EP1655479B1 - Installation d'injection de carburant - Google Patents

Installation d'injection de carburant Download PDF

Info

Publication number
EP1655479B1
EP1655479B1 EP05109675A EP05109675A EP1655479B1 EP 1655479 B1 EP1655479 B1 EP 1655479B1 EP 05109675 A EP05109675 A EP 05109675A EP 05109675 A EP05109675 A EP 05109675A EP 1655479 B1 EP1655479 B1 EP 1655479B1
Authority
EP
European Patent Office
Prior art keywords
piston rod
pressure equalization
space
pressure
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05109675A
Other languages
German (de)
English (en)
Other versions
EP1655479A1 (fr
Inventor
Hans-Christoph Magel
Volkmar Kern
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1655479A1 publication Critical patent/EP1655479A1/fr
Application granted granted Critical
Publication of EP1655479B1 publication Critical patent/EP1655479B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/025Injectors structurally combined with fuel-injection pumps characterised by the pump drive hydraulic, e.g. with pressure amplification
    • F02M57/026Construction details of pressure amplifiers, e.g. fuel passages or check valves arranged in the intensifier piston or head, particular diameter relationships, stop members, arrangement of ports or conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/025Injectors structurally combined with fuel-injection pumps characterised by the pump drive hydraulic, e.g. with pressure amplification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/105Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive hydraulic drive

Definitions

  • the invention relates to a fuel injection device for an internal combustion engine, in particular in a motor vehicle, having the features of the preamble of claim 1.
  • Such a fuel injection device is for example from the DE 102 29 418 A1 and comprises a pressure booster, a nozzle needle, a control valve, a fuel supply and a Befiillungspfad.
  • the pressure booster has an axially adjustable piston rod which axially delimits a compression space on the end face and carries a piston which separates a working space from a control space. With the nozzle needle leading from the compression space to at least one spray hole compression pressure path for opening and locking is controlled.
  • the control valve connects in a first switching position the control room with the working space and separates the control room of a return. In a second switching position, the control valve separates the control chamber from the working space and connects the control chamber with the return.
  • the fuel supply can supply high-pressure fuel to the working space.
  • the control chamber is connected via the filling path with the compression chamber.
  • the fuel injection device of the filling path leads through a nozzle spring chamber and comprises a leading from the nozzle spring chamber to the compression space throttled first connecting channel and one from the nozzle spring chamber to Control room leading throttled second connection channel.
  • the high pressure provided by the fuel supply prevails in an initial state in the compression chamber.
  • the piston rod is driven to carry out a compression stroke.
  • the compression stroke results in additional compression in the compression chamber, which increases the pressure in the compression chamber to the desired injection pressure.
  • this injection pressure is then ready for injection at the least one injection hole and can be injected into the respective combustion chamber by opening the nozzle needle. After such an injection process, the piston rod must be readjusted back to its original position.
  • the compression space must be refilled with fuel, which is done via the throttled Befiillungspfad. Additionally, during the compression stroke, fuel may escape from the compression space into the fill path, resulting in an undesirable pressure drop, or reducing the amount of attainable injection pressure.
  • the erfmdungssiee fuel injection device with the features of claim 1 has the opposite advantage that in the compression chamber during the compression stroke substantially no pressure loss arises, whereby a total of a higher injection pressure can be achieved.
  • the pressure equalization path is opened in the initial position of the piston rod, whereby a permanent pressure equalization between the compression chamber and the control chamber can take place.
  • the control room since in the first switching position of the control valve, the control room communicates with the working space, fmdet also between the control room and Workspace a pressure equalization instead.
  • the high pressure provided in the fuel supply automatically sets in the working space, in the control room and in the compression chamber. This is particularly important for fuel injectors where the high pressure provided in the fuel supply can be varied.
  • the injection pressure achievable with the aid of the pressure booster can be varied, which enables an improved adaptation of the injection process to the current operating state of the respective internal combustion engine, thereby reducing emissions and increasing the performance and / or the efficiency of the internal combustion engine.
  • the pressure in the compression chamber must be able to follow this pressure change so that the desired injection pressure is achieved in the next injection process.
  • a pressure equalization in the compression chamber would be possible via the Befiillungspfad provided with the return valve only at an increase in pressure in the fuel supply, but not at a pressure drop in the fuel supply, since in this direction the return check valve blocks.
  • the inventively provided pressure equalization path however, the desired pressure equalization is possible at least in the initial position of the piston rod. In this way, the pressure intensifier works very precisely and can quickly follow pressure changes in the fuel supply.
  • the pressure equalization path can be designed throttled. This design has the consequence that on the one hand pressure pulses that can propagate in the hydraulic system, not or only very attenuated get into the compression chamber. On the other hand, it is achieved that the pressure increase in the compression chamber in a compression stroke of the piston rod up to the time at which the piston rod controls the pressure equalization path for blocking, is not or only slightly hindered.
  • a fuel injection device 1 according to the invention comprises a pressure booster 2, at least one nozzle needle 3 and a control valve 4. Furthermore, the fuel injection device 1 is provided with a fuel feed 5. The fuel injection device 1 is used for injecting fuel into an injection space 6, which may be a combustion chamber or a mixture formation space, an internal combustion engine, not shown, which may be arranged in particular in a motor vehicle.
  • an injection space 6 which may be a combustion chamber or a mixture formation space, an internal combustion engine, not shown, which may be arranged in particular in a motor vehicle.
  • the fuel supply 5 comprises a comparatively large-volume high-pressure line 7 in which high-pressure fuel is provided during operation of the fuel injection device 1.
  • the high-pressure line 7 is expediently fed with a high-pressure pump.
  • a so-called “common rail system” several fuel injectors 1 are connected to one and the same high-pressure line 7.
  • the pressure booster 2 comprises a piston rod 8, which is mounted axially adjustable in a corresponding receiving body 9.
  • the piston rod 8 is guided in a piston rod guide 10.
  • the piston rod 8 has at one end an axial end face 11 with which the piston rod 8 axially delimits a compression space 12.
  • the piston rod 8 and the piston 13 may be made in one piece or fixedly connected to each other or axially abut each other loosely. From the compression chamber 12, a compression pressure path 16 leads to at least one spray hole 17, through which the fuel injection into the injection chamber 6 takes place.
  • the nozzle needle 3 serves to control the compression pressure path 16. That is, by a stroke of the nozzle needle 3, the compression pressure path 16 can be opened or locked.
  • the compression pressure path 16 includes a compression pressure line 18 which connects the compression space 12 with a nozzle chamber 19, which in turn merges into an annular space 20 leading to the at least one injection hole 17.
  • a needle seat 21 is formed, with which the nozzle needle 3 cooperates.
  • the nozzle chamber 19 and the annular space 20 likewise form components of the compression pressure path 16.
  • a pressure stage 22 which initiates a force acting in the opening direction of the nozzle needle 3 force in the nozzle needle 3 at a pressure increase in the nozzle chamber 19.
  • a closing compression spring 24 is arranged, which introduces a force acting in the closing direction of the nozzle needle 3 force into the nozzle needle 3 or in a needle assembly 3 comprising the nozzle needle 3.
  • the closing compression spring 24 is supported on a needle piston 26, which forms a part of the needle assembly 25.
  • the needle piston 26 at one side remote from the at least one injection hole 17 limits the end face and axially a closing pressure chamber 27. The pressure prevailing in the closing pressure chamber 27 generates a force acting in the closing direction on the needle piston 26.
  • the nozzle spring chamber 23 is connected via a further throttled connecting line 29 to a filling path 30 which connects the compression chamber 12 with the control chamber 15.
  • the closing pressure chamber 27 is also connected via a further throttled connecting line 28 to the filling path 30 or - as here the connection line 29.
  • control valve 4 To the control valve 4, three lines are connected, namely a leading to the control chamber 15 control chamber line 31, leading to a working space 14 working space line 32 and a leading to a relatively unpressurized return 33 return line 34.
  • first switching position I locks the control valve 4 the Return line 34 and connects the working space line 32 with the control chamber line 31.
  • the control chamber 15 is separated from the return 33 and connected to the other with the working space 14.
  • the control valve 4 connects in a second switching position II, the control chamber line 31 with the return line 34 and blocks the working space line 32.
  • the control chamber 15 is connected on the one hand to the return 33 and on the other hand separated from the working space 14.
  • the fuel supply 5 leads the high-pressure fuel of the high-pressure line 7 via a supply line 35, which may be throttled, to the working space 14.
  • a return valve 37 is arranged in the filling path 30 or in a leading from the control chamber 15 to the compression chamber 12 filling line, in fact so that it opens to the compression chamber 12 and blocks the control chamber 15 out.
  • the return check valve 37 is biased spring loaded as here in its closed position. With the help of the return check valve 37 takes place between the control chamber 15 and the compression chamber 12 only a pressure equalization when in the control chamber 15 relative to the compression chamber 12, an overpressure prevails.
  • a pressure compensation path 38 is provided, which - as well as the Befiillungspfad 30 - the compression chamber 12 connects to the control chamber 15.
  • the pressure equalization path 38 is controllable by the piston rod 8 and by its axial position for opening and locking, while the filling path 30 is permanently opened independently of the piston rod 8 and of its axial position.
  • the pressure equalization path 38 is preferably throttled, which is indicated here by a throttle symbol 39.
  • the controllability of the pressure compensation path 38 as a function of the stroke adjustment of the piston rod 8 is expediently designed so that the piston rod in a reproduced in Fig. 1 starting position in which the compression chamber 12 has its largest volume, the pressure equalization path 38 opens. However, as soon as the piston rod 8 performs a compression stroke for generating the injection pressure in the compression chamber 12, in which the volume of the compression chamber 12 is reduced as a result, the piston rod 8 blocks the pressure equalization path 38 from a predetermined control stroke.
  • the control stroke from which the pressure equalization path 38 is locked, is significantly smaller than the maximum possible compression stroke, the piston rod 8 performs during an injection process.
  • the control stroke is less than 50% of the possible compression stroke; however, preferred are smaller control strokes, e.g. less than 10% of the possible compression stroke. It is important that the piston rod 8 already reaches the control stroke during a very small compression stroke, ie, almost immediately after the start of the stroke adjustment, and blocks the pressure compensation path 38.
  • the pressure compensation path 38 may have a channel 40 which extends in the receiving body 9 and which opens radially into the compression space 12 through an orifice 41.
  • the piston rod 8 can control the pressure equalization path 38 by overflowing the orifice 41 in the region of the control stroke.
  • the channel 40 may be designed throttled or contain a throttle point, which is indicated here in each case by the throttle symbol 39.
  • the pressure equalization path 38 may be formed radially between the piston rod 8 and the piston rod guide 10. It is basically possible to form the pressure equalization path 38 with at least one axial groove 42, which is formed in the piston rod 8. Suitably, a plurality of such rod axial grooves 42 are provided, which are arranged circumferentially distributed on the piston rod 8. Each rod-axial groove 42 is axially open to the compression chamber 12 and extends at open pressure equalization path 38, ie at their starting position arranged piston rod 8 to the control chamber 15. When locked pressure equalization path 38, so when reaching the control stroke, the rod axial grooves 42 are radially outward closed by the piston rod guide 10.
  • the pressure equalization path according to FIG. 3 can have at least one axial groove 43, which is formed in the piston rod guide 10.
  • a plurality of such guide axial grooves 43 are provided, which then advantageous arranged distributed circumferentially.
  • the arrangement and dimensioning of the guide axial grooves 43 takes place so that they are axially open to the control chamber 15.
  • the guide axial grooves 43 extend with the pressure equalization path 38 open, that is to say in the starting position of the piston rod 8, as far as the compression space 12, so that they communicate with it.
  • the guide Axialnuten 43 are closed by the piston rod 8 radially inward.
  • the dimensioning of the axial grooves 42 and 43 is preferably such that the pressure equalization path 38 is throttled when open.
  • the pressure compensation path 38 can also be equipped with a channel 44 which extends in the piston rod 8.
  • this channel 44 is connected to the control chamber 15 through an orifice 45.
  • the positioning of this orifice 45 is chosen so that the piston rod 8 extends axially with the mouth opening 44 formed therefrom from the control chamber 15 to block the pressure equalization path 38.
  • the mouth opening 45 is thus run over by the compression stroke of the piston rod guide 10 and thereby closed.
  • this channel 44 may be configured throttled or contain a corresponding throttle point.
  • the pressure equalization path 38 can in principle also be formed by a correspondingly dimensioned radial clearance between the piston rod 8 and the piston rod guide 10.
  • the fuel injection device 1 operates as follows:
  • the control valve 4 is transferred to its second switching position II. As a result, it comes in the control chamber 15 to a pressure drop. This results in a resultant force on the piston rod 8, which drives the piston rod 8 to carry out a compression stroke. During this compression stroke, the volume of the compression chamber 12 is reduced, whereby therein the desired pressure transmission takes place in order to achieve the respectively desired injection pressure. Furthermore, when the control stroke is reached, the pressure compensation path 38 is blocked. At the same time a return spring 46 is tensioned by the axial adjustment of the piston rod 8, which is supported in the control chamber 15 on the piston rod 8 directly or indirectly via a collar 47.
  • the control valve 4 is switched back to its first switching position I.
  • the pressure increases again, which, supported by the return spring 46, drives the piston rod 8 back into its starting position.
  • the volume in the compression chamber 12 is increased again.
  • the associated pressure drop propagates via the compression pressure path 16 into the nozzle chamber 19.
  • the pressure drop in the nozzle chamber 19 in conjunction with the intermediate increased pressure in the closing pressure chamber 27 and supported by the closing pressure spring 24 is then carried out closing the nozzle needle 3, which ends the injection process.
  • the compression chamber 12 is nachgefiillt via the filling path 30, essentially with the high pressure.
  • the compression chamber 12 can again follow the pressure curve in the high-pressure line 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Claims (12)

  1. Injecteur de carburant d'un moteur à combustion, notamment pour un véhicule automobile, comprenant :
    - un amplificateur de pression (2) avec une tige de piston (8) mobile axialement qui délimite du côté frontal une chambre de compression (12) et supporte un piston (13), séparant une chambre de travail (14) d'une chambre de commande (15),
    - au moins une aiguille d'injecteur (3) commandant l'ouverture ou la fermeture d'un trajet de compression (16) allant de la chambre de compression (12) vers au moins un trou d'injection (17)
    - une soupape de commande (4) qui, dans une première position de commutation, relie la chambre de commande (15) à la chambre de travail (14) et sépare la chambre de commande (15) d'un reflux (33), et qui, dans une deuxième position de commutation, sépare la chambre de commande (15) de la chambre de travail (14) et relie la chambre de commande (15) au reflux (33),
    - une alimentation en carburant (5) qui, lorsque l'injecteur de carburant (1) fonctionne, alimente la chambre de travail (14) en carburant sous haute pression, et
    - un trajet de remplissage (30) qui relie la chambre de compression à la chambre de commande (15),
    caractérisé en ce que
    - dans le trajet de remplissage (30) un clapet anti-retour (37) s'ouvre en direction de la chambre de compression (12) et se ferme en direction de la chambre de commande (15),
    - un trajet d'équilibrage de pression (38) relie la chambre de commande 15) à la chambre de compression (12), et
    - la tige de piston (8) commande en fonction de sa position axiale l'ouverture et la fermeture du trajet d'équilibrage de pression (38).
  2. Injecteur de carburant selon la revendication 1,
    caractérisé en ce que
    le trajet d'équilibrage de pression (38) est étranglé.
  3. Injecteur de carburant selon la revendication 1 ou 2,
    caractérisé en ce que
    la tige de piston (8) dans une position de départ dans laquelle la chambre de compression (12) présente son plus gros volume, ouvre le trajet d'équilibrage de pression (38), et lors d'une course de compression réduisant le volume de la chambre de compression (12), ferme le trajet d'équilibrage de pression (38) à partir d'une course de commande pré-définie.
  4. Injecteur de carburant selon la revendication 3,
    caractérisé en ce que
    la course de commande est inférieure à 50 %, ou à 40%, ou à 20 %, ou à 10% de la course de compression possible.
  5. Injecteur de carburant selon les revendications 1 à 4,
    caractérisé en ce que
    - le trajet d'équilibrage de pression (38) débouche radialement dans la chambre de compression (12) avec un canal (40) à travers un orifice d'ouverture (41), et
    - la tige de piston (8) dépasse de l'orifice d'ouverture (41) pour commander le trajet d'équilibrage de pression (38).
  6. Injecteur de carburant selon la revendication 1 à 4,
    caractérisé en ce que
    - le trajet d'équilibrage de pression (38) présente un canal (44) qui s'étend dans la tige de piston (8) et relié radialement à la chambre de commande (15) par un orifice d'ouverture (45) lorsque le trajet d'équilibrage de pression (38) est ouvert, et
    - la tige de piston (8) sort de la chambre de commande (15) pour commander le trajet d'équilibrage de pression (38) avec l'orifice d'ouverture (45).
  7. Injecteur de carburant selon la revendication 2 ainsi que les revendications 5 ou 6,
    caractérisé en ce que
    le canal (40 ; 44) est étranglé ou présente un point d'étranglement.
  8. Injecteur de carburant selon les revendications 1 à 4,
    caractérisé en ce que
    le trajet d'équilibrage de pression (38) est formé radialement entre la tige de piston (8) et un guidage de tige de piston (10).
  9. Injecteur de carburant selon la revendication 8,
    caractérisé en ce que
    le trajet d'équilibrage de pression (38) présente au moins une rainure axiale (42) formée dans la tige de piston (8), ouverte axialement à la chambre de compression (12), et qui s'étend jusqu'à la chambre de commande (15) lorsque le trajet d'équilibrage de pression (38) est ouvert, mais est fermée radialement vers l'extérieur par le guidage de tige de piston (10) lorsque le trajet d'équilibrage de pression (38) est fermé.
  10. Injecteur de carburant selon la revendication 8 ou 9,
    caractérisé en ce que
    le trajet d'équilibrage de pression (38) présente au moins une rainure axiale (43) formée dans le guidage de tige de piston (10), ouverte axialement à la chambre de commande (15), et qui s'étend jusqu'à la chambre de compression (12) lorsque le trajet d'équilibrage de pression (38) est ouvert mais est fermée radialement vers l'intérieur par la tige de piston (8) lorsque le trajet d'équilibrage de pression (38) est fermé.
  11. Injecteur de carburant selon la revendication 9 ou 10,
    caractérisé par
    plusieurs rainures axiales (42, 43) réparties en périphérie.
  12. Injecteur de carburant selon la revendication 1 à 4,
    caractérisé en ce que
    le trajet d'équilibrage de pression (38) est un jeu radial entre la tige de piston (8) et un guidage de tige de piston (10).
EP05109675A 2004-11-04 2005-10-18 Installation d'injection de carburant Active EP1655479B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200410053269 DE102004053269A1 (de) 2004-11-04 2004-11-04 Kraftstoffeinspritzeinrichtung

Publications (2)

Publication Number Publication Date
EP1655479A1 EP1655479A1 (fr) 2006-05-10
EP1655479B1 true EP1655479B1 (fr) 2007-08-08

Family

ID=35207566

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05109675A Active EP1655479B1 (fr) 2004-11-04 2005-10-18 Installation d'injection de carburant

Country Status (3)

Country Link
EP (1) EP1655479B1 (fr)
DE (2) DE102004053269A1 (fr)
ES (1) ES2288728T3 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7942525B2 (en) 2009-07-09 2011-05-17 Nike, Inc. Contrast sensitivity testing and/or training using circular contrast zones

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51101628A (fr) * 1975-01-24 1976-09-08 Diesel Kiki Co
DE10229418A1 (de) 2002-06-29 2004-01-29 Robert Bosch Gmbh Einrichtung zur Dämpfung des Nadelhubes an Kraftstoffinjektoren
DE10229417A1 (de) * 2002-06-29 2004-01-15 Robert Bosch Gmbh Speichereinspritzsystem mit Variodüse und Druckübersetzungseinrichtung
DE10247210A1 (de) * 2002-10-10 2004-04-22 Robert Bosch Gmbh Filteranordnung für Kraftstoffeinspritzsysteme
DE10248467A1 (de) * 2002-10-17 2004-05-06 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung mit Druckübersetzer und fördermengenreduziertem Niederdruckkreis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
ES2288728T3 (es) 2008-01-16
DE102004053269A1 (de) 2006-05-11
DE502005001174D1 (de) 2007-09-20
EP1655479A1 (fr) 2006-05-10

Similar Documents

Publication Publication Date Title
EP1636484B1 (fr) Injecteur pour moteurs a combustion interne
EP1853813B1 (fr) Injecteur
WO2007000371A1 (fr) Injecteur equipe d'un multiplicateur de pression raccordable
DE102004017305A1 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen mit direkt ansteuerbaren Düsennadeln
EP1908952B1 (fr) Injecteur pour une installation à injection de carburant
DE10335059A1 (de) Schaltventil für einen Kraftstoffinjektor mit Druckübersetzer
EP1719904A1 (fr) Injecteur de carburant
EP1655479B1 (fr) Installation d'injection de carburant
EP1655477B1 (fr) Servo-valve électro-hydraulique
WO2003018995A1 (fr) Dispositif d'injection de carburant pour moteurs a combustion interne
EP1697628A1 (fr) Injecteur
DE102005041994B4 (de) Kraftstoffinjektor mit direkt betätigbarem Einspritzventilglied und zweistufiger Übersetzung
EP1704322B1 (fr) Injecteur
DE10141111A1 (de) Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen
DE102006022803A1 (de) Einspritzdüse
DE102004038189A1 (de) Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen mit direkt ansteuerbaren Düsennadeln
DE10343998A1 (de) Einspritzdüse
WO2005038230A1 (fr) Gicleur pour un moteur a combustion interne
WO2005026525A1 (fr) Soupape d'injection de carburant pour moteur a combustion interne
DE10323562A1 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
DE10336409A1 (de) Kraftstoff-Einspritzvorrichtung, insbesondere für eine Brennkraftmaschine mit Kraftstoff-Direkteinspritzung
EP1666719A1 (fr) Dispositif d'injection de carburant
DE102004002090A1 (de) Einspritzdüse und zugehöriges Betriebsverfahren
DE10309078A1 (de) Kraftstoffeinspritzventil für eine Brennkraftmaschine
DE10352503A1 (de) Einspritzdüse für Brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20061110

AKX Designation fees paid

Designated state(s): DE ES FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR IT

REF Corresponds to:

Ref document number: 502005001174

Country of ref document: DE

Date of ref document: 20070920

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2288728

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080509

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20081027

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081021

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081222

Year of fee payment: 4

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100501

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091102

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110304

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20081031

Year of fee payment: 4