EP1654497B1 - Method for the combustion of a fluid fuel, and burner, especially of a gas turbine, for carrying out said method - Google Patents
Method for the combustion of a fluid fuel, and burner, especially of a gas turbine, for carrying out said method Download PDFInfo
- Publication number
- EP1654497B1 EP1654497B1 EP04763827.5A EP04763827A EP1654497B1 EP 1654497 B1 EP1654497 B1 EP 1654497B1 EP 04763827 A EP04763827 A EP 04763827A EP 1654497 B1 EP1654497 B1 EP 1654497B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel
- burner
- catalytic
- flow channel
- catalytically
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000446 fuel Substances 0.000 title claims description 149
- 238000002485 combustion reaction Methods 0.000 title claims description 71
- 239000012530 fluid Substances 0.000 title claims description 18
- 238000000034 method Methods 0.000 title claims description 18
- 230000003197 catalytic effect Effects 0.000 claims description 53
- 239000007789 gas Substances 0.000 claims description 36
- 239000007788 liquid Substances 0.000 claims description 17
- 238000006555 catalytic reaction Methods 0.000 claims description 15
- 238000010517 secondary reaction Methods 0.000 claims description 9
- 239000002737 fuel gas Substances 0.000 claims description 7
- 239000000295 fuel oil Substances 0.000 claims description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 150000004706 metal oxides Chemical class 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 230000001590 oxidative effect Effects 0.000 claims description 3
- 229910000510 noble metal Inorganic materials 0.000 claims description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 239000004408 titanium dioxide Substances 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 2
- 229910052814 silicon oxide Inorganic materials 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 41
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 26
- 239000003054 catalyst Substances 0.000 description 23
- 239000000203 mixture Substances 0.000 description 16
- 238000007084 catalytic combustion reaction Methods 0.000 description 14
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 230000035484 reaction time Effects 0.000 description 4
- 230000006641 stabilisation Effects 0.000 description 4
- 238000011105 stabilization Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 241001156002 Anthonomus pomorum Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 230000004323 axial length Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- -1 biogas Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 239000003034 coal gas Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910000457 iridium oxide Inorganic materials 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229910003446 platinum oxide Inorganic materials 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910003449 rhenium oxide Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910003450 rhodium oxide Inorganic materials 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C13/00—Apparatus in which combustion takes place in the presence of catalytic material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C13/00—Apparatus in which combustion takes place in the presence of catalytic material
- F23C13/08—Apparatus in which combustion takes place in the presence of catalytic material characterised by the catalytic material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/02—Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
- F23R3/04—Air inlet arrangements
- F23R3/10—Air inlet arrangements for primary air
- F23R3/12—Air inlet arrangements for primary air inducing a vortex
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/40—Continuous combustion chambers using liquid or gaseous fuel characterised by the use of catalytic means
Definitions
- the invention relates to a burner for combustion of a fluidic fuel, wherein in the flow direction of the fuel in a flow channel in front of the fuel outlet of a main burner, the fuel outlet of a catalytic burner is arranged with catalytic conversion of the fuel, wherein the catalytic burner has a number of catalytically active elements, which are arranged such that a rotary flow is formed in the flow channel and the catalytically active elements are arranged in a plane perpendicular to the flow direction, wherein the fuel outlet of the catalytically active elements opens into the flow channel.
- the invention further relates to a combustion chamber having such a burner and a gas turbine with such a combustion chamber.
- the invention further relates to a method for combustion of a fluid fuel in a burner of the aforementioned type, in which the fuel is reacted in a catalytic reaction and then further catalytically pre-reacted fuel in a post-reaction, wherein the vorreag faced fuel a swirl component is impressed.
- a fluidic fuel is to be understood as meaning, in particular, heating oil and / or heating gas, as used in particular for gas turbines.
- heating oil and / or heating gas as used in particular for gas turbines.
- all combustible liquids eg. As petroleum, methanol, etc.
- all combustible gases eg. As natural gas, coal gas, synthesis gas, biogas, propane, butane, etc.
- Such burners with catalytic reaction are for example in the document EP-A-491 481 shown.
- a gas turbine usually consists of a compressor part, a burner part and a turbine part.
- the compressor part and the turbine part are usually located on a common shaft, which simultaneously drives a generator for generating electricity.
- preheated fresh air is compressed to the pressure required in the burner part.
- the compressed and preheated fresh air with a fuel such. As natural gas or fuel oil burned.
- the hot burner exhaust gas is supplied to the turbine part and there relaxes work.
- the flame temperature or flame temperature peak reduction in the burner part acts as nitrogen oxide reducing.
- the fuel gas or the compressed and preheated fresh air steam is supplied or injected water into the combustion chamber.
- Such measures which reduce nitric oxide emissions of the gas turbine per se, are referred to as primary measures for nitrogen oxide reduction. Accordingly, all measures are referred to as secondary measures in which once in the exhaust gas of a gas turbine - or generally a combustion process - contained nitrogen oxides are reduced by subsequent measures.
- the method of selective catalytic reduction has prevailed worldwide, in which the nitrogen oxides are contacted together with a reducing agent, preferably ammonia, to a catalyst and thereby form harmless nitrogen and water.
- a reducing agent preferably ammonia
- the arranged in the exhaust duct catalysts for nitrogen oxide reduction naturally cause a pressure drop in the exhaust passage, which causes a power loss of the turbine. Even a power loss of a few thousandths of a power of the gas turbine of, for example, 150 MV and a power sales price of about 8 cents per kWh of electricity seriously affects the achievable with such a device result.
- the EP 1 359 377 A1 describes a burner with a number of catalysts, which open into a discharge space.
- partially reacted hot fuel-oxidizer mixture flows along a flow direction into a combustion chamber where auto-ignition of the mixture takes place.
- the mouths of the catalysts in the outflow space are arranged so that the inflow of the partially reacted mixture takes place in the outflow space in a plane which is perpendicular to the flow direction in the outflow space, so that the inflowing mixture receives a twist.
- the WO03 / 072919 A1 describes a burner system with a catalytic pilot burner.
- the US 2002/0182555 A1 , the WO 96/41991 and the EP 0 953 806 A2 describe axially symmetrical burner arrangements with catalysts, which are traversed by the fuel in the axial direction.
- the outlet section of the catalyst is designed as a swirl generator.
- the catalyst is a swirl generator downstream of flow.
- An application of a catalytic process is also in the EP 0 832 397 B1 discloses a catalytic gas turbine combustor.
- a portion of the fuel gas is withdrawn through a conduit system, passed through a catalytic stage and then fed back to the fuel gas to lower its catalytic ignition temperature.
- the catalytic stage is in this case designed as a preforming stage, which comprises a catalyst system which is provided for the conversion of a hydrocarbon contained in the fuel gas into an alcohol and / or an aldehyde or H 2 and CO.
- the EP 0 832 399 B1 discloses a burner for combustion of a fuel, wherein in the flow direction of the fuel in a flow channel in front of the fuel outlet of a main burner, the fuel outlet of a catalytic backup burner for stabilizing the main burner is provided under catalytic combustion of a pilot fuel stream.
- the catalytic support burner is arranged centrally and the main burner coronary.
- the catalytic combustion systems described above consist of a catalyst arranged axially is. In the catalyst, only a portion of the energy contained in the fuel is released, thereby improving the stabilization of the burn-out of the remaining portion of the chemically combined energy in the axial direction downstream of the catalyst in a combustion chamber.
- This main reaction sets in after a certain time, the so-called autoignition time, which depends essentially on the temperature and the gas composition at the catalyst exit.
- the object of the invention is to provide a method for the combustion of a fluidic fuel, with the most complete implementation of the fluid fuel at low pollutant emissions can be achieved.
- Another object of the invention is to provide a burner, in particular for a gas turbine, which is suitable for carrying out the method.
- the object directed to a method according to the invention is achieved by a method for combustion of a fluid fuel in a burner of the type mentioned, in which the fuel is reacted in a catalytic reaction and then catalytically pre-reacted fuel is further burned in a post-reaction, wherein the pre-reacted fuel Swirl component, is impressed, wherein the burner is designed according to one of claims 1 to 5 and the catalytically pre-reacted fuel at an angle of 15 ° to 75 ° relative to a defined by the flow direction of the main axis flows into the flow channel.
- the invention is based on the recognition that the after-reaction only starts after a certain time, which depends essentially on the temperature and the gas composition of the reaction products after the catalytic reaction.
- the after-reaction, which is followed by the catalytic reaction should take place under as complete as possible conversion into heat.
- the invention is based on the consideration that z.
- liquid fuels such as fuel oil
- which can not be implemented safely or only insufficiently in a catalytic reaction usually can not be made to burn in a limited reaction volume, unless aerodynamic stabilization takes place.
- aerodynamic stabilization takes place.
- Also with practicable existing dimensions there is the problem that, even with catalytic partial conversion, the reaction times available after deduction of the autoignition time are too short for the CO 2 reaction to be free of CO 2.
- a fluidic fuel may also be preferably a fuel-air mixture, which is obtained by the fluidic fuel is mixed with combustion air to the fuel-air mixture, which is catalytically reacted.
- a swirl component is impressed. The swirl of the prereacted fuel ensures that the fuel which escapes from the catalytic reaction has more reaction time available than was the case with a swirl-free, that is to say purely axial, reaction coordinate of the conventional catalytic combustion systems.
- the prereacted fuel will reach the autoignition time - viewed in an axial coordinate - at a significantly reduced distance, because the swirl reduces the axial velocity component of the pre-reacted fuel and causes a swirl induced circumferential velocity component, and most importantly, a backflow zone is produced.
- the pre-reacted fuel is still burned, sufficient reaction volume available, so that the fuel - without significant axial space expansion of the combustion system - can be completely burned out.
- the pre-reacted swirl-fueled fuel is transferred to the post-reaction in a combustion chamber, wherein a rotary flow is formed.
- a spatially controlled ignition of the after-reaction in the combustion chamber is brought about.
- the residence time can be adjusted by adjusting the twist and thereby producing the rotary flow in terms of magnitude and direction of the fuel flow.
- a catalytic pre-reaction with a non-catalytic after-reaction is advantageously combined, wherein a spatially controlled ignition of the homogeneous non-catalytic after-reaction is ensured by the swirl component of the catalytically pre-reacted fuel or possibly liquid-fueled downstream of the catalyst.
- a gaseous fuel or a liquid fuel in particular heating gas or fuel oil, is burnt as the fluidic fuel.
- the object directed to a burner is achieved according to the invention by a burner for combustion of a fluidic fuel in which, in the flow direction of the fuel in a flow channel in front of the fuel outlet of a main burner, the fuel outlet of a catalytic burner is arranged under catalytic conversion of the fuel, wherein the catalytic burner has a number of catalytically active elements, which are arranged such that forms a rotary flow in the flow channel and the catalytically active elements are arranged in a plane perpendicular to the flow direction, wherein the fuel outlet of the catalytically acting elements in the flow channel opens, wherein the confluence of the catalytically active elements in the flow channel at an angle of 15 ° to 75 ° relative to a defined by the flow direction of the main axis.
- the flow direction of the fuel in the flow channel in this case refers to the axial flow direction along the flow channel, which is defined by a longitudinal axis of the flow channel.
- the rotary flow forming under the arrangement of the catalytically acting elements is to be understood as a rotary flow or swirling flow around the flow direction or main flow direction of the fuel in the flow channel.
- the rotational flow in the wake of the catalytically active elements is preferably formed after the fuel outlet, for example, the fuel outlet opens perpendicular to a longitudinal axis of the flow channel in the flow channel, wherein relative to the longitudinal axis of the fuel outlet is arranged offset, so that a swirl is generated.
- the fluidic fuel is targeted to a swirl component imprinted so that a (mean) circumferential velocity component is generated and the axial velocity component along the longitudinal axis, that is, along the flow direction of the fuel in the flow channel is reduced according to the twisting by the geometric arrangement of the catalytically active elements.
- the catalytically active elements are arranged in a plane perpendicular to the flow direction, wherein the fuel outlet of the catalytically active elements opens into the flow channel.
- a multiplicity of catalytically active elements it is possible for a multiplicity of catalytically active elements to be arranged along a circumference in the plane perpendicular to the flow direction, wherein a tangential component can be achieved in each case through the direction of the confluence of the fuel outlets with the inflow into the flow channel.
- the rotary flow can be assembled in a predetermined manner, so that in the combustion chamber results in a desired residence time distribution, the spatially controlled ignition of a homogeneous non-catalytic secondary reaction allows.
- the system can also be advantageously arranged so that, if necessary, when using a z. B. liquid fuel and a conventional, that is, non-catalytic combustion, is adjustable.
- the burner is particularly suitable for liquid fuels, and thus overcomes the disadvantage of previous catalytic combustion systems, especially for gas turbines, which are known only as a single-fuel burner for gaseous fuels.
- the axial length of the flow channel is adapted to adjust a predetermined residence time of fuel in the flow channel accordingly.
- the length of the flow channel that is, the determination of the distance of the fuel outlet of the main burner from the fuel outlet of the catalytic burner, taking into account the rotational flow due to the imposed spin and the relevant autoignition time, is a residence time appropriate for initiating and assisting the combustion of the main burner adjustable.
- the burner is particularly flexible adaptable to the main reaction after a certain time (autoignition-time) in the main burner, which depends essentially on the temperature and the gas composition at the fuel outlet of the catalytic burner and which takes place as a post-reaction of the upstream catalytic reaction. Due to this targeted adaptation, full implementation in the main reaction is possible.
- a catalytically active element is configured as a honeycomb catalyst having as a basic constituent at least one of the substances titanium dioxide, silicon dioxide and zirconium oxide.
- the honeycomb catalyst more preferably has a noble metal or metal oxide which has an oxidizing effect on the fluidic fuel.
- a noble metal or metal oxide which has an oxidizing effect on the fluidic fuel.
- precious metals such as platinum, rhodium, rhenium, iridium and metal oxides, such as.
- the transition metal oxides vanadium oxide, tungsten oxide, molybdenum oxide, chromium oxide, copper oxide, manganese oxide and oxides of lanthanides such.
- cerium oxide metal ion zeolites and spinel-type metal oxides may be used.
- the honeycomb structure of the catalytically active elements proves particularly advantageous since it is formed by a multiplicity of channels extending along an axis of the catalytically active element. This favors the catalytic reaction due to the increase of the catalytically active surface through the channels and on the other hand a flow equalization within the honeycomb catalyst, so that a well-defined outflow of the catalytically pre-reacted fuel from the fuel outlet is achieved, in a well-defined manner a swirl component when entering the Flow channel is effected.
- the burner is provided according to the invention in a combustion chamber.
- the combustion chamber in this case comprises a combustion chamber into which the burner preferably projects or opens with the fuel outlet of the main burner.
- the combustion chamber is sufficiently dimensioned so that a homogeneous, preferably non-catalytic main reaction is set in motion and a complete combustion of the fuel and thus maximum conversion into combustion heat is achieved in the combustion chamber.
- such a combustion chamber is suitable for use in a gas turbine, wherein a hot combustion gas generated in the combustion chamber is used to drive a turbine part of the gas turbine.
- the gas turbine according to FIG. 1 has a compressor 2 for combustion air, a combustion chamber 4 and a turbine 6 for driving the compressor 2 and a non-illustrated Generator or a working machine.
- the turbine 6 and the compressor 2 are arranged on a common, also called turbine rotor turbine shaft 8, with which the generator or the working machine is connected, and which is rotatably mounted about its central axis 9.
- the running in the manner of an annular combustion chamber 4 is equipped with a number of burners 10 for the combustion of a liquid or gaseous fuel.
- the burner 10 is configured as a catalytic combustion system and designed for a catalytic as well as a non-catalytic combustion reaction or combinations thereof. The structure and operation of the burner 10 is intended in connection with the FIGS. 2 and 3 be discussed in more detail.
- the turbine 6 has a number of rotatable blades 12 connected to the turbine shaft 8.
- the blades 12 are arranged in a ring on the turbine shaft 8 and thus form a number of blade rows.
- the turbine 6 comprises a number of fixed vanes 14, which are also fixed in a ring shape with the formation of rows of vanes on an inner casing 16 of the turbine 6.
- the blades 12 serve to drive the turbine shaft 8 by momentum transfer from the hot medium flowing through the turbine 6, the working medium M.
- the vanes 14, however, serve to guide the flow of the working medium M between two successive rows of blades or blade boundaries seen in the flow direction of the working medium.
- a sequential pair of a ring of vanes 14 or a row of vanes and a ring of blade 12 or a blade row is also referred to as a turbine stage.
- Each guide blade 14 has a platform 18, also referred to as a blade root, which is arranged as a wall element for fixing the respective guide blade 14 to the inner housing 16 of the turbine.
- the platform 18 is a thermal, relatively heavily loaded component, which is the outer boundary of a hot gas channel for the turbine. 6 flowing through working medium M forms.
- Each blade is fastened to the turbine shaft in an analogous manner via a platform, also referred to as a blade root.
- each guide ring 21 on the inner housing 16 of the turbine 6 is arranged.
- the outer surface of each guide ring 21 is also exposed to the hot, the turbine 6 flowing through the working medium M and spaced in the radial direction from the outer end 22 of the blade 12 opposite it through a gap.
- the arranged between adjacent rows of vanes guide rings 21 are used in particular as cover that protect the inner wall 16 or other housing-mounting components from thermal overload by the hot working medium M flowing through the turbine 6.
- the combustion chamber 4 is delimited by a combustion chamber housing 29, wherein a combustion chamber wall 24 is formed on the combustion chamber side.
- the combustion chamber 4 is configured as a so-called annular combustion chamber, in which a plurality of burners arranged around the turbine shaft 8 in the circumferential direction open into a common combustion chamber space or combustion chamber 27.
- the combustion chamber 4 is configured in its entirety as an annular structure which is positioned around the turbine shaft 8 around.
- a fluid fuel B and combustion air A is delivered to the burner 10 and mixed to a fuel-air mixture and burned.
- combustion of the burner 10 is designed as a catalytic combustion system with the full implementation of the fuel B can be achieved.
- the hot gas resulting from the combustion process, the working medium M has comparatively high temperatures of 1000 ° C. up to 1500 ° C., in order to achieve a correspondingly high efficiency of the gas turbine 1.
- the combustion chamber 4 for accordingly high temperatures designed.
- the combustion chamber wall 24 is provided on its side facing the working medium M side with a combustion chamber lining formed of heat shield elements 26. Due to the high temperatures in the interior of the combustion chamber 4, a not-shown cooling system is also provided for the heat shield elements 26.
- the burner 10 used in the combustion chamber 4 of the gas turbine 1 according to the invention is shown in FIG. 2 in a highly simplified sectional view to exemplify the underlying catalytic combustion concept.
- the burner 10 for combustion of the fluidic fuel B has a catalytic burner 35 A, 35 B and a main burner 37.
- the main burner 37 comprises a first flow channel 31A and a second flow channel 31B concentrically surrounding the first flow channel.
- the catalytic burner 35A is associated with the first flow channel 31A and the catalytic burner 35B with the second flow channel 31B.
- the flow channel 31A, 31B extends along a main or flow direction 33.
- the catalytic burner 35A has catalytic elements 43C, 43D.
- the catalytic burner 35B has catalytic elements 43A, 43B.
- the catalytically active elements 43A, 43B, 43C, 43D are configured, for example, as honeycomb catalysts, which consist of a basic component and a catalytically active component, wherein the catalytically active component exerts an oxidizing effect on the fluidic fuel B.
- the catalytically active elements 43A, 43B are in fluid communication with the flow channel 31B, while the catalytically active elements 43C, 43D are in flow communication with the flow channel 31A.
- the main burner 37 is arranged along the flow direction 33 of the fuel B after the fuel outlet 41 of the catalytic burner 35A, 35B and in fluid communication with the catalytic burner 35A, 35B via the flow channel 31A, 31B.
- the main burner 37 has a fuel outlet 39.
- the fuel outlet 41 of the catalytic burner 35A, 35B is provided in the flow direction 33 of the fuel B in the flow channel 31A, 31B in front of the fuel outlet 39 of the main burner 37.
- the catalytic burner 35A, 35B serves for the catalytic conversion or partial conversion of the fuel B and sets in motion a catalytic pre-reaction, which causes an ignition of the pre-reacted fuel B in the main burner 37 after an autoignition time. This leads to a stabilization of the burnout and to a completion of the burnout in a burnout zone 45, which is formed in the vicinity of the fuel outlet 39 of the main burner 37.
- the length L of the flow channel 31A, 31B is adapted, in particular to the reaction times and flow rates of the fuel B to be considered.
- the catalytically active elements 43A, 43B, 43C, 43D are arranged in this way in that a rotary flow is formed in the flow channel 31A, 31B. This forms in the wake of the catalytically active elements 43A, 43B, 43C, 43D after their fuel outlet 41 from.
- FIG. 3 shows a view along the flow direction 33 of FIG. 2
- the catalytically active elements 43A, 43B are arranged in a plane perpendicular to the flow direction 33, wherein the fuel outlet 41 of the catalytically active elements 43A, 43B opens into the flow channel 31B.
- the catalytic elements 43C, 43D are arranged in a plane perpendicular to the flow direction 33, wherein the fuel outlet 41 of the catalytically acting elements 43C, 43D opens into the flow channel 31A.
- the catalytic burners 35 A, 35 B are arranged spaced apart along the flow direction 33.
- the fluidic fuel B is fed to a catalytic burner 35A, 35B and at least partially reacted there in a catalytic reaction. Subsequently, the thus catalytically pre-reacted fuel B is further burned in a post-reaction in the Ausbrandzone 45 of the main burner.
- the prereacted fuel B is imparted with a swirl component.
- the prereacted spin-containing fuel B is transferred to the post-reaction in a burn-out zone 45, wherein the rotary flow is formed in the flow channel 31A, 31B.
- the space, in particular the axial extension, of the burner 10 is limited to manageable dimensions and at the same time ensures a spatially controlled ignition of the after-reaction in the main burner 37 associated Ausbrandzone 45.
- the burn-out zone 45 is accordingly limited in its axial dimension due to the rotary flow of the fluidic fuel B, so that a realization with customarily dimensioned combustion chambers 4 and combustion chambers 27 (cf. FIG. 1 ), in particular for use in a gas turbine 1, can be realized.
- a homogeneous non-catalytic secondary reaction is ignited, which leads to a complete burn-out of the fuel B, which is already at least partially pre-reacted in the catalytic burner 35A, 35B.
- two catalytic burners 35A, 35B are fluidly connected to a respective flow channel 31A, 31B.
- an implementation of the invention can also be achieved by a burner 10 with only one catalytic burner 35A and a flow channel 31A associated with it, or else with a plurality of such burners and associated flow channels.
- operation with different fluid fuels B is possible for the first time for a combustion system based on a catalytic combustion process. This means that both liquid and gaseous fuels B come into consideration.
- the burner 10 z. B. when using a liquid fuel, for.
- the liquid fuel is mixed with combustion air to a fuel-air mixture.
- the combustion air is preferably previously already impressed by a swirl component, for example by supplying the combustion air via the swirl-inducing catalyst elements or via other swirl elements.
- the combustion air is then injected downstream of the spin-effecting catalyst elements, a liquid fuel.
- a fuel-air mixture can be generated by mixing a fluid, in particular liquid, fuel with combustion air, which at least partially reacted in a catalytic reaction and then the catalytically pre-reacted fuel-air mixture is further burned, wherein the vorreag faced fuel-air mixture, a swirl component is impressed.
- the burner according to the invention can be operated by flowing through the catalytically active elements with a fluid fuel or air-fuel mixture or, in particular in the case of liquid fuels, by flowing through combustion air and subsequent injection of the liquid fuel.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Feeding And Controlling Fuel (AREA)
- Exhaust Gas After Treatment (AREA)
Description
Die Erfindung betrifft einen Brenner zur Verbrennung eines fluidischen Brennstoffs, bei dem in Strömungsrichtung des Brennstoffs in einem Strömungskanal vor dem Brennstoffauslass eines Hauptbrenners der Brennstoffauslass eines katalytischen Brenners unter katalytischer Umsetzung des Brennstoffs angeordnet ist, wobei der katalytische Brenner eine Anzahl von katalytisch wirkenden Elementen aufweist, die derart angeordnet sind, dass sich im Strömungskanal eine Drehströmung ausbildet und die katalytisch wirkenden Elemente in einer Ebene senkrecht zur Strömungsrichtung angeordnet sind, wobei der Brennstoffauslass der katalytisch wirkenden Elemente in den Strömungskanal mündet.The invention relates to a burner for combustion of a fluidic fuel, wherein in the flow direction of the fuel in a flow channel in front of the fuel outlet of a main burner, the fuel outlet of a catalytic burner is arranged with catalytic conversion of the fuel, wherein the catalytic burner has a number of catalytically active elements, which are arranged such that a rotary flow is formed in the flow channel and the catalytically active elements are arranged in a plane perpendicular to the flow direction, wherein the fuel outlet of the catalytically active elements opens into the flow channel.
Die Erfindung betrifft weiterhin eine Brennkammer, die einen derartigen Brenner aufweist sowie eine Gasturbine mit einer derartigen Brennkammer.The invention further relates to a combustion chamber having such a burner and a gas turbine with such a combustion chamber.
Die Erfindung betrifft weiterhin ein Verfahren zur Verbrennung eines fluidischen Brennstoffs in einem Brenner der eingangs genannten Art, bei dem Brennstoff in einer katalytischen Reaktion umgesetzt und anschließend katalytisch vorreagierter Brennstoff in einer Nachreaktion weiterverbrannt wird, wobei dem vorreagierten Brennstoff eine Drallkomponente aufgeprägt wird.The invention further relates to a method for combustion of a fluid fuel in a burner of the aforementioned type, in which the fuel is reacted in a catalytic reaction and then further catalytically pre-reacted fuel in a post-reaction, wherein the vorreagierten fuel a swirl component is impressed.
Unter einem fluidischen Brennstoff soll nachfolgend insbesondere Heizöl und/oder Heizgas verstanden werden, wie er insbesondere für Gasturbinen Anwendung findet. Unter Heizöl werden dabei alle brennbaren Flüssigkeiten, z. B. Erdöl, Methanol etc., und unter Heizgas alle brennbaren Gase, z. B. Erdgas, Kohlegas, Synthesegas, Biogas, Propan, Butan etc. verstanden. Derartige Brenner mit katalytischer Reaktion sind beispielsweise in dem Dokument
Derartige Brennersysteme sind auch für Anwendungen in Turbomaschinen, wie beispielsweise Gasturbinen geeignet. Eine Gasturbine besteht üblicherweise aus einem Kompressorteil, einem Brennerteil und einem Turbinenteil. Der Kompressorteil und der Turbinenteil befinden sich üblicherweise auf einer gemeinsamen Welle, die gleichzeitig einen Generator zur Elektrizitätserzeugung antreibt. Im Kompressorteil wird vorgewärmte Frischluft auf den im Brennerteil erforderlichen Druck verdichtet. Im Brennerteil wird die verdichtete und vorgewärmte Frischluft mit einem Brennstoff, wie z. B. Erdgas oder Heizöl verbrannt. Das heiße Brennerabgas wird dem Turbinenteil zugeführt und dort arbeitsleistend entspannt.Such burner systems are also suitable for applications in turbomachinery, such as gas turbines. A gas turbine usually consists of a compressor part, a burner part and a turbine part. The compressor part and the turbine part are usually located on a common shaft, which simultaneously drives a generator for generating electricity. In the compressor part preheated fresh air is compressed to the pressure required in the burner part. In the burner part, the compressed and preheated fresh air with a fuel such. As natural gas or fuel oil burned. The hot burner exhaust gas is supplied to the turbine part and there relaxes work.
Bei der Verbrennung der verdichteten und vorgewärmten Frischluft mit dem Brenngas entstehen als besonders unerwünschte Verbrennungsprodukte Schadstoffe, beispielsweise Stickoxide NOx oder Kohlenmonoxid CO. Die Stickoxide gelten neben Schwefeldioxid als Hauptverursacher für das Umweltproblem des sauren Regens. Man ist daher - auch aufgrund strenger gesetzlicher Grenzwertvorgaben für den NOx-Ausstoß - gewillt, den NOx-Ausstoß von einer Gasturbine besonders gering zu halten und dabei gleichzeitig die Leistung der Gasturbine weitgehend nicht zu beeinflussen.In the combustion of the compressed and preheated fresh air with the fuel gas arise as a particularly undesirable combustion products pollutants, such as nitrogen oxides NO x or carbon monoxide CO. In addition to sulfur dioxide, nitrogen oxides are the main cause of the environmental problem of acid rain. It is therefore - also due to strict statutory limit values for NO x emissions - willing to keep the NO x emissions from a gas turbine particularly low and at the same time not largely affect the performance of the gas turbine.
So wirkt beispielsweise die Flammentemperatur- bzw. Flammentemperaturspitzenabsenkung im Brennerteil als stickoxidmindernd. Hierbei wird dem Brenngas oder der komprimierten und vorgewärmten Frischluft Wasserdampf zugeführt oder Wasser in den Brennraum eingespritzt. Solche Maßnahmen, die ein Stickoxidausstoß der Gasturbine per se verringern, werden als Primärmaßnahmen zur Stickoxidminderung bezeichnet. Dementsprechend werden als Sekundärmaßnahmen alle Maßnahmen bezeichnet, bei denen einmal im Abgas einer Gasturbine - oder auch allgemein eines Verbrennungsprozesses - enthaltene Stickoxide durch nachträgliche Maßnahmen verringert werden.For example, the flame temperature or flame temperature peak reduction in the burner part acts as nitrogen oxide reducing. Here, the fuel gas or the compressed and preheated fresh air steam is supplied or injected water into the combustion chamber. Such measures, which reduce nitric oxide emissions of the gas turbine per se, are referred to as primary measures for nitrogen oxide reduction. Accordingly, all measures are referred to as secondary measures in which once in the exhaust gas of a gas turbine - or generally a combustion process - contained nitrogen oxides are reduced by subsequent measures.
Hierzu hat sich weltweit das Verfahren der selektiven katalytischen Reduktion (SCR) durchgesetzt, bei dem die Stickoxide zusammen mit einem Reduktionsmittel, bevorzugt Ammoniak, an einem Katalysator kontaktiert werden und dabei unschädlichen Stickstoff und Wasser bilden. Mit dem Einsatz dieser Technologie ist aber zwangsläufig der Verbrauch von Reduktionsmitteln verbunden. Die im Abgaskanal angeordneten Katalysatoren zur Stickoxidminderung verursachen naturgemäß einen Druckabfall in dem Abgaskanal, der einen Leistungsabfall der Turbine nach sich zieht. Selbst ein Leistungsabfall in Höhe von einigen Promille wirkt sich bei einer Leistung der Gasturbine von beispielsweise 150 MV und einem Stromverkaufspreis von etwa 8 Cent pro kWh Strom gravierend auf das mit einer solchen Einrichtung erzielbare Ergebnis aus.For this purpose, the method of selective catalytic reduction (SCR) has prevailed worldwide, in which the nitrogen oxides are contacted together with a reducing agent, preferably ammonia, to a catalyst and thereby form harmless nitrogen and water. With the use of this technology, however, inevitably involves the consumption of reducing agents. The arranged in the exhaust duct catalysts for nitrogen oxide reduction naturally cause a pressure drop in the exhaust passage, which causes a power loss of the turbine. Even a power loss of a few thousandths of a power of the gas turbine of, for example, 150 MV and a power sales price of about 8 cents per kWh of electricity seriously affects the achievable with such a device result.
Neuere Überlegungen bezüglich der Ausgestaltung des Brenners gehen dahin, dass ein üblicher normalerweise in der Gasturbine eingesetzter Diffusionsbrenner oder ein drallstabilisierter Vormischbrenner durch ein katalytisches Verbrennungssystem ersetzt wird. Mit einem katalytischen Verbrennungssystem werden schon durch den Verbrennungsprozess als solchen niedrigere Stickoxidemissionen erreicht, als dies mit den oben genannten konventionellen Verbrennertypen möglich ist. Auf diese Weise können die bekannten Nachteile des SCR-Verfahrens (große Katalysatorvolumina, Reduktionsmittel-Verbrauch, hoher Druckverlust) überwunden werden.Recent considerations regarding the design of the burner are that a conventional diffusion burner normally used in the gas turbine or a spin-stabilized premix burner is replaced by a catalytic combustion system. With a catalytic combustion system, lower nitrogen oxide emissions are already achieved by the combustion process as such, than is possible with the abovementioned conventional types of combustion. In this way, the known disadvantages of the SCR process (large catalyst volumes, reducing agent consumption, high pressure loss) can be overcome.
Die
Die
Die
Eine Anwendung eines katalytischen Prozesses ist beispielsweise auch in der
Die
Die oben beschriebenen katalytischen Verbrennungssysteme bestehen hierbei aus einem Katalysator, der axial angeordnet ist. In dem Katalysator wird nur ein Teil der im Brennstoff enthaltenen Energie freigesetzt, wodurch die Stabilisierung des Ausbrandes des restlichen Teils der chemisch gebundenen Energie in axialer Richtung stromabwärts vom Katalysator in einem Brennraum verbessert wird. Diese Hauptreaktion setzt nach einer bestimmten Zeit, der so genannten autoignition-time, ein, die im Wesentlichen von der Temperatur und der Gaszusammensetzung am Katalysator-Austritt abhängt.The catalytic combustion systems described above consist of a catalyst arranged axially is. In the catalyst, only a portion of the energy contained in the fuel is released, thereby improving the stabilization of the burn-out of the remaining portion of the chemically combined energy in the axial direction downstream of the catalyst in a combustion chamber. This main reaction sets in after a certain time, the so-called autoignition time, which depends essentially on the temperature and the gas composition at the catalyst exit.
Problematisch ist in diesem Zusammenhang in der Regel die Nutzung solcher bekannten Anordnungen für den Betrieb mit deutlich unterschiedlichen Brennstoffen, da der Katalysator i.a. für bestimmte Brennstoffe spezifisch angepasst werden muss. Insbesondere erschwert dies auch die Nutzung eines Katalysators, der für Erdgas ausgelegt worden ist, als Reaktor zur Umsetzung langkettiger Kohlenwasserstoffe (insbesondere also vorverdampftes Heizöl), da die entsprechenden reaktionskinetischen Eigenschaften deutlich anders sind. Daher sind solche Anordnungen nur bedingt geeignet, einen Betrieb der Gasturbine mit einem Flüssigbrennstoff zu ermöglichen.The problem in this context is usually the use of such known arrangements for operation with significantly different fuels, since the catalyst i.a. specific for certain fuels. In particular, this complicates the use of a catalyst that has been designed for natural gas, as a reactor for the implementation of long-chain hydrocarbons (especially so pre-evaporated fuel oil), since the corresponding reaction kinetic properties are significantly different. Therefore, such arrangements are only partially suitable to allow operation of the gas turbine with a liquid fuel.
Aufgabe der Erfindung ist es, ein Verfahren zur Verbrennung eines fluidischen Brennstoffs einzugeben, mit dem eine möglichst vollständige Umsetzung des fluidischen Brennstoffs bei geringen Schadstoff-Emissionen erreichbar ist. Eine weitere Aufgabe der Erfindung besteht in der Angabe eines Brenners, insbesondere für eine Gasturbine, der zur Durchführung des Verfahrens geeignet ist.The object of the invention is to provide a method for the combustion of a fluidic fuel, with the most complete implementation of the fluid fuel at low pollutant emissions can be achieved. Another object of the invention is to provide a burner, in particular for a gas turbine, which is suitable for carrying out the method.
Die auf ein Verfahren gerichtete Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Verbrennung eines fluidischen Brennstoffs in einem Brenner der eingangs genannten Art, bei dem Brennstoff in einer katalytischen Reaktion umgesetzt und anschließend katalytisch vorreagierter Brennstoff in einer Nachreaktion weiter verbrannt wird, wobei dem vorreagierten Brennstoff eine Drallkomponente, aufgeprägt wird, wobei der Brenner nach einem der Ansprüche 1 bis 5 ausgebildet ist und der katalytisch vorreagierte Brennstoff unter einem Winkel von 15° bis 75° bezogen auf eine durch die Strömungsrichtung definierte Hauptachse in den Strömungskanal einströmt.The object directed to a method according to the invention is achieved by a method for combustion of a fluid fuel in a burner of the type mentioned, in which the fuel is reacted in a catalytic reaction and then catalytically pre-reacted fuel is further burned in a post-reaction, wherein the pre-reacted fuel Swirl component, is impressed, wherein the burner is designed according to one of claims 1 to 5 and the catalytically pre-reacted fuel at an angle of 15 ° to 75 ° relative to a defined by the flow direction of the main axis flows into the flow channel.
Die Erfindung geht dabei von der Erkenntnis aus, dass die Nachreaktion erst nach einer bestimmten Zeit einsetzt, die im Wesentlichen von der Temperatur und der Gaszusammensetzung der Reaktionsprodukte nach der katalytischen Reaktion abhängt. Die Nachreaktion, die sich an die katalytische Reaktion anschließt, soll dabei unter möglichst vollständiger Umsetzung in Wärme erfolgen. Der Brennstoff, der in der Nachreaktion weiter verbrannt wird, muss hierzu vollständig ausbrennen, wobei Kohlenmonoxid und Kohlenwasserstoffe im Abgas zu vermeiden sind.The invention is based on the recognition that the after-reaction only starts after a certain time, which depends essentially on the temperature and the gas composition of the reaction products after the catalytic reaction. The after-reaction, which is followed by the catalytic reaction, should take place under as complete as possible conversion into heat. The fuel, which is further burned in the post-reaction, it must burn out completely, with carbon monoxide and hydrocarbons in the exhaust gas are to be avoided.
Die Erfindung geht dabei von der Überlegung aus, dass z. B. flüssige Brennstoffe, wie Heizöl, die nicht sicher oder nur unzureichend in einer katalytischen Reaktion umgesetzt werden können, in der Regel in einem begrenzt vorhandenen Reaktionsvolumen nicht zum Ausbrennen gebracht werden können, sofern nicht eine aerodynamische Stabilisierung erfolgt. Ebenfalls ist mit praktikabel vorhandenen Dimensionen das Problem gegeben, dass auch mit katalytischer Teilumsetzung die nach Abzug der Selbstzündzeit zur Verfügung stehenden Reaktionszeiten für die Nachreaktion zu klein sind, um CO- frei zu verbrennen.The invention is based on the consideration that z. As liquid fuels, such as fuel oil, which can not be implemented safely or only insufficiently in a catalytic reaction, usually can not be made to burn in a limited reaction volume, unless aerodynamic stabilization takes place. Also with practicable existing dimensions there is the problem that, even with catalytic partial conversion, the reaction times available after deduction of the autoignition time are too short for the CO 2 reaction to be free of CO 2.
Mit der Erfindung wird nunmehr ein völlig neuer Weg aufgezeigt, die Verbrennung eines fluidischen Brennstoffes zu erreichen, wobei die katalytische Reaktion und die Nachreaktion zur Vervollständigung des Ausbrands des Brennstoffs gezielt aufeinander abgestimmt werden. Ein fluidischer Brennstoff kann dabei auch vorzugsweise ein Brennstoff-Luft-Gemisch sein, welches erhalten wird, indem der fluidische Brennstoff mit Verbrennungsluft zu dem Brennstoff-Luft-Gemisch vermischt wird, welches katalytisch umgesetzt wird. Hierzu wird vorgeschlagen, dass dem vorreagierten Brennstoff bzw. einem vorreagierten Brennstoff-Luftgemisch aus der katalytischen Reaktion eine Drallkomponente aufgeprägt wird. Durch den Drall des vorreagierten Brennstoffs wird erreicht, dass der aus der katalytischen Reaktion entweichenden Brennstoff mehr Reaktionszeit zur Verfügung steht, als dies bei einer drallfreien, das heißt rein axialen Reaktionskoordinate der herkömmlichen katalytischen Verbrennungssystemen der Fall war. Aufgrund des Dralls wird der vorreagierte Brennstoff die Selbstzündzeit - in einer axialen Koordinate betrachtet -, auf einer deutlich reduzierten Wegstrecke erreichen, weil durch den Drall die axiale Geschwindigkeitskomponente des vorreagierten Brennstoffs reduziert und eine durch den Drall induzierte Umfangsgeschwindigkeitskomponente bewirkt ist, und vor allem eine Rückströmzone erzeugt wird. Damit steht für die Nachreaktion, in der der vorreagierte Brennstoff weiterhin verbrannt wird, genügend Reaktionsvolumen zur Verfügung, so dass der Brennstoff - ohne nennenswerte axiale Bauraumvergrößerung des Verbrennungssystems - vollständig zum Ausbrand gebracht werden kann.With the invention now a completely new way is shown to achieve the combustion of a fluid fuel, wherein the catalytic reaction and the post-reaction to complete the burnout of the fuel are tailored to each other. A fluidic fuel may also be preferably a fuel-air mixture, which is obtained by the fluidic fuel is mixed with combustion air to the fuel-air mixture, which is catalytically reacted. For this purpose, it is proposed that the pre-reacted fuel or a pre-reacted Fuel-air mixture from the catalytic reaction a swirl component is impressed. The swirl of the prereacted fuel ensures that the fuel which escapes from the catalytic reaction has more reaction time available than was the case with a swirl-free, that is to say purely axial, reaction coordinate of the conventional catalytic combustion systems. Due to the swirl, the prereacted fuel will reach the autoignition time - viewed in an axial coordinate - at a significantly reduced distance, because the swirl reduces the axial velocity component of the pre-reacted fuel and causes a swirl induced circumferential velocity component, and most importantly, a backflow zone is produced. Thus, for the post-reaction, in which the pre-reacted fuel is still burned, sufficient reaction volume available, so that the fuel - without significant axial space expansion of the combustion system - can be completely burned out.
Damit steht bei katalytischer Teilumwandlung nach Abzug der Selbstzündzeit eine gegenüber herkömmlichen katalytischen Verbrennungssystemen deutlich größere Reaktionszeit für die Nachreaktion zur Verfügung, so dass insbesondere ein COfreies vollständiges Verbrennen erzielt ist. Mit konventionellen Systemen ohne Drallbeaufschlagung war hierfür eine erhebliche Vergrößerung der Baulänge des Ausbrandraumes für die Nachreaktion erforderlich, was solche Systeme konstruktiv sehr aufwendig, kostenintensiv und in der Handhabung beschwerlich macht. Mit der vorliegenden Erfindung können diese Nachteile nunmehr überwunden werden, wobei unterschiedliche fluidische Brennstoffe, das heißt sowohl flüssige als auch gasförmige Brennstoffe in dem Verfahren verwendet werden können, wobei bedarfsweise flüssige Brennstoffe auch konventionell in Form einer drallstabilisierten Flamme unter Umgehung des Katalysators verbrannt werden können.Thus, in the case of catalytic partial conversion after deduction of the auto-ignition time, a reaction time for the after-reaction which is significantly greater than that of conventional catalytic combustion systems is available, so that in particular a CO free complete combustion is achieved. With conventional systems without swirling a significant increase in the length of the Ausbrandraumes for the post-reaction was required for this, which makes such systems structurally very complex, expensive and difficult to handle. With the present invention, these disadvantages can now be overcome, wherein different fluid fuels, that is both liquid and gaseous fuels can be used in the process, where necessary, liquid fuels can also be burned conventionally in the form of a spin-stabilized flame bypassing the catalyst.
In vorteilhafter Ausgestaltung wird der vorreagierte drallbehaftete Brennstoff zur Nachreaktion in einem Brennraum übergeleitet, wobei eine Drehströmung ausgebildet wird.In an advantageous embodiment, the pre-reacted swirl-fueled fuel is transferred to the post-reaction in a combustion chamber, wherein a rotary flow is formed.
Dabei wird vorzugsweise durch Einstellen der Verweilzeit des vorreagierten Brennstoffs für die Überleitung eine räumlich kontrollierte Zündung der Nachreaktion im Brennraum herbeigeführt. Die Verweilzeit kann dabei durch Einstellung des Dralls und die dadurch herbeigeführte Konfektionierung der Drehströmung im Hinblick auf Betrag und Richtung des Brennstoffstroms, eingestellt werden. Auf diese Weise ist zumindest im Mittel, bezogen auf eine Verweilzeitverteilung der drallbehafteten Reaktionsprodukte der katalytischen Reaktion, der Selbstzündzeitpunkt räumlich gut fixierbar und somit eine hinreichende Stabilisierung des Ausbrands für die Nachreaktion gewährleistet.In this case, preferably by adjusting the residence time of the pre-reacted fuel for the transfer, a spatially controlled ignition of the after-reaction in the combustion chamber is brought about. The residence time can be adjusted by adjusting the twist and thereby producing the rotary flow in terms of magnitude and direction of the fuel flow. In this way, at least on average, based on a residence time distribution of the swirling reaction products of the catalytic reaction, the Selbstzündzeitpunkt spatially well fixed and thus ensures a sufficient stabilization of the burnout for the after-reaction.
Bevorzugt wird als Nachreaktion eine homogene nicht-katalytische Nachreaktion gezündet. Weiter bevorzugt wird der Brennstoff in der Nachreaktion vollständig verbrannt. Somit ist eine katalytische Vorreaktion mit einer nicht katalytischen Nachreaktion vorteilhaft kombiniert, wobei durch die Drallkomponente des katalytisch vorreagierten Brennstoffs oder eines unter Umständen bedarfsweise stromab von Katalysator eingedüsten Flüssigbrennstoffs eine räumlich kontrollierte Zündung der homogenen nicht katalytischen Nachreaktion sichergestellt ist.Preference is given to igniting a homogeneous non-catalytic secondary reaction as secondary reaction. More preferably, the fuel is completely burned in the post-reaction. Thus, a catalytic pre-reaction with a non-catalytic after-reaction is advantageously combined, wherein a spatially controlled ignition of the homogeneous non-catalytic after-reaction is ensured by the swirl component of the catalytically pre-reacted fuel or possibly liquid-fueled downstream of the catalyst.
In bevorzugter Ausgestaltung wird als fluidischer Brennstoff ein gasförmiger Brennstoff oder ein Flüssigbrennstoff, insbesondere Heizgas oder Heizöl, verbrannt.In a preferred embodiment, a gaseous fuel or a liquid fuel, in particular heating gas or fuel oil, is burnt as the fluidic fuel.
Die auf einen Brenner gerichtete Aufgabe wird erfindungsgemäß gelöst durch einen Brenner zur Verbrennung eines fluidischen Brennstoffs, bei dem in Strömungsrichtung des Brennstoffs in einem Strömungskanal vor dem Brennstoffauslass eines Hauptbrenners der Brennstoffauslass eines katalytischen Brenners unter katalytischer Umsetzung des Brennstoffs angeordnet ist, wobei der katalytische Brenner eine Anzahl von katalytisch wirkenden Elementen aufweist, die derart angeordnet sind, dass sich im Strömungskanal eine Drehströmung ausbildet und die katalytisch wirkenden Elemente in einer Ebene senkrecht zur Strömungsrichtung angeordnet sind, wobei der Brennstoffauslass der katalytisch wirkenden Elemente in den Strömungskanal mündet, wobei die Einmündung der katalytisch wirkenden Elemente in den Strömungskanal unter einem Winkel von 15° bis 75 ° bezogen auf eine durch die Strömungsrichtung definierte Hauptachse erfolgt.The object directed to a burner is achieved according to the invention by a burner for combustion of a fluidic fuel in which, in the flow direction of the fuel in a flow channel in front of the fuel outlet of a main burner, the fuel outlet of a catalytic burner is arranged under catalytic conversion of the fuel, wherein the catalytic burner has a number of catalytically active elements, which are arranged such that forms a rotary flow in the flow channel and the catalytically active elements are arranged in a plane perpendicular to the flow direction, wherein the fuel outlet of the catalytically acting elements in the flow channel opens, wherein the confluence of the catalytically active elements in the flow channel at an angle of 15 ° to 75 ° relative to a defined by the flow direction of the main axis.
Die Strömungsrichtung des Brennstoffs im Strömungskanal bezeichnet hierbei die axiale Strömungsrichtung entlang des Strömungskanals, die durch eine Längsachse des Strömungskanals festgelegt ist. Die sich unter der Anordnung der katalytisch wirkenden Elemente ausbildende Drehströmung ist als Drehströmung oder drallbehaftete Strömung um die Strömungsrichtung oder Hauptströmungsrichtung des Brennstoffs in dem Strömungskanal zu verstehen.The flow direction of the fuel in the flow channel in this case refers to the axial flow direction along the flow channel, which is defined by a longitudinal axis of the flow channel. The rotary flow forming under the arrangement of the catalytically acting elements is to be understood as a rotary flow or swirling flow around the flow direction or main flow direction of the fuel in the flow channel.
Hierbei wird vorzugsweise die Drehströmung im Nachlauf der katalytisch wirkenden Elemente nach deren Brennstoffauslass ausgebildet, indem beispielsweise der Brennstoffauslass senkrecht zu einer Längsachse des Strömungskanals in den Strömungskanal einmündet, wobei bezogen auf die Längsachse der Brennstoffauslass versetzt angeordnet ist, so dass ein Drall erzeugt ist. Durch die Herbeiführung einer Drehströmung oder Drallströmung im Nachlauf der katalytisch wirkenden Elemente wird dem fluidischen Brennstoff gezielt eine Drallkomponente aufgeprägt, so dass eine (mittlere) Umfangsgeschwindigkeitskomponente erzeugt ist und die axiale Geschwindigkeitskomponente entlang der Längsachse, das heißt entlang der Strömungsrichtung des Brennstoffs in dem Strömungskanal, ist entsprechend der Drallgebung durch die geometrische Anordnung der katalytisch wirkenden Elemente reduziert.In this case, the rotational flow in the wake of the catalytically active elements is preferably formed after the fuel outlet, for example, the fuel outlet opens perpendicular to a longitudinal axis of the flow channel in the flow channel, wherein relative to the longitudinal axis of the fuel outlet is arranged offset, so that a swirl is generated. By bringing about a rotary flow or swirl flow in the wake of the catalytically active elements, the fluidic fuel is targeted to a swirl component imprinted so that a (mean) circumferential velocity component is generated and the axial velocity component along the longitudinal axis, that is, along the flow direction of the fuel in the flow channel is reduced according to the twisting by the geometric arrangement of the catalytically active elements.
Die katalytisch wirkenden Elemente sind in einer Ebene senkrecht zur Strömungsrichtung angeordnet, wobei der Brennstoffauslass der katalytisch wirkenden Elemente in den Strömungskanal einmündet. Hierbei ist es möglich, dass eine Vielzahl von katalytisch wirkenden Elementen entlang eines Kreisumfangs in der Ebene senkrecht zur Strömungsrichtung angeordnet sind, wobei jeweils durch die Richtung der Einmündung der Brennstoffauslässe eine Tangentialkomponente bei der Einströmung in den Strömungskanal erzielbar ist. Durch eine entsprechende Anzahl und Anordnung der katalytisch wirkenden Elemente, die in ihrer Gesamtheit den katalytischen Brenner zur katalytischen Umsetzung des Brennstoffs bilden, kann die Drehströmung in vorbestimmter Weise konfektioniert werden, so dass sich im Brennraum eine gewünschte Verweilzeitverteilung ergibt, die eine räumlich kontrollierte Zündung einer homogenen nicht-katalytischen Nachreaktion ermöglicht. Das System kann vorteilhafterweise auch so angeordnet werden, dass bedarfsweise bei Verwendung eines z. B. flüssigen Brennstoffes auch eine konventionelle, das heißt nicht-katalytische Verbrennung, einstellbar ist. Somit ist der Brenner insbesondere auch für Flüssigbrennstoffe geeignet, und überwindet damit den Nachteil bisheriger katalytischer Verbrennungssysteme, insbesondere für Gasturbinen, die nur als Einstoffbrenner für gasförmige Brennstoffe bekannt sind.The catalytically active elements are arranged in a plane perpendicular to the flow direction, wherein the fuel outlet of the catalytically active elements opens into the flow channel. In this case, it is possible for a multiplicity of catalytically active elements to be arranged along a circumference in the plane perpendicular to the flow direction, wherein a tangential component can be achieved in each case through the direction of the confluence of the fuel outlets with the inflow into the flow channel. By a corresponding number and arrangement of the catalytically active elements, which in their entirety form the catalytic burner for the catalytic conversion of the fuel, the rotary flow can be assembled in a predetermined manner, so that in the combustion chamber results in a desired residence time distribution, the spatially controlled ignition of a homogeneous non-catalytic secondary reaction allows. The system can also be advantageously arranged so that, if necessary, when using a z. B. liquid fuel and a conventional, that is, non-catalytic combustion, is adjustable. Thus, the burner is particularly suitable for liquid fuels, and thus overcomes the disadvantage of previous catalytic combustion systems, especially for gas turbines, which are known only as a single-fuel burner for gaseous fuels.
Vorzugsweise ist zum Einstellen einer vorgegebenen Verweilzeit von Brennstoff im Strömungskanal die axiale Länge des Strömungskanals entsprechend anpassbar. Durch konstruktive Auslegung und Anpassung der Länge des Strömungskanals, das heißt der Festlegung des Abstandes des Brennstoffauslasses des Hauptbrenners vom Brennstoffauslass des katalytischen Brenners, ist unter Berücksichtigung der Drehströmung in Folge des aufgeprägten Dralls und der relevanten Selbstzündzeit eine für die Ingangsetzung und Unterstützung der Verbrennung des Hauptbrenners angemessene Verweilzeit einstellbar. Somit ist der Brenner besonders flexibel anpassbar an die nach einer bestimmten Zeit (autoignition-time) einsetzende Hauptreaktion im Hauptbrenner, die im Wesentlichen von der Temperatur und der Gaszusammensetzung am Brennstoffauslass des katalytischen Brenners abhängt und die sich als Nachreaktion der vorgeschalteten katalytischen Reaktion vollzieht. Aufgrund dieser gezielten Anpassung ist eine vollständige Umsetzung in der Hauptreaktion möglich.Preferably, the axial length of the flow channel is adapted to adjust a predetermined residence time of fuel in the flow channel accordingly. By constructive design and adjustment of the length of the flow channel, that is, the determination of the distance of the fuel outlet of the main burner from the fuel outlet of the catalytic burner, taking into account the rotational flow due to the imposed spin and the relevant autoignition time, is a residence time appropriate for initiating and assisting the combustion of the main burner adjustable. Thus, the burner is particularly flexible adaptable to the main reaction after a certain time (autoignition-time) in the main burner, which depends essentially on the temperature and the gas composition at the fuel outlet of the catalytic burner and which takes place as a post-reaction of the upstream catalytic reaction. Due to this targeted adaptation, full implementation in the main reaction is possible.
In bevorzugter Ausgestaltung ist ein katalytisch wirkendes Element als ein Wabenkatalysator ausgestaltet, der als Grundbestandteil mindestens eine der Substanzen Titandioxid, Siliziumdioxid und Zirkonoxid aufweist.In a preferred embodiment, a catalytically active element is configured as a honeycomb catalyst having as a basic constituent at least one of the substances titanium dioxide, silicon dioxide and zirconium oxide.
Weiter bevorzugt weist als katalytisch aktive Komponente der Wabenkatalysator ein Edelmetall oder Metalloxid auf, welches eine oxidierende Wirkung auf den fluidischen Brennstoff aufweist. Es sind dies beispielsweise Edelmetalle wie Platin, Rhodium, Rhenium, Iridium und Metalloxide, wie z. B. die Übergangsmetalloxide Vananadiumoxid, Wolframoxid, Molybdänoxid, Chromoxid, Kupferoxid, Manganoxid und Oxide der Lanthanoiden, wie z. B. Ceroxid. Ebenso können auch MetallIonen-Zeolithe und Metalloxide von Spinelltyp verwendet sein.As a catalytically active component, the honeycomb catalyst more preferably has a noble metal or metal oxide which has an oxidizing effect on the fluidic fuel. These are, for example, precious metals such as platinum, rhodium, rhenium, iridium and metal oxides, such as. For example, the transition metal oxides vanadium oxide, tungsten oxide, molybdenum oxide, chromium oxide, copper oxide, manganese oxide and oxides of lanthanides such. For example, cerium oxide. Also, metal ion zeolites and spinel-type metal oxides may be used.
Besonders vorteilhaft erweist die Wabenstruktur der katalytisch wirkenden Elemente, da diese durch eine Vielzahl von sich entlang einer Achse des katalytisch wirkenden Elements erstreckenden Kanäle gebildet ist. Dies begünstigt die katalytische Reaktion aufgrund der Erhöhung der katalytisch aktiven Oberfläche durch die Kanäle und andererseits eine Strömungsvergleichmäßigung innerhalb des Wabenkatalysators, so dass ein wohl definiertes Ausströmen des katalytisch vorreagierten Brennstoffs aus dem Brennstoffauslass erreicht ist, wobei in entsprechend definierter Weise eine Drallkomponente beim Eintritt in den Strömungskanal bewirkt ist.The honeycomb structure of the catalytically active elements proves particularly advantageous since it is formed by a multiplicity of channels extending along an axis of the catalytically active element. This favors the catalytic reaction due to the increase of the catalytically active surface through the channels and on the other hand a flow equalization within the honeycomb catalyst, so that a well-defined outflow of the catalytically pre-reacted fuel from the fuel outlet is achieved, in a well-defined manner a swirl component when entering the Flow channel is effected.
In besonders bevorzugter Ausgestaltung ist der Brenner gemäß der Erfindung in einer Brennkammer vorgesehen. Die Brennkammer umfasst dabei einen Brennraum, in den der Brenner vorzugsweise mit dem Brennstoffauslass des Hauptbrenners hineinragt bzw. einmündet. Der Brennraum ist ausreichend dimensioniert, so dass eine homogene, vorzugsweise nicht-katalytische Hauptreaktion in Gang gesetzt und in dem Brennraum ein vollständiger Ausbrand des Brennstoffs und damit maximale Umsetzung in Verbrennungswärme erreicht wird.In a particularly preferred embodiment, the burner is provided according to the invention in a combustion chamber. The combustion chamber in this case comprises a combustion chamber into which the burner preferably projects or opens with the fuel outlet of the main burner. The combustion chamber is sufficiently dimensioned so that a homogeneous, preferably non-catalytic main reaction is set in motion and a complete combustion of the fuel and thus maximum conversion into combustion heat is achieved in the combustion chamber.
Vorzugsweise ist eine solche Brennkammer geeignet für die Verwendung in einer Gasturbine, wobei ein in der Brennkammer erzeugtes heißes Verbrennungsgas zum Antrieb eines Turbinenteils der Gasturbine dient.Preferably, such a combustion chamber is suitable for use in a gas turbine, wherein a hot combustion gas generated in the combustion chamber is used to drive a turbine part of the gas turbine.
Die Vorteile einer derartigen Brennkammer und derartigen Gasturbine ergeben sich aus den oben genannten Ausführungen zu dem Verbrennungsverfahren und zu dem Brenner.The advantages of such a combustion chamber and such gas turbine resulting from the above-mentioned embodiments of the combustion process and the burner.
Nachfolgend wird die Erfindung anhand einer Zeichnung näher erläutert. Darin zeigen in vereinfachter und nicht maßstäblicher Darstellung:
- Figur 1
- einen Halbschnitt durch eine Gasturbine,
- Figur 2
- in einer Schnittansicht eine vereinfachte Darstellung eines Brenners gemäß der Erfindung und
- Figur 3
- der in
Figur 2 dargestellten Brenner in einer Ansicht in Hauptströmungsrichtung des Brennstoffs.
- FIG. 1
- a half-section through a gas turbine,
- FIG. 2
- in a sectional view of a simplified representation of a burner according to the invention and
- FIG. 3
- the in
FIG. 2 illustrated burner in a view in the main flow direction of the fuel.
Gleiche Teile sind in allen Figuren mit denselben Bezugszeichen versehen.Identical parts are provided with the same reference numerals in all figures.
Die Gasturbine gemäß
Die Turbine 6, weist eine Anzahl von mit der Turbinenwelle 8 verbundenen, rotierbaren Laufschaufeln 12 auf. Die Laufschaufeln 12 sind kranzförmig an der Turbinenwelle 8 angeordnet und bilden somit eine Anzahl von Laufschaufelreihen. Weiterhin umfasst die Turbine 6 eine Anzahl von feststehenden Leitschaufeln 14, die ebenfalls kranzförmig unter der Bildung von Leitschaufelreihen an einem Innengehäuse 16 der Turbine 6 befestigt sind. Die Laufschaufeln 12 dienen dabei zum Antrieb der Turbinenwelle 8 durch Impulsübertrag vom die Turbine 6 durchströmenden heißen Medium, dem Arbeitsmedium M. Die Leitschaufeln 14 dienen hingegen zur Strömungsführung des Arbeitsmediums M zwischen jeweils zwei in Strömungsrichtung des Arbeitsmediums gesehen aufeinanderfolgenden Laufschaufelreihen oder Laufschaufelgrenzen. Ein aufeinanderfolgendes Paar aus einem Kranz von Leitschaufeln 14 oder einer Leitschaufelreihe und aus einem Kranz von Laufschaufel 12 oder einer Laufschaufelreihe wird dabei auch als Turbinenstufe bezeichnet. Jede Leitschaufel 14 weist eine auch als Schaufelfuß bezeichnete Plattform 18 auf, die zur Fixierung der jeweiligen Leitschaufel 14 am Innengehäuse 16 der Turbine als Wandelement angeordnet ist. Die Plattform 18 ist dabei ein thermisches, vergleichsweise stark belastetes Bauteil, das die äußere Begrenzung eines Heißgaskanals für das die Turbine 6 durchströmende Arbeitsmedium M bildet. Jede Laufschaufel ist in analoger Weise über eine auch als Schaufelfuß bezeichnete Plattform an der Turbinenwelle befestigt. Zwischen den beabstandet voneinander angeordneten Plattformen 18 der Leitschaufel 14 zweier benachbarter Leitschaufelreihen ist jeweils ein Führungsring 21 am Innengehäuse 16 der Turbine 6 angeordnet. Die äußere Oberfläche jedes Führungsrings 21 ist dabei ebenfalls dem heißen, die Turbine 6 durchströmenden Arbeitsmedium M ausgesetzt und in radialer Richtung vom äußeren Ende 22 der ihm gegenüberliegenden Laufschaufel 12 durch einen Spalt beabstandet. Die zwischen benachbarten Leitschaufelreihen eingeordneten Führungsringe 21 dienen dabei insbesondere als Abdeckelemente, die die Innenwand 16 oder andere Gehäuse-Einbauteile vor einer thermischen Überbeanspruchung durch die das Turbine 6 durchströmende heiße Arbeitsmedium M schützen. Die Brennkammer 4 ist von einem Brennkammergehäuse 29 begrenzt, wobei brennkammerseitig eine Brennkammerwand 24 gebildet ist. Im Ausführungsbeispiel ist die Brennkammer 4 als so genannte Ringbrennkammer ausgestaltet, bei der eine Vielzahl von in Umfangsrichtung um die Turbinenwelle 8 herum angeordnete Brenner in einen gemeinsamen Brennkammerraum oder Brennraum 27 einmünden. Dazu ist die Brennkammer 4 in ihrer Gesamtheit als ringförmige Struktur ausgestaltet, die um die Turbinenwelle 8 herum positioniert ist.The
Zur Erzeugung des heißen Arbeitsmediums M wird ein fluider Brennstoff B sowie Verbrennungsluft A dem Brenner 10 zugestellt und zu einem Brennstoff-Luftgemisch gemischt und verbrannt. Zur vollständigen und weitgehend schadstoffarmen Verbrennung ist der Brenner 10 als katalytisches Verbrennungssystem ausgestaltet mit dem eine vollständige Umsetzung des Brennstoffs B erreichbar ist. Das aus dem Verbrennungsprozess resultierende Heißgas, das Arbeitsmedium M, weist vergleichsweise hohe Temperaturen von 1000 °C bis zu 1500 °C auf, um einen entsprechend hohen Wirkungsgrad der Gasturbine 1 zu erzielen. Hierzu ist die Brennkammer 4 für entsprechend hohe Temperaturen ausgelegt. Um auch bei diesen, für die Materialien ungünstigen Betriebsparametern eine vergleichsweise hohe Betriebsdauer zu ermöglichen, ist die Brennkammerwand 24 auf ihrer dem Arbeitsmedium M zugewandten Seite mit einer aus Hitzeschildelementen 26 gebildeten Brennkammerauskleidung versehen. Aufgrund der hohen Temperaturen im Inneren der Brennkammer 4 ist zudem für die Hitzeschildelemente 26 ein nicht näher dargestelltes Kühlsystem vorgesehen.To produce the hot working medium M, a fluid fuel B and combustion air A is delivered to the
Der in der Brennkammer 4 der Gasturbine 1 zum Einsatz kommende Brenner 10 gemäß der Erfindung ist in
Im Betrieb des Brenners 10 wird der fluidische Brennstoff B einem katalytischen Brenner 35A, 35B zugeführt und dort in einer katalytischen Reaktion zumindest teilweise umgesetzt. Anschließend wird der so katalytisch vorreagierte Brennstoff B in einer Nachreaktion in der Ausbrandzone 45 des Hauptbrenners weiter verbrannt. Dem vorreagierten Brennstoff B wird eine Drallkomponente aufgeprägt. Dabei wird der vorreagierte drallbehaftete Brennstoff B zur Nachreaktion in eine Ausbrandzone 45 übergeleitet, wobei die Drehströmung in dem Strömungskanal 31A, 31B ausgebildet wird. Durch Einstellen der Verweilzeit des vorreagierten Brennstoffs B für die Überleitung wird eine räumlich kontrollierte Zündung der Nachreaktion in der Ausbrandzone 45 herbeigeführt. Durch Auswahl und Einstellung der Drallkomponente kann eine gewünschte Drehströmung in dem Strömungskanal 31A, 31B erzeugt werden und damit beispielsweise - wie dargestellt - die axiale Länge L des Strömungskanals 31B entsprechend festgelegt werden. Hierdurch wird der Bauraum, insbesondere die axiale Erstreckung, des Brenners 10 auf handhabbare Dimensionen begrenzt und zugleich eine räumlich kontrollierte Zündung der Nachreaktion in der dem Hauptbrenner 37 zugeordneten Ausbrandzone 45 gewährleistet. Die Ausbrandzone 45 ist aufgrund der Drehströmung des fluidischen Brennstoffs B entsprechend in seiner axialen Dimension begrenzt, so dass eine Realisierung mit üblich dimensionierten Brennkammern 4 und Brennräumen 27 (vergleiche
In den gezeigten Ausführungsbeispielen gemäß
Alternativ kann auch ein Brennstoff-Luftgemisch durch Mischung eines fluidischen, insbesondere flüssigen, Brennstoffs mit Verbrennungsluft erzeugt werden, welches in einer katalytischen Reaktion zumindest teilweise umgesetzt und anschließend das katalytisch vorreagierte Brennstoff-Luftgemisch weiter verbrannt wird, wobei dem vorreagierten Brennstoff-Luftgemisch eine Drallkomponente aufgeprägt wird. Der Brenner gemäß der Erfindung kann dabei - je nach Brennstoffwahl - unter Durchströmung der katalytisch wirkenden Elemente mit einem fluidischen Brennstoff bzw. Brennstoff-Luftgemisch oder - insbesondere bei Flüssigbrennstoffen - unter Durchströmen mit Verbrennungsluft und nachfolgender Zudüsung des Flüssigbrennstoffs betrieben werden.Alternatively, a fuel-air mixture can be generated by mixing a fluid, in particular liquid, fuel with combustion air, which at least partially reacted in a catalytic reaction and then the catalytically pre-reacted fuel-air mixture is further burned, wherein the vorreagierten fuel-air mixture, a swirl component is impressed. Depending on the choice of fuel, the burner according to the invention can be operated by flowing through the catalytically active elements with a fluid fuel or air-fuel mixture or, in particular in the case of liquid fuels, by flowing through combustion air and subsequent injection of the liquid fuel.
Claims (13)
- Burner (10) for burning a fluid fuel (B), in which the fuel outlet (41) of a catalytic burner (35A, 35B) is disposed upstream of the fuel outlet (39) of a primary burner (37) in the direction of flow (33) of the fuel (B) within a flow channel (31A, 31B) such that the fuel (B) is catalytically converted,
wherein the catalytic burner (35A, 35B) has a number of catalytically acting elements (43A, 43B, 43C, 43D) which are arranged such that a vortex is created in the flow channel (31A, 31B), and the catalytically acting elements (43A, 43B, 43C, 43D) are arranged in a plane perpendicular to the direction of flow (33), wherein the fuel outlet (41) of the catalytically acting elements (43A, 43B, 43C, 43D) discharges into the flow channel (31A, 31B),
characterised in that
the discharge of the catalytically acting elements (43A, 43B, 43C, 43D) into the flow channel (31A, 31B) takes place at an angle of from 15° to 75° relative to a primary axis defined by the direction of flow (33). - Burner (10) according to claim 1,
characterised in that the vortex in the wake of the catalytically acting elements (43A, 43B, 43C, 43D) is created downstream of the fuel outlet (41) thereof. - Burner (10) according to one of claims 1 or 2,
characterised in that the length (L) of the flow channel (31A, 31B) can be adapted for setting a predetermined dwell time for fuel (B) in the flow channel (31A, 31B). - Burner (10) according to one of claims 1 to 3,
characterised in that a catalytically acting element (43A, 43B, 43C, 43D) is fashioned as a honeycomb catalytic converter which has as a basic component at least one of the substances titanium dioxide, silicon oxide and zirconium oxide. - Burner (10) according to claim 4,
characterised in that the honeycomb catalytic converter has as a catalytically active component a noble metal or metal oxide which has an oxidizing effect on the fluid fuel (B). - Combustion chamber (4) comprising a burner (10) according to one of claims 1 to 5.
- Gas turbine (1) comprising a combustion chamber (4) according to claim 6.
- Method for burning a fluid fuel (B) in a burner according to the precharacterising clause of claim 1, in which fuel (B) is converted in a catalytic reaction and catalytically pre-reacted fuel (B) then continues to be burned in a secondary reaction, wherein a swirling component is impressed onto the pre-reacted fuel (B),
characterised in that the burner is embodied according to one of claims 1 to 5 and the catalytically pre-reacted fuel (B) flows into the flow channel (31A, 31B) at an angle of from 15° to 75° relative to a primary axis defined by the direction of flow (33). - Method according to claim 8,
characterised in that pre-reacted, swirl-subjected fuel (B) is transferred for the secondary reaction into a combustion space (27), wherein a vortex is created. - Method according to claim 9,
characterised in that adjustment of the dwell time of the pre-reacted fuel (B) for the transfer allows the secondary reaction to be ignited in a spatially controlled manner in the combustion space (27). - Method according to claim 10,
characterised in that a homogeneous non-catalytic secondary reaction is ignited. - Method according to any one of claims 8 to 11,
characterised in that the fuel (B) is burned completely in the secondary reaction. - Method according to any one of claims 8 to 12,
characterised in that a gas or a liquid fuel, especially fuel gas or fuel oil, is burned as the fluid fuel (B).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04763827.5A EP1654497B1 (en) | 2003-08-13 | 2004-08-05 | Method for the combustion of a fluid fuel, and burner, especially of a gas turbine, for carrying out said method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03018417A EP1510761A1 (en) | 2003-08-13 | 2003-08-13 | Method for burning a fluid fuel as well as burner, in particular for a gas turbine, for carrying out the method |
PCT/EP2004/008786 WO2005019734A1 (en) | 2003-08-13 | 2004-08-05 | Method for the combustion of a fluid fuel, and burner, especially of a gas turbine, for carrying out said method |
EP04763827.5A EP1654497B1 (en) | 2003-08-13 | 2004-08-05 | Method for the combustion of a fluid fuel, and burner, especially of a gas turbine, for carrying out said method |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1654497A1 EP1654497A1 (en) | 2006-05-10 |
EP1654497B1 true EP1654497B1 (en) | 2015-09-30 |
Family
ID=34089588
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03018417A Withdrawn EP1510761A1 (en) | 2003-08-13 | 2003-08-13 | Method for burning a fluid fuel as well as burner, in particular for a gas turbine, for carrying out the method |
EP04763827.5A Expired - Lifetime EP1654497B1 (en) | 2003-08-13 | 2004-08-05 | Method for the combustion of a fluid fuel, and burner, especially of a gas turbine, for carrying out said method |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03018417A Withdrawn EP1510761A1 (en) | 2003-08-13 | 2003-08-13 | Method for burning a fluid fuel as well as burner, in particular for a gas turbine, for carrying out the method |
Country Status (5)
Country | Link |
---|---|
US (1) | US8540508B2 (en) |
EP (2) | EP1510761A1 (en) |
JP (1) | JP4597986B2 (en) |
ES (1) | ES2551930T3 (en) |
WO (1) | WO2005019734A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005061486B4 (en) | 2005-12-22 | 2018-07-12 | Ansaldo Energia Switzerland AG | Method for operating a combustion chamber of a gas turbine |
SE530775C2 (en) * | 2007-01-05 | 2008-09-09 | Zemission Ab | Heating device for catalytic combustion of liquid fuels and a stove comprising such a heating device |
EP2154428A1 (en) * | 2008-08-11 | 2010-02-17 | Siemens Aktiengesellschaft | Fuel nozzle insert |
JP6190670B2 (en) * | 2013-08-30 | 2017-08-30 | 三菱日立パワーシステムズ株式会社 | Gas turbine combustion system |
CN104949154B (en) * | 2015-03-11 | 2017-10-31 | 龚雨晋 | Realize the device of constant volume burning and the dynamical system including the device |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4040252A (en) * | 1976-01-30 | 1977-08-09 | United Technologies Corporation | Catalytic premixing combustor |
DE2841105C2 (en) * | 1978-09-21 | 1986-10-16 | Siemens AG, 1000 Berlin und 8000 München | Gasification burner |
DE3474714D1 (en) * | 1983-12-07 | 1988-11-24 | Toshiba Kk | Nitrogen oxides decreasing combustion method |
JPS61276627A (en) * | 1985-05-30 | 1986-12-06 | Toshiba Corp | Gas turbine combustion apparatus |
JPS62141425A (en) | 1985-12-13 | 1987-06-24 | Tokyo Electric Power Co Inc:The | Gas turbine combustor |
US4692306A (en) * | 1986-03-24 | 1987-09-08 | Kinetics Technology International Corporation | Catalytic reaction apparatus |
GB9027331D0 (en) | 1990-12-18 | 1991-02-06 | Ici Plc | Catalytic combustion |
US5634784A (en) * | 1991-01-09 | 1997-06-03 | Precision Combustion, Inc. | Catalytic method |
US5355668A (en) * | 1993-01-29 | 1994-10-18 | General Electric Company | Catalyst-bearing component of gas turbine engine |
WO1996041991A1 (en) * | 1995-06-12 | 1996-12-27 | Siemens Aktiengesellschaft | Catalytic ignition burner for a gas turbine |
DE19521308A1 (en) | 1995-06-12 | 1996-12-19 | Siemens Ag | Gas turbine for burning a fuel gas |
US6015285A (en) * | 1998-01-30 | 2000-01-18 | Gas Research Institute | Catalytic combustion process |
GB9809371D0 (en) * | 1998-05-02 | 1998-07-01 | Rolls Royce Plc | A combustion chamber and a method of operation thereof |
US6048194A (en) * | 1998-06-12 | 2000-04-11 | Precision Combustion, Inc. | Dry, low nox catalytic pilot |
US6339925B1 (en) * | 1998-11-02 | 2002-01-22 | General Electric Company | Hybrid catalytic combustor |
US6279323B1 (en) * | 1999-11-01 | 2001-08-28 | General Electric Company | Low emissions combustor |
US6488016B2 (en) * | 2000-04-07 | 2002-12-03 | Eino John Kavonius | Combustion enhancer |
EP1255078A1 (en) * | 2001-04-30 | 2002-11-06 | ALSTOM (Switzerland) Ltd | Catalyst |
EP1485593A1 (en) * | 2002-02-22 | 2004-12-15 | Catalytica Energy Systems, Inc. | Catalytically piloted combustion system and methods of operation |
DE50313028D1 (en) * | 2002-05-02 | 2010-10-14 | Alstom Technology Ltd | Catalytic burner |
-
2003
- 2003-08-13 EP EP03018417A patent/EP1510761A1/en not_active Withdrawn
-
2004
- 2004-08-05 ES ES04763827.5T patent/ES2551930T3/en not_active Expired - Lifetime
- 2004-08-05 JP JP2006522962A patent/JP4597986B2/en not_active Expired - Fee Related
- 2004-08-05 WO PCT/EP2004/008786 patent/WO2005019734A1/en active Search and Examination
- 2004-08-05 EP EP04763827.5A patent/EP1654497B1/en not_active Expired - Lifetime
- 2004-08-05 US US10/568,119 patent/US8540508B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
WO2005019734A1 (en) | 2005-03-03 |
US20060260322A1 (en) | 2006-11-23 |
US8540508B2 (en) | 2013-09-24 |
EP1654497A1 (en) | 2006-05-10 |
EP1510761A1 (en) | 2005-03-02 |
JP2007501928A (en) | 2007-02-01 |
JP4597986B2 (en) | 2010-12-15 |
ES2551930T3 (en) | 2015-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10217913B4 (en) | Gas turbine with combustion chamber for flameless oxidation | |
EP0710797B1 (en) | Method and device for operating a premix burner | |
EP0849451B1 (en) | Method to stabilize combustion in a gas turbine power station | |
EP1255080B1 (en) | Catalytic burner | |
DE102010036488B4 (en) | Gas turbine burner | |
EP1279898B1 (en) | Premix burner with high flame stability | |
EP1251314A2 (en) | Catalytic burner | |
CH701773A2 (en) | Burner with radial inlet guide vanes. | |
DE3824121A1 (en) | Gas turbine | |
EP2507557B1 (en) | Burner assembly | |
DE19521308A1 (en) | Gas turbine for burning a fuel gas | |
EP1654497B1 (en) | Method for the combustion of a fluid fuel, and burner, especially of a gas turbine, for carrying out said method | |
EP1255077B1 (en) | Device for the combustion of a gaseous mixture of fuel and oxidant | |
EP0832398B1 (en) | Catalytic combustion chamber for a gas turbine | |
EP0832399B1 (en) | Catalytic ignition burner for a gas turbine | |
EP1642065B1 (en) | Burner unit for a gas turbine and gas turbine | |
CH707917A2 (en) | Air heating system with catalytic combustion. | |
EP0925474A1 (en) | Method for the catalytic combustion of a fossil fuel in an incinerator and arrangement for carrying out said method | |
DE10164097A1 (en) | Premixing burner comprises a twisting arrangement having tangential inlets for introducing a combustion air stream into the inner chamber of the twisting arrangement, and devices for introducing a fuel into the combustion air stream |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060111 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE ES FR GB IT LI |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): CH DE ES FR GB IT LI |
|
17Q | First examination report despatched |
Effective date: 20110429 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502004015036 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: F23R0003400000 Ipc: F23C0013000000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F23R 3/12 20060101ALI20150212BHEP Ipc: F23C 13/00 20060101AFI20150212BHEP Ipc: F23R 3/40 20060101ALI20150212BHEP Ipc: F23C 13/08 20060101ALI20150212BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150416 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE ES FR GB IT LI |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG, CH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502004015036 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2551930 Country of ref document: ES Kind code of ref document: T3 Effective date: 20151124 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502004015036 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20160701 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004015036 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160831 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170301 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160831 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160805 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160806 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20181128 |