EP0832398B1 - Catalytic combustion chamber for a gas turbine - Google Patents

Catalytic combustion chamber for a gas turbine Download PDF

Info

Publication number
EP0832398B1
EP0832398B1 EP96915991A EP96915991A EP0832398B1 EP 0832398 B1 EP0832398 B1 EP 0832398B1 EP 96915991 A EP96915991 A EP 96915991A EP 96915991 A EP96915991 A EP 96915991A EP 0832398 B1 EP0832398 B1 EP 0832398B1
Authority
EP
European Patent Office
Prior art keywords
fuel
combustion chamber
flow
burner
catalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96915991A
Other languages
German (de)
French (fr)
Other versions
EP0832398A1 (en
Inventor
Erich Hums
Nicolas Vortmeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0832398A1 publication Critical patent/EP0832398A1/en
Application granted granted Critical
Publication of EP0832398B1 publication Critical patent/EP0832398B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/40Continuous combustion chambers using liquid or gaseous fuel characterised by the use of catalytic means

Definitions

  • the invention relates to a burner, in particular for a gas turbine, with a catalytic combustion chamber such as shown in document JP-61 053 425.
  • a fuel is a hydrocarbon and / or hydrogen-containing Energy sources in both liquid and provided in gaseous form.
  • a fuel is for example natural gas, oil or methane.
  • Such a burner can preferably be used in a gas turbine.
  • a gas turbine usually consists of a compressor part, a burner part and a turbine part.
  • the compressor part and the turbine part are usually on a common shaft that also serves as a generator Electricity generation drives.
  • the compressor section is preheated Fresh air with a fuel of the type mentioned burned.
  • the hot burner exhaust gas is fed to the turbine part and relaxed there.
  • nitrogen oxides NO x also arise as particularly undesirable combustion products.
  • sulfur dioxide these nitrogen oxides are the main cause of the environmental problem of acid rain.
  • a reduction in flame temperature in the Burner as nitrogen oxide reducing. This is the fuel or the compressed and preheated fresh air water vapor added or water injected into the combustion chamber. Measures that reduce nitrogen oxide emissions per se are referred to as primary measures for nitrogen oxide reduction.
  • the GB 2 268 694 A provided a catalytic combustion chamber, wherein the ignition temperature of a fuel by a partial catalytic oxidation is lowered.
  • the intended ones Catalysts are transverse to the flow direction of the Fuel installed and extend over the entire Flow cross-section. So there is a high flow resistance given.
  • the invention is therefore based on the object of a burner, especially for a gas turbine, specify which one through particularly low nitrogen oxide emissions and at the same time is characterized by a particularly high efficiency.
  • a burner according to claim 1 in which a catalytic combustion chamber is provided, wherein the combustion chamber in the direction of flow of a fuel has essentially cylindrical extension and the Wall facing the fuel has a catalytically active coating for oxidation of the fuel.
  • the catalytically induced combustion the fuel has a particularly low nitrogen oxide content of the burner exhaust gas reached. Is through at the same time the coating of the wall of the combustion chamber does not increase connected to the flow resistance, so that with such high efficiency in catalytic combustion chamber a gas turbine can be reached.
  • the essentially cylindrical Shape of the catalytic combustion chamber and the catalytic active coating of the wall help that the fuel ignites from the wall and spreads out the flame front from the catalytically active surface the wall into the free flow of the fuel gas is.
  • the cylindrical shape helps to an essentially concentric and therefore homogeneous Distribution of the flame front, creating a complete and even combustion of the fuel results.
  • the Combustor a fuel comprising a main fuel stream, a preformed partial fuel flow and air, feedable is.
  • the main fuel flow is usually from natural gas and / or coal gas and / or hydrogen.
  • the preformed Fuel partial flow is a partial flow of the Main fuel stream separated and through a preforming stage is directed.
  • Preforming stages are made from natural gas, for example substances that ignite catalytically more easily than natural gas, e.g. Alcohols, aldehydes and hydrogen.
  • One with one such preformed fuel partial flow mixed fuel gas therefore has excellent catalytic ignitability.
  • Fuel can provide that a preformed Partial fuel flow, optionally premixed with air, enters the combustion chamber through holes in the wall.
  • a preformed Partial fuel flow optionally premixed with air, enters the combustion chamber through holes in the wall.
  • the comparatively easily ignited gas mixture of the preformed partial fuel flow directly with brought into contact with the catalytically active coating and ignites spontaneously, so that a reliable, reliable standing Ignition in the form of a hollow cylinder in the catalytic Combustion chamber is formed.
  • the catalytically active coating that is on the wall of the catalytic combustion chamber facing the fuel gas can be provided to cool the wall.
  • the wall can be cooled with air, for example are achieved, while at the same time preheating the air becomes. This preheated air can follow, for example compressed in the compressor section to the combustion chamber inlet pressure become.
  • the catalytic effect of the catalytically active coating occurs particularly advantageously when the catalytic active coating titanium dioxide, which is preferably flame and is plasma-sprayed, and a precious metal portion selected made of platinum, rhodium, palladium, iridium, rhenium and / or a metal oxide component consisting of one or several transition metal oxides.
  • a precious metal portion selected made of platinum, rhodium, palladium, iridium, rhenium and / or a metal oxide component consisting of one or several transition metal oxides.
  • transition metal oxides such oxides come into question which are strongly oxidizing have a catalytic effect, e.g. Copper oxide, Chromium oxide, iron oxide, molybdenum oxide, tungsten oxide, vanadium oxide, Manganese oxide, cerium oxide and other oxides of lanthanoids.
  • a gas turbine 2 which has a compressor part 4, a burner part 6 and a turbine part 7 comprises.
  • the burner section 6 comprises a catalytic combustion chamber 8, the wall 10 of which Has catalytically active coating 12.
  • the catalytic combustion chamber 8 has one in the exemplary embodiment circular cross section.
  • a fuel gas flows in as fuel 14, which in the exemplary embodiment from compressed air in the compressor part 4 16, a main fuel stream 18 and a preformed Partial fuel flow 20 exists.
  • This preformed partial fuel flow 20 is from an original fuel stream 22 separated and passed through a preforming stage 24.
  • the fuel stream 22 is in the embodiment from natural gas, from which in the preforming stage 24 catalytic substances that ignite more easily than natural gas, e.g. Alcohols, Aldehydes and hydrogen are formed.
  • the preforming level 24 includes one to perform its function Ceramic honeycomb catalyst not shown Titanium dioxide base, which additionally contains a precious metal, consisting of superficially applied to the honeycomb catalyst Includes platinum and palladium.
  • the catalytically active coating 12 on the wall 10 of the Catalytic combustion chamber 8 consists of a flame-sprayed Titanium dioxide layer with a thickness of about 500 microns the additional precious metal particles of platinum, rhodium and Palladium and particles of transition metal oxides, such as cerium oxide, Vanadium oxide and chromium oxide are applied.
  • a flame-sprayed titanium dioxide can also be a plasma-sprayed titanium dioxide layer can be provided. Both Layers are characterized by their great strength on the wall consisting mostly of an austenitic steel 10 the catalytic combustion chamber 8.
  • the fuel 14 now flows in the catalytic combustion chamber 8 and ignites at the catalytically active coating 12 of the wall 10. Die auf upstream flame front 26 thus formed is just like the downstream flame front 28 largely rotationally symmetrical, so that the temperature distribution in the catalytic combustion chamber 8 along the main flow direction approximately circular in cross-section Has isotherms. This is for even and Low-emission combustion of the fuel 14 is advantageous.
  • the fuel 14 catalytically burned in this way enters the turbine section at a temperature of around 1100 ° C 7 of the gas turbine 2 and is relaxed there.
  • the in Thermal energy transferred to the turbine becomes the drive of a generator for electricity generation, not shown here used.
  • This generator is on the same Shaft not shown here arranged as the gas turbine 2.
  • the burner exhaust gas 30 leaving the turbine part 7 is due to the catalytic combustion of the fuel gas 14 particularly low in nitrogen oxide and has a nitrogen oxide content of about 70 ppm.
  • the burner exhaust gas 30 cannot in one here waste heat steam generator for steam generation shown further be used.
  • FIG. 2 shows a schematic representation of a figure 1 slightly modified gas turbine 2 '. Limit here the modifications affect the design of the catalytic combustion chamber 8.
  • this measure has two advantages.
  • the first advantage is that Fuel mixture with the lowest catalytic ignition temperature directly on the catalytically active coating 12 enters the combustion chamber 8 'and therefore comparatively ignited spontaneously. This measure therefore bears especially to stabilize the upstream Flame front 26 at.
  • the second advantage is that the walls 10 from the mixture flowing along preformed fuel sub-stream 20 and air 16 cooled become. This cooling also reduces the thermal load the catalytically active coating 12 is reduced, which has a favorable effect on the durability of this coating 12 affects. Cooling of the wall 10 can be shown in FIG Alternatively, by a flow of air 16 can be achieved, which occurs in the compressor part 4.
  • FIG 3 shows a schematic representation of the cross section a modified compared to Figures 1 and 2 catalytic Combustion chamber 34.
  • Wall 10 and 10 can be seen again the catalytically active coating 12 for the oxidation of the Fuel 14.
  • the fuel 14, 22 oxidizes and that brought up over the air 16 and for combustion required oxygen is reduced.
  • the catalytic active coating 12 for the oxidation of the fuel gas 14 is therefore the coating that covers the entire Combustion process with oxidized and reduced combustion products induced.
  • the combustion chamber 34 has three concentrically arranged rings 36 on. These concentric rings 36 are thin strips of sheet metal, consisting of the material of the wall 10.
  • the rings 36 have the same catalytically active coating 12, with which the wall 10 of the combustion chamber 34 is also coated is. For the sake of clarity of presentation is the catalytically active coating 12 only in a selected one Quadrants drawn. Also the rings 36 retaining webs 38 have this catalytically active coating 12.
  • the rings 36 are only in the outer Area of substantially circular cross section of the Combustion chamber 34 arranged to ignite the initial ignition of the Fuel 14 on the outer portion of the cross section of the Limit combustion chamber 34. An expansion of the flame front into the free flow of the fuel gas 14 then takes place automatically.
  • the rings 36 with the catalytically active coating 12 thus help to stabilize the flame front and to ensure a complete and therefore special low-pollution combustion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)

Description

Die Erfindung bezieht sich auf einen Brenner, insbesondere für eine Gasturbine, mit einer katalytischen Brennkammer wie beispielsweise in Dokument JP-61 053 425 gezeigt. Als ein Brennstoff ist dabei ein Kohlenwasserstoff und/oder wasserstoffhaltiger Energieträger sowohl in flüsssiger als auch in gasförmiger Form vorgesehen. Ein derartiger Brennstoff ist beispielsweise Erdgas, Erdöl oder Methan. Ein solcher Brenner kann bevorzugt eingesetzt werden in einer Gasturbine.The invention relates to a burner, in particular for a gas turbine, with a catalytic combustion chamber such as shown in document JP-61 053 425. As a fuel is a hydrocarbon and / or hydrogen-containing Energy sources in both liquid and provided in gaseous form. Such a fuel is for example natural gas, oil or methane. Such a burner can preferably be used in a gas turbine.

Eine Gasturbine besteht üblicherweise aus einem Kompressorteil, einem Brennerteil und einem Turbinenteil. Der Kompressorteil und der Turbinenteil befinden sich üblicherweise auf einer gemeinsamen Welle, die gleichzeitig einen Generator zur Elektrizitätserzeugung antreibt. Im Kompressorteil wird vorgewärmte Frischluft mit einem Brennstoff der genannten Art verbrannt. Das heiße Brennerabgas wird dem Turbinenteil zugeführt und dort entspannt.A gas turbine usually consists of a compressor part, a burner part and a turbine part. The compressor part and the turbine part are usually on a common shaft that also serves as a generator Electricity generation drives. The compressor section is preheated Fresh air with a fuel of the type mentioned burned. The hot burner exhaust gas is fed to the turbine part and relaxed there.

Eine detaillierte Information über den Aufbau und die Verwendung einer Gasturbine gibt die Firmenschrift "Gasturbines and Gasturbine Power Plants" der Siemens AG, Mai 1994, Bestellnr. A 96001-U 124-V 1-7600.A detailed information about the structure and the use a gas turbine gives the company script "Gasturbines and Gas Turbine Power Plants "from Siemens AG, May 1994, order no. A 96001-U 124-V 1-7600.

Bei der Verbrennung eines Brennstoffs der genannten Art entstehen als besonders unerwünschte Verbrennungsprodukte auch Stickoxide NOx. Diese Stickoxide gelten neben Schwefeldioxid als Hauptverursacher für das Umweltproblem des sauren Regens. Man ist daher - auch aufgrund strenger gesetzlicher Grenzwertvorgaben für den NOx-Ausstoß - gewillt, den NOx-Ausstoß von einer Gasturbine besonders gering zu halten und dabei gleichzeitig die Leistung der Gasturbine weitgehend nicht zu beeinflussen. When a fuel of the type mentioned is burned, nitrogen oxides NO x also arise as particularly undesirable combustion products. In addition to sulfur dioxide, these nitrogen oxides are the main cause of the environmental problem of acid rain. One is therefore - also due to strict legal limit values for NO x emissions - willing to keep the NO x emissions from a gas turbine particularly low and at the same time largely unaffected by the performance of the gas turbine.

So wirkt beispielsweise eine Flammtemperatur-Absenkung im Brenner als stickoxidmindernd. Hierbei wird dem Brennstoff oder der komprimierten und vorgewärmten Frischluft Wasserdampf zugefügt oder Wasser in den Brennraum eingespritzt. Solche Maßnahmen, die den Stickoxidausstoß per se verringern, werden als Primärmaßnahmen zur Stickoxidminderung bezeichnet.For example, a reduction in flame temperature in the Burner as nitrogen oxide reducing. This is the fuel or the compressed and preheated fresh air water vapor added or water injected into the combustion chamber. Measures that reduce nitrogen oxide emissions per se are referred to as primary measures for nitrogen oxide reduction.

Dementsprechend werden als Sekundärmaßnahmen alle Maßnahmen bezeichnet, bei denen einmal im Abgas z.B. einer Gasturbine oder auch grundsätzlich eines Verbrennungsprozesses enthaltene Stickoxide durch nachträgliche Maßnahmen verringert werden.Accordingly, all measures are considered secondary measures referred to, where once in the exhaust gas e.g. a gas turbine or also fundamentally contained in a combustion process Nitrogen oxides can be reduced through subsequent measures.

Hierzu hat sich weltweit das Verfahren der selektiven katalytischen Reduktion (SCR) durchgesetzt, bei dem die Stickoxide zusammen mit einem Reduktionsmittel, meist Ammoniak, an einem Katalysator kontaktiert werden und dabei Stickstoff und Wasser bilden. Mit dem Einsatz dieser Technologie ist daher zwangsläufig der Verbrauch von Reduktionsmittel verbunden. Die im Abgaskanal angeordneten Katalysatoren zur Stickoxidminderung verursachen naturgemäß einen Druckabfall, der bei Einsatz des Brenners in einer Turbine einen Leistungsabfall nach sich zieht. Selbst ein Leistungsabfall in Höhe von einigen Promille wirkt sich bei einer Leistung der Gasturbine von beispielsweise 150 MW und einem Stromverkaufspreis von etwa 0,15 DM/kWh Strom gravierend auf das mit einer solchen Einrichtung erzielbare Ergebnis aus.This has become the worldwide method of selective catalytic Reduction (SCR) enforced, in which the nitrogen oxides together with a reducing agent, usually ammonia, on one Catalyst are contacted and nitrogen and water form. With the use of this technology is therefore inevitably linked to the consumption of reducing agents. The catalysts arranged in the exhaust duct for nitrogen oxide reduction naturally cause a pressure drop that at Use of the burner in a turbine caused a drop in performance entails. Even a drop in performance of some Per thousand affects the performance of the gas turbine for example 150 MW and an electricity sales price of about 0.15 DM / kWh electricity seriously on that with such a device achievable result.

Als eine Primärmaßnahme zum Abbau von Stickoxiden ist aus der GB 2 268 694 A eine katalytische Brennkammer vorgesehen, wobei die Zündtemperatur eines Brennstoffes durch eine teilweise katalytische Oxidation abgesenkt wird. Die hierfür vorgesehenen Katalysatoren sind quer zur Strömungsrichtung des Brennstoffs eingebaut und erstrecken sich über den gesamten Strömungsquerschnitt. Damit ist ein hoher Strömungswiderstand gegeben. As a primary measure to break down nitrogen oxides, the GB 2 268 694 A provided a catalytic combustion chamber, wherein the ignition temperature of a fuel by a partial catalytic oxidation is lowered. The intended ones Catalysts are transverse to the flow direction of the Fuel installed and extend over the entire Flow cross-section. So there is a high flow resistance given.

Bei den vorstehend beschriebenen Brennern besteht daher grundsätzlich das Problem, daß jede dort vorgesehene Stickoxidminderung, primärer oder sekundärer Art, eine Leistungseinbuße oder eine Einbuße im Gesamtwirkungsgrad der Gasturbinenanlage zur Konsequenz hat.In the burners described above, there is therefore basically the problem that any nitrogen oxide reduction provided there, primary or secondary type, a loss of performance or a loss in the overall efficiency of the gas turbine system consequence.

Der Erfindung liegt daher die Aufgabe zugrunde, einen Brenner, insbesondere für eine Gasturbine, anzugeben, welcher sich durch besonders niedrige Stickoxidemissionen und gleichzeitig einen besonders hohen Wirkungsgrad auszeichnet.The invention is therefore based on the object of a burner, especially for a gas turbine, specify which one through particularly low nitrogen oxide emissions and at the same time is characterized by a particularly high efficiency.

Diese Aufgabe wird erfindungsgemäß mit einem Brenner gemäß Anspruch 1 gelöst, bei dem eine katalytische Brennkammer vorgesehen ist, wobei die Brennkammer in Strömungsrichtung eines Brennstoffes eine im wesentlichen zylindrische Ausdehnung hat und die dem Brennstoff zugewandte Wandung eine katalytisch aktive Beschichtung zur Oxidation des Brennstoffes aufweist. Auf diese Weise wird durch die katalytisch induzierte Verbrennung des Brennstoffes ein besonders niedriger Stickoxidgehalt des Brennerabgases erreicht. Gleichzeitig ist durch die Beschichtung der Wandung der Brennkammer keine Erhöhung des Strömungswiderstands verbunden, so daß mit einer derartigen katalytischen Brennkammer besonders hohe Wirkungsgrade in einer Gasturbine erreichbar sind. Die im wesentlichen zylindrische Form der katalytischen Brennkammer und die katalytisch aktive Beschichtung der Wandung tragen dazu bei, daß der Brennstoff ausgehend von der Wandung zündet und ein Ausbreiten der Flammenfront von der katalytisch aktiven Oberfläche der Wandung in die freie Strömung des Brenngases ermöglicht ist. Insbesondere die zylindrische Form trägt hierbei zu einer im wesentlichen konzentrischen und damit homogenen Verteilung der Flammenfront bei, wodurch eine vollständige und gleichmäßige Verbrennung des Brennstoffes resultiert.This object is achieved with a burner according to claim 1, in which a catalytic combustion chamber is provided, wherein the combustion chamber in the direction of flow of a fuel has essentially cylindrical extension and the Wall facing the fuel has a catalytically active coating for oxidation of the fuel. In this way, the catalytically induced combustion the fuel has a particularly low nitrogen oxide content of the burner exhaust gas reached. Is through at the same time the coating of the wall of the combustion chamber does not increase connected to the flow resistance, so that with such high efficiency in catalytic combustion chamber a gas turbine can be reached. The essentially cylindrical Shape of the catalytic combustion chamber and the catalytic active coating of the wall help that the fuel ignites from the wall and spreads out the flame front from the catalytically active surface the wall into the free flow of the fuel gas is. In particular, the cylindrical shape helps to an essentially concentric and therefore homogeneous Distribution of the flame front, creating a complete and even combustion of the fuel results.

Zur Erzielung einer besonders gut rotationssymmetrisch ausgebildeten Flammenfront ist es vorteilhaft, wenn eine Anzahl zur Zylinderlängsachse der Brennkammer konzentrischer katalytisch aktiv beschichteter Ringe vorgesehen ist.To achieve a particularly well rotationally symmetrical design Flame front it is beneficial if a number catalytic concentric to the cylinder longitudinal axis of the combustion chamber actively coated rings is provided.

Der Vorgang der Bildung einer weitgehend rotationssymmetrischen Flammenfront in der Brennkammer wird weiter unterstützt, wenn der oder die Ringe ausschließlich im äußeren Bereich des im wesentlichen kreisförmigen Querschnitts der Brennkammer angeordnet sind.The process of forming a largely rotationally symmetrical Flame front in the combustion chamber is further supported, if the ring or rings only in the outer area of the substantially circular cross section of the Combustion chamber are arranged.

Zur Absenkung der katalytischen Zündtemperatur des Brennstoffes in der Brennkammer ist es vorgesehen, daß der Brennkammer ein Brennstoff, umfassend einen Brennstoff-Hauptstrom, einen präformierten Brennstoff-Teilstrom und Luft, zuführbar ist. Hierbei besteht der Brennstoff-Hauptstrom meist aus Erdgas und/oder Kohlegas und/oder Wasserstoff. Der präformierte Brennstoff-Teilstrom ist ein Teilstrom der vom Brennstoff-Hauptstrom abgetrennt und über eine Präformierungsstufe geleitet wird. In dieser auf Katalysatorbasis arbeitenden Präformierungsstufe werden beispielsweise aus Erdgas katalytisch leichter als Erdgas zündende Stoffe, wie z.B. Alkohole, Aldehyde und Wasserstoff, gebildet. Ein mit einem solchen präformierten Brennstoff-Teilstrom versetztes Brenngas hat daher eine ausgezeichnete katalytische Zündfähigkeit.To lower the catalytic ignition temperature of the fuel in the combustion chamber it is provided that the Combustor a fuel comprising a main fuel stream, a preformed partial fuel flow and air, feedable is. Here, the main fuel flow is usually from natural gas and / or coal gas and / or hydrogen. The preformed Fuel partial flow is a partial flow of the Main fuel stream separated and through a preforming stage is directed. In this working on a catalyst basis Preforming stages are made from natural gas, for example substances that ignite catalytically more easily than natural gas, e.g. Alcohols, aldehydes and hydrogen. One with one such preformed fuel partial flow mixed fuel gas therefore has excellent catalytic ignitability.

Eine besonders vorteilhafte Ausführungsform bezüglich der Zündfähigkeit des in die katalytische Brennkammer eingeleiteten Brennstoffes kann es vorsehen, daß ein präformierter Brennstoff-Teilstrom, gegebenenfalls vorgemischt mit Luft, durch Bohrungen in der Wandung in die Brennkammer eintritt. Auf diese Weise wird das vergleichsweise leicht zündende Gasgemisch des präformierten Brennstoff-Teilstroms direkt mit der katalytisch aktiven Beschichtung in Berührung gebracht und zündet spontan, so daß eine betriebssichere räumlich stehende Zündung von der Gestalt eines Hohlzylinders in der katalytischen Brennkammer gebildet ist. A particularly advantageous embodiment with respect to Ignitability of the introduced into the catalytic combustion chamber Fuel can provide that a preformed Partial fuel flow, optionally premixed with air, enters the combustion chamber through holes in the wall. In this way, the comparatively easily ignited gas mixture of the preformed partial fuel flow directly with brought into contact with the catalytically active coating and ignites spontaneously, so that a reliable, reliable standing Ignition in the form of a hollow cylinder in the catalytic Combustion chamber is formed.

Zum Schutz der katalytisch aktiven Beschichtung, die sich auf der dem Brenngas zuwendbaren Wandung der katalytischen Brennkammer befindet, kann es vorgesehen sein, die Wandung zu kühlen. Hierbei kann die Wandung beispielsweise mit Luft gekühlt werden, wobei gleichzeitig eine Vorwärmung der Luft erzielt wird. Diese vorgewärmte Luft kann beispielsweise nachfolgend in den Verdichterteil auf den Brennkammer-Eintrittsdruck verdichtet werden.To protect the catalytically active coating that is on the wall of the catalytic combustion chamber facing the fuel gas is located, it can be provided to cool the wall. The wall can be cooled with air, for example are achieved, while at the same time preheating the air becomes. This preheated air can follow, for example compressed in the compressor section to the combustion chamber inlet pressure become.

Die katalytische Wirkung der katalytisch aktiven Beschichtung tritt besonders vorteilhaft dann ein, wenn die katalytisch aktive Beschichtung Titandioxid, welches vorzugsweise flamm- und plasmagespritzt ist, und einen Edelmetallanteil, ausgewählt aus Platin, Rhodium, Palladium, Iridium, Rhenium und/oder einen Metalloxidanteil, bestehend aus einem oder mehreren Übergangsmetalloxiden, aufweist. Als Übergangsmetalloxide kommen solche Oxide in Frage, welche eine stark oxidierende katalytische Wirkung haben, wie z.B. Kupferoxid, Chromoxid, Eisenoxid, Molybdänoxid, Wolframoxid, Vanadiumoxid, Manganoxid, Ceroxid sowie weitere Oxide der Lanthanoiden.The catalytic effect of the catalytically active coating occurs particularly advantageously when the catalytic active coating titanium dioxide, which is preferably flame and is plasma-sprayed, and a precious metal portion selected made of platinum, rhodium, palladium, iridium, rhenium and / or a metal oxide component consisting of one or several transition metal oxides. As transition metal oxides such oxides come into question which are strongly oxidizing have a catalytic effect, e.g. Copper oxide, Chromium oxide, iron oxide, molybdenum oxide, tungsten oxide, vanadium oxide, Manganese oxide, cerium oxide and other oxides of lanthanoids.

Ausführungsbeispiele der Erfindung werden anhand einer Zeichnung näher erläutert. Dabei zeigen:

FIG 1
in schematischer Darstellung den Brenner einer Gasturbine mit katalytischer Brennkammer;
FIG 2
in schematischer Darstellung den Brenner einer Gasturbine gemäß Figur 1 mit geringfügig gegenüber Figur 1 modifizierter katalytischer Brennkammer; und
FIG 3
eine katalytische Brennkammer im Querschnitt.
Embodiments of the invention are explained in more detail with reference to a drawing. Show:
FIG. 1
a schematic representation of the burner of a gas turbine with a catalytic combustion chamber;
FIG 2
in a schematic representation the burner of a gas turbine according to Figure 1 with a slightly modified compared to Figure 1 catalytic combustion chamber; and
FIG 3
a cross section of a catalytic combustion chamber.

In den Figuren 1 bis 3 haben gleiche Teile die gleichen Bezugszeichen. In Figures 1 to 3, the same parts have the same reference numerals.

In der schematischen Darstellung gemäß Figur 1 erkennt man eine Gasturbine 2, welche einen Verdichterteil 4, einen Brennerteil 6 und einen Turbinenteil 7 umfaßt. Der Brennerteil 6 umfaßt eine katalytische Brennkammer 8, deren Wandung 10 eine katalytisch aktive Beschichtung 12 aufweist.One can see in the schematic representation according to FIG a gas turbine 2, which has a compressor part 4, a burner part 6 and a turbine part 7 comprises. The burner section 6 comprises a catalytic combustion chamber 8, the wall 10 of which Has catalytically active coating 12.

Die katalytische Brennkammer 8 hat im Ausführungsbeispiel einen kreisrunden Querschnitt. In die katalytische Brennkammer 8 strömt als Brennstoff 14 ein Brenngas ein, welches im Ausführungsbeispiel aus im Verdichterteil 4 verdichteter Luft 16, einem Brennstoff-Hauptstrom 18 und einem präformierten Brennstoff-Teilstrom 20 besteht. Dieser präformierte Brennstoff-Teilstrom 20 wird von einem ursprünglichen Brennstoff-Strom 22 abgetrennt und über eine Präformierungsstufe 24 geleitet. Der Brennstoff-Strom 22 besteht im Ausführungsbeispiel aus Erdgas, woraus in der Präformierungsstufe 24 katalytisch leichter als Erdgas zündende Stoffe, wie z.B. Alkohole, Aldehyde und Wasserstoff, gebildet werden. Die Präformierungsstufe 24 umfaßt zur Ausübung ihrer Funktion einen nicht weiter dargestellten keramischen Wabenkatalysator auf Titandioxid-Basis, welcher zusätzlich einen Edelmetallanteil, bestehend aus oberflächlich auf den Wabenkatalysator aufgebrachtem Platin und Palladium umfaßt.The catalytic combustion chamber 8 has one in the exemplary embodiment circular cross section. In the catalytic combustion chamber 8, a fuel gas flows in as fuel 14, which in the exemplary embodiment from compressed air in the compressor part 4 16, a main fuel stream 18 and a preformed Partial fuel flow 20 exists. This preformed partial fuel flow 20 is from an original fuel stream 22 separated and passed through a preforming stage 24. The fuel stream 22 is in the embodiment from natural gas, from which in the preforming stage 24 catalytic substances that ignite more easily than natural gas, e.g. Alcohols, Aldehydes and hydrogen are formed. The preforming level 24 includes one to perform its function Ceramic honeycomb catalyst not shown Titanium dioxide base, which additionally contains a precious metal, consisting of superficially applied to the honeycomb catalyst Includes platinum and palladium.

Die katalytisch aktive Beschichtung 12 auf der Wandung 10 der katalytischen Brennkammer 8 besteht aus einer flammgespritzten Titandioxid-Schicht mit einer Dicke von etwa 500 µm, auf die zusätzlich Edelmetallpartikel von Platin, Rhodium und Palladium sowie Partikel von Übergangsmetalloxiden, wie Ceroxid, Vanadiumoxid und Chromoxid, aufgebracht sind. Alternativ zu einer flammgespritzten Titandioxid kann ebenso eine plasmagespritzte Titandioxid-Schicht vorgesehen sein. Beide Schichten zeichnen sich durch ihre große Festigkeit auf der meist aus einem austenitischem Stahl bestehenden Wandung 10 der katalytischen Brennkammer 8 aus. The catalytically active coating 12 on the wall 10 of the Catalytic combustion chamber 8 consists of a flame-sprayed Titanium dioxide layer with a thickness of about 500 microns the additional precious metal particles of platinum, rhodium and Palladium and particles of transition metal oxides, such as cerium oxide, Vanadium oxide and chromium oxide are applied. Alternatively a flame-sprayed titanium dioxide can also be a plasma-sprayed titanium dioxide layer can be provided. Both Layers are characterized by their great strength on the wall consisting mostly of an austenitic steel 10 the catalytic combustion chamber 8.

Beim Betrieb der Gasturbine 2 strömt nun der Brennstoff 14 in die katalytische Brennkammer 8 ein und entzündet sich an der katalytisch aktiven Beschichtung 12 der Wandung 10. Die auf diese Weise gebildete stromaufwärts gelegene Flammenfront 26 ist ebenso wie die stromabwärts gelegene Flammenfront 28 weitgehend rotationssymmetrisch, so daß die Temperaturverteilung in der katalytischen Brennkammer 8 entlang der Hauptströmungsrichtung im Bezug auf den Querschnitt etwa kreisförmige Isothermen aufweist. Dies ist für eine gleichmäßige und schadstoffarme Verbrennung des Brennstoffes 14 von Vorteil.When the gas turbine 2 is operating, the fuel 14 now flows in the catalytic combustion chamber 8 and ignites at the catalytically active coating 12 of the wall 10. Die auf upstream flame front 26 thus formed is just like the downstream flame front 28 largely rotationally symmetrical, so that the temperature distribution in the catalytic combustion chamber 8 along the main flow direction approximately circular in cross-section Has isotherms. This is for even and Low-emission combustion of the fuel 14 is advantageous.

Der auf diese Weise katalytisch verbrannte Brennstoff 14 tritt mit einer Temperatur von etwa 1100 °C in den Turbinenteil 7 der Gasturbine 2 ein und wird dort entspannt. Die im Turbinenteil übertragene thermische Energie wird zum Antrieb eines hier nicht weiter dargestellten Generators zur Elektrizitätserzeugung genutzt. Dieser Generator ist auf der selben hier nicht weiter dargestellten Welle angeordnet wie die Gasturbine 2. Das den Turbinenteil 7 verlassende Brennerabgas 30 ist aufgrund der katalytischen Verbrennung des Brenngases 14 besonders stickoxidarm und weist einen Stickoxidgehalt von etwa 70 ppm auf. Das Brennerabgas 30 kann in einem hier nicht weiter dargestellten Abhitzedampferzeuger zur Dampferzeugung genutzt werden.The fuel 14 catalytically burned in this way enters the turbine section at a temperature of around 1100 ° C 7 of the gas turbine 2 and is relaxed there. The in Thermal energy transferred to the turbine becomes the drive of a generator for electricity generation, not shown here used. This generator is on the same Shaft not shown here arranged as the gas turbine 2. The burner exhaust gas 30 leaving the turbine part 7 is due to the catalytic combustion of the fuel gas 14 particularly low in nitrogen oxide and has a nitrogen oxide content of about 70 ppm. The burner exhaust gas 30 cannot in one here waste heat steam generator for steam generation shown further be used.

Figur 2 zeigt in schematischer Darstellung eine gegenüber Figur 1 geringfügig modifizierte Gasturbine 2'. Hierbei beschränken sich die Modifikationen auf die Ausgestaltung der katalytischen Brennkammer 8. Die in Figur 2 vorliegende katalytische Brennkammer 8' unterscheidet sich von Figur 1 dadurch, daß in der Wandung 10 Bohrungen 32 vorgesehen sind, durch die der präformierte Brennstoff-Teilstrom 20 und Luft 16 in die Brennkammer 8' eintreten.Figure 2 shows a schematic representation of a figure 1 slightly modified gas turbine 2 '. Limit here the modifications affect the design of the catalytic combustion chamber 8. The catalytic combustion chamber shown in FIG Combustion chamber 8 'differs from FIG. 1 in that that 10 holes 32 are provided in the wall, through which the preformed fuel partial flow 20 and air 16 enter the combustion chamber 8 '.

Diese Maßnahme hat gegenüber der Ausgestaltung gemäß Figur 1 zwei Vorteile. Der erste Vorteil besteht darin, daß das Brennstoffgemisch mit der niedrigsten katalytischen Zündtemperatur unmittelbar an der katalytisch aktiven Beschichtung 12 in die Brennkammer 8' eintritt und sich deshalb vergleichsweise spontan entzündet. Diese Maßnahme trägt daher ganz besonders zur Stabilisierung der stromaufwärts gelegenen Flammenfront 26 bei. Der zweite Vorteil besteht darin, daß die Wandungen 10 durch das entlangströmende Gemisch aus präformiertem Brennstoff-Teilstrom 20 und Luft 16 gekühlt werden. Durch diese Kühlung wird auch die thermische Belastung der katalytisch aktiven Beschichtung 12 herabgesetzt, was sich günstig auf die Haltbarkeit dieser Beschichtung 12 auswirkt. Eine Kühlung der Wandung 10 kann in hier nicht dargestellter Weise alternativ auch durch eine Strömung von Luft 16 erzielt werden, welche in den Verdichterteil 4 eintritt.Compared to the configuration according to FIG. 1, this measure has two advantages. The first advantage is that Fuel mixture with the lowest catalytic ignition temperature directly on the catalytically active coating 12 enters the combustion chamber 8 'and therefore comparatively ignited spontaneously. This measure therefore bears especially to stabilize the upstream Flame front 26 at. The second advantage is that the walls 10 from the mixture flowing along preformed fuel sub-stream 20 and air 16 cooled become. This cooling also reduces the thermal load the catalytically active coating 12 is reduced, which has a favorable effect on the durability of this coating 12 affects. Cooling of the wall 10 can be shown in FIG Alternatively, by a flow of air 16 can be achieved, which occurs in the compressor part 4.

Figur 3 zeigt in schematischer Darstellung den Querschnitt einer gegenüber den Figuren 1 und 2 modifizierten katalytischen Brennkammer 34. Man erkennt wieder die Wandung 10 und die katalytisch aktive Beschichtung 12 zur Oxidation des Brennstoffes 14. Unter der Oxidation des Brennstoffes wird selbstverständlich verstanden, daß der Brennstoff 14, 22 oxidiert und der über die Luft 16 herangeführte und zur Verbrennung erforderliche Sauerstoff reduziert wird. Unter der katalytisch aktiven Beschichtung 12 zur Oxidation des Brenngases 14 ist daher die Beschichtung gemeint, welche den gesamten Verbrennungsvorgang mit oxidierten und reduzierten Verbrennungsprodukten induziert.Figure 3 shows a schematic representation of the cross section a modified compared to Figures 1 and 2 catalytic Combustion chamber 34. Wall 10 and 10 can be seen again the catalytically active coating 12 for the oxidation of the Fuel 14. Under the oxidation of fuel understood of course that the fuel 14, 22 oxidizes and that brought up over the air 16 and for combustion required oxygen is reduced. Under the catalytic active coating 12 for the oxidation of the fuel gas 14 is therefore the coating that covers the entire Combustion process with oxidized and reduced combustion products induced.

Die Brennkammer 34 weist drei konzentrisch angeordnete Ringe 36 auf. Diese konzentrischen Ringe 36 sind dünne Blechstreifen, bestehend aus dem Material der Wandung 10. Die Ringe 36 verfügen über dieselbe katalytisch aktive Beschichtung 12, mit welcher auch die Wandung 10 der Brennkammer 34 beschichtet ist. Aus Gründen der Übersichtlichkeit der Darstellung ist die katalytisch aktive Beschichtung 12 nur in einem ausgewählten Quadranten eingezeichnet. Auch die die Ringe 36 haltenden Stege 38 verfügen über diese katalytisch aktive Beschichtung 12. Die Ringe 36 sind ausschließlich im äußeren Bereich des im wesentlichen kreisförmigen Querschnitts der Brennkammer 34 angeordnet, um die anfängliche Zündung des Brennstoffes 14 auf den äußeren Bereich des Querschnitts der Brennkammer 34 zu beschränken. Ein Ausweiten der Flammenfront in die freie Strömung des Brenngases 14 hinein erfolgt dann selbsttätig. Die Ringe 36 mit der katalytisch aktiven Beschichtung 12 tragen so zur Stabilisierung der Flammenfront und zur Sicherung einer vollständigen und deshalb besonders schadstoffarmen Verbrennung bei.The combustion chamber 34 has three concentrically arranged rings 36 on. These concentric rings 36 are thin strips of sheet metal, consisting of the material of the wall 10. The rings 36 have the same catalytically active coating 12, with which the wall 10 of the combustion chamber 34 is also coated is. For the sake of clarity of presentation is the catalytically active coating 12 only in a selected one Quadrants drawn. Also the rings 36 retaining webs 38 have this catalytically active coating 12. The rings 36 are only in the outer Area of substantially circular cross section of the Combustion chamber 34 arranged to ignite the initial ignition of the Fuel 14 on the outer portion of the cross section of the Limit combustion chamber 34. An expansion of the flame front into the free flow of the fuel gas 14 then takes place automatically. The rings 36 with the catalytically active coating 12 thus help to stabilize the flame front and to ensure a complete and therefore special low-pollution combustion.

Claims (7)

  1. Burner with a catalytic combustion chamber (8, 8', 34), the combustion chamber (8, 8', 34) having an essentially cylindrical extension in the flow direction of a fuel (14), and the combustion chamber wall (10) facing towards the fuel (14) exhibiting a catalytically active coating (12) for the oxidation of the fuel (14), characterized in that a fuel (14), which comprises a fuel main flow (18), a preformed partial fuel flow (20) and air (16), can be supplied to the combustion chamber (8, 8', 34), a catalytic preforming stage (24), through which the partial fuel flow (20) can flow, being provided for preforming, which preforming stage (24) decomposes the fuel (14) at least partially into easily ignited materials, in particular into alcohols, aldehydes or hydrogen.
  2. Burner according to Claim 1, characterized in that a number of catalytically actively coated rings (36) are provided which are arranged concentrically about the cylindrical longitudinal axis of the combustion chamber (8, 8', 34).
  3. Burner according to Claim 2, characterized in that the ring or the rings (36) are arranged exclusively in the outer region of the essentially circular cross section of the combustion chamber (8, 8', 34).
  4. Burner according to one of Claims 1 to 3, characterized in that a preformed partial fuel flow (20), premixed with air (16) if appropriate, can be introduced into the combustion chamber (8') through holes (32) in the wall (10).
  5. Burner according to one of Claims 1 to 4, characterized in that the wall (10) can be cooled.
  6. Burner according to one of Claims 1 to 5, characterized in that the catalytically active coating (12) exhibits titanium dioxide, preferably flame-sprayed or plasma-sprayed, and a noble metal proportion, selected from one or more of the noble metals platinum, rhodium, palladium, iridium and rhenium, and/or a metal oxide proportion, selected from one or more transition metal oxides.
  7. Gas turbine, comprising a burner in accordance with one of Claims 1 to 6.
EP96915991A 1995-06-12 1996-06-11 Catalytic combustion chamber for a gas turbine Expired - Lifetime EP0832398B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19521356 1995-06-12
DE1995121356 DE19521356C2 (en) 1995-06-12 1995-06-12 Gas turbine comprising a compressor part, a burner part and a turbine part
PCT/DE1996/001020 WO1996041992A1 (en) 1995-06-12 1996-06-11 Catalytic combustion chamber for a gas turbine

Publications (2)

Publication Number Publication Date
EP0832398A1 EP0832398A1 (en) 1998-04-01
EP0832398B1 true EP0832398B1 (en) 2000-01-12

Family

ID=7764194

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96915991A Expired - Lifetime EP0832398B1 (en) 1995-06-12 1996-06-11 Catalytic combustion chamber for a gas turbine

Country Status (6)

Country Link
EP (1) EP0832398B1 (en)
JP (1) JPH11507433A (en)
DE (2) DE19521356C2 (en)
ES (1) ES2142587T3 (en)
RU (1) RU2143643C1 (en)
WO (1) WO1996041992A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19654022A1 (en) * 1996-12-21 1998-06-25 Abb Research Ltd Process for operating a gas turbine group
DE10061527A1 (en) 2000-12-11 2002-06-13 Alstom Switzerland Ltd Premix burner assembly with catalytic combustion and method of operation therefor
DE10061526A1 (en) * 2000-12-11 2002-06-20 Alstom Switzerland Ltd Premix burner arrangement for operating a combustion chamber
JP4538077B2 (en) * 2008-06-13 2010-09-08 川崎重工業株式会社 Lean fuel intake gas turbine
DE102008056741A1 (en) * 2008-11-11 2010-05-12 Mtu Aero Engines Gmbh Wear protection layer for Tial
JP5380488B2 (en) 2011-05-20 2014-01-08 株式会社日立製作所 Combustor
WO2016056941A1 (en) * 2014-10-09 2016-04-14 Дмитрий Александрович ЛЕБЕДЕВ Internal combustion engine piston
CN113357628B (en) * 2021-05-25 2024-03-19 江苏大学 Baffling type automatic ignition miniature catalytic combustor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2941361A (en) * 1952-10-15 1960-06-21 Nat Res Dev Combustion apparatus having a flame stabilizing baffle
US3032991A (en) * 1959-10-01 1962-05-08 Gen Electric Combustion sustaining means for continuous flow combustion systems
US4603547A (en) * 1980-10-10 1986-08-05 Williams Research Corporation Catalytic relight coating for gas turbine combustion chamber and method of application
US4432207A (en) * 1981-08-06 1984-02-21 General Electric Company Modular catalytic combustion bed support system
JPS6153425A (en) * 1984-08-24 1986-03-17 Hitachi Ltd Combustor for gas turbine and combustion method thereof
JPS61178402A (en) * 1985-02-04 1986-08-11 Tsutomu Kagitani Method of decomposition treatment of ozone
US5048284A (en) * 1986-05-27 1991-09-17 Imperial Chemical Industries Plc Method of operating gas turbines with reformed fuel
US4811556A (en) * 1986-10-14 1989-03-14 General Electric Company Multiple-propellant air vehicle and propulsion system
DE3809226C2 (en) * 1987-03-20 1994-10-27 Toshiba Kawasaki Kk High temperature combustion catalyst and process for its manufacture
DE3723603A1 (en) * 1987-07-17 1989-01-26 Helmut Prof Dr Rer Nat Krauch Heat exchanger
US5094611A (en) * 1989-09-07 1992-03-10 Atomic Energy Of Canada Limited Catalyst structures and burners for heat producing devices
DE4133337A1 (en) * 1990-10-08 1992-04-09 Riken Kk EXHAUST GAS CLEANER AND METHOD FOR CLEANING EXHAUST GAS
DE4210543A1 (en) * 1992-03-31 1993-10-07 Asea Brown Boveri Pressure wave machine
GB2268694A (en) * 1992-07-14 1994-01-19 Rolls Royce Plc A catalytic combustion chamber

Also Published As

Publication number Publication date
EP0832398A1 (en) 1998-04-01
DE19521356A1 (en) 1996-12-19
DE19521356C2 (en) 1999-04-01
JPH11507433A (en) 1999-06-29
ES2142587T3 (en) 2000-04-16
RU2143643C1 (en) 1999-12-27
WO1996041992A1 (en) 1996-12-27
DE59604179D1 (en) 2000-02-17

Similar Documents

Publication Publication Date Title
DE69201563T2 (en) METHOD AND SYSTEM FOR HYDROCARBON COMBUSTION WITH LOW POLLUTANT EMISSIONS.
EP1800062B1 (en) Burner for combustion of a low-calorific fuel gas and method for operating a burner
DE69829250T2 (en) Combined cycle power plant
DE2757049A1 (en) METHOD FOR ACHIEVING CONTINUOUS COMBUSTION OF CARBON FUEL
WO2005095855A1 (en) Device and method for stabilizing the flame in a burner
DE19923431A1 (en) Combustion engine containing catalytic reactor
DE10119035A1 (en) Catalytic burner
EP0832397B1 (en) Catalytic gas turbine burner
CH699911B1 (en) Combustion chamber and method for mixing a compressed air stream.
EP0832398B1 (en) Catalytic combustion chamber for a gas turbine
EP0889289B1 (en) Gas turbine system and method of operation thereof
DE102016102935A1 (en) Exhaust system for power generation device
DE3809240A1 (en) METHOD FOR REDUCING NO (ARROW DOWN) X (ARROW DOWN) EMISSIONS FROM COMBUSTION TURBINES
DE102005061486B4 (en) Method for operating a combustion chamber of a gas turbine
DE2303586A1 (en) GAS TURBINE WITH COMPLETE EVEN COMBUSTION OF THE LIQUID FUEL SUPPLIED TO IT
CH695793A5 (en) Combustion method, in particular for methods of generation of electric power and / or heat.
EP0832399B1 (en) Catalytic ignition burner for a gas turbine
EP1654497B1 (en) Method for the combustion of a fluid fuel, and burner, especially of a gas turbine, for carrying out said method
EP1255078A1 (en) Catalyst
EP0484777B1 (en) Method of stabilizing a combustion process
DE69205607T2 (en) Method for the catalytic combustion of combustible components from exhaust gases.
DE2708940A1 (en) METHOD OF OPERATING A GAS TURBINE AND IMPROVED GAS TURBINE COMBUSTION CHAMBER
DE4415916A1 (en) Method of combusting fluidic fuel in air stream
EP1491824B1 (en) Catalytic reactor and associated operating method
DE102014104317A1 (en) Air heating system with catalytic combustion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES FR GB IT LI SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19990618

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59604179

Country of ref document: DE

Date of ref document: 20000217

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000316

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2142587

Country of ref document: ES

Kind code of ref document: T3

EUG Se: european patent has lapsed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20060613

Year of fee payment: 11

Ref country code: GB

Payment date: 20060613

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060623

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060630

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20060713

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060821

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20060912

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070611

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080101

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070612

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070611