methyltrichlorosilane
  • TDADB Trichlorosilyl- dichloroboran
  • HDMSO Hexadichloromethylsilyloxid
  • A1C1 3 TiCl 3 or mixtures thereof be used.
  • pores in the carbon-containing porous shaped body can be deliberately reduced to the point where the pores are completely closed / sealed.
  • sorptive properties, as well as the mechanical properties of the shaped bodies can be tailored.
  • the carbon-containing porous shaped bodies can be modified, for example by oxidation, by carbide or oxycarbide formation. If the carbides are not already formed under CVD conditions, elevated temperatures may be necessary to promote carbide formation.
  • the porous moldings according to the invention can additionally be coated or modified by means of sputtering processes.
  • carbon, silicon or metals or metal compounds from suitable sputtering targets can be applied by methods known per se. Examples of these are Ti, Zr, Ta, W, Mo, Cr, Cu, which can be dusted into the porous shaped bodies, the corresponding carbides generally forming.
  • the surface properties of the porous molded body can also be modified by means of ion implantation.
  • nitride, carbonitride or oxynitride phases with embedded transition metals can be formed by implantation of nitrogen, which means the chemical resistance and mechanical
  • the coating with e.g. Liquid-crystalline tar pitches can lead to asymmetrical material properties, depending on the orientation of the lattice structures during the subsequent crosslinking, carbonization or graphitization. These include the thermal expansion, the mechanical properties, the electrical conductivity, etc.
  • biodegradable or resorbable polymers such as collagen, albumin, gelatin, hyaluronic acid, starch, celluloses such as methyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, carboxymethyl cellulose phthalate; Casein, dextrans, polysaccharides, fibrinogen, Poly (D, L-lactide), poly (D, L-lactide-co-glycolide), poly (glycolide), poly (hydroxybutylate), poly (alkylcarbonate), poly (orthoester), polyester, poly (hydroxyvaleric acid), polydioxanone , Poly (ethylene terephthalate), poly (malate acid), poly (tartronic acid), polyanhydrides, polyphosphazenes, poly (amino acids), and their copolymers or non-biodegradable or resorbable polymers at least partially to coat.
  • biodegradable or resorbable polymers such as collagen, albumin, gelatin,
  • the porous molded body can be subjected to further chemical or physical surface modifications after the carbonization and / or after any post-treatment steps that may have taken place. Cleaning steps to remove any residues and contaminants can also be provided here.
  • the acids already mentioned above, in particular oxidizing acids, or solvents can be used, boiling out in acids or solvents is preferred.
  • the moldings according to the invention can be adjusted in a wide range in a targeted manner by suitable choice of the starting materials and additives in their pH value and the buffer capacity in an aqueous environment.
  • the pH value of shaped articles produced according to the invention in water can be in the range from pH 0 to pH 14, preferably in the range from pH 6-8 and particularly preferably at pH values from 6.5 to 7.5.
  • the buffer area of molded articles produced according to the invention is preferably in the neutral to acidic range, particularly preferably in the weakly acidic range, and the buffering capacity can be up to 50 mol / liter, preferably up to 10 Mol / liter and in preferred applications is usually 0.5 to 5 mol / liter.
  • the moldings which can be produced by the processes according to the invention can be produced in any two- or three-dimensional shape.
  • the semi-finished molded parts made of the organic polymer materials, optionally in a mixture with polymeric or non-polymeric fillers are processed into suitable raw forms by means of suitable shaping processes, which, taking into account the dimensional shrinkage occurring during carbonization, may correspond to the final forms of the porous carbon-based shaped bodies.
  • the porous moldings according to the invention can be produced in the form of tubes, round rods, plates, blocks, cuboids, cubes, solid or hollow spheres, flanges, seals, housings and the like, or else be elongated, such as circular columns, polygonal columns such as triangular columns or bars ; or plate-shaped; or also polygonal, such as tetrahedral, pyramidal, octahedral, dodecahedral, icosahedral, rhomboid, prismatic; or be spherical, such as spherical, spherical or cylindrical lenticular, or annular, honeycomb-shaped, with straight or curved channels, coiled, folded with different channel diameters and flow directions (parallel, crosswise or with any angle between the channels).
  • a tube made of porous carbon-based material is produced using one of the production methods according to the invention.
  • the carbonization of a hose made of natural or synthetic rubber or suitable plastics is preferred as mentioned above as carbon-containing moldings which can be carbonized to carbon and which is optionally reinforced with fiber or fabric inserts.
  • Particularly preferred is the use of a textile fabric impregnated with synthetic resins in the form of a tube, which is used as a semi-finished molded part for producing a tube from porous plastic-based material according to one of the methods of the present invention.
  • the hose used to produce a porous tube can be constructed in several layers, for example comprising an inner layer made of foamed plastic and an outer layer made of non-foamed plastic or vice versa.
  • the application of further layers is also possible according to the invention.
  • the multi-layer hose is produced by co-extrusion blow molding as a semi-finished molded part and then carbonized into a tube.
  • a tube made of carbon-based material can be produced by winding a paper material impregnated or coated with polymer materials, for example on a lathe, into a tube, which is then carbonized under carbonization conditions to form a porous carbon-containing tube.
  • a flat fiber fabric, channel structures or felt structures and all combinations thereof are preferably impregnated and / or coated with organic polymer materials and wound up over a suitable dome. Then carbonization is carried out with or without the dome and the dome is then removed if necessary. This makes it easy and precise Produce porous tubes that can then be treated, recompressed or sealed.
  • Porous tubes produced in this way can be completely or partially sealed with organic polymers.
  • fiber-reinforced hoses is also particularly preferred here, the fibers being able to be selected from textile or fabric fibers, glass fibers, carbon fibers, rock wool, polymer fibers, for example from polyacrylonitrile, nonwoven materials, nonwoven fabrics, felts, cellulose, PET fibers and any mixtures thereof Materials.
  • foamed polymer materials such as polyurethane foam, polyacrylonitrile foam and the like can be molded with a further layer of dense polymer material, which are then carbonized to give moldings with regionally different porosity distributions.
  • flanges can also be laminated on in the semifinished molded part, which are then essentially carbonized through with closed pores.
  • full carbon module units are created with an excellent adhesive bond between fiber and matrix.
  • the carbon-based moldings produced by a process according to the invention in particular carbon tubes, can be used as a tube membrane, in tube membrane reactors, in tube bundle reactors and heat exchangers and also in bioreactors.
  • the moldings according to the invention can also be used as porous catalyst supports, in particular in the automotive sector or for flue gas cleaning in technical systems. Their heat resistance, chemical resistance and dimensional stability are advantageous here. Furthermore, the moldings and materials according to the invention are almost stress-free and extremely resistant to thermal shock, i.e. Even strong jumps in temperature are easily tolerated. By applying metals, in particular noble metals, and other catalytically active materials, long-term stable and highly effective catalyst supports can be produced by the processes according to the invention.
  • Sheets made from flat channel structures, as well as pipe structures wound from them, are excellently suitable as insulating materials, e.g. for high temperature applications or for shielding microwaves (microwave absorbers).
  • the electrical properties can be set so that e.g. High-frequency heating systems can couple their energy into the furnace area almost loss-free through these insulating materials.
  • Highly oriented materials can also be set so that they are directly excited by high frequency and thus directly heated. This is also a simple process for technical production (carbonization) or for graphitization.
  • Shaped bodies produced by the method according to the invention can also be used as medical implants, for example orthopedic, surgical, and / or non-orthopedic implants such as bone or joint prostheses, orthopedic plates, screws, nails, fixations and the like can be used.
  • orthopedic, surgical, and / or non-orthopedic implants such as bone or joint prostheses, orthopedic plates, screws, nails, fixations and the like can be used.
  • the use of the shaped bodies which can be produced according to the invention is a substrate or carrier for colonization with microorganisms and cell cultures is particularly preferred.
  • the carbon-based, carbon-containing moldings and ceramic materials and composites produced according to the invention as carrier and / or growth systems (TAS) for the cultivation of primary cell cultures such as eukaryotic tissue, e.g. Bones, cartilage, liver, kidneys, as well as for the cultivation or immobilization of xenogeneic, allogeneic, syngeneic or autologous cells and cell types, and possibly also of genetically modified cell lines.
  • TAS growth systems
  • porous or non-porous, carbon-containing materials are suitable for use as carrier and rearing systems (TAS) for the cultivation of primary cell cultures.
  • TAS carrier and rearing systems
  • symmetrical or asymmetrical, textured carbon or ceramic-based materials and their combinations are suitable for use as TAS.
  • the materials and moldings mentioned can also be used specifically as support and rearing systems for nerve tissue. It is particularly advantageous that carbon-containing materials are particularly adaptable and suitable here, in particular by simply adjusting the conductivity of the shaped bodies and applying pulse currents for the cultivation of nerve tissue.
  • the materials and moldings mentioned also serve as in vitro or in vivo lead structures, so-called scaffolds, for 2- and 3-dimensional tissue growth; their specific shape makes it possible to grow parts of organs or whole organs from cell cultures.
  • the TAS support or modulate the lead, tissue or organ growth from a physical point of view, in particular through adjustable provision, as a guiding structure through suitable adjustment of the porosity, through the flow channel design and the two- or three-dimensional shape. Distribution and replenishment of nutrient solution or medium at the place of consumption, as well as by supporting or promoting cell and tissue proliferation and differentiation.
  • the materials and moldings or carrier systems can be 2-dimensional and 3-dimensional.
  • Suitable macrostructures are, for example, tubes, in particular for the production or cultivation of natural vessels, cubic shapes, etc., as mentioned above for shaped bodies.
  • the shaped bodies according to the invention and other carbon-based materials for use as TAS can be modeled natural organ forms, for example cartilaginous articular surfaces of knee, Hip, shoulder, finger joints, etc., which can then be used for growing appropriately shaped cartilage, bone skins and the like. These can then either be implanted with the grown tissue, or the cultured tissue is separated in an appropriately grown form by methods of the prior art, such as mechanical or chemical-enzymatic detachment, and then implanted.
  • the moldings and materials can be used as TAS for cultivation in existing bioreactor systems, e.g. B. passive systems without continuous control technology such as Fabric plates, fabric bottles, roller bottles; but also active systems with gas supply and automatic setting of parameters (acidity, temperature), in the broadest sense reactor systems with measurement and control technology.
  • existing bioreactor systems e.g. B. passive systems without continuous control technology such as Fabric plates, fabric bottles, roller bottles; but also active systems with gas supply and automatic setting of parameters (acidity, temperature), in the broadest sense reactor systems with measurement and control technology.
  • the TAS according to the invention can be provided by providing suitable devices such as connections for perfusion with nutrient solutions and the Gas exchange as a reactor system are in particular also carried out modularly in corresponding row reactor systems and tissue cultures.
  • TAS according to the invention can also be used as ex vivo reactor systems, e.g. extracorporeal assistance systems, or used as organ reactors, e.g. so-called liver assist systems or liver replacement systems; or also in vivo or in vitro for encapsulated islet cells, e.g. B. as an artificial Pancreas, encapsulated urothelial cells, e.g. as an artificial Kidney and the like, which are preferably implantable.
  • ex vivo reactor systems e.g. extracorporeal assistance systems, or used as organ reactors, e.g. so-called liver assist systems or liver replacement systems
  • organ reactors e.g. so-called liver assist systems or liver replacement systems
  • encapsulated islet cells e.g. B. as an artificial Pancreas
  • encapsulated urothelial cells e.g. as an artificial Kidney and the like, which are preferably implantable.
  • the TAS according to the invention can be suitably modified to promote organogenesis, for example with proteoglycans, collagens, tissue-typical salts, e.g. Hydroxyapatite etc., especially with the above-mentioned biodegradable or resorbable polymers.
  • the TAS according to the invention are preferably further modified by impregnation and / or adsorption of growth factors, cytokines, interferons and / or adhesion factors.
  • suitable growth factors are PDGF, EGF, TGF- ⁇ , FGF, NGF, erythropoietin, TGF-ß, IGF-I and IGF-II.
  • Suitable cytokines include, for example, IL-1- ⁇ and -ß, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL -11, IL-12, IL-13.
  • Suitable interferons include e.g. INF- ⁇ and -ß, INF- ⁇ .
  • suitable adhesion factors are fibronectin, laminin, vitronectin, fetuin, poly-D-lysine and the like.
  • the moldings according to the invention can also be used as microarray systems for, for example, drag discovery, tissue screening, tissue engineering etc.
  • a glass fiber fabric made of E-CR glass (chemical-resistant modified E-glass) of 30mm width was coated / impregnated with GRP resin based on phenolic resin in a cloister on one appropriate steel mandrel laid and the cathedral removed.
  • the weight was 3.6 g / cm before pyrolysis.
  • the pyrolysis was carried out under nitrogen at 800 ° C. for 48 hours.
  • the weight after pyrolysis was 3.0 g / cm.
  • the membrane properties were measured using the bubble point test (ASTM El 294), a pore size of 500 angstroms being determined.
  • Example 4 Pipe production in the winding process as given in Example 1, using a glass fiber fleece made of E-CR glass (chemical-resistant modified E-glass) of 30 mm in width, and polyacrylonitrile (PAN) nonwoven (from Freudenberg) of 30 mm in width (ratio 1: 1) and GRP resin based on phenolic resin, laid on a steel dome in a cloister. Weight 3.6g / cm before pyrolysis. Pyrolysis under nitrogen at 800 ° C for 48 hours. Weight after pyrolysis 2.0 g / cm.
  • E-CR glass chemical-resistant modified E-glass
  • PAN polyacrylonitrile
  • Carbon-based plates made of natural fiber-reinforced, composite polymer with inorganic fillers and with a basis weight of 100 g / m 2 and 110 micrometers thickness were produced.
  • This flat composite material was provided with a channel structure by a commercially available embossing machine
  • a tube of 10 cm length and 40 mm diameter with a wall thickness of 6 mm wound from this material was set in a coupling test in an 8 KHz high-frequency heating device.
  • the quiescent current practically did not change compared to the quiescent current and there was no significant heating of the material even after 5 minutes.
  • the material produced in this way can be sawed, drilled, milled, etc. easily and precisely.
  • a natural fiber-containing polymer composite with a basis weight of 100 g / m 2 and 110 ⁇ m thickness was carbonized in a nitrogen atmosphere at 800 ° C. for 48 hours, air being added towards the end in order to modify the pores. A weight loss of 50% by weight occurred.
  • the resulting material has a pH of 7.4 in water and a buffer area in the weakly acidic state. Pieces of 20x40 mm, each about 60 ⁇ m thick, of this carbon material were loaded with 4 ml of nutrient solution and 1.5 ml of cell suspension in each case on conventional six-piece tissue plates.
  • the cell suspension contained Hybridoma FLT 2 MAB against Shigatoxin producing cell lines, known for non-adherent, non-adhesive suspension growth.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Botany (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)

Abstract

The invention relates to methods for the production of carbon-based molded bodies, especially a method for producing porous carbon-based molded bodies by carbonizing organic polymer materials that are mixed with non-polymeric fillers and then detaching the fillers from the carbonized molded body. In an alternative embodiment, the invention relates to a method for producing porous carbon-based molded bodies by carbonizing organic polymer materials comprising polymeric fillers which are decomposed substantially in full during carbonization. Also disclosed is a method for producing porous carbon-based molded bodies by carbonizing organic polymer materials, the carbon-based molded body being partially oxidized following carbonization so as to create pores. The invention finally relates to porous molded bodies produced according to one of said methods and the use thereof, particularly as cell culture carrier systems and/or culture systems.

Description

Verfahren zur Herstellung von porösen kohlenstoffbasierten Formkörpern umjderen Verwendung als Zellkulturträger- und AufzuchtsystemeProcess for the production of porous carbon-based shaped bodies for their use as cell culture support and cultivation systems
Die vorliegende Erfindung betrifft Verfahren zur Herstellung von kohlenstoffbasierten Formkörpern. Insbesondere betrifft die vorliegende Erfindung Verfahren zur Herstellung poröser kohlenstoffbasierter Formkörper durch Karbonisieren von organischen Polymermaterialien, die mit nichtpolymeren 10 Füllstoffen vermischt sind, und anschließendes Herauslösen der Füllstoffe aus dem karbonisierten Formkörper. In einer weiteren AusMirungsform betrifft die vorliegende Erfindung ein Verfahren zur Herstellung poröser kohlenstoffbasierter Formkörper, durch Karbonisieren von organischen Polymermaterialien mit polymeren Füllstoffen, die bei der Karbonisierung im Wesentlichen vollständig 15 abgebaut werden. Ferner betrifft die vorliegende Erfindung ein Verfahren zur Herstellung poröser kohlenstoffbasierter Formkorper durch Karbonisierung Organischer Polymermaterialien, wobei der kohlenstoffbasierte Formkörper nach der Karbonisierung zur Erzeugung von Poren teiloxidiert wird. Darüber hinaus betrifft die vorliegende Erfindung nach einem der genannten Verfahren hergestellte poröse 20 Formkörper sowie deren Verwendung, insbesondere als Zellkulturträger- und/oder Aufzuchtsysteme.The present invention relates to processes for the production of carbon-based molded articles. In particular, the present invention relates to methods for producing porous, carbon-based shaped articles by carbonizing organic polymer materials which are mixed with non-polymeric fillers, and then removing the fillers from the carbonized shaped article. In a further embodiment, the present invention relates to a method for producing porous, carbon-based shaped bodies by carbonizing organic polymer materials with polymer fillers, which are essentially completely degraded during carbonization. Furthermore, the present invention relates to a method for producing porous, carbon-based shaped bodies by carbonizing organic polymer materials, the carbon-based shaped body being partially oxidized after the carbonization to produce pores. In addition, the present invention relates to porous molded articles produced by one of the processes mentioned and to their use, in particular as cell culture carrier and / or cultivation systems.
Kohlenstoff ist aufgrund der Variabilität seiner Eigenschaften in allen Bereichen der Werkstofftechnik ein vielseitig einsetzbares Material. Kohlenstoffbasierte 25 Werkstoffe finden Anwendungen im Maschinenbau, Fahrzeugbau, wie auch in Medizintechnik und Verfahrenstechnik. Aus der DE 35 28 185 ist ein Verfahren zur Herstellung von hochfestem, hochdichten Kohlenstoffmaterialien aus speziellen gepulverten kohlenstoffhaltigen Rohmaterialien ohne Verwendung eines Bindemittels beschrieben. 30 Die DE 198 23 507 beschreibt Verfahren zur Herstellung von kohlenstoffbasierten Formkörpern durch Karbonisierung biogener Vorprodukte aus natürlichen Pflanzenfasern oder Holzprodukt. Die DE 100 11 013 und die EP 0 543 752 beschreiben Verfahren zur Herstellung kohlenstoffhaltiger Materialien durch Karbonisierung bzw. Pyrolyse von geschäumten Ausgangspolymeren wieDue to the variability of its properties, carbon is a versatile material in all areas of materials technology. Carbon-based materials are used in mechanical engineering, vehicle construction, as well as in medical technology and process engineering. DE 35 28 185 describes a method for producing high-strength, high-density carbon materials from special powdered carbon-containing raw materials without the use of a binder. 30 DE 198 23 507 describes processes for the production of carbon-based molded articles by carbonizing biogenic precursors from natural vegetable fibers or wood products. DE 100 11 013 and EP 0 543 752 describe processes for producing carbon-containing materials by carbonization or pyrolysis of foamed starting polymers such as
Polyacrylnitril oder Polyurethan. Die so erhaltenen Kohlenstoffschäume werden als Hochtemperaturisolatoren im Ofenanlagen oder Reaktorbau oder zur Schalldämmung im Hochtemperaturbereich verwendet. Auch die US 3,342,555 beschreibt ein Verfahren zur Herstellung leichten porösen Kohlenstoffs durch Karbonisierung von geschäumten Polymeren auf Basis von Phenolaldehydharzen des Resol- oder Novolactyps.Polyacrylonitrile or polyurethane. The carbon foams thus obtained are used as high-temperature insulators in furnace systems or reactor construction or for sound insulation in the high-temperature range. No. 3,342,555 also describes a process for producing light porous carbon by carbonizing foamed polymers based on phenol aldehyde resins of the resol or novolac type.
Die genannten Verfahren des Standes der Technik zur Erzeugung poröser Kohlenstoffformkörper weisen den Nachteil auf, dass die durch Karbonisierung geschäumter Polymere erhaltenen Formkörper oft eine sehr geringe mechanische Stabilität aufweisen, was deren Verwendung unter mechanischen Belastungsbedingungen nahezu unmöglich macht. Ferner lassen sich Porengröße und Porenvolumen in diesen Formkörpern nicht hinreichend genau einstellen um diese beispielsweise für biotechnologische Anwendungen, wie etwa als orthopädische Implantate, verwendbar zu machen.The above-mentioned methods of the prior art for producing porous carbon molded articles have the disadvantage that the molded articles obtained by carbonization of foamed polymers often have a very low mechanical stability, which makes their use under mechanical load conditions almost impossible. Furthermore, the pore size and pore volume in these shaped bodies cannot be set with sufficient accuracy to make them usable, for example, for biotechnological applications, such as, for example, as orthopedic implants.
Es besteht daher ein fortwährender Bedarf nach neuen und verbesserten Verfahren zur Herstellung von porösen kohlenstoffhaltigen Formkörpern.There is therefore a continuing need for new and improved processes for the production of porous carbon-containing molded articles.
Es ist eine Aufgabe der vorliegenden Erfindung ein einfaches unter wirtschaftlichen Bedingungen durchführbares Verfahren zur Herstellung poröser kohlenstoffbasierter Formkorper anzugeben. Eine weitere Aufgabe der vorliegenden Erfindung ist es, Verfahren zur Herstellung poröser kohlenstoffbasierter Formkörper anzugeben, die durch Variation einfacher Prozessparameter eine gezielte Einstellung der Porosität, insbesondere des Porenvolumens und der Porendurchmesser in reproduzierbarer Weise erlauben.It is an object of the present invention to provide a simple process, which can be carried out under economic conditions, for producing porous carbon-based molded articles. Another object of the present invention is to provide methods for producing porous, carbon-based molded articles which, by varying simple process parameters, allow the porosity, in particular the pore volume and the pore diameter, to be set in a reproducible manner.
Eine weitere Aufgabe der vorliegenden Erfindung ist es Herstellungsverfahren für poröse kohlenstoffbasierte Formkörper zur Verfügung zu stellen, welche die maßgeschneiderte Herstellung entsprechender Formkörper in einer Vielzahl von Formen und Abmessungen ermöglichen.Another object of the present invention is to provide manufacturing processes for porous carbon-based molded articles, which enable the customized manufacture of corresponding molded articles in a variety of shapes and dimensions.
Ferner ist es eine Aufgabe der vorliegenden Erfindung Einsatzgebiete und Anwendungen der erfmdungsgemäßen kohlenstoffbasierten Formkörper anzugeben.Furthermore, it is an object of the present invention to specify fields of application and uses of the carbon-based shaped bodies according to the invention.
Die Lösung der erfmdungs gemäßen Aufgaben ergibt sich durch die Verfahren und danach herstellbaren Formkörper sowie die Verwendungen gemäß den unabhängigen Ansprüchen. Bevorzugte Ausführungsformen sind in den jeweiligen abhängigen Ansprüchen aufgeführt.The solution of the tasks according to the invention results from the method and the moldings that can be produced thereafter, as well as the uses according to the independent claims. Preferred embodiments are listed in the respective dependent claims.
Im Allgemeinen stellt die vorliegende Erfindung Verfahren zur Verfügung, bei welchen poröse kohlenstoffbasierte Formkörper durch Karbonisieren von Halbzeugforrnteilen aus organischen Polymermaterialien hergestellt werden, wobei die Porosität des Formkörpers während oder im Anschluss an die Pyrolyse erzeugt wird.In general, the present invention provides methods in which porous carbon-based shaped articles are produced from organic polymer materials by carbonizing semi-finished parts, the porosity of the shaped article being produced during or after pyrolysis.
In einer ersten Ausführungsform der vorliegenden Erfindung wird ein Verfahren zur Herstellung von porösen kohlenstoffbasierten Formkörpern zur Verfügung gestellt, welches die folgenden Schritte umfasst: Mischen von zu Kohlenstoff karbonisierbaren, organischen Polymermaterialien mit nichtpolymeren Füllstoffen; Herstellen eines Halbzeugformteils aus der Mischung; Karbonisieren des Halbzeugformteils in nichtoxidierender Atmosphäre bei erhöhter Temperatur, wobei ein kohlenstoffbasierter Formkörper erhalten wird; Herauslösen der Füllstoffe aus dem karbonisierten Formkörper mit geeigneten Lösemitteln.In a first embodiment of the present invention, a method for producing porous carbon-based shaped bodies is provided, which comprises the following steps: Mixing organic carbon materials carbonizable with carbon with non-polymeric fillers; Producing a semi-finished molded part from the mixture; Carbonizing the semi-finished molded part in a non-oxidizing atmosphere at elevated temperature, a carbon-based molded body being obtained; Removing the fillers from the carbonized molded body with suitable solvents.
Gemäß dieser Ausführungsformen des erfindungsgemäßen Verfahrens werden in einem ersten Schritt die zu Kohlenstoff karbonisierbaren organischen Polymermaterialien mit nichtpolymeren Füllstoffen vermischt oder vermengt. Dies kann prinzipiell durch den Fachmann bekannte geeignete Mischverfahren erfolgen, wie beispielsweise Trockenvermischung von Polymerpellets mit Füllstoffpulvern oder Granulaten, Einmischen von Füllstoffen in die Polymerschmelze oder Vermischung der Füllstoffe mit Polymerlösungen oder -Suspensionen.According to these embodiments of the method according to the invention, the organic polymer materials which can be carbonized to carbon are mixed or blended with non-polymeric fillers in a first step. In principle, this can be done by suitable mixing processes known to the person skilled in the art, such as, for example, dry mixing of polymer pellets with filler powders or granules, mixing fillers into the polymer melt or mixing the fillers with polymer solutions or suspensions.
Als nichtpolymere Füllstoffe sind alle Substanzen geeignet, die unter Karbonisierungsbedingungen im Wesentlichen stabil sind und sich nach der Karbonisierung aus dem kohlenstoffbasierten Formkörper mit geeigneten Lösemitteln entfernen lassen. Weiterhin sind nichtpolymere Füllstoffe geeignet, die unter Karbonisierungsbedingungen zu Lösemittel-löslichen Substanzen umgewandelt werden.Suitable non-polymeric fillers are all substances which are essentially stable under carbonization conditions and which can be removed from the carbon-based shaped body with suitable solvents after carbonization. Also suitable are non-polymeric fillers which are converted to solvent-soluble substances under carbonization conditions.
Bevorzugte Füllstoffe sind ausgewählt aus anorganischen Metallsalzen, insbesondere der Salze von Alkali- und/oder Erdalkalimetallen, vorzugsweise Alkali- oder Erdalkalimetallcarbonate, -Sulfate, -Sulfite, - Nitrate, -Nitrite, -Phosphate, - Phosphite, -Halogenide, -Sulfide, -Oxide, sowie Mischungen dieser. Weitere geeignete Füllstoffe werden ausgewählt aus organischen Metallsalzen, vorzugsweise solche der Alkali-, Erdalkali- und/oder Übergangsmetalle, insbesondere deren Formiate, Azetate, Propionate, Aleate, Malate, Oxalate, Tartrate, Zitrate, Benzoate, Salicylate, Phtalate, Stearate, Phenolate, Sulfonate, Aminsalze sowie deren Mischungen.Preferred fillers are selected from inorganic metal salts, in particular the salts of alkali and / or alkaline earth metals, preferably alkali or alkaline earth metal carbonates, sulfates, sulfites, nitrates, nitrites, phosphates, Phosphites, halides, sulfides, oxides, and mixtures of these. Other suitable fillers are selected from organic metal salts, preferably those of the alkali, alkaline earth and / or transition metals, in particular their formates, acetates, propionates, aleates, malates, oxalates, tartrates, citrates, benzoates, salicylates, phthalates, stearates, phenolates, Sulfonates, amine salts and mixtures thereof.
Geeignete Lösemittel zum Herauslösen der Füllstoffe aus dem karbonisierten Formkörper sind beispielsweise Wasser, insbesondere heißes Wasser, verdünnte oder konzentrierte anorganische oder organische Säuren, Laugen und dergleichen. Geeignete anorganische Säuren sind in verdünnter oder konzentrierter Form Salzsäure, Schwefelsäure, Phosphorsäure, Salpetersäure sowie verdünnte Flusssäure.Suitable solvents for removing the fillers from the carbonized shaped body are, for example, water, in particular hot water, dilute or concentrated inorganic or organic acids, alkalis and the like. Suitable inorganic acids in diluted or concentrated form are hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid and dilute hydrofluoric acid.
Geeignete Laugen sind z.B. Natronlauge, Ammoniaklösung, Karbonatlösungen, aber auch organische Aminlösungen.Suitable lyes are e.g. Sodium hydroxide solution, ammonia solution, carbonate solutions, but also organic amine solutions.
Geeignete organische Säuren sind Ameisensäure, Essigsäure, Trichlormethansäure, Trifluormethansäure, Zitronensäure, Weinsäure, Oxalsäure und Mischungen davon.Suitable organic acids are formic acid, acetic acid, trichloromethanoic acid, trifluoromethanoic acid, citric acid, tartaric acid, oxalic acid and mixtures thereof.
Die Füllstoffe können im Wesentlichen vollständig oder teilweise aus dem karbonisierten Formkörper herausgelöst werden, je nach Art und Anwendungsdauer des Lösemittels. Bevorzugt ist das im Wesentlichen vollständige Lösen der Füllstoffe.The fillers can essentially or completely be removed from the carbonized shaped body, depending on the type and duration of use of the solvent. The essentially complete dissolution of the fillers is preferred.
Je nach Anwendungszweck und gewünschter Porosität bzw. Porendimension können die Füllstoffe in geeigneten Korngrößen eingesetzt werden. Besonders bevorzugt sind Pulver oder granulatförmige Füllstoffe mit mittleren Partikelgrößen von 3 Angström bis 2 mm, besonders bevorzugt 1 nm bis 500 μm und insbesondere bevorzugt 10 nm bis 100 μm.Depending on the application and the desired porosity or pore size, the fillers can be used in suitable grain sizes. Powders or granular fillers with average particle sizes of 3 are particularly preferred Angstroms to 2 mm, particularly preferably 1 nm to 500 μm and particularly preferably 10 nm to 100 μm.
Geeignete Partikelgrößen der nichtpolymeren Füllstoffe wird der Fachmann in Abhängigkeit von der gewünschten Porosität und der gewünschten Porendimensionen des fertigen karbonisierten Formkörpers auswählen.The person skilled in the art will select suitable particle sizes of the non-polymeric fillers depending on the desired porosity and the desired pore dimensions of the finished carbonized shaped body.
Weiterhin geeignete Lösemittel zum Herauslösen der Füllstoffe sind organische Lösungsmittel, wie Methanol, Ethanol, N-Propanol, Isopropanol, Butoxydiglycol, Butoxyethanol, Butoxyisopropanol, Butoxypropanol, n-Butyl- Alkohol, t-Butyl- Alkohol, Butyleneglycol, Butyloctanol, Diethylenglycol, Dimethoxydiglycol, Dimethylether, Dipropylenglycol, Ethoxydiglycol, Ethoxyethanol, Ethylhexandiol, Glycol, Hexanediol, 1 ,2,6-Hexanetriol, Hexylalkohol, Hexylenglycol, Isobutoxypropanol, Isopentyldiol, 3-Methoxybutanol, Methoxydiglycol, Methoxyethanol, Methoxyisopropanol, Methoxymethylbutanol, Polypropylenglycol, Methylal, Methyl-Hexylether, Methylpropanediol, Neopentylglycol, Polyethylenglycol, Pentylenglycol, Propanediol, Propylenglycol, Propylenglycol- Butylether, Propylenglycol-Propylether, Tetrahydrofuran, Trimethylhexanol, Phenol, Benzol, Toluol, Xylol; als auch Wasser, ggf. im Gemisch mit Dispersionshilfsmitteln, sowie Mischungen der obengenannten.Other suitable solvents for removing the fillers are organic solvents, such as methanol, ethanol, N-propanol, isopropanol, butoxydiglycol, butoxyethanol, butoxyisopropanol, butoxypropanol, n-butyl alcohol, t-butyl alcohol, butylene glycol, butyl octanol, diethylene glycol, dimethoxydiglycol, Dimethyl ether, dipropylene glycol, ethoxydiglycol, ethoxyethanol, ethylhexanediol, glycol, hexanediol, 1, 2,6-hexanetriol, hexyl alcohol, hexylene glycol, isobutoxypropanol, isopentyldiol, 3-methoxybutanol, methoxydiglycol, methoxyethanol, methoxybutylene glycol, methyloxymethyl propanol, methyloxymethanol, methyloxymethyl Methyl propanediol, neopentyl glycol, polyethylene glycol, pentylene glycol, propanediol, propylene glycol, propylene glycol butyl ether, propylene glycol propyl ether, tetrahydrofuran, trimethylhexanol, phenol, benzene, toluene, xylene; as well as water, optionally in a mixture with dispersion auxiliaries, and mixtures of the above.
Auch Mischungen organischer Lösemittel mit Wasser und/oder anorganischen und/oder organischen Säuren können in bestimmten Ausführungsformen der vorliegenden Erfindung eingesetzt werden um die nichtpolymeren Füllstoffe aus dem karbonisierten Formkörper herauszulösen. In einer zweiten Ausführungsform der Erfindung wird ein Verfahren zur Herstellung von porösen kohlenstoffbasierten Formkörpern zur Verfügung gestellt, umfassend die folgenden Schritte: - Mischen von zu Kohlenstoff karbonisierbaren organischen Polymermaterialien mit polymeren Füllstoffen; - Herstellen eines Halbzeugformteils aus der Mischung; - Karbonisieren des Halbzeugformteils in nichtoxidierender Atmosphäre bei erhöhter Temperatur, wobei die polymeren Füllstoffe im Wesentlichen vollständig abgebaut werden.Mixtures of organic solvents with water and / or inorganic and / or organic acids can also be used in certain embodiments of the present invention in order to detach the non-polymeric fillers from the carbonized shaped body. In a second embodiment of the invention, a method for producing porous carbon-based molded articles is provided, comprising the following steps: mixing organic polymer materials which can be carbonized with carbon and polymeric fillers; - Production of a semi-finished molded part from the mixture; - Carbonization of the semi-finished molded part in a non-oxidizing atmosphere at elevated temperature, the polymer fillers being essentially completely broken down.
Gemäß dieser Ausführungsform der Erfindung werden die Poren im kohlenstoffbasierten Formkörper während der Karbonisierung dadurch erzeugt, dass polymere Füllstoffe in die zu Karbonisierenden organischen Polymermaterialien eingebaut werden, die unter Karbonisierungsbedingungen im Wesentlichen vollständig abgebaut werden.According to this embodiment of the invention, the pores in the carbon-based molded body are generated during the carbonization by incorporating polymeric fillers into the organic polymer materials to be carbonized, which are essentially completely degraded under carbonization conditions.
Ohne auf eine bestimmte Theorie festgelegt werden zu wollen hat sich gezeigt, dass bestimmte polymere Füllstoffe, insbesondere gesättigte aliphatische Kohlenwasserstoffe unter den Bedingungen der Karbonisierung, d. h. hoheWithout wishing to be bound by any particular theory, it has been shown that certain polymeric fillers, particularly saturated aliphatic hydrocarbons, under the conditions of carbonization, i.e. H. height
Temperaturen und Sauerstoffausschluss, im Wege von crack-analogen Verfahren im Wesentlichen vollständig zu flüchtigen Kohlenwasserstoffen wie Methan, Ethan und dergleichen abgebaut werden können, die dann aus dem porösen Kohlenstoffgerüst des karbonisierten Formkörpers während der Pyrolyse bzw. Karbonisierung entweichen.Temperatures and exclusion of oxygen, by means of crack-analogous processes, can be substantially completely broken down into volatile hydrocarbons such as methane, ethane and the like, which then escape from the porous carbon structure of the carbonized shaped body during the pyrolysis or carbonization.
Geeignete polymere Füllstoffe können ausgewählt werden aus gesättigten, verzweigten oder unverzweigten aliphatischen Kohlenwasserstoffen, welche Homo- oder Copolymere sein können. Bevorzugt sind hierbei Polyolefine wie Polyethylen, Polypropylen, Polybuten, Polyisobuten, Polypenten sowie deren Copolymere und Mischungen.Suitable polymeric fillers can be selected from saturated, branched or unbranched aliphatic hydrocarbons, which homo- or can be copolymers. Polyolefins such as polyethylene, polypropylene, polybutene, polyisobutene, polypentene and their copolymers and mixtures are preferred.
Die polymeren Füllstoffe werden in einem ersten Schritt mit den karbonisierbaren organischen Polymermaterialien vermischt. Dies kann nach dem Fachmann prinzipiell bekannten Verfahren des Standes der Technik erfolgen, beispielsweise Vermischung von Polymerpellets bzw. -granalien, Einmischen polymerer Füllstoffe in Schmelzen aus karbonisierbaren organischen Polymermaterialien oder Suspensionen oder Lösungen dieser Polymermaterialien, Koextrusion der polymeren Füllstoffe mit den karbonisierbaren organischen Polymermaterialien und dergleichen.In a first step, the polymeric fillers are mixed with the carbonizable organic polymer materials. This can be done according to the prior art methods known in principle to the person skilled in the art, for example mixing polymer pellets or granules, mixing polymeric fillers in melts from carbonizable organic polymer materials or suspensions or solutions of these polymer materials, coextrusion of the polymeric fillers with the carbonizable organic polymer materials and the like ,
Durch geeignete Wahl des Molgewichts, der Kettenlänge und/oder des Verzweigungsgrades der polymeren Füllstoffe können die im karbonisiertenBy suitable selection of the molecular weight, the chain length and / or the degree of branching of the polymeric fillers, the carbonized can
Formkörper erzeugten Poren geeignet dimensioniert bzw. in weiten Grenzen variiert werden. Auch können die polymeren Füllstoffe in Form dünner Fasern verwendet werden, die bei der Karbonisierung geeignet dimensionierte Porengänge bilden. Die Porosität ist durch Wahl des Faserdurchmessers und der Faserlänge einstellbar, wobei größere Faserdurchmesser und -längen eine größere Porosität bedingen.Shaped pores produced are appropriately dimensioned or varied within wide limits. The polymeric fillers can also be used in the form of thin fibers, which form suitably dimensioned pore channels during carbonization. The porosity can be adjusted by the choice of the fiber diameter and the fiber length, whereby larger fiber diameters and lengths require a larger porosity.
Hierbei können auch durch geeignete Mischung der verwendeten Fasern gewünschte Zwischeneffekte realisiert werden, oder auch asymmetrische Porositätsverteilungen und Texturen der Formkörper.The desired intermediate effects can also be achieved by suitable mixing of the fibers used, or asymmetrical porosity distributions and textures of the shaped bodies.
Diese Ausführungsform des erfindungsgemäßen Verfahrens unter Verwendung polymerer Füllstoffe als Porenbildner ist insbesondere geeignet für poröse Formkörper mit kleinen Porengrößen im Nano- bis Mikrometerbereich, insbesondere mit Porengrößen von 3 Angström bis 2 mm, besonders bevorzugt 1 nm bis 500 μm und insbesondere bevorzugt 10 nm bis 100 μm.This embodiment of the method according to the invention using polymer fillers as pore former is particularly suitable for porous molded articles with small pore sizes in the nano to micrometer range, in particular with pore sizes of 3 angstroms to 2 mm, particularly preferably 1 nm to 500 μm and particularly preferably 10 nm to 100 μm.
In einer bevorzugten Ausführungsform dieses Verfahrens wird der karbonisierte Formkörper nach der Karbonisierung mit geeigneten Oxidations- und/oderIn a preferred embodiment of this method, the carbonized shaped body is after the carbonization with suitable oxidation and / or
Reduktionsmitteln nachbehandelt, um die Porengrößen weiter zu modifizieren. Auch ein nachträgliches Verdichten oder Verschliessen der Poren, beispielsweise durch CVD/CVI- Verfahren unter Abscheidung geeigneter organischer oder Anorganischer Precursor kann erfindungsgemäß verwendet werden, um Formkörper mit gewünschten Eigenschaften "maßzuschneidern".Aftertreatment reducing agents to further modify the pore sizes. Subsequent compression or sealing of the pores, for example by CVD / CVI processes with the separation of suitable organic or inorganic precursors, can also be used according to the invention in order to "tailor" molded articles with desired properties.
Gemäß einer dritten Ausführungsform des erfindungsgemäßen Verfahrens wird ein Verfahren zur Herstellung von porösen kohlenstoffbasierten Formkörpern angegeben, welches die folgenden Schritte umfasst:According to a third embodiment of the method according to the invention, a method for producing porous carbon-based shaped bodies is specified, which comprises the following steps:
- Herstellen eines Halbzeugformteils aus karbonisierbaren organischen Polymermaterialien; - Karbonisieren des Halbzeugformteils in nichtoxidierender Atmosphäre bei erhöhter Temperatur, wobei ein kohlenstoffbasierter Formkörper erhalten wird; und - Teiloxidation des karbonisierten Formkörpers zur Erzeugung von Poren.- Manufacture of a semi-finished molded part from carbonizable organic polymer materials; - Carbonization of the semi-finished molded part in a non-oxidizing atmosphere at an elevated temperature, a carbon-based molded body being obtained; and - partial oxidation of the carbonized molded body to produce pores.
Gemäß dieser Ausführungsform des erfindungsgemäßen Verfahrens wird durch Karbonisierung geeigneter Polymermaterialien ein Formkörper gebildet, und nach der Karbonisierung mittels geeigneter Oxidationsmittel im karbonisiertenAccording to this embodiment of the method according to the invention, a shaped body is formed by carbonization of suitable polymer materials, and after carbonization by means of suitable oxidizing agents in the carbonized
Formkörper Porosität erzeugt und/oder vergrößert, indem durch partielle Oxidation des Kohlenstoffs Poren in den kohlenstoffbasierten Formkörper "gebrannt" werden. Zur Erzeugung von Poren in dem kohlenstoffbasierten Formkörper sind im Wesentlichen alle zur Oxidation von Kohlenstoffmaterialien geeigneten Oxidationsverfahren und Oxidationsmittel geeignet.Shaped body porosity is generated and / or increased by "burning" pores in the carbon-based shaped body by partial oxidation of the carbon. Essentially all oxidation processes and oxidizing agents suitable for the oxidation of carbon materials are suitable for producing pores in the carbon-based shaped body.
Bevorzugt ist die Behandlung des karbonisierten Formkörpers bei erhöhterThe treatment of the carbonized shaped body is preferred in the case of elevated
Temperatur in oxidierenden Gasatmosphären. Geeignete Oxidationsmittel für die Teiloxidation in oxidierender Gasphase sind Luft, Sauerstoff, Kohlenmonoxid, Kohlendioxid, Stickstoffoxide und ähnliche Oxidationsmittel. Diese gasförmigen Oxidationsmittel können mit inerten Gasen wie Edelgasen, insbesondere Argon, oder auch Stickstoff gemischt werden und geeignete Volumenkonzentrationen des Oxidationsmittels exakt eingestellt werden. Durch Reaktion mit diesen Oxidationsmitteln werden in den porösen Formkörper im Wege einer partiellen Oxidation Löcher bzw. Poren eingebrannt.Temperature in oxidizing gas atmospheres. Suitable oxidizing agents for the partial oxidation in the oxidizing gas phase are air, oxygen, carbon monoxide, carbon dioxide, nitrogen oxides and similar oxidizing agents. These gaseous oxidizing agents can be mixed with inert gases such as noble gases, in particular argon, or also nitrogen, and suitable volume concentrations of the oxidizing agent can be set exactly. By reaction with these oxidizing agents, holes or pores are burned into the porous molded body by way of partial oxidation.
Bevorzugt wird die Teiloxidation bei erhöhten Temperaturen durchgeführt, insbesondere im Bereich von 50°C bis 800°C.The partial oxidation is preferably carried out at elevated temperatures, in particular in the range from 50 ° C. to 800 ° C.
In einem besonders bevorzugten Verfahren dieser Ausführungsform erfolgt die Teiloxidation durch Behandeln des Formkörpers mit, ggf. strömender, Luft bei Raumtemperatur oder darüber.In a particularly preferred method of this embodiment, the partial oxidation is carried out by treating the molded body with air which may flow, at room temperature or above.
Neben der partiellen Oxidation des Formkörpers mit gasförmigen Oxidationsmitteln können auch flüssige Oxidationsmittel verwendet werden, wie beispielsweise konzentrierte Salpetersäure, die in geeigneter Weise auf den Formkörper aufgebracht wird. Auch hierbei kann es bevorzugt sein, die konzentrierte Salpetersäure beiIn addition to the partial oxidation of the shaped body with gaseous oxidizing agents, liquid oxidizing agents can also be used, such as concentrated nitric acid, which is applied to the shaped body in a suitable manner. Here, too, it may be preferred to add the concentrated nitric acid
Temperaturen oberhalb von Raumtemperatur mit dem karbonisierten Formkörper in Kontakt zu bringen um eine oberflächliche oder tiefergehende Porenerzeugung zu gewährleisten. Die obengenannten Verfahren der Erzeugung von Poren können erfindungsgemäß auch miteinander kombiniert werden. So ist es erfindungsgemäß möglich, neben löslichen Füllstoffen zusätzlich polymere Füllstoffe zu verwenden, die unter Karbonisierungsbedingungen flüchtig sind oder zu flüchtigen Stoffen abgebaut werden. Auf diese Weise lassen sich die aus den Füllstoffen erzeugten gröberen Poren mit den Mikro- oder Nanoporen der polymeren Füllstoffe zu ansiotropen Porenverteilungen verknüpfen. Ferner können zusätzlich zur Porenerzeugung mit Füllstoffen und/oder polymeren Feststoffen die vorhandenen Poren auch durch partielle Oxidation erweitern, miteinander verknüpfen oder modifizieren.To bring temperatures above room temperature into contact with the carbonized shaped body in order to ensure surface or deeper pore formation. The above-mentioned methods of creating pores can also be combined with one another according to the invention. Thus, according to the invention, it is possible, in addition to soluble fillers, to additionally use polymeric fillers which are volatile under carbonization conditions or which are broken down into volatile substances. In this way, the coarser pores produced from the fillers can be linked to the micro- or nanopores of the polymeric fillers to form anisiotropic pore distributions. Furthermore, in addition to the generation of pores with fillers and / or polymeric solids, the existing pores can also be expanded, linked or modified by partial oxidation.
Weiterhin besthet die Möglichkeit die Poren z.B. durch Behandlung mit flüssigkristallinen Teerpechen, zu verschließen und ggf. einer erneuten Temperaturbehandlung zu unterziehen. Durch die Karbonisierung können so hochgeordnete, kristalline Bereiche erzielt werden. Durch Kombination der erfindungsgemäßen Verfahren lassen sich z.B. asymmetrische und symmetrische Gradientenwerkstoffe erhalten.There is also the possibility of pores e.g. by treatment with liquid-crystalline tar pitches, to be sealed and, if necessary, subjected to a further temperature treatment. Carbonization enables highly ordered, crystalline areas to be achieved. By combining the methods according to the invention, e.g. Obtain asymmetrical and symmetrical gradient materials.
ORGANISCHES POLYMERMATERIAL In allen drei genannten Ausführungsformen des erfindungsgemäßen Verfahrens werden als zu Kohlenstoff karbonisierbares organisches Polymermaterial solche Materialien eingesetzt, die unter Karbonisierungsbedingungen, d. h. bei erhöhter Temperatur und in einer im Wesentlichen sauerstofffreien Atmosphäre, Kohlenstoffmaterialien aus amorphem, teilkristallinem und/oder kristallinem symmetrischem oder asymmetrischen Material zurückbleiben.ORGANIC POLYMER MATERIAL In all three of the above-mentioned embodiments of the method according to the invention, such materials are used as the organic polymer material which can be carbonized to carbon and which, under carbonization conditions, i. H. at elevated temperature and in a substantially oxygen-free atmosphere, carbon materials made of amorphous, partially crystalline and / or crystalline symmetrical or asymmetrical material remain.
Ohne auf eine bestimmte Theorie festgelegt werden zu wollen hat sich gezeigt, dass hierzu insbesondere ungesättigte, verzweigte aliphatische Kohlenwasserstoffe, verzweigte oder unverzweigte, vernetzte oder unvernetzte aromatische oder teilaromatische Kohlenwasserstoffe, sowie substituierte Derivate davon geeignet sind. Ungesättigte Kohlenwasserstoffe, insbesondere aromatische Kohlenwasserstoffe werden unter Karbonisierungsbedingungen in der Regel zu Graphit-ähnlichen vernetzten Sechsringstrukturen gebaut, welche das Grundgerüst des carbonisierten Formkörpers bilden.Without wishing to be bound by any particular theory, it has been shown that unsaturated, branched aliphatic hydrocarbons in particular, branched or unbranched, crosslinked or uncrosslinked aromatic or partially aromatic hydrocarbons, and substituted derivatives thereof are suitable. Unsaturated hydrocarbons, especially aromatic hydrocarbons, are usually built under carbonization conditions to form graphite-like cross-linked six-ring structures, which form the basic structure of the carbonized molded body.
Auch gesättigte aliphatische und/oder aromatische Kohlenwasserstoffe mit Heteroatomanteilen, wie Ether, Urethane, Amide und Amine und dergleichen sind als karbonisierbare organische Polymermaterialien oder in Mischungen mit anderen aliphatischen oder aromatischen ungesättigten Kohlenwasserstoffen geeignet in den erfindungsgemäßen Verfahren.Saturated aliphatic and / or aromatic hydrocarbons with heteroatom components, such as ethers, urethanes, amides and amines and the like, are also suitable as carbonizable organic polymer materials or in mixtures with other aliphatic or aromatic unsaturated hydrocarbons in the processes according to the invention.
Bevorzugt werden in den erfindungsgemäßen Verfahren carbonisierbare organische Polymermaterialien ausgewählt aus: Polybutadien; Polyvinyle wie Polyvinylchorid oder Polyvinylalkohol, Poly(meth)acrylsäure, Polyacrylcyanoacrylat; Polyacrylnitril, Polyamid, Polyester, Polyurethan, Polystyrol, Polytetrafluorethylen; Polymeren wie Kollagen, Albumin, Gelatin, Hyaluronsäure, Stärke, Cellulosen wie Methylcellulose, Hydroxypropylcellulose, Hydroxypropylmethylcellulose, Carboxymethylcellulose- Phtalat; Kasein, Dextrane, Polysaccharide, Fibrinogen, Poly(D,L-Lactide), Poly(D,L- Lactide-Co-Glycolide), Polyglycolide, Polyhydroxybutylate, Polyalkylcarbonate, Polyorthoester, Polyester, Polyhydroxyvalerinsäure, Polydioxanone, Polyethylenterephtalat, Polymalatsäure, Polytartronsäure, Polyanhydride, Polyphosphazene, Polyaminosäuren; Polyethylenvinylacetat, Silikone; Poly(Ester- Urethane), Poly(Ether-Urethane), Poly(Ester-Harnstoffe), Polyether wie Polyethylenoxid, Polypropylenoxid, Pluronics, Polytetramethylenglycol; Polyvinylpyrrolidon, Poly(vinyl-acetat-phtalat), Alkydharz, Chlorkautschuk, Epoxidharz, Acrylatharz, Phenolharz, Aminharz, Melaminharz, Alkylphenolharze, epoxidierte aromatische Harze, Teer, teerartige Materialien, Teerpech, flüssigkristalines Teerpech, Bitumen, Stärke, Zellulose, Schellack, organische Materialien aus nachwachsenden Rohstoffen sowie deren Copolymere, Mischungen und Kombinationen dieser Homo- oder Copolymere.In the processes according to the invention, carbonizable organic polymer materials are preferably selected from: polybutadiene; Polyvinyls such as polyvinyl chloride or polyvinyl alcohol, poly (meth) acrylic acid, polyacrylic cyanoacrylate; Polyacrylonitrile, polyamide, polyester, polyurethane, polystyrene, polytetrafluoroethylene; Polymers such as collagen, albumin, gelatin, hyaluronic acid, starch, celluloses such as methyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, carboxymethyl cellulose phthalate; Casein, Dextrans, Polysaccharides, Fibrinogen, Poly (D, L-Lactide), Poly (D, L-Lactide-Co-Glycolide), Polyglycolide, Polyhydroxybutylate, Polyalkylcarbonate, Polyorthoester, Polyester, Polyhydroxyvalerinsäure, Polydioxanone, Polyethyleneterephthalate, Polymalarate Acid, Polymalalate Acid, Polymalalate Polyanhydrides, polyphosphazenes, polyamino acids; Polyethylene vinyl acetate, silicones; Poly (ester-urethanes), poly (ether-urethanes), poly (ester-ureas), polyethers such as polyethylene oxide, polypropylene oxide, Pluronics, polytetramethylene glycol; Polyvinylpyrrolidone, poly (vinyl acetate phthalate), alkyd resin, chlorinated rubber, epoxy resin, acrylate resin, phenolic resin, amine resin, melamine resin, alkylphenol resins, epoxidized aromatic resins, tar, tar-like materials, tar pitch, liquid crystal tar pitch, bitumen, starch, cellulose, shellac, organic materials from renewable raw materials and their copolymers, mixtures and combinations of these homo- or copolymers.
Die karbonisierbaren organischen Polymermaterialien können ferner übliche Additive wie weitere insbesondere unlösliche Füllstoffe, Weichmacher, Gleitmittel, Flammschutzmittel, Glas, Glasfasern, Kohlefasern, Baumwolle, Gewebe, Metallpulver, Metallverbindungen, Silizium, Siliziumoxide, Zeolithe, Titanoxide, Zirkonoxide, Aluminiumoxide, Aluminosilikate, Talkum, Graphit, Russ,The carbonizable organic polymer materials can furthermore contain customary additives such as further in particular insoluble fillers, plasticizers, lubricants, flame retardants, glass, glass fibers, carbon fibers, cotton, fabrics, metal powders, metal compounds, silicon, silicon oxides, zeolites, titanium oxides, zirconium oxides, aluminum oxides, aluminosilicates, talc, Graphite, soot,
Tonmaterialien, Phyllosilikate und dergleichen enthalten. Insbesondere faserartige Materialien aus Cellulose, Baumwolle, Textilgeweben, Glasfasern, Kohlefasern und dergleichen als Polymeradditive sind in bevorzugten Ausführungsformen der vorliegenden Erfindung dazu geeignet die mechanischen Eigenschaften der erzeugten porösen Formkörper zu verbessern.Contain clay materials, phyllosilicates and the like. In particular, fibrous materials made of cellulose, cotton, textile fabrics, glass fibers, carbon fibers and the like as polymer additives are suitable in preferred embodiments of the present invention for improving the mechanical properties of the porous moldings produced.
Die Herstellung der Halbzeugformteile gemäß den Verfahren der vorliegenden Erfindung kann mittels üblichen und dem Fachmann bekannten Formgebungsverfahren für Polymermaterialien erfolgen. Geeignete Formgebungsverfahren sind Gussverfahren, Extrusionsverfahren, Pressverfahren, Spritzgussverfahren, Koextrusionsblasformen oder andere übliche Formgebungsverfahren, beispielsweise auch Wickelverfahren oder Strangwickelverfahren unter Verwendung flächiger Ausgangsmaterialien.The semi-finished molded parts can be produced according to the methods of the present invention by means of conventional shaping methods for polymer materials known to the person skilled in the art. Suitable shaping processes are casting processes, extrusion processes, pressing processes, injection molding processes, coextrusion blow molding or other customary shaping processes, for example also winding processes or strand winding processes using flat starting materials.
KARBONISIERUNG Die Karbonisierung erfolgt bei den erfindungsgemäßen Verfahren in einer im Wesentlichen sauerstofffreien bzw. oxidationsmittelfreien Atmosphäre. Geeignete Karbonisierungsatmosphären sind beispielsweise Schutzgas, vorzugsweise Stickstoff und/oder Argon, Edelgase, SiF6 und Mischungen dieser Schutzgase. Gegebenenfalls können diese Schutzgasatmosphären bei Unterdruck oder Überdruck angewendet werden. Auch die Karbonisierung im Vakuum kann bei den erfindungsgemäßen Verfahren vorteilhaft eingesetzt werden.CARBONIZATION In the processes according to the invention, carbonization takes place in an essentially oxygen-free or oxidizer-free atmosphere. suitable Carbonization atmospheres are, for example, protective gas, preferably nitrogen and / or argon, noble gases, SiF 6 and mixtures of these protective gases. If necessary, these protective gas atmospheres can be used for negative or positive pressure. Carbonation in a vacuum can also be used advantageously in the processes according to the invention.
Ferner kann es bevorzugt sein, des Inertgasatmosphäre reaktive Gase beizumischen. Bevorzugte reaktive Gase hierfür sind nichtoxidierende Gase wie Wasserstoff, Ammoniak, d-C6 gesättigte aliphatische Kohlenwasserstoffe wie Methan, Ethan, Propan und Butan, Mischungen dieser, und dergleichen.Furthermore, it may be preferred to add reactive gases to the inert gas atmosphere. Preferred reactive gases for this are non-oxidizing gases such as hydrogen, ammonia, dC 6 saturated aliphatic hydrocarbons such as methane, ethane, propane and butane, mixtures of these, and the like.
Geeignete Temperaturen für den Karbonisierungsschritt liegen im Bereich von 200°C bis zu 4000°C oder mehr. Je nach gewählter Temperatur im Karbonisierungsschritt und der Art des verwendeten Polymermaterials lassen sich kohlenstoffhaltige Formkörper erzeugen, deren Basismaterial in seiner Struktur von amorph bis zu geordnet kristallinen graphitartigen Strukturen oder Mischungen beider Werkstoffe reicht.Suitable temperatures for the carbonation step are in the range of 200 ° C to 4000 ° C or more. Depending on the temperature selected in the carbonization step and the type of polymer material used, carbon-containing molded articles can be produced, the base material of which ranges in structure from amorphous to ordered crystalline graphite-like structures or mixtures of both materials.
Der Fachmann wird in Abhängigkeit von den spezifischen temperaturabhängigen Eigenschaften der verwendeten Polymermaterialien bzw.Depending on the specific temperature-dependent properties of the polymer materials used or
Ausgangsmaterialmischungen eine geeignete Temperatur, geeignete Atmosphäre und geeignete Druckbedingungen auswählen.Select a suitable temperature, suitable atmosphere and suitable pressure conditions for the starting material mixtures.
Die Atmosphäre beim Karbonisierungsschritt der erfindungsgemäßen Verfahren ist im Wesentlichen frei von Sauerstoff, vorzugsweise mit O2 gehalten unter 10 ppm, besonders bevorzugt unter 1 ppm. Bevorzugt ist die Verwendung von Wasserstoffoder Inertgasatmosphären, beispielsweise aus Stickstoff, Edelgasen wie Argon, Neon, sowie beliebige andere inerte, nicht mit Kohlenstoff reagierende Gase oder Gasverbindungen sowie deren Mischungen. Besonders bevorzugt ist Stickstoff.The atmosphere in the carbonization step of the process according to the invention is essentially free of oxygen, preferably with O 2 kept below 10 ppm, particularly preferably below 1 ppm. Preference is given to using hydrogen or inert gas atmospheres, for example nitrogen, noble gases such as argon, Neon, as well as any other inert, non-carbon-reactive gases or gas compounds and their mixtures. Nitrogen is particularly preferred.
Der Karbonisierangsschritt wird vorzugsweise in einem diskontinuierlichen Verfahren in geeigneten Öfen stattfinden, kann aber auch in kontinuierlichenThe carbonization step will preferably take place in a batch process in suitable furnaces, but can also take place in a continuous process
Ofenprozessen durchgeführt werden, was gegebenenfalls auch bevorzugt sein kann.Oven processes are carried out, which may also be preferred.
Die Halbzeugformteile werden dabei auf einer Seite dem Ofen zugeführt und am anderen Ende des Ofens wieder austreten. In bevorzugten Ausführungsformen kann das Halbzeugformteil im Ofen auf einer Lochplatte, einem Sieb oder dergleichen aufliegen, so dass durch den Polymerfilm während der Pyrolyse bzw. Karbonisierung Unterdruck angelegt werden kann. Dies ermöglicht einerseits eine einfache Fixierung der Implantate im Ofen, andererseits auch eine Absaugung und optimale Durchströmung der Halbzeugformteile mit Inertgas während der Karbonisierung.The semi-finished parts are fed to the furnace on one side and exit again at the other end of the furnace. In preferred embodiments, the semi-finished molded part can rest in the oven on a perforated plate, a sieve or the like, so that negative pressure can be applied through the polymer film during the pyrolysis or carbonization. On the one hand, this enables simple fixation of the implants in the furnace, and on the other hand, suction and optimal flow of inert gas through the semi-finished parts during carbonization.
Der Ofen kann durch entsprechende Inertgasschleusen in einzelne Segmente unterteilt werden, in welchen nacheinander ein oder mehrere Karbonisierungsschritte, gegebenenfalls bei unterschiedlichen Karbonisierungsbedingungen wie zum Beispiel unterschiedlichen Temperaturstufen, verschiedenen Inertgasen bzw. Vakuum durchgeführt werden können. Femer können in entsprechenden Segmenten des Ofens gegebenenfalls auch Nachbehandlungs-, Aktivierungs- oder Zwischenbehandlungsschritte erfolgen, wie beispielsweise partielle Oxidation, Reduktion oder auch Imprägnierung mit Metallsalzlösungen und dergleichen.The furnace can be divided into individual segments by appropriate inert gas locks, in which one or more carbonization steps can be carried out in succession, optionally under different carbonization conditions such as different temperature levels, different inert gases or vacuum. Post-treatment, activation or intermediate treatment steps, such as partial oxidation, reduction or also impregnation with metal salt solutions and the like, can also optionally be carried out in corresponding segments of the furnace.
Alternativ hierzu kann die Karbonisierung in einem geschlossenen Ofen durchgeführt werden, was insbesondere dann bevorzugt ist, wenn die Karbonisierung im Vakuum dui-chgeführt werden soll. Je nach verwendetem karbonisierbarem organischem Polymermaterial bzw. eingesetzten Füllstoffen tritt während des Karbonisierungsschritts in den erfindungsgemäßen Verfahren eine Gewichtsabnahme des Materials von ca. 5 % bis 95 %, vorzugsweise von ca. 40 % bis 90 %, insbesondere 50 % bis 70 % auf.As an alternative to this, the carbonization can be carried out in a closed furnace, which is particularly preferred if the carbonization is to be carried out in a vacuum. Depending on the carbonizable used organic polymer material or fillers used during the carbonization step in the process according to the invention a decrease in weight of the material of approximately 5% to 95%, preferably approximately 40% to 90%, in particular 50% to 70%.
NACHBEHANDLUNGTREATMENT
In bevorzugten Ausführungsformen der Erfindung werden die physikalischen und chemischen Eigenschaften der kohlenstoffbasierten Formkörper bzw. der erzeugten Poren nach der Karbonisierung durch geeignete Nachbehandlungsschritte weiter modifiziert und dem jeweils gewünschten Verwendungszweck angepasst.In preferred embodiments of the invention, the physical and chemical properties of the carbon-based shaped bodies or of the pores generated after the carbonization are further modified by suitable post-treatment steps and adapted to the particular intended use.
Geeignete Nachbehandlungen sind beispielsweise reduzierende oder oxidative Nachbehandlungsschritte, bei welchem die porösen Formkörper mit geeigneten Reduktionsmitteln und/oder Oxidationsmitteln wie Wasserstoff, Kohlendioxid, Stickstoffoxide wie N2O, Wasserdampf, Sauerstoff, Luft, Salpetersäure und dergleichen sowie ggf. Mischungen dieser behandelt werden.Suitable aftertreatments are, for example, reducing or oxidative aftertreatment steps in which the porous moldings are treated with suitable reducing agents and / or oxidizing agents such as hydrogen, carbon dioxide, nitrogen oxides such as N 2 O, water vapor, oxygen, air, nitric acid and the like, and, if appropriate, mixtures of these.
Weiterhin können Beschichtungen der Oberflächen erfolgen, die einseitig oder beidseitg erfolgen können. Geeignete Beschichtungsmaterialien können z.B. die oben genannten organischen Polymermaterialien sein, die gegebenenfalls nach Auftragung einem weiteren Karbonisierungs- bzw. Pyrolyseschritt unterzogen werden, um asymmetrische Texturen im Formkörper zu erzielen. Auch die Beschichtung mit anorganischen Stoffen, bioverträglichen Polymeren und Stoffen ist erfindungsgemäß möglich, um die Oberflächen der Formkörper die jeweils gewünschten Eigenschaften zu verleihen. Die Nachbehandlungsschritte kömien ggf. bei erhöhter Temperatur, jedoch unterhalb der Karbonisierungstemperatur, beispielsweise von 15°C bis 1000°C, vorzugsweise 70°C bis 900°C, besonders bevorzugt 100°C bis 850°C, insbesondere bevorzugt 200°C bis 800°C und insbesondere bei etwa 700 °C durchgeführt werden. In besonders bevorzugten Ausfuhrungsformen werden die erfindungsgemäß hergestellten porösen Formkörper reduktiv oder oxidativ, oder mit einer Kombination dieser Nachbehandlungsschritte bei Raumtemperatur modifiziert.Furthermore, the surfaces can be coated, which can be carried out on one side or on both sides. Suitable coating materials can be, for example, the above-mentioned organic polymer materials, which, if appropriate, are subjected to a further carbonization or pyrolysis step in order to achieve asymmetrical textures in the shaped body. Coating with inorganic substances, biocompatible polymers and substances is also possible according to the invention in order to give the surfaces of the moldings the desired properties. The post-treatment steps may take place at elevated temperature, but below the carbonization temperature, for example from 15 ° C. to 1000 ° C., preferably 70 ° C. to 900 ° C., particularly preferably 100 ° C. to 850 ° C., particularly preferably 200 ° C. to 800 ° C. ° C and in particular be carried out at about 700 ° C. In particularly preferred embodiments, the porous molded articles produced according to the invention are modified reductively or oxidatively, or with a combination of these post-treatment steps at room temperature.
Durch oxidative bzw. reduktive Behandlung, oder auch den Einbau von Zusatzstoffen, Füllstoffen oder funktioneilen Materialien lassen sich dieBy oxidative or reductive treatment, or the incorporation of additives, fillers or functional materials, the
Porendimensionen und deren Eigenschaften bei den erfindungsgemäß hergestellten porösen Formkörpern gezielt beeinflussen bzw. verändern. Beispielsweise können durch Einbau von anorganischen Nanopartikeln oder Nanokompositen wie Schichtsilikaten die Oberflächeneigenschaften des kohlenstoffhaltigen Materials hydrophilisiert oder hydrophobisiert werden.Effectively influence or change pore dimensions and their properties in the porous molded articles produced according to the invention. For example, by incorporating inorganic nanoparticles or nanocomposites such as layered silicates, the surface properties of the carbon-containing material can be made hydrophilic or hydrophobic.
Weiterhin können die porösen Formkörper durch nachträgliches Beschichten, z.B. mit Polymerlösungen, ein- oder beidseitig verschlossen werden. Diese Beschichtung kann ggf. nochmals karbonisiert werden, um beispielsweise die Stabilität zu erhöhen.Furthermore, the porous shaped bodies can be coated by subsequent coating, e.g. with polymer solutions, closed on one or both sides. This coating can optionally be carbonized again, for example to increase stability.
Auch können die erfindungsgemäß hergestellten porösen Formkörper nachträglich durch Einbau geeigneter Zusatzstoffe mit biokompatiblen äußeren und/oder inneren Oberflächen ausgestattet werden. So modifizierte Formkörper lassen sich beispielsweise als Bioreaktoren, Zellkulturträger- bzw. aufzuchtsysteme, Implantate oder als Arzneistoffträger oder -Depots, insbesondere auch in den Körper implantierbare Systeme, eingesetzt werden. Im letzteren Fall können z.B. Medikamente oder Enzyme in das Material eingebracht werden, wobei diese ggf. durch geeignete Retardierung und/oder selektive Permeationseigenschaften aufgebrachter Beschichtungen kontrolliert freigesetzt werden können.The porous moldings produced according to the invention can also be subsequently equipped with biocompatible outer and / or inner surfaces by incorporating suitable additives. Shaped bodies modified in this way can be used, for example, as bioreactors, cell culture carrier or rearing systems, implants or as drug carriers or depots, in particular also systems which can be implanted in the body. In the latter case, drugs or enzymes, for example, can be introduced into the material. can be released in a controlled manner by suitable retardation and / or selective permeation properties of applied coatings.
Der poröse Formkörper kann gegebenenfalls auch in einem weiteren optionalen Verfahrensschritt, einem sogenannten CVD-Prozeß (Chemical Vapour Deposition, chemische Gasphasenabscheidung) oder CVI-Prozeß (Chemical Vapour Infiltration) unterzogen werden, um die Oberflächen- oder Porenstruktur und deren Eigenschaften weiter zu modifizieren, ggf. die Poren oberflächlich oder vollständig zu verschließen Hierzu wird die karbonisierte Beschichtung mit geeigneten, Kohlenstoffabspaltenden Precursorgasen bei hohen Temperaturen behandelt. Auch andere Elemente können damit abgeschieden werden, beispielsweise Silizium, Aluminium oder Titan, insbesondere zur Erzeugung der entsprechenden Carbide. Derartige Verfahren sind im Stand der Technik bekannt. Durch entsprechende Vorstrukturierung der Formkörper, beispielsweise unter Verwendung von Fasermaterialien unteschiedlicher Länge und/oder Dicke können soThe porous molded body can optionally also be subjected to a further optional process step, a so-called CVD process (Chemical Vapor Deposition, chemical vapor deposition) or CVI process (Chemical Vapor Infiltration) in order to further modify the surface or pore structure and its properties. if necessary, to superficially or completely close the pores For this purpose, the carbonized coating is treated with suitable, carbon-releasing precursor gases at high temperatures. Other elements can also be deposited with it, for example silicon, aluminum or titanium, in particular for producing the corresponding carbides. Such methods are known in the prior art. Appropriate pre-structuring of the shaped bodies, for example using fiber materials of different lengths and / or thicknesses, can thus
Gradientenwerkstoffe erhalten werden, welche eine über das Volumen des Formkörpers asymmetrisch verteilte Konzentration bestimmter Einlagerungs- oder Reaktionsverbindungen, Beispielsweise der Metall- oder Nichtmetallcarbide, -nitride oder -boride zu erhalten. Man kann somit Gradientenwerkstoffe erhalten, die symmeterisch oder asymetrisch, isotrop oder anisotrop, geschlossenporig, porös oder mit faserartigen Leitstrukturen oder beliebigen Kombinationen hieraus ausgestattet sind.Gradient materials are obtained which have a concentration of certain intercalation or reaction compounds, for example the metal or non-metal carbides, nitrides or borides, which is distributed asymmetrically over the volume of the shaped body. Gradient materials can thus be obtained which are symmetrical or asymmetrical, isotropic or anisotropic, have closed pores, are porous or have fiber-like guide structures or any combination thereof.
Als Kohlenstoff-abspaltende Precursor kommen nahezu alle bekannten gesättigten und ungesättigten Kohlenwasserstoffe mit ausreichender Flüchtigkeit unter CVD- Bedingungen in Frage. Beispiele hierfür sind Methan, Ethan, Ethylen, Acetylen, lineare und verzweigte Alkane, Alkene und Alkine mit Kohlenstoffzahlen von Ci - C20, aromatische Kohlenwasserstoffe wie Benzol, Naphthalin etc., sowie ein- und mehrfach alkyl-, alkenyl- und alkinylsubstituierte Aromaten wie beispielsweise Toluol, Xylol, Cresol, Styrol etc.Almost all known saturated and unsaturated hydrocarbons with sufficient volatility under CVD conditions are suitable as carbon-releasing precursors. Examples include methane, ethane, ethylene, acetylene, linear and branched alkanes, alkenes and alkynes with carbon numbers of Ci - C 20 , aromatic hydrocarbons such as benzene, naphthalene etc., and one and multi-alkyl, alkenyl and alkynyl-substituted aromatics such as toluene, xylene, cresol, styrene etc.
Als Keramik-Precursor können BC13, NH3, Silane wie SiH , Tetraethoxysilan (TEOS), Dichlorodimethylsilan (DDS), Methyltrichlorosilan (MTS), Trichlorosilyl- dichloroboran (TDADB), Hexadichloromethylsilyloxid (HDMSO), A1C13, TiCl3 oder Mischungen davon verwendet werden.As the ceramic precursor can BC1 3, NH 3, silanes such as SiH, tetraethoxysilane (TEOS), dichlorodimethylsilane (DDS), methyltrichlorosilane (MTS), Trichlorosilyl- dichloroboran (TDADB) Hexadichloromethylsilyloxid (HDMSO), A1C1 3, TiCl 3 or mixtures thereof be used.
Diese Precursor werden in CVD-Verfahren zumeist in geringer Konzentration von etwa 0,5 bis 15 Vol.-% in Mischung mit einem Inertgas, wie beispielsweiseThese precursors are mostly used in CVD processes in a low concentration of about 0.5 to 15% by volume in a mixture with an inert gas, such as, for example
Stickstoff, Argon oder dergleichen angewendet. Auch der Zusatz von Wasserstoff zu entsprechenden Abscheidegasgemischen ist möglich. Bei Temperaturen zwischen 500 und 2000°C, vorzugsweise 500 bis 1500°C und besonders bevorzugt 700 bis 1300°C, spalten die genannten Verbindungen Kohlenwasserstofffragmente bzw. Kohlenstoff oder keramische Vorstufen ab, die sich im Porensystem des porösen Formkörpers im wesentlichen gleichmäßig verteilt niederschlagen, dort die Porenstruktur modifizieren und so zu einer im wesentlichen homogenen Porengröße und Porenverteilung führen.Nitrogen, argon or the like applied. It is also possible to add hydrogen to the corresponding separating gas mixtures. At temperatures between 500 and 2000 ° C., preferably 500 to 1500 ° C. and particularly preferably 700 to 1300 ° C., the compounds mentioned split off hydrocarbon fragments or carbon or ceramic precursors, which are substantially uniformly distributed in the pore system of the porous shaped body, modify the pore structure there and thus lead to an essentially homogeneous pore size and pore distribution.
Mittels CVD-Methoden lassen sich gezielt Poren in dem kohlenstoffhaltigen porösen Formkörper verkleinem, bis hin zur völligen Schließung/Versiegelung der Poren. Hierdurch lassen sich die sorptiven Eigenschaften, wie auch die mechanischen Eigenschaften der Formkörper maßgeschneidert einstellen.By means of CVD methods, pores in the carbon-containing porous shaped body can be deliberately reduced to the point where the pores are completely closed / sealed. As a result, the sorptive properties, as well as the mechanical properties of the shaped bodies, can be tailored.
Durch CVD von Silanen oder Siloxanen, gegebenenfalls im Gemisch mitBy CVD of silanes or siloxanes, optionally in a mixture with
Kohlenwasserstoffen lassen sich die kohlenstoffhaltigen porösen Formkörper durch Carbid- oder Oxycarbidbildung beispielsweise oxidationsbeständig modifizieren. Hierzu sind, sofern sich die Carbide nicht bereits unter CVD-Bedingungen bilden, gegebenenfalls erhöhte Temperaturen nötig, um die Carbidbildung zu fördern.For hydrocarbons, the carbon-containing porous shaped bodies can be modified, for example by oxidation, by carbide or oxycarbide formation. If the carbides are not already formed under CVD conditions, elevated temperatures may be necessary to promote carbide formation.
In bevorzugten Ausführungsformen können die erfindungsgemäßen porösen Formkörper mittels Sputterverfahren zusätzlich beschichtet bzw. modifiziert werden. Hierzu können Kohlenstoff, Silizium oder Metalle bzw. Metallverbindungen aus geeigneter Sputtertargets nach an sich bekannten Verfahren aufgebracht werden. Beispiele hierfür sind Ti, Zr, Ta, W, Mo, Cr, Cu, die in die porösen Formkörper eingestäubt werden können, wobei sich in der Regel die entsprechenden Carbide bilden.In preferred embodiments, the porous moldings according to the invention can additionally be coated or modified by means of sputtering processes. For this purpose, carbon, silicon or metals or metal compounds from suitable sputtering targets can be applied by methods known per se. Examples of these are Ti, Zr, Ta, W, Mo, Cr, Cu, which can be dusted into the porous shaped bodies, the corresponding carbides generally forming.
Femer können mittels Ionenimplantierung die Oberflächeneigenschaften des porösen Formkörpers modifiziert werden. So können durch Implantierung von Stickstoff Nitrid-, Carbonitrid- oder Oxynitridphasen mit eingelagerten Übergangsmetallen gebildet werden, was die chemische Resistenz und mechanischeThe surface properties of the porous molded body can also be modified by means of ion implantation. Thus, nitride, carbonitride or oxynitride phases with embedded transition metals can be formed by implantation of nitrogen, which means the chemical resistance and mechanical
Widerstandsfähigkeit der kohlenstoffhaltigen porösen Formkörper deutlich erhöht.Resistance of the carbon-containing porous molded body significantly increased.
Die Beschichtung mit z.B. flüssigkristallinen Teerpechen kann zu asymetrischen Werkstoffeigenschaften führen, je nach Ausrichtung der Gitterstrukturen bei der anschließenden Vernetzung, Karbonisierung bzw. Graphitisierung. Dies sind unter anderem die thermische Ausdehnung, die mechanischen Eigenschaften, die elektrische Leitfähigkeit, u.a.The coating with e.g. Liquid-crystalline tar pitches can lead to asymmetrical material properties, depending on the orientation of the lattice structures during the subsequent crosslinking, carbonization or graphitization. These include the thermal expansion, the mechanical properties, the electrical conductivity, etc.
In bestimmten Ausführungsformen kann es vorteilhaft sein, die porösen Formkörper mit einer Beschichtung aus biologisch abbaubaren bzw. resorbierbaren Polymeren wie Kollagen, Albumin, Gelatin, Hyaluronsäure, Stärke, Cellulosen wie Methylcellulose, Hydroxypropylcellulose, Hydroxypropylmethylcellulose, Carboxymethylcellulose-Phtalat; Kasein, Dextrane, Polysaccharide, Fibrinogen, Poly(D,L-Lactide), Poly(D,L-Lactide-Co-Glycolide), Poly(Glycolide), Poly(Hydroxybutylate), Poly(Alkylcarbonate), Poly(Orthoester), Polyester, Poly(Hydroxyvalerinsäure), Polydioxanone, Poly(Ethylenterephtalate), Poly(malatsäure), Poly(Tartronsäure), Polyanhydride, Polyphosphazene, Poly( Aminosäuren), und deren Co-Polymere oder nicht-biologisch abbaubaren bzw. resorbierbaren Polymeren zumindest teilweise zu beschichten. Bevorzugt sind insbesondere anionische, kationischen oder amphotere Beschichtungen, wie z.B. Alginat, Carrageenan, Carboxymethylcellulose; Chitosan, Poly-L-Lysine; und/oder Phoshporylcholin.In certain embodiments, it may be advantageous to coat the porous shaped articles with a coating of biodegradable or resorbable polymers such as collagen, albumin, gelatin, hyaluronic acid, starch, celluloses such as methyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, carboxymethyl cellulose phthalate; Casein, dextrans, polysaccharides, fibrinogen, Poly (D, L-lactide), poly (D, L-lactide-co-glycolide), poly (glycolide), poly (hydroxybutylate), poly (alkylcarbonate), poly (orthoester), polyester, poly (hydroxyvaleric acid), polydioxanone , Poly (ethylene terephthalate), poly (malate acid), poly (tartronic acid), polyanhydrides, polyphosphazenes, poly (amino acids), and their copolymers or non-biodegradable or resorbable polymers at least partially to coat. Particularly preferred are anionic, cationic or amphoteric coatings, such as alginate, carrageenan, carboxymethyl cellulose; Chitosan, poly-L-lysine; and / or phosphorylcholine.
Sofern erforderlich kann in besonders bevorzugten Ausführungsformen der poröse Formkörper nach der Karbonisierung und/oder nach gegebenenfalls erfolgten Nachbehandlungsschritten weiteren chemischen oder physikalischen Oberflächenmodifikationen unterzogen werden. Auch Reinigungsschritte zur Entfernung von eventuellen Rückständen und Verunreinigungen können hier vorgesehen werden. Hierzu können die oben bereits erwähnten Säuren, insbesondere oxidierende Säuren, oder Lösemittel verwendet werden, bevorzugt ist das Auskochen in Säuren oder Lösemitteln.If necessary, in particularly preferred embodiments, the porous molded body can be subjected to further chemical or physical surface modifications after the carbonization and / or after any post-treatment steps that may have taken place. Cleaning steps to remove any residues and contaminants can also be provided here. For this purpose, the acids already mentioned above, in particular oxidizing acids, or solvents can be used, boiling out in acids or solvents is preferred.
Die erfindungsgemäßen Formkörper können durch geeignete Wahl der Ausgangsund Zusatzstoffe in ihrem pH- Wert und der Pufferkapazität in wässriger Umgebung in weiten Bereichen gezielt eingestellt werden. Der pH- Wert erfindungsgemäß hergestellter Formkörper in Wasser kann im Bereich von pH 0 bis pH 14 liegen, vorzugsweise im Bereich von pH 6-8 und besonders bevorzugt bei pH- Werten von 6,5 bis 7,5. Der Pufferbereich erfindungsgemäß hergestellter Formkörper liegt vorzugsweise im neutralen bis sauren Bereich, besonders bevorzugt im schwach sauren Bereich, die Pufferkapazität kann bis zu 50 mol/Liter, vorzugsweise bis zu 10 mol/Liter betragen und liegt in bevorzugten Anwendungen üblicherweise bei 0,5 bis 5 mol/Liter.The moldings according to the invention can be adjusted in a wide range in a targeted manner by suitable choice of the starting materials and additives in their pH value and the buffer capacity in an aqueous environment. The pH value of shaped articles produced according to the invention in water can be in the range from pH 0 to pH 14, preferably in the range from pH 6-8 and particularly preferably at pH values from 6.5 to 7.5. The buffer area of molded articles produced according to the invention is preferably in the neutral to acidic range, particularly preferably in the weakly acidic range, and the buffering capacity can be up to 50 mol / liter, preferably up to 10 Mol / liter and in preferred applications is usually 0.5 to 5 mol / liter.
FORMKÖRPERMOLDING
Die nach den erfindungsgemäßen Verfahren herstellbaren Formkörper können in beliebigen zwei- oder dreidimensionalen Formen hergestellt werden. Hierzu werden die Halbzeugformteile aus den organischen Polymermaterialien, gegebenenfalls in Mischung mit polymeren oder nichtpolymeren Füllstoffen, mittels geeigneter Formgebungsverfahren zu entsprechenden Rohformen verarbeitet, die gegebenenfalls unter Berücksichtigung des bei der Karbonisierung auftretenden dimensionalen Schwundes den Endformen der porösen kohlenstoffbasierten Formkörper entsprechen. Die erfindungsgemäßen porösen Formkörper können in Form von Rohren, Rundstäben, Platten, Blöcken, Quadern, Würfeln, Voll- oder Hohlkugeln, Flanschen, Dichtungen, Gehäusen und dergleichen hergestellt werden, oder auch länglich geformt sein, wie kreissäulenförmig, mehreckssäulenförmig wie etwa dreieckssäulenförmig oder barrenförmig; oder plattenförmig; oder auch mehreckförmig sein, wie tetraederförmig, pyramidenförmig, oktaederförmig, dodekaederförmig, ikosaederförmig, rhomboid, prismenförmig; oder sphärisch sein, wie etwa kugelförmig, sphärisch oder zylindrisch linsenförmig, oder ringförmig, wabenförmig, mit geraden oder gebogenen Kanälen, gewickelt, gefaltet mit unterschiedlichen Kanaldurchmessern und Durchstömungsrichtungen (parallel, kreuzweise bzw. mit beliebigen Winkeln zwischen den Kanälen).The moldings which can be produced by the processes according to the invention can be produced in any two- or three-dimensional shape. For this purpose, the semi-finished molded parts made of the organic polymer materials, optionally in a mixture with polymeric or non-polymeric fillers, are processed into suitable raw forms by means of suitable shaping processes, which, taking into account the dimensional shrinkage occurring during carbonization, may correspond to the final forms of the porous carbon-based shaped bodies. The porous moldings according to the invention can be produced in the form of tubes, round rods, plates, blocks, cuboids, cubes, solid or hollow spheres, flanges, seals, housings and the like, or else be elongated, such as circular columns, polygonal columns such as triangular columns or bars ; or plate-shaped; or also polygonal, such as tetrahedral, pyramidal, octahedral, dodecahedral, icosahedral, rhomboid, prismatic; or be spherical, such as spherical, spherical or cylindrical lenticular, or annular, honeycomb-shaped, with straight or curved channels, coiled, folded with different channel diameters and flow directions (parallel, crosswise or with any angle between the channels).
Gemäß einer besonderen Ausfuhrungsform der vorliegenden Erfindung wird mit einem der erfindungsgemäßen Herstellungsverfahren ein Rohr aus porösem kohlenstoffbasiertem Material hergestellt. Bevorzugt ist dabei die Karbonisierung eines Schlauchs aus Natur- oder Synthesekautschuk oder geeigneten Kunststoffen wie oben als zu Kohlenstoff karbonisierbare kohlenstoffhaltige Formkörper erwähnt, der gegebenenfalls mit Faser- oder Gewebeeinlagen verstärkt ist. Besonders bevorzugt ist die Verwendung eines mit Kunstharzen getränkten Textilgewebes in Form eines Schlauches, das als Halbzeugformteil zur Herstellung eines Rohres aus porösem kunststoffbasierten Material gemäß einem der Verfahren der vorliegenden Erfindung verwendet wird.According to a special embodiment of the present invention, a tube made of porous carbon-based material is produced using one of the production methods according to the invention. The carbonization of a hose made of natural or synthetic rubber or suitable plastics is preferred as mentioned above as carbon-containing moldings which can be carbonized to carbon and which is optionally reinforced with fiber or fabric inserts. Particularly preferred is the use of a textile fabric impregnated with synthetic resins in the form of a tube, which is used as a semi-finished molded part for producing a tube from porous plastic-based material according to one of the methods of the present invention.
Der zur Herstellung eines porösen Rohres verwendete Schlauch kann mehrschichtig aufgebaut sein, beispielsweise umfassend eine innere Schicht aus geschäumtem Kunststoff und eine äußere Schicht aus nichtgeschäumtem Kunststoff oder umgekehrt. Auch die Aufbringung weiterer Schichten ist erfindungsgemäß möglich.The hose used to produce a porous tube can be constructed in several layers, for example comprising an inner layer made of foamed plastic and an outer layer made of non-foamed plastic or vice versa. The application of further layers is also possible according to the invention.
Besonders bevorzugt ist es, dass der mehrschichtige Schlauch durch Koextrasionsblasformen als Halbzeugformteil hergestellt und anschließend zu einem Rohr karbonisiert wird.It is particularly preferred that the multi-layer hose is produced by co-extrusion blow molding as a semi-finished molded part and then carbonized into a tube.
In einer weiteren Ausführungsform der vorliegenden Erfindung kann ein Rohr aus kohlenstoffbasiertem Material dadurch hergestellt werden, dass ein mit Polymermaterialien getränktes oder beschichtetes Papiermaterial, beispielsweise auf einer Drehbank zu einem Rohr gewickelt wird, welches anschließend unter Karbonisierungsbedingungen zu einem porösen kohlenstoffhaltigen Rohr karbonisiert wird.In a further embodiment of the present invention, a tube made of carbon-based material can be produced by winding a paper material impregnated or coated with polymer materials, for example on a lathe, into a tube, which is then carbonized under carbonization conditions to form a porous carbon-containing tube.
Bevorzugt wird nach diesem Herstellungsverfahren ein flächiges Fasergewebe, Kanalstrukturen oder Filzstrukturen sowie alle Kombinationen hieraus, mit organischen Polymermaterialien imprägniert und/oder beschichtet und über einen geeigneten Dom aufgewickelt. Anschließend wird mit oder ohne Dom karbonisiert und der Dom dann ggf. entfernt. Auf diese Weise lassen sich einfach und präzise poröse Rohre herstellen, die dann noch nachbehandelt, nachverdichtet oder versiegelt werden können.According to this production process, a flat fiber fabric, channel structures or felt structures and all combinations thereof are preferably impregnated and / or coated with organic polymer materials and wound up over a suitable dome. Then carbonization is carried out with or without the dome and the dome is then removed if necessary. This makes it easy and precise Produce porous tubes that can then be treated, recompressed or sealed.
Durch geeignete Nachbehandlung mittels CVD oder Beschichtung, z.B. mit organischen Polymeren können so hergestellte poröse Rohre ganz oder teilweise versiegelt werden.By suitable post-treatment using CVD or coating, e.g. Porous tubes produced in this way can be completely or partially sealed with organic polymers.
Auch ist es erfindungsgemäß möglich, Halbzeugformteile zur Herstellung von Rohren wie Polymerschläuche, insbesondere auch Endlosschläuche in kontinuierlichen Verfahren zur Herstellung von Kohlenstoffrohren zu verwenden. Besonders bevorzugt ist auch hier die Verwendung faserverstärkter Schläuche, wobei die Fasern ausgewählt werden können aus Textil oder Gewebefasem, Glasfasern, Kohlefasem, Steinwolle, Polymerfasem, beispielsweise aus Polyacrylnitril, Nonwoven-Materialien, Faservliese, Filze, Cellulose, PET-Fasern und beliebige Mischungen dieser Materialien.It is also possible according to the invention to use semi-finished molded parts for the production of pipes such as polymer hoses, in particular also endless hoses in continuous processes for the production of carbon pipes. The use of fiber-reinforced hoses is also particularly preferred here, the fibers being able to be selected from textile or fabric fibers, glass fibers, carbon fibers, rock wool, polymer fibers, for example from polyacrylonitrile, nonwoven materials, nonwoven fabrics, felts, cellulose, PET fibers and any mixtures thereof Materials.
Durch Verwendung mehrschichtiger Halbzeugformteile können asymmetrische Aufbauten der erfindungsgemäß herstellbaren kohlenstoffhaltigen Formkörper realisiert werden. Beispielsweise können geschäumte Polymermaterialien wie Polyurethanschaum, Polyacrylnitrilschaum und dergleichen mit einer weiteren Schicht aus dichtem Polymermaterial geformt werden, die anschließend zu Formkörpern mit regional unterschiedlicher Porositätsverteilung karbonisiert werden.By using multi-layer semi-finished molded parts, asymmetrical structures of the carbon-containing molded articles that can be produced according to the invention can be realized. For example, foamed polymer materials such as polyurethane foam, polyacrylonitrile foam and the like can be molded with a further layer of dense polymer material, which are then carbonized to give moldings with regionally different porosity distributions.
Bei Hohlkörpern können bereits im Halbzeugformteil Flansche mit anlaminiert werden, die dann im Wesentlichen geschlossenporig durchkarbonisiert werden. Beim Einsatz von Polymerfasem und -Geweben entstehen so Vollkarbon-Moduleinheiten mit ausgezeichnetem Haftverbindung zwischen Faser und Matrix. Die nach einem erfindungsgemäßen Verfahren hergestellten kohlenstoffbasierten Formkörper, insbesondere Kohlenstoffrohre lassen sich als Rohrmembran, in Rohπnembranreaktoren, in Rohrbündelreaktoren und Wärmeaustauschern wie auch in Bioreaktoren verwenden.In the case of hollow bodies, flanges can also be laminated on in the semifinished molded part, which are then essentially carbonized through with closed pores. When using polymer fibers and fabrics, full carbon module units are created with an excellent adhesive bond between fiber and matrix. The carbon-based moldings produced by a process according to the invention, in particular carbon tubes, can be used as a tube membrane, in tube membrane reactors, in tube bundle reactors and heat exchangers and also in bioreactors.
Auch als poröse Katalysatorträger, insbesondere im Automobilbereich oder der Rauchgasreinigung in technischen Anlagen, sind die erfindungsgemäßen Formkörper verwendbar. Vorteilhaft ist hierbei ihre Hitzebeständigkeit, ihre chemische Widerstandsfähigkeit und Formstabilität. Femer sind die erfindungsgemäßen Formkörper und Materialien nahezu spannungsfrei und extrem thermoschockstabil, d.h. auch starke Temperatursprünge werden problemlos vertragen. Durch Aufbringung von Metallen, insbesondere von Edelmetallen, und sonstigen katalytisch aktiven Materialien lassen sich langzeitstabile und hocheffektive Katalysatorträger nach den erfindungsgemäßen Verfahren herstellen.The moldings according to the invention can also be used as porous catalyst supports, in particular in the automotive sector or for flue gas cleaning in technical systems. Their heat resistance, chemical resistance and dimensional stability are advantageous here. Furthermore, the moldings and materials according to the invention are almost stress-free and extremely resistant to thermal shock, i.e. Even strong jumps in temperature are easily tolerated. By applying metals, in particular noble metals, and other catalytically active materials, long-term stable and highly effective catalyst supports can be produced by the processes according to the invention.
Aus flächigen Kanalstrukturen hergestellte Platten, sowie hieraus gewickelte Rohrstrukturen eignen sich ausgezeichnet als Isoliermaterialien, z.B. für Hochtemperaturanwendungen bzw. zur Abschirmung von Mikrowellen (Mikrowellwnabsorber). Die elektrischen Eigenschaften sind hierbei derart einstellbar, dass z.B. Hochfrequenzheizungen ihre Energie nahezu verlustfrei durch diese Isoliermaterialien in den Ofenbereich einkoppeln können. Hochorientierte Werkstoffe können aber auch so eingestellt werden, dass sie direkt durch Hochfrequenz angeregt und somit direkt beheizt werden. Dies ist auch ein einfaches Verfahren zur technischen Herstellung (Karbonisierung) bzw. zur Graphitisierung.Sheets made from flat channel structures, as well as pipe structures wound from them, are excellently suitable as insulating materials, e.g. for high temperature applications or for shielding microwaves (microwave absorbers). The electrical properties can be set so that e.g. High-frequency heating systems can couple their energy into the furnace area almost loss-free through these insulating materials. Highly oriented materials can also be set so that they are directly excited by high frequency and thus directly heated. This is also a simple process for technical production (carbonization) or for graphitization.
Nach den erfindungsgemäßen Verfahren hergestellte Formkörper können auch als medizinische Implantate, beispielsweise orthopädische, chirurgische, und/oder nichtorthopädische Implantate wie Knochen- oder Gelenkprothesen, orthopädische Platten, Schrauben, Nägel, Fixierungen und dergleichen verwendet werden.Shaped bodies produced by the method according to the invention can also be used as medical implants, for example orthopedic, surgical, and / or non-orthopedic implants such as bone or joint prostheses, orthopedic plates, screws, nails, fixations and the like can be used.
Aufgrund Ihrer Biokompatibilität und der vielfältig einstellbaren Oberflächeneigenschaften wie Adsorptionsfahigkeit, Absorptionsfähigkeit, Adhäsion von biologischem Material, in weiten Bereichen spezifisch einstellbarer Porosität, der Porengrößen und -volumina bis hin zu geschlossenporigen Formkörpern etc. ist die Verwendung der erfindungsgemäß herstellbaren Formkörper als Substrat bzw. Träger für die Besiedlung mit Mikroorganismen und Zellkulturen besonders bevorzugt.Because of their biocompatibility and the variously adjustable surface properties such as adsorption capacity, absorption capacity, adhesion of biological material, in a wide range of specifically adjustable porosity, pore sizes and volumes up to closed-pore shaped bodies etc., the use of the shaped bodies which can be produced according to the invention is a substrate or carrier for colonization with microorganisms and cell cultures is particularly preferred.
Insbesondere bevorzugt ist die Verwendung der erfindungsgemäß hergestellten kohlenstoffbasierten, kohlenstoffhaltigen Formkörper sowie keramischen Materialien und Komposita als Träger- und/oder Aufzuchtsysteme (TAS) für die Kultivierung primärer Zellkulturen wie eukaryote Gewebe, z.B. Knochen, Knorpel, Leber, Nieren, sowie zur Kultivierung bzw. Immobilisierung von xenogenen, allogenen, syngenen oder autologen Zellen und Zelltypen, sowie gegebenenfalls auch von genetisch modifizierte Zelllinien.Particularly preferred is the use of the carbon-based, carbon-containing moldings and ceramic materials and composites produced according to the invention as carrier and / or growth systems (TAS) for the cultivation of primary cell cultures such as eukaryotic tissue, e.g. Bones, cartilage, liver, kidneys, as well as for the cultivation or immobilization of xenogeneic, allogeneic, syngeneic or autologous cells and cell types, and possibly also of genetically modified cell lines.
Neben den erfindungsgemäß herstellbaren Formkörpem sind hierzu prinzipiell alle porösen oder nichtporösen, kohlenstoffhaltigen Materialien geeignet zur Verwendung als Träger- und Aufzuchtsysteme (TAS) für die Kultivierung primärer Zellkulturen. Bevorzugt ist neben den erfindungsgemäß herstellbaren Formkörpem auch die Verwendung von Materialien wie sie in der WO 02/32558 („Flexible, poröse Materialien und Adsorbentien...") beschrieben sind, deren Offenbarung hiermit vollständig einbezogen wird, insbesondere die auf den Seiten 24, Zeile 11 bis Seite 43 beschriebenen Kohlenstoff- und Keramik-Materialien, Membranen und Träger. Auch symmetrische oder asymmetrische, texturierte kohlenstoff- oder keramikbasierte Materialien und deren Kombinationen sind zur Verwendung als TAS geeignet.In addition to the moldings which can be produced according to the invention, in principle all porous or non-porous, carbon-containing materials are suitable for use as carrier and rearing systems (TAS) for the cultivation of primary cell cultures. In addition to the moldings which can be produced according to the invention, preference is also given to the use of materials as described in WO 02/32558 ("Flexible, porous materials and adsorbents ..."), the disclosure of which is hereby fully incorporated, in particular that on pages 24, Carbon and ceramic materials, membranes and supports described in line 11 to page 43. Also symmetrical or asymmetrical, textured carbon or ceramic-based materials and their combinations are suitable for use as TAS.
Die genannten Materialien und Formkörper können speziell auch als Träger- und Aufzuchtsysteme für Nervengewebe verwendet werden. Besonders vorteilhaft ist, dass kohlenstoffhaltige Materialien hier insbesondere durch die einfache Einstellung der Leitfähigkeit der Formkörper und die Applikation von Impulsströmen zur Kultivierung von Nervengewebe besonders anpassbar und geeignet sind.The materials and moldings mentioned can also be used specifically as support and rearing systems for nerve tissue. It is particularly advantageous that carbon-containing materials are particularly adaptable and suitable here, in particular by simply adjusting the conductivity of the shaped bodies and applying pulse currents for the cultivation of nerve tissue.
Die genannten Materialien und Formkörper dienen in der erfindungsgemäßen Verwendung als TAS ferner auch als in vitro- oder in vivo-Leitstrukturen, sog. Scaffolds, für 2- und 3-dimensionales Gewebewachstum; durch deren spezifische Formgebung ist es möglich, aus Zellkulturen Organteile oder ganze Organe zu züchten. Die TAS unterstützen bzw. modulieren hierbei als Leitstruktur durch geeignete Einstellung der Porosität, durch das Flow-Channel-Design und die zwei- bzw. dreidimensionale Formgebung das Zeil-, Gewebe- bzw. Organwachstum in physikalischer Hinsicht, insbesondere aber auch durch einstellbare Bereitstellung, Verteilung und Nachschub von Nährlösung bzw. -medium am Verbrauchsort, sowie durch Unterstützung bzw. Förderung der Zeil- und Gewebsproliferation und - Differenzierung.In the use according to the invention as TAS, the materials and moldings mentioned also serve as in vitro or in vivo lead structures, so-called scaffolds, for 2- and 3-dimensional tissue growth; their specific shape makes it possible to grow parts of organs or whole organs from cell cultures. The TAS support or modulate the lead, tissue or organ growth from a physical point of view, in particular through adjustable provision, as a guiding structure through suitable adjustment of the porosity, through the flow channel design and the two- or three-dimensional shape. Distribution and replenishment of nutrient solution or medium at the place of consumption, as well as by supporting or promoting cell and tissue proliferation and differentiation.
Für die Verwendung als TAS können die Materialien und Formkörper bzw. Trägersysteme 2- und 3-dimensional geformt sein. Geeignete Makrostrukturen sind beispielsweise Rohre, insbesondere für die Produktion bzw. Züchtung natürlicher Gefäße, kubische Formen, etc, wie oben bei Formkörpem erwähnt.For use as a TAS, the materials and moldings or carrier systems can be 2-dimensional and 3-dimensional. Suitable macrostructures are, for example, tubes, in particular for the production or cultivation of natural vessels, cubic shapes, etc., as mentioned above for shaped bodies.
Insbesondere können die erfindungsgemäßen Formkörper und andere kohlenstoffbasierte Materialien für die Verwendung als TAS natürlichen Organformen nachempfunden werden, z.B. knorpelige Gelenkflächen von Knie-, Hüft-, Schulter-, Fingergelenken, etc. die dann zur Aufzucht entsprechend geformter Knorpel, Knochenhäute und dergleichen verwendet werden können. Diese können dann entweder mit dem aufgewachsenem Gewebe implantiert werden, oder das gezüchtete Gewebe wirddurch Methoden des Standes der Technik wie z.B. mechanische oder chemisch-enzymatische Ablösung, in entsprechend gewachsener Form abgetrennt und dann implantiert.In particular, the shaped bodies according to the invention and other carbon-based materials for use as TAS can be modeled natural organ forms, for example cartilaginous articular surfaces of knee, Hip, shoulder, finger joints, etc., which can then be used for growing appropriately shaped cartilage, bone skins and the like. These can then either be implanted with the grown tissue, or the cultured tissue is separated in an appropriately grown form by methods of the prior art, such as mechanical or chemical-enzymatic detachment, and then implanted.
Da kohlenstoffbasierte Materialien und Formkörper auch gute mechanische Eigenschaften aufweisen, die deren Verwendung als Implantate, z.B. als künstliche Gelenke und dergleichen möglich machen, können diese erfindungsgemäß in einer Gewebekultur als Substrate oder Träger verwendet werden, und nach dem Aufwachsen einer ausreichenden Knorpelschicht als hochverträgliche, biomimetische Implantate in den Körper von Patienten eingesetzt werden. So ist es erfindungsgemäß möglich, einzelnen Patienten Implantate einzusetzen, die mit körpereigenem Gewebe beschichtet sind, das aus geeigneten Zellproben des Patienten direkt auf dem Implantat gezüchtet wurde. Hierdurch lassen sich Abstoßungsphänomene und Immunabwehrreaktionen vermindern bzw. vollständig vermeiden.Since carbon-based materials and moldings also have good mechanical properties, which make their use as implants, e.g. make it possible as artificial joints and the like, these can be used according to the invention in a tissue culture as substrates or supports and, after the growth of a sufficient layer of cartilage, can be used as highly compatible, biomimetic implants in the body of patients. Thus, according to the invention, it is possible to use implants for individual patients which are coated with the body's own tissue, which was grown directly on the implant from suitable patient cell samples. As a result, rejection phenomena and immune defense reactions can be reduced or completely avoided.
Erfindungsgemäß können die Formkörper und Materialien als TAS zur Kultivierung in existierenden Bioreaktorsystemen verwendet werden, z. B. passive Systeme ohne kontinuierliche Regeltechnikwie z.B. Gewebeplatten, Gewebeflaschen, Roller- Bottles; aber auch aktive Systeme mit Gaszufuhr und automatischer Einstellung von Parametern (Azidität, Temperatur), also im weitesten Sinne Reaktorsysteme mit Mess- und Regeltechnik.According to the invention, the moldings and materials can be used as TAS for cultivation in existing bioreactor systems, e.g. B. passive systems without continuous control technology such as Fabric plates, fabric bottles, roller bottles; but also active systems with gas supply and automatic setting of parameters (acidity, temperature), in the broadest sense reactor systems with measurement and control technology.
Femer können die erfindungsgemäßen TAS durch Vorsehung geeigneter Vorrichtungen wie z.B. Anschlüsse für die Perfusion mit Nährlösungen und den Gasaustausch als Reaktorsystem betrieben werden insbesondere auch modular in entsprechenden Reihenreaktorsystemen und Gewebekulturen.Furthermore, the TAS according to the invention can be provided by providing suitable devices such as connections for perfusion with nutrient solutions and the Gas exchange as a reactor system are in particular also carried out modularly in corresponding row reactor systems and tissue cultures.
Erfindungsgemäße TAS können darüber hinaus als ex vivo Reaktorsysteme, z.B. extrakorporale Assistenzsysteme, oder als Organreaktoren verwendet werden, z.B. sogenannten liver assist Systems oder liver replacement Systems; oder auch in vivo oder in vitro für verkapselte (engl. encapsulated) Inselzellen, z. B. als künstl. Pankreas, verkapselte Urothelzellen, z.B. als künstl. Niere und dergleichen, die vorzugsweise implantierbar sind.TAS according to the invention can also be used as ex vivo reactor systems, e.g. extracorporeal assistance systems, or used as organ reactors, e.g. so-called liver assist systems or liver replacement systems; or also in vivo or in vitro for encapsulated islet cells, e.g. B. as an artificial Pancreas, encapsulated urothelial cells, e.g. as an artificial Kidney and the like, which are preferably implantable.
Darüber hinaus können die erfindungsgemäßen TAS zur Förderung der Organogenese geeignet modifiziert werden, beispielsweise mit Proteoglykanen, Kollagenen, gewebetypischen Salzen, z.B. Hydroxylapatit etc., besonders auch mit den obengenannten biologisch abbaubaren bzw. resorbierbaren Polymeren.In addition, the TAS according to the invention can be suitably modified to promote organogenesis, for example with proteoglycans, collagens, tissue-typical salts, e.g. Hydroxyapatite etc., especially with the above-mentioned biodegradable or resorbable polymers.
Bevorzugt werden die erfindungsgemäßen TAS femer durch Imprägnierung und/oder Adsorption von Wachstumsfaktoren, Cytokinen, Interferone und/oder Adhäsionsfaktoren modifiziert. Beispiele geeigneter Wachstumsfaktoren sind PDGF, EGF, TGF-α, FGF, NGF, Erythropoietin, TGF-ß, IGF-I und IGF-II. Geeignete Cytokine umfassen beispielsweise IL-l-α und -ß, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13. Geeignete Interferone umfassen z.B . INF-α und -ß, INF-γ. Beispiele geeigneter Adhäsionsfaktoren sind Fibronectin, Laminin, Vitronectin, Fetuin, Poly-D-Lysin und dergleichen.The TAS according to the invention are preferably further modified by impregnation and / or adsorption of growth factors, cytokines, interferons and / or adhesion factors. Examples of suitable growth factors are PDGF, EGF, TGF-α, FGF, NGF, erythropoietin, TGF-ß, IGF-I and IGF-II. Suitable cytokines include, for example, IL-1-α and -ß, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL -11, IL-12, IL-13. Suitable interferons include e.g. INF-α and -ß, INF-γ. Examples of suitable adhesion factors are fibronectin, laminin, vitronectin, fetuin, poly-D-lysine and the like.
Femer sind die erfindungsgemäßen Formkörper, insbesondere bei Verwendung als TAS auch anwendbar als Microarray-Systeme für z.B. Drag Discovery, Tissue screening, Tissue engineering etc. BEISPIELEFurthermore, the moldings according to the invention, particularly when used as TAS, can also be used as microarray systems for, for example, drag discovery, tissue screening, tissue engineering etc. EXAMPLES
Die folgenden Beispiele dienen der Veranschaulichung der erfindungsgemäßen Prinzipien und sind nicht einschränkend gedacht.The following examples serve to illustrate the principles according to the invention and are not intended to be limiting.
Beispiel 1:Example 1:
Zur Herstellung eines Rohres im Wickelverfahren mit DN25 Kern, Länge 500mm, Wandstärke 3 mm, wurde ein Glasfasergewebe aus E-CR-Glas (chemikalienbeständig modifiziertes E-Glas) von 30mm Breite, beschichtet/imprägniert mit GFK-Harz auf Phenolharzbasis im Kreuzgang auf einem entsprechenden Stahldorn verlegt und der Dom entfernt. Das Gewicht betrag 3,6 g/cm vor der Pyrolyse. Die Pyrolyse wurde unter Stickstoff bei 800°C über 48 Stunden durchgeführt. Das Gewicht nach der Pyrolyse betrug 3,0 g/cm. Die Membraneigenschaften wurden mit dem Bubble-Point Test vermessen (ASTM El 294), wobei eine Porengröße von 500 Angström ermittelt wurde.To manufacture a pipe using the DN25 core, length 500mm, wall thickness 3mm, a glass fiber fabric made of E-CR glass (chemical-resistant modified E-glass) of 30mm width was coated / impregnated with GRP resin based on phenolic resin in a cloister on one appropriate steel mandrel laid and the cathedral removed. The weight was 3.6 g / cm before pyrolysis. The pyrolysis was carried out under nitrogen at 800 ° C. for 48 hours. The weight after pyrolysis was 3.0 g / cm. The membrane properties were measured using the bubble point test (ASTM El 294), a pore size of 500 angstroms being determined.
Beispiel 2:Example 2:
Rohrherstellung im Wickelverfahren wie unter Beispiel 1 angegeben, unter Verwendung eines Glasfaservlieses aus C-Glas (chemikalienbeständiges C-Glas, nonwoven) mit 30mm Breite und GFK-Harz auf Vinylesterharzbasis, Verlegung auf Stahldom im Kreuzgang. Gewicht 3,5 g/cm vor der Pyrolyse. Pyrolyse unter Stickstoff bei 800°C über 48 Stunden. Gewicht nach der Pyrolyse 0,9 g/cm. Die Membraneigenschaften wurden mit dem Bubble-Point Test vermessen (ASTM E1294) und eine Porengröße von 0,8 Mikrometern ermittelt.Pipe production in the winding process as specified in Example 1, using a glass fiber fleece made of C-glass (chemical-resistant C-glass, nonwoven) with a width of 30 mm and GRP resin based on vinyl ester resin, laid on a steel dome in a cloister. Weight 3.5 g / cm before pyrolysis. Pyrolysis under nitrogen at 800 ° C for 48 hours. Weight after pyrolysis 0.9 g / cm. The membrane properties were measured with the bubble point test (ASTM E1294) and a pore size of 0.8 micrometers was determined.
Beispiel 3:Example 3:
Rohrherstellung im Wickelverfahren wie unter Beispiel 1 angegeben, unterPipe production in the winding process as specified in Example 1, under
Verwendung eines Polyacrylnitril (PAN) nonwoven (Fa. Freudenberg) von 30mm Breite und GFK-Harz auf Phenolharzbasis, Verlegung auf Stahldom im Kreuzgang. Gewicht 3,5 g/cm vor der Pyrolyse. Pyrolyse unter Stickstoff bei 800°C über 48 Stunden. Gewicht nach der Pyrolyse 1,94 g/cm. Die Membraneigenschaften wurden mit dem Bubble-Point Test vermessen (ASTM El 294). Es konnte im Messbereich keine Porengröße (Gasdurchbrach) festgestellt werden. Anschließende Teiloxidation im Luftstrom bei 400 °C für 15 Minuten lieferte eine durchschnittliche Porengröße nach Bubble-Point Test von 1,2 μm.Use of a polyacrylonitrile (PAN) nonwoven (Freudenberg) of 30 mm Width and GRP resin based on phenolic resin, laid on a steel dome in a cloister. Weight 3.5 g / cm before pyrolysis. Pyrolysis under nitrogen at 800 ° C for 48 hours. Weight after pyrolysis 1.94 g / cm. The membrane properties were measured using the bubble point test (ASTM El 294). No pore size (gas breakthrough) could be determined in the measuring range. Subsequent partial oxidation in an air stream at 400 ° C. for 15 minutes gave an average pore size according to the bubble point test of 1.2 μm.
Beispiel 4: Rohrherstellung im Wickelverfahren wie unter Beispiel 1 angegeben, unter Verwendung eines Glasfaservlieses aus E-CR-Glas (chemikalienbeständig modifiziertes E-Glas) von 30 mm Breite, und Polyacrylnitril (PAN) nonwoven (Fa. Freudenberg) von 30mm Breite (Verhältnis 1:1) und GFK-Harz auf Phenolharzbasis, Verlegung auf Stahldom im Kreuzgang. Gewicht 3,6g/cm vor der Pyrolyse. Pyrolyse unter Stickstoff bei 800°C über 48 Stunden. Gewicht nach der Pyrolyse 2,0 g/cm.Example 4: Pipe production in the winding process as given in Example 1, using a glass fiber fleece made of E-CR glass (chemical-resistant modified E-glass) of 30 mm in width, and polyacrylonitrile (PAN) nonwoven (from Freudenberg) of 30 mm in width (ratio 1: 1) and GRP resin based on phenolic resin, laid on a steel dome in a cloister. Weight 3.6g / cm before pyrolysis. Pyrolysis under nitrogen at 800 ° C for 48 hours. Weight after pyrolysis 2.0 g / cm.
Beispiel 5:Example 5:
Rohrherstellung im Wickelverfahren wie unter Beispiel 1 angegeben, unterPipe production in the winding process as specified in Example 1, under
Verwendung eines Glasfaservlieses aus E-CR-Glas (chemikalienbeständig modifiziertes E-Glas) von 30 mm Breite, und Polyacrylnitril (PAN) nonwoven (Fa. Freudenberg) von 30mm Breite (Verhältnis 1 :1) und GFK-Harz auf Phenolharzbasis mit 20 % Aerosil R972 Verlegung auf Stahldom im Kreuzgang. Gewicht 3,6g/cm vor der Pyrolyse. Pyrolyse unter Stickstoff bei 800°C über 48 Stunden. Gewicht nach der Pyrolyse 3,0 g/cm. Anschließend wird mit 30%iger NaOH Lauge das Aerosil ausgewaschen. Die Membraneigenschaften wurden mit dem Bubble-Point Test vermessen (ASTM El 294), wobei eine Porengröße von 0,6 μm ermittelt wurde. Beispiel 6:Use of a glass fiber fleece made of E-CR glass (chemical-resistant modified E-glass) of 30 mm width, and polyacrylonitrile (PAN) nonwoven (from Freudenberg) of 30 mm width (ratio 1: 1) and GRP resin based on phenolic resin with 20% Aerosil R972 laying on steel dome in the cloister. Weight 3.6g / cm before pyrolysis. Pyrolysis under nitrogen at 800 ° C for 48 hours. Weight after pyrolysis 3.0 g / cm. The Aerosil is then washed out with 30% NaOH lye. The membrane properties were measured using the bubble point test (ASTM El 294), a pore size of 0.6 μm being determined. Example 6:
Es wurden kohlenstoffbasierte Platten aus naturfaserverstärktem, Komposit-Polymer mit anorganischen Füllstoffen und mit einem Flächengewicht von 100g/m2 und 110 Mikrometern Dicke hergestellt. Dieses flächige Kompositmaterial wurde duch eine handelsübliche Prägemaschine mit einer Kanalstraktur versehen, die einenCarbon-based plates made of natural fiber-reinforced, composite polymer with inorganic fillers and with a basis weight of 100 g / m 2 and 110 micrometers thickness were produced. This flat composite material was provided with a channel structure by a commercially available embossing machine
Kanaldurchmesser nach dem Aufeinanderlegen zweier Blätter vom 3 mm ergab. Diese Blätter wurden zu wabenförmigen Blöcken verklebt und unter Schutzgas (Stickstoff) bei 800°C über 48 Stunden karbonisiert. Der Druckverlust in Kanalrichtung betrag nur 0,1 bar/m, es ergab sich bei der Karbomsierung ein Gewichtsverlust von 66 Gew. -% .Channel diameter after laying two sheets of 3 mm. These sheets were glued into honeycomb blocks and carbonized under protective gas (nitrogen) at 800 ° C for 48 hours. The pressure loss in the direction of the duct was only 0.1 bar / m, and the carbomation resulted in a weight loss of 66% by weight.
Ein aus diesem Material gewickeltes Rohr von 10cm Länge und 40mm Durchmesser bei einer Wandstärke von 6mm wurde in einem Einkoppelversuch in einer 8 KHz Hochfrequenzheizeinrichtung eingestellt. Der Ruhestrom änderte sich praktisch nicht im Vergleich zum Ruhestrom und es erfolgt auch nach 5 Minuten keine nennenswerte Erwärmung der Werkstoffs. Das derartig hergestellt Material lässt sich problemlos und präzise sägen, bohren, Fräsen, etc.A tube of 10 cm length and 40 mm diameter with a wall thickness of 6 mm wound from this material was set in a coupling test in an 8 KHz high-frequency heating device. The quiescent current practically did not change compared to the quiescent current and there was no significant heating of the material even after 5 minutes. The material produced in this way can be sawed, drilled, milled, etc. easily and precisely.
Beispiel 7:Example 7:
Für die vorgesehene Anwendung als Trägermaterial für Zellkulturaufzuchtsysteme wurde ein naturfaserhaltiges Polymerkomposit mit einem Flächengewicht von 100 g/m2 und 110 μm Dicke in einer Stickstoffatmosphäre bei 800 °C über 48 Stunden karbonisiert, wobei gegen Ende Luft zugesetzt wurde, um die Poren zu modifizieren. Es trat ein Gewichtsverlust von 50 Gew.-% auf. Das resultierende Material weist in Wasser einen pH- Wert von 7,4 und einen Pufferbereich im schwach Sauren auf. 20x40 mm große Stücke von je etwa 60 μm Dicke dieses Kohlenstoffmaterials wurden auf üblichen Sechser-Gewebeplatten mit 4 ml Nährlösung und je 1,5 ml Zellsuspension beschickt. Die Zellsuspension enthielt Hybridoma FLT2 MAB gegen Shigatoxin produzierende Zellinien, bekannt für nicht adhärentes, nicht adhäsives suspensionsständiges Wachstum.For the intended use as a carrier material for cell culture rearing systems, a natural fiber-containing polymer composite with a basis weight of 100 g / m 2 and 110 μm thickness was carbonized in a nitrogen atmosphere at 800 ° C. for 48 hours, air being added towards the end in order to modify the pores. A weight loss of 50% by weight occurred. The resulting material has a pH of 7.4 in water and a buffer area in the weakly acidic state. Pieces of 20x40 mm, each about 60 μm thick, of this carbon material were loaded with 4 ml of nutrient solution and 1.5 ml of cell suspension in each case on conventional six-piece tissue plates. The cell suspension contained Hybridoma FLT 2 MAB against Shigatoxin producing cell lines, known for non-adherent, non-adhesive suspension growth.
Als Vergleich wurden Sechser-Gewebeplatten ohne Kohlenstoffmaterial bei sonst gleichen Bedingungen und Beschickung verwendet. Die Proben mit erfindungsgemäßem Träger zeigten eine spontane, quantitative Immobilisierung der Zellen, es konnte keine Trübung der Suspension mehr nachgewiesen werden. Innerhalb von 7 Tagen Inkubationszeit kam es zu einer versiebenfachung der Zelldichte auf 1,8 x 10 Zellen pro ml. Die MAB Produktion stieg von anfänglich 50 μg/ml auf 350 μl/ml der durchschnittlichen Kulturlebensdauer, ohne Zeichen eines proteolytischen Abbaus. 12 von 12 Proben waren nach 25 Tagen noch lebend, wonach abgebrochen wurde. Dies zeigt, dass die erfindungsgemäßen Träger zu einer Unterbrechung der Kontaktinhibition trotz der höheren Zelldichte führen. Selbst nach Kryokonservierung und Auftauen erfolgen nach Zugabe frischen Nährmediums ein spontanes Wiedereinsetzen der MAB- Produktion.As a comparison, six-fabric panels without carbon material were used under otherwise identical conditions and loading. The samples with the carrier according to the invention showed a spontaneous, quantitative immobilization of the cells; the suspension could no longer be cloudy. Within 7 days of incubation, the cell density increased sevenfold to 1.8 x 10 cells per ml. The MAB production increased from the initial 50 μg / ml to 350 μl / ml of the average culture life, without any signs of proteolytic degradation. 12 out of 12 samples were still alive after 25 days, after which it was stopped. This shows that the carriers according to the invention lead to an interruption of the contact inhibition despite the higher cell density. Even after cryopreservation and thawing, the MAB production is spontaneously restarted after adding fresh nutrient medium.
Im Vergleichsexperiment hat nur einevon 6 Kulturen bis zum 11. Tag überlebt. In the comparative experiment, only one of 6 cultures survived until day 11.

Claims

Ansprüche Expectations
1. Verfahren zur Herstellung von porösen kohlenstoffbasierten Formkörpem, gekennzeichnet durch folgende Schritte: Mischen von zu Kohlenstoff karbonisierbaren organischen Polymermaterialien mit nichtpolymeren Füllstoffen; Herstellen eines Halbzeugformteils aus der Mischung; - Karbonisieren des Halbzeugformteils in nichtoxidierender Atmosphäre bei erhöhter Temperatur, wobei ein kohlenstoffbasierter Formkörper erhalten wird; Herauslösen der Füllstoffe aus dem karbonisierten Formkörper mit geeigneten Lösemitteln.1. A process for the production of porous carbon-based molded articles, characterized by the following steps: mixing organic polymer materials which can be carbonized to carbon with non-polymeric fillers; Producing a semi-finished molded part from the mixture; - Carbonization of the semi-finished molded part in a non-oxidizing atmosphere at an elevated temperature, a carbon-based molded body being obtained; Removing the fillers from the carbonized molded body with suitable solvents.
2. Verfahren nach Ansprach 1, dadurch gekennzeichnet, dass die Füllstoffe ausgewählt sind aus anorganischen Metallsalzen, insbesondere der Salze von Alkali- und/oder Erdalkalimetallen, vorzugsweise Alkali- oder Erdalkalicarbonate, -sulfate, -sulfite, -nitrate, -nitrite, - phosphate, -phosphite, -halogenide, -sulfide, -oxide, sowie Mischungen dieser.2. The method according spoke 1, characterized in that the fillers are selected from inorganic metal salts, in particular the salts of alkali and / or alkaline earth metals, preferably alkali or alkaline earth carbonates, sulfates, sulfites, nitrates, nitrites, phosphates , -phosphites, -halides, -sulfides, -oxides, and mixtures of these.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Füllstoffe ausgewählt sind aus organischen Metallsalzen, vorzugsweise solche der Alkali-, Erdalkali- und/oder Übergangsmetalle, insbesondere deren Formiate, Acetate, Propionate, Malate, Maleate, Oxalate, Tartrate, Citrate, Benzoate, Salicylate, Phthalate, Stearate, Phenolate, Sulfonate, Aminsalze, sowie Mischungen dieser. 3. The method according to claim 1 or 2, characterized in that the fillers are selected from organic metal salts, preferably those of the alkali, alkaline earth and / or transition metals, in particular their formates, acetates, propionates, malates, maleates, oxalates, tartrates, Citrates, benzoates, salicylates, phthalates, stearates, phenolates, sulfonates, amine salts, and mixtures of these.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zum Herauslösen der Füllstoffe Wasser oder verdünnte oder konzentrierte, anorganische oder organische Säuren verwendet werden.4. The method according to any one of the preceding claims, characterized in that water or dilute or concentrated, inorganic or organic acids are used to remove the fillers.
5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zum Herauslösen der Füllstoffe organische Lösungsmittel verwendet werden. 5. The method according to any one of claims 1 to 3, characterized in that organic solvents are used to remove the fillers.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die verwendeten Füllstoffe aus Substanzen bestehen, die während des Karbonisierungsschrittes in eine lösliche Form umgewandelt werden. 6. The method according to any one of the preceding claims, characterized in that the fillers used consist of substances which are converted into a soluble form during the carbonization step.
7. Verfahren zur Herstellung von porösen kohlenstoffbasierten Formkörpem, gekennzeichnet durch folgende Schritte: Mischen von zu Kohlenstoff karbonisierbaren organischen Polymermaterialien mit polymeren Füllstoffen; - Herstellen eines Halbzeugformteils aus der Mischung; Karbonisieren des Halbzeugformteils in nichtoxidierender Atmosphäre bei erhöhter Temperatur, wobei die polymeren Füllstoffe im Wesentlichen vollständig abgebaut werden. 7. A process for the production of porous carbon-based molded articles, characterized by the following steps: mixing organic polymer materials which can be carbonized to carbon with polymer fillers; - Production of a semi-finished molded part from the mixture; Carbonization of the semi-finished molded part in a non-oxidizing atmosphere at elevated temperature, the polymer fillers being essentially completely broken down.
8. Verfahren nach Ansprach 7, dadurch gekennzeichnet, dass die polymeren Füllstoffe ausgewählt sind aus gesättigten, verzweigten oder unverzweigten aliphatischen Kohlenwasserstoffhomo- oder -copolymeren, vorzugsweise Polyolefine wie Polyethylen, Polypropylen, Polybuten, Polyisobuten, Polypenten, sowie Mischungen davon.8. The method according spoke 7, characterized in that the polymeric fillers are selected from saturated, branched or unbranched aliphatic hydrocarbon homo- or copolymers, preferably polyolefins such as polyethylene, polypropylene, Polybutene, polyisobutene, polypentene, and mixtures thereof.
9. Verfahren nach einem der Ansprüche 7 oder 8 dadurch gekennzeichnet, dass der Formkörper nach der Karbonisierung mit Oxidations- oder Reduktionsmitteln behandelt wird.9. The method according to any one of claims 7 or 8, characterized in that the shaped body is treated after the carbonization with oxidizing or reducing agents.
10. Verfahren zur Herstellung von porösen kohlenstoffbasierten Formkörpem, gekennzeichnet durch folgende Schritte: - Herstellen eines Halbzeugformteils aus karbonisierbaren organischen Polymermaterialien; Karbonisieren des Halbzeugformteils in nichtoxidierender Atmosphäre bei erhöhter Temperatur, wobei ein kohlenstoffbasierter Formkörper erhalten wird; und - Teiloxidation des karbonisierten Formkörpers zur Erzeugung von Poren.10. A process for the production of porous carbon-based moldings, characterized by the following steps: - production of a semi-finished molded part from carbonizable organic polymer materials; Carbonizing the semi-finished molded part in a non-oxidizing atmosphere at elevated temperature, a carbon-based molded body being obtained; and - partial oxidation of the carbonized molded body to produce pores.
11. Verfahren nach Ansprach 10, dadurch gekennzeichnet, dass die Teiloxidation mittels Wärmebehandlung in oxidierender Gasatmosphäre erfolgt.11. The method according spoke 10, characterized in that the partial oxidation takes place by means of heat treatment in an oxidizing gas atmosphere.
12. Verfahren nach Ansprach 11, dadurch gekennzeichnet, dass die Teiloxidation mittels Luft, Sauerstoff, Kohlenmonoxid, Kohlendioxid, Stickstoffoxiden bei Temperaturen m Bereich von 50 °C bis 800 °C durchgeführt wird.12. The method according spoke 11, characterized in that the partial oxidation by means of air, oxygen, carbon monoxide, carbon dioxide, nitrogen oxides is carried out at temperatures in the range from 50 ° C to 800 ° C.
13. Verfahren nach Ansprach 10, dadurch gekennzeichnet, dass die Teiloxidation mit oxidierenden Säuren erfolgt. 13. The method according spoke 10, characterized in that the partial oxidation takes place with oxidizing acids.
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das karbonisierbare organische Polymermaterial ungesättigte, verzweigte aliphatische Kohlenwasserstoffe, verzweigte oder unverzweigte, vernetzte oder unvernetzte aromatische oder teilaromatische Kohlenwasserstoffe, sowie substituierte Derivate davon umfasst.14. The method according to any one of the preceding claims, characterized in that the carbonizable organic polymer material comprises unsaturated, branched aliphatic hydrocarbons, branched or unbranched, crosslinked or uncrosslinked aromatic or partially aromatic hydrocarbons, and substituted derivatives thereof.
15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das karbonisierbare organische Polymermaterial ausgewählt ist aus Polybutadien; Polyvinyle wie Polyvinylchorid oder Polyvinylalkohol, Poly(meth)acrylsäure, Polyacrylcyanoacrylat; Polyacrylnitril, Polyamid, Polyester, Polyurethan, Polystyrol, Polytetrafluorethylen; Polymeren wie Kollagen, Albumin, Gelatin, Hyaluronsäure, Stärke, Cellulosen wie Methylcellulose, Hydroxypropylcellulose, Hydroxypropylmethylcellulose, Carboxymethylcellulose- Phtalat; Kasein, Dextrane, Polysaccharide, Fibrinogen, Poly(D,L-Lactide), Poly(D,L- Lactide-Co-Glycolide), Polyglycolide, Polyhydroxybutylate, Polyalkylcarbonate, Polyorthoester, Polyester, Polyhydroxyvalerinsäure, Polydioxanone, Polyethylenterephtalat, Polymalatsäure, Polytartronsäure, Polyanhydride, Polyphosphazene, Polyaminosäuren; Polyethylenvinylacetat, Silikone; Poly(Ester- Urethane), Poly(Ether-Urethane), Poly(Ester-Hamstoffe), Polyether wie Polyethylenoxid, Polypropylenoxid, Pluronics, Polytetramethylenglycol;15. The method according to any one of the preceding claims, characterized in that the carbonizable organic polymer material is selected from polybutadiene; Polyvinyls such as polyvinyl chloride or polyvinyl alcohol, poly (meth) acrylic acid, polyacrylic cyanoacrylate; Polyacrylonitrile, polyamide, polyester, polyurethane, polystyrene, polytetrafluoroethylene; Polymers such as collagen, albumin, gelatin, hyaluronic acid, starch, celluloses such as methyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, carboxymethyl cellulose phthalate; Casein, Dextrans, Polysaccharides, Fibrinogen, Poly (D, L-Lactide), Poly (D, L-Lactide-Co-Glycolide), Polyglycolide, Polyhydroxybutylate, Polyalkylcarbonate, Polyorthoester, Polyester, Polyhydroxyvalerinsäure, Polydioxanone, Polyethyleneterephthalate, Polymalarate Acid, Polymalalate Acid, Polymalalate Polyanhydrides, polyphosphazenes, polyamino acids; Polyethylene vinyl acetate, silicones; Poly (ester-urethanes), poly (ether-urethanes), poly (ester-ureas), polyethers such as polyethylene oxide, polypropylene oxide, Pluronics, polytetramethylene glycol;
Polyvinylpyrrolidon, Poly(vinyl-acetat-phtalat), Alkydharz, Chlorkautschuk, Epoxidharz, Acrylatharz, Phenolharz, Aminharz, Melaminharz, Alkylphenolharze, epoxidierte aromatische Harze, Teer, teerartige Materialien, Teerpech, flüssigkristaline Teerpeche, Bitumen, Stärke, Zellulose, Schellack, Fasern aus Polyacrylnitril, Cellulose oder Novolak, organische Materialien aus nachwachsenden Rohstoffen sowie deren Copolymere, Mischungen und Kombinationen dieser Homo- oder Copolymere. Polyvinylpyrrolidone, poly (vinyl acetate phthalate), alkyd resin, chlorinated rubber, epoxy resin, acrylate resin, phenolic resin, amine resin, melamine resin, alkylphenol resins, epoxidized aromatic resins, tar, tar-like materials, tar pitch, liquid crystal tar pitch, bitumen, starch, cellulose, tar made of polyacrylonitrile, cellulose or novolak, organic materials from renewable raw materials and their copolymers, mixtures and combinations of these homo- or copolymers.
16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Polymermaterial übliche Additive wie Füllstoffe, Weichmacher, Gleitmittel, Flammschutzmittel, Glas, Glasfasern, Kohlefasem, Baumwolle, Gewebe, Metallpulver, Metallverbindungen, Metalloxide, Silizium, Siliziumoxid, Zeolithe, TiO2, Aluminiumoxide, Aluminosilikate, Zirkonoxide, Talkum, Graphit, Russ, Tonmaterialien, Phyllosilikate enthält.16. The method according to any one of the preceding claims, characterized in that the polymer material usual additives such as fillers, plasticizers, lubricants, flame retardants, glass, glass fibers, carbon fibers, cotton, fabrics, metal powder, metal compounds, metal oxides, silicon, silicon oxide, zeolites, TiO 2 Contains aluminum oxides, aluminosilicates, zirconium oxides, talc, graphite, carbon black, clay materials, phyllosilicates.
17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Herstellung der Halbzeugformteile mittels Guss-, Extrasions-, Press-, Spritzguss- oder anderen üblichen Formgebungsverfahren erfolgt.17. The method according to any one of the preceding claims, characterized in that the production of the semi-finished molded parts is carried out by means of casting, extrusion, pressing, injection molding or other conventional molding processes.
18. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Karbonisierung unter Schutzgas, vorzugsweise Stickstoff oder Argon, ggf. bei Unterdruck, oder im Vakuum, ggf. unter Zumischung reaktiver gase wie Wasserstoff, bei Temperaturen im Bereich von 200°C bis 4000°C durchgeführt wird.18. The method according to any one of the preceding claims, characterized in that the carbonization under protective gas, preferably nitrogen or argon, optionally under reduced pressure, or in vacuo, optionally with admixture of reactive gases such as hydrogen, at temperatures in the range from 200 ° C to 4000 ° C is carried out.
19. Verfahren nach einem der vorhergehenden Ansprüche, ferner umfassend den Schritt des Abscheidens von Kohlenstoff, Stickstoff, Silizium und/oder von Metallen mittels chemischer oder physikalischer Dampfabscheidung (CVD bzw. PVD), Sputtern, Ionenimplantierung oder chemischer Dampfinfiltration (CVI) auf der Oberfläche des Formkörpers und/oder in dessen Poren. 19. The method according to any one of the preceding claims, further comprising the step of depositing carbon, nitrogen, silicon and / or metals by means of chemical or physical vapor deposition (CVD or PVD), sputtering, ion implantation or chemical vapor infiltration (CVI) on the surface of the molded body and / or in its pores.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass die Poren des Formkörpers ganz oder teilweise versiegelt werden. 20. The method according to claim 19, characterized in that the pores of the molded body are completely or partially sealed.
21. Poröser Formkörper, herstellbar nach dem Verfahren nach einem der vorhergehenden Ansprüche.21. Porous molded body, producible by the method according to one of the preceding claims.
22. Formkörper nach Anspruch 21, in Form von Rohren, Rundstäben, Platten, Blöcken, Quadern, Würfel,22. Shaped body according to claim 21, in the form of tubes, round rods, plates, blocks, cuboids, cubes,
Spritzgussformen, Wabenstrakturen, geprägten, gefalteten, gewickelten, gerollten zwei-oder dreidimensionalen Strukturen, mit Kanalstrukturen, Voll- oder Hohlkugeln, Flanschen, Dichtungen, Gehäusen und dergleichen. Injection molds, honeycomb structures, embossed, folded, wound, rolled two or three-dimensional structures, with channel structures, solid or hollow spheres, flanges, seals, housings and the like.
23. Rohr, herstellbar nach dem Verfahren nach einem der Ansprüche 1 bis 20, aus einem Schlauch aus Natur- oder Synthese-Kautschuk, Cellulose, Epoxidharzmasse oder Kunststoffen, ggf. verstärkt mit Faser- oder Gewebeeinlagen. 23. Pipe, producible by the method according to one of claims 1 to 20, from a hose made of natural or synthetic rubber, cellulose, epoxy resin or plastics, optionally reinforced with fiber or fabric inserts.
24. Rohr nach Anspruch 23 , dadurch gekennzeichnet, dass als Schlauch ein Textilgewebe verwendet wird, das mit Kunstharzen getränkt ist.24. Pipe according to claim 23, characterized in that a textile fabric is used as the hose, which is impregnated with synthetic resins.
25. Rohr nach Ansprach 23, dadurch gekennzeichnet, dass ein mehrschichtiger Schlauch carbonisiert wird.25. Pipe according spoke 23, characterized in that a multilayer tube is carbonized.
26. Rohr nach Anspruch 25, dadurch gekennzeichnet, dass der mehrschichtige Schlauch eine innere Schicht aus geschäumtem Kunststoff und eine äußere Schicht aus nichtgeschäumtem Kunststoff enthält.26. Pipe according to claim 25, characterized in that the multilayer hose contains an inner layer made of foamed plastic and an outer layer made of non-foamed plastic.
27. Rohr nach einem der Ansprüche 25 oder 26, dadurch gekennzeichnet, dass der mehrschichtige Schlauch durch Koextrasionsblasformen erhalten wurde.27. Pipe according to one of claims 25 or 26, characterized in that the multi-layer hose through Coextrusion blow molding was obtained.
28. Katalysatorträger, herstellbar nach einem der Ansprüche 1 bis 22. 28. Catalyst carrier, producible according to one of claims 1 to 22.
29. Isoliermaterial, herstellbar nach einem der Ansprüche 1 bis 22.29. Insulating material that can be produced according to one of claims 1 to 22.
30. Verwendung des Rohrs nach einem der Ansprüche 23 bis 27, als Rohrmembran, in Rohrmembranreaktoren, Rohrbündelreaktoren, in Wärmeaustauschern, zur Destillation, Pervaporation, Rückgewinnung und/oder Kreislaufführung von Reaktionsprodukten und/oder Extraktion in hierzu geeigneten Vorrichtungen.30. Use of the tube according to one of claims 23 to 27, as a tubular membrane, in tubular membrane reactors, tube bundle reactors, in heat exchangers, for distillation, pervaporation, recovery and / or recycling of reaction products and / or extraction in suitable devices.
31. Verwendung des Formkörpers nach Anspruch 21 oder 22 als Träger und/oder Aufzuchtsystem für die Kultivierung primärer Zellkulturen.31. Use of the shaped body according to claim 21 or 22 as a carrier and / or rearing system for the cultivation of primary cell cultures.
32. Verwendung nach Anspruch 31, wobei die Zellkulturen ausgewählt sind aus eukaryoten Geweben wie Knochen, Knorpel, Leber, Nieren, Pankreas, Nerven und dergleichen, sowie xenogenen, allogenen, syngenen oder autologen Zellen und Zelltypen, sowie aus genetisch modifizierten Zelllinien.32. Use according to claim 31, wherein the cell cultures are selected from eukaryotic tissues such as bones, cartilage, liver, kidneys, pancreas, nerves and the like, and xenogenic, allogeneic, syngeneic or autologous cells and cell types, and from genetically modified cell lines.
33. Verwendung nach Anspruch 31 oder 32, wobei der Formkörper als Leitstruktur für zwei- oder dreidimensionales Gewebewachstum, insbesondere zu Züchten von Organen oder Organteilen verwendet wird. 33. Use according to claim 31 or 32, wherein the shaped body is used as a guide structure for two- or three-dimensional tissue growth, in particular for growing organs or parts of organs.
34. Verwendung nach einem der Ansprüche 31 bis 33, dadurch gekennzeichnet, dass das Träger- und/oder Aufzuchtsystem ex vivo als Reaktorsystem verwendet wird. 34. Use according to any one of claims 31 to 33, characterized in that the carrier and / or breeding system is used ex vivo as a reactor system.
35. Verwendung nach einem der Ansprüche 31 bis 33, dadurch gekennzeichnet, dass das Träger- und/oder Aufzuchtsystem in vivo als Implantat eingesetzt wird. 35. Use according to one of claims 31 to 33, characterized in that the carrier and / or rearing system is used in vivo as an implant.
36. Verwendung nach einem der Ansprüche 31 bis 35, dadurch gekennzeichnet, dass das Träger- und/oder Aufzuchtsystem mit Proteoglykanen, KoUagenen, gewebetypischen Salzen, oder biologisch abbaubaren bzw. resorbierbaren Polymeren modifiziert ist. 36. Use according to one of claims 31 to 35, characterized in that the carrier and / or rearing system is modified with proteoglycans, KoUagens, tissue-typical salts, or biodegradable or resorbable polymers.
EP04700670A 2003-07-31 2004-01-08 Method for the production of porous carbon-based molded bodies, and use thereof as cell culture carrier systems and culture systems Withdrawn EP1658248A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08169278A EP2025657A2 (en) 2003-07-31 2004-01-08 Method for manufacturing carbon based shapes and their use as cell culture bearing and cultivation systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10335131A DE10335131A1 (en) 2003-07-31 2003-07-31 Porous carbon moldings, e.g. for catalyst support; insulant, tube membrane, ex or in vivo cell culture substrate or scaffold or implant, are made by molding carbonizable polymer and removing filler or partial oxidation to form pores
PCT/EP2004/000077 WO2005021462A1 (en) 2003-07-31 2004-01-08 Method for the production of porous carbon-based molded bodies, and use thereof as cell culture carrier systems and culture systems

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP08169278A Division EP2025657A2 (en) 2003-07-31 2004-01-08 Method for manufacturing carbon based shapes and their use as cell culture bearing and cultivation systems

Publications (1)

Publication Number Publication Date
EP1658248A1 true EP1658248A1 (en) 2006-05-24

Family

ID=32842342

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08169278A Withdrawn EP2025657A2 (en) 2003-07-31 2004-01-08 Method for manufacturing carbon based shapes and their use as cell culture bearing and cultivation systems
EP04700670A Withdrawn EP1658248A1 (en) 2003-07-31 2004-01-08 Method for the production of porous carbon-based molded bodies, and use thereof as cell culture carrier systems and culture systems

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP08169278A Withdrawn EP2025657A2 (en) 2003-07-31 2004-01-08 Method for manufacturing carbon based shapes and their use as cell culture bearing and cultivation systems

Country Status (14)

Country Link
US (1) US20060159718A1 (en)
EP (2) EP2025657A2 (en)
JP (1) JP2007500663A (en)
KR (1) KR20060065660A (en)
CN (1) CN1829667B (en)
AU (1) AU2004268732A1 (en)
BR (1) BRPI0413080A (en)
CA (1) CA2532737A1 (en)
DE (2) DE10335131A1 (en)
EA (1) EA011114B1 (en)
IL (1) IL173164A0 (en)
MX (1) MXPA06001238A (en)
SG (1) SG154326A1 (en)
WO (1) WO2005021462A1 (en)

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001067A (en) 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
US8527026B2 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
US20030032874A1 (en) 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
US7379765B2 (en) 2003-07-25 2008-05-27 Dexcom, Inc. Oxygen enhancing membrane systems for implantable devices
US7828728B2 (en) 2003-07-25 2010-11-09 Dexcom, Inc. Analyte sensor
US7736501B2 (en) 2002-09-19 2010-06-15 Suncor Energy Inc. System and process for concentrating hydrocarbons in a bitumen feed
CA2400258C (en) 2002-09-19 2005-01-11 Suncor Energy Inc. Bituminous froth inclined plate separator and hydrocarbon cyclone treatment process
EP1982772A1 (en) 2003-05-16 2008-10-22 Cinvention Ag Bio-compatible coated medical implants
AU2004243503A1 (en) 2003-05-28 2004-12-09 Cinvention Ag Implants comprising functionalized carbon surfaces
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
US8277713B2 (en) 2004-05-03 2012-10-02 Dexcom, Inc. Implantable analyte sensor
US20070045902A1 (en) 2004-07-13 2007-03-01 Brauker James H Analyte sensor
US7713574B2 (en) 2004-07-13 2010-05-11 Dexcom, Inc. Transcutaneous analyte sensor
DE102004055056A1 (en) * 2004-11-15 2006-05-24 Georg Fritzmeier Gmbh & Co.Kg Packing for a bioreactor
CA2590386A1 (en) * 2004-12-30 2006-07-06 Cinvention Ag Combination comprising an agent providing a signal, an implant material and a drug
DE602005010747D1 (en) 2005-01-13 2008-12-11 Cinv Ag CARBON NANOPARTICLES CONTAINING COMPOSITE MATERIALS
MX2007009430A (en) * 2005-02-03 2007-08-17 Cinv Ag Drug delivery materials made by sol/gel technology.
EP1858820A2 (en) * 2005-03-18 2007-11-28 Cinvention Ag Process for the preparation of porous sintered metal materials
US8744546B2 (en) 2005-05-05 2014-06-03 Dexcom, Inc. Cellulosic-based resistance domain for an analyte sensor
CA2612195A1 (en) * 2005-07-01 2007-01-11 Cinvention Ag Medical devices comprising a reticulated composite material
EP1902087A1 (en) * 2005-07-01 2008-03-26 Cinvention Ag Process for the production of porous reticulated composite materials
CA2567644C (en) 2005-11-09 2014-01-14 Suncor Energy Inc. Mobile oil sands mining system
US8168071B2 (en) 2005-11-09 2012-05-01 Suncor Energy Inc. Process and apparatus for treating a heavy hydrocarbon feedstock
CA2526336C (en) 2005-11-09 2013-09-17 Suncor Energy Inc. Method and apparatus for oil sands ore mining
AU2007330155A1 (en) * 2006-11-29 2008-06-12 Ngk Insulators, Ltd. Carbon membrane laminated body and method for manufacturing the same
US20090048666A1 (en) * 2007-08-14 2009-02-19 Boston Scientific Scimed, Inc. Medical devices having porous carbon adhesion layers
KR100924950B1 (en) * 2007-09-18 2009-11-06 한국에너지기술연구원 Microtubule carbon materials and method for producing microtubule carbon materials obtained by heat treatment of cellulose fiber, and Microtubule reactor module and method for fabricating a microtubule reactor module using this carbon materials, and Micro catalytic reactor installed by a microtubule reactor module
WO2009062966A1 (en) * 2007-11-13 2009-05-22 Basf Se Method for producing carbon foams by carbonization of open-cell melamine-formaledhyde foams
US8583204B2 (en) 2008-03-28 2013-11-12 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8682408B2 (en) 2008-03-28 2014-03-25 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US11730407B2 (en) 2008-03-28 2023-08-22 Dexcom, Inc. Polymer membranes for continuous analyte sensors
RU2478393C2 (en) * 2008-07-31 2013-04-10 Сони Корпорейшн Adsorbent, cleaner, medication in case of renal failure and functional nutrition
US8560039B2 (en) 2008-09-19 2013-10-15 Dexcom, Inc. Particle-containing membrane and particulate electrode for analyte sensors
US9842667B2 (en) * 2009-06-26 2017-12-12 The Arizona Board Of Regents On Behalf Of The University Of Arizona Doped-carbon nano-architectured structures and methods for fabricating same
US9572909B2 (en) 2009-09-14 2017-02-21 Virginia Commonwealth University Electrospun nerve guides for nerve regeneration designed to modulate nerve architecture
US20110151248A1 (en) * 2009-12-23 2011-06-23 Paul Stephen Manicke Ceramic Matrix Composite Precursor Slurry Compositions And Sheet Molding Compound
CA2689021C (en) 2009-12-23 2015-03-03 Thomas Charles Hann Apparatus and method for regulating flow through a pumpbox
DE102010005954B4 (en) 2010-01-27 2020-11-19 Heraeus Quarzglas Gmbh & Co. Kg Porous carbon product
US9056950B2 (en) 2010-07-23 2015-06-16 Ticona Gmbh Composite polymeric articles formed from extruded sheets containing a liquid crystal polymer
CN101934094B (en) * 2010-09-09 2013-02-13 湖南大学 Carbon foam biological scaffold as well as preparation method and application thereof
US9327454B2 (en) 2012-12-13 2016-05-03 Empire Technology Development Llc Lightweight structural materials
DE102012223840A1 (en) 2012-12-19 2014-06-26 Sgl Carbon Se Preparing heterogenized catalyst system useful e.g. in fuel cell, comprises mixing carbonizable matrix material and active catalyst material or its precursor, directly carbonizing mixture and activating precursor to active catalyst material
RU2537306C2 (en) * 2013-01-14 2014-12-27 Евгений Савельевич Дашут Processing method of heavy hydrocarbon compounds so that volumetric carbon frame is obtained (versions)
CN104299792A (en) * 2013-07-15 2015-01-21 合肥工业大学 Method for preparing porous carbon for supercapacitor with salicylate complex
US9757330B2 (en) 2013-10-18 2017-09-12 Industrial Technology Research Institute Recipe for in-situ gel, and implant, drug delivery system formed thereby
CN106164018A (en) 2014-02-13 2016-11-23 莫里斯兄弟控股有限公司 For the method manufacturing three-dimensional body
DE102014118894A1 (en) 2014-12-17 2016-07-07 Muw Screentec Filter- Und Präzisionstechnik Aus Metall Gmbh Process for carrying out chemical equilibrium reactions using a permselective membrane
US20160184776A1 (en) * 2014-12-31 2016-06-30 L'air Liquide, Societe Anonyme Pour I'etude Et I'exploitation Des Procedes Georges Claude Manufacturing carbon molecular sieve membranes using a pyrolysis atmosphere comprising sulfur-containing compounds
US9795927B2 (en) * 2014-12-31 2017-10-24 L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Manufacturing carbon molecular sieve membranes using a pyrolysis atmosphere comprising sulfur-containing compounds
CN104628122B (en) * 2014-12-31 2016-06-22 中国地质大学(武汉) A kind of preparation method of the porous open cellular of in-situ monitoring groundwater microbial structure of community
CN104724693B (en) * 2015-03-06 2016-09-07 苏州大学 3D porous carbon materials based on organic salt, preparation method and applications
DE102015005089A1 (en) * 2015-04-22 2016-10-27 Carl Freudenberg Kg Thermally fixable fabric
CN105948016A (en) * 2016-04-28 2016-09-21 广州市环境保护技术设备公司 Preparation method for preparing biomass carbon material from chewing gum
RU2632785C1 (en) * 2016-06-28 2017-10-09 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Hybrid porous structure for osteochondral defects substitution
FR3062336B1 (en) * 2017-02-02 2019-04-12 Safran Ceramics PROCESS FOR MANUFACTURING A PIECE OF COMPOSITE MATERIAL
CN107536659B (en) * 2017-08-23 2019-09-17 湖南碳康生物科技有限公司 A kind of integral carbon fibre composite material artificial bone and preparation method thereof
CN107824056A (en) * 2017-11-21 2018-03-23 邢彻 A kind of method for preparing carbon molecular sieve membrance with waste and old aromatic polyamide reverse osmosis membrane
US10864301B2 (en) 2018-03-15 2020-12-15 Lintec Of America, Inc. Fabricating a carbon nanofiber yarn nerve scaffold
US10689301B2 (en) 2018-05-03 2020-06-23 Doosan Fuel Cell America, Inc. Method of making a porous fuel cell component
CN109224531B (en) * 2018-08-03 2021-08-31 广东工业大学 Oil-water separation material and preparation method and application thereof
CN108675791A (en) * 2018-08-17 2018-10-19 苏州宏久航空防热材料科技有限公司 It is a kind of using foam waste as the preparation method of the carbon foam of raw material
JP7354309B2 (en) * 2019-06-27 2023-10-02 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド Culture system for seaweed
CN110817840B (en) * 2019-12-20 2021-05-18 华中科技大学 Method for carbonizing polyolefin
US20220009839A1 (en) * 2020-07-13 2022-01-13 Carbon Holdings Intellectual Properties, Llc Carbon foam, systems and methods for forming the same
CN112125767A (en) * 2020-09-25 2020-12-25 沈阳理工大学 Honeycomb aluminum framework reinforced aluminum/polytetrafluoroethylene active material and preparation process thereof
CN112321315B (en) * 2020-11-19 2022-08-09 航天特种材料及工艺技术研究所 Preparation method of carbon/silicon carbide-zirconium carbide ceramic matrix composite
KR20230005724A (en) * 2021-06-30 2023-01-10 주식회사 토요케미칼 Liquid binder for refractories and refractory bricks containing the same
KR20230005723A (en) * 2021-06-30 2023-01-10 주식회사 토요케미칼 Solid binder for refractory material and refractory material containing the same

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2658099A (en) * 1948-10-20 1953-11-03 Basset Lucien Paul Microporous carbon and graphite articles, including impregnated battery electrodes and methods of making the same
GB1275014A (en) * 1969-07-31 1972-05-24 Battelle Memorial Institute A composite material and a method of making same
DE2426814A1 (en) * 1973-06-05 1975-01-09 Atomic Energy Commission BONE PROSTHESIS AND METHOD OF MANUFACTURING GRAPHITE
US4035260A (en) * 1976-01-29 1977-07-12 American Cyanamid Company Process for hydrogenation catalysts of improved distribution of active components
EP0364297A2 (en) * 1988-10-14 1990-04-18 Kureha Kagaku Kogyo Kabushiki Kaisha Porous carbon electrode substrates for fuel cells
JPH0398571A (en) * 1989-09-12 1991-04-24 Mitsubishi Rayon Co Ltd Cell culture container and cell culture
US5171492A (en) * 1989-04-26 1992-12-15 Mitsubishi Pencil Co., Ltd. Process for producing carbonaceous implant material
EP0543752A1 (en) * 1991-11-21 1993-05-26 PECHINEY RECHERCHE (Groupement d'Intérêt Economique régi par l'Ordonnance du 23 Septembre 1967) Immeuble Balzac Process for preparing metal carbides of high specific surface from activated carbon foams
EP0578408A2 (en) * 1992-07-08 1994-01-12 The Carborundum Company Silicon carbide with controlled porosity
US5510063A (en) * 1994-04-15 1996-04-23 Corning Incorporated Method of making activated carbon honeycombs having varying adsorption capacities
US5695818A (en) * 1993-03-23 1997-12-09 Rotem Industries Ltd. Method of improving the selectivity of carbon membranes by chemical carbon vapor deposition
WO1999039818A1 (en) * 1998-02-10 1999-08-12 Corning Incorporated Method of making mesoporous carbon
DE10011013A1 (en) * 2000-03-07 2001-09-20 Schunk Kohlenstofftechnik Gmbh Production of carbon foam, used as insulator, catalyst, core material for sandwich structure or reinforcing material or for tribological application or part, involves foaming mixture of carbonizable polymer and blowing agent and pyrolysis
WO2001089991A1 (en) * 2000-05-24 2001-11-29 Finecell Co., Ltd. Mesoporous carbon material, carbon/metal oxide composite materials, and electrochemical capacitors using them
US20020028385A1 (en) * 2000-07-20 2002-03-07 Reznek Steven R. Carbon foams and methods of making the same
US20030034295A1 (en) * 2001-04-27 2003-02-20 Michael Strano Supported mesoporous carbon ultrafiltration membrane and process for making the same
DE10157782A1 (en) * 2001-11-28 2003-06-12 Schunk Kohlenstofftechnik Gmbh Implant and method for producing one
EP1433766A2 (en) * 2002-12-27 2004-06-30 EAGLE INDUSTRY Co., Ltd. Sliding element for seals and their process of manufacturing

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3342555A (en) 1961-06-19 1967-09-19 Dow Chemical Co Process for the preparation of light weight porous carbon
US4671907A (en) * 1984-08-07 1987-06-09 Sumitomo Metal Industries, Inc. Method of manufacturing carbon materials
RU2098176C1 (en) * 1996-08-12 1997-12-10 Иркутский государственный технический университет Method of preparing carbon sorbent
US6077464A (en) * 1996-12-19 2000-06-20 Alliedsignal Inc. Process of making carbon-carbon composite material made from densified carbon foam
RU2118535C1 (en) * 1997-03-20 1998-09-10 Институт клинической и экспериментальной лимфологии СО РАМН Complex bacterial preparation
DE19823507A1 (en) 1998-05-26 1999-12-02 Fraunhofer Ges Forschung Process for the production of moldings based on carbon, carbides and / or carbonitrides
JP4876275B2 (en) * 2000-03-31 2012-02-15 独立行政法人農業・食品産業技術総合研究機構 Cultivation carrier for animal cells comprising slices of biological tissue, and culturing method and transplantation method for animal cells using this carrier
DE10051910A1 (en) 2000-10-19 2002-05-02 Membrana Mundi Gmbh Flexible, porous membranes and adsorbents, and processes for their manufacture
RU2208000C1 (en) * 2002-02-13 2003-07-10 Российский научный центр "Курчатовский институт" Composite manufacture process

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2658099A (en) * 1948-10-20 1953-11-03 Basset Lucien Paul Microporous carbon and graphite articles, including impregnated battery electrodes and methods of making the same
GB1275014A (en) * 1969-07-31 1972-05-24 Battelle Memorial Institute A composite material and a method of making same
DE2426814A1 (en) * 1973-06-05 1975-01-09 Atomic Energy Commission BONE PROSTHESIS AND METHOD OF MANUFACTURING GRAPHITE
US4035260A (en) * 1976-01-29 1977-07-12 American Cyanamid Company Process for hydrogenation catalysts of improved distribution of active components
EP0364297A2 (en) * 1988-10-14 1990-04-18 Kureha Kagaku Kogyo Kabushiki Kaisha Porous carbon electrode substrates for fuel cells
US5171492A (en) * 1989-04-26 1992-12-15 Mitsubishi Pencil Co., Ltd. Process for producing carbonaceous implant material
JPH0398571A (en) * 1989-09-12 1991-04-24 Mitsubishi Rayon Co Ltd Cell culture container and cell culture
EP0543752A1 (en) * 1991-11-21 1993-05-26 PECHINEY RECHERCHE (Groupement d'Intérêt Economique régi par l'Ordonnance du 23 Septembre 1967) Immeuble Balzac Process for preparing metal carbides of high specific surface from activated carbon foams
EP0578408A2 (en) * 1992-07-08 1994-01-12 The Carborundum Company Silicon carbide with controlled porosity
US5695818A (en) * 1993-03-23 1997-12-09 Rotem Industries Ltd. Method of improving the selectivity of carbon membranes by chemical carbon vapor deposition
US5510063A (en) * 1994-04-15 1996-04-23 Corning Incorporated Method of making activated carbon honeycombs having varying adsorption capacities
WO1999039818A1 (en) * 1998-02-10 1999-08-12 Corning Incorporated Method of making mesoporous carbon
DE10011013A1 (en) * 2000-03-07 2001-09-20 Schunk Kohlenstofftechnik Gmbh Production of carbon foam, used as insulator, catalyst, core material for sandwich structure or reinforcing material or for tribological application or part, involves foaming mixture of carbonizable polymer and blowing agent and pyrolysis
WO2001089991A1 (en) * 2000-05-24 2001-11-29 Finecell Co., Ltd. Mesoporous carbon material, carbon/metal oxide composite materials, and electrochemical capacitors using them
US20020028385A1 (en) * 2000-07-20 2002-03-07 Reznek Steven R. Carbon foams and methods of making the same
US20030034295A1 (en) * 2001-04-27 2003-02-20 Michael Strano Supported mesoporous carbon ultrafiltration membrane and process for making the same
DE10157782A1 (en) * 2001-11-28 2003-06-12 Schunk Kohlenstofftechnik Gmbh Implant and method for producing one
EP1433766A2 (en) * 2002-12-27 2004-06-30 EAGLE INDUSTRY Co., Ltd. Sliding element for seals and their process of manufacturing

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 199123, Derwent World Patents Index; Class D16, AN 1991-167019, XP002284324 *
IRINA A FILATOVA ET AL: "Comparison of different carbon composites as orbital implants in rabbits", ORBIT, AEOLUS PRESS, AMSTERDAM, NL, vol. 16, no. 3, September 1997 (1997-09-01), pages I49 - I58, XP001035029, ISSN: 0167-6830 *
LEWANDOWSKA-SZUMIEL MALGORZATA ET AL: "Interaction between carbon composites and bone after intrabone implantation", J BIOMED MATER RES; JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 1999 JOHN WILEY & SONS INC, NEW YORK, NY, USA, vol. 48, no. 3, 1999, pages 289 - 296, XP002284323 *
See also references of WO2005021462A1 *

Also Published As

Publication number Publication date
WO2005021462A1 (en) 2005-03-10
CN1829667B (en) 2010-04-07
SG154326A1 (en) 2009-08-28
EP2025657A2 (en) 2009-02-18
IL173164A0 (en) 2006-06-11
KR20060065660A (en) 2006-06-14
JP2007500663A (en) 2007-01-18
CN1829667A (en) 2006-09-06
CA2532737A1 (en) 2005-03-10
DE10335131A1 (en) 2005-02-24
EA200600286A1 (en) 2006-06-30
EA011114B1 (en) 2008-12-30
DE202004006867U1 (en) 2004-08-05
US20060159718A1 (en) 2006-07-20
BRPI0413080A (en) 2006-10-03
MXPA06001238A (en) 2006-04-11
AU2004268732A1 (en) 2005-03-10

Similar Documents

Publication Publication Date Title
EP1658248A1 (en) Method for the production of porous carbon-based molded bodies, and use thereof as cell culture carrier systems and culture systems
US7371425B2 (en) Method for coating substrates with a carbon-based material
Soltani et al. Recent progress in the design and synthesis of nanofibers with diverse synthetic methodologies: characterization and potential applications
EP1626930B1 (en) Method for producing a porous, carbon-based material
US8257624B2 (en) Porous nanosheath networks, method of making and uses thereof
KR101906659B1 (en) Porous carbon material, precursor for porous carbon material, process for producing precursor for porous carbon material, and process for producing porous carbon material
EP1982772A1 (en) Bio-compatible coated medical implants
CN109876186B (en) Biomedical degradable double-layer stent for nerve repair and preparation method thereof
KR101627184B1 (en) The preparing method of core-shell structured scaffold for hard tissue regeneration and the scaffold for hard tissue regeneration thereby
Lalwani et al. Two-and three-dimensional all-carbon nanomaterial assemblies for tissue engineering and regenerative medicine
DE10312144A1 (en) Carrier material for tissue and cell culture and the production of implant materials
KR102316548B1 (en) Two-step phase separation-based 3D bioplotting for macro/nanoporous collagen scaffolds comprised of nanofibrous collagen filaments
JPWO2016013676A1 (en) Fluid separation carbon membrane, fluid separation membrane module, and method for producing fluid separation carbon membrane
CN108147835B (en) Method for preparing ceramic block with hierarchical pore structure by taking bacterial cellulose as biological template
WO2001010779A1 (en) Interpenetrating networks of carbon fibrils and polymers
DE10324415A1 (en) Coating procedure for coating substrates with carbon based material, comprises carbonation of polymer film in oxygen free environment at temperature ranging from 200 to 2500 degrees Celsius
CN112745142B (en) Graphene/calcium phosphate ceramic composite bracket with antibacterial function and preparation method thereof
DE10333098A1 (en) New biocompatible, coated, implantable medicinal devices, e.g. stents, obtained by thermally carbonizing a polymeric coating, useful e.g. for controlled drug release
RU2609831C1 (en) Method for implant production
Planell Functional scaffolds: materials and fabrication
Kijenska et al. Warsaw University of Technology, Warsaw, Poland
Yun et al. Fabrication of hierarchically porous bioactive glass ceramics
Li et al. Biomimetic synthesis of apatite-polyelectrolyte complex (chitosan-phosphorylated chitosan) hydrogel as an osteoblast carrier
Ma Designing Body-Part Templates for Regeneration
CN111925227A (en) Carbon fiber composite material artificial trachea stent and preparation method thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060131

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: LT LV

RAX Requested extension states of the european patent have changed

Extension state: LV

Payment date: 20060131

Extension state: LT

Payment date: 20060131

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1090630

Country of ref document: HK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KUNSTMANN, JUERGEN

Inventor name: ASGARI, SOHEIL

Inventor name: RATHENOW, JOERG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CINVENTION AG

RIC1 Information provided on ipc code assigned before grant

Ipc: B01J 37/06 20060101ALI20071123BHEP

Ipc: B01J 37/00 20060101ALI20071123BHEP

Ipc: B01J 21/18 20060101ALI20071123BHEP

Ipc: C04B 38/04 20060101ALI20071123BHEP

Ipc: C04B 38/06 20060101ALI20071123BHEP

Ipc: C04B 38/00 20060101ALI20071123BHEP

Ipc: C04B 41/88 20060101ALI20071123BHEP

Ipc: C04B 41/51 20060101ALI20071123BHEP

Ipc: C04B 41/50 20060101ALI20071123BHEP

Ipc: C04B 41/45 20060101ALI20071123BHEP

Ipc: C04B 41/00 20060101ALI20071123BHEP

Ipc: B01J 27/20 20060101ALI20071123BHEP

Ipc: B01J 37/08 20060101ALI20071123BHEP

Ipc: B01D 71/02 20060101ALI20071123BHEP

Ipc: D06C 7/04 20060101ALI20071123BHEP

Ipc: A61L 27/34 20060101ALI20071123BHEP

Ipc: C07K 16/00 20060101ALI20071123BHEP

Ipc: C12N 5/00 20060101ALI20071123BHEP

Ipc: C04B 35/634 20060101ALI20071123BHEP

Ipc: C04B 35/632 20060101ALI20071123BHEP

Ipc: C04B 35/63 20060101ALI20071123BHEP

Ipc: C04B 35/524 20060101AFI20050317BHEP

17Q First examination report despatched

Effective date: 20080218

19U Interruption of proceedings before grant

Effective date: 20100801

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20120102

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1090630

Country of ref document: HK

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120703