EP1651841B1 - Offen gekühltes bauteil für eine gasturbine, brennkammer und gasturbine - Google Patents

Offen gekühltes bauteil für eine gasturbine, brennkammer und gasturbine Download PDF

Info

Publication number
EP1651841B1
EP1651841B1 EP04739955A EP04739955A EP1651841B1 EP 1651841 B1 EP1651841 B1 EP 1651841B1 EP 04739955 A EP04739955 A EP 04739955A EP 04739955 A EP04739955 A EP 04739955A EP 1651841 B1 EP1651841 B1 EP 1651841B1
Authority
EP
European Patent Office
Prior art keywords
gas turbine
cavity
component
wall
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04739955A
Other languages
English (en)
French (fr)
Other versions
EP1651841A1 (de
Inventor
Stefan Hoffmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL04739955T priority Critical patent/PL1651841T3/pl
Priority to EP04739955A priority patent/EP1651841B1/de
Publication of EP1651841A1 publication Critical patent/EP1651841A1/de
Application granted granted Critical
Publication of EP1651841B1 publication Critical patent/EP1651841B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/30Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply comprising fuel prevapourising devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/08Cooling thereof; Tube walls
    • F23M5/085Cooling thereof; Tube walls using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/002Wall structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer

Definitions

  • the present invention relates to an open-cooled component for a gas turbine having a H adoptedgasbeetzmannten outer wall which at least partially defines a first cavity for a first means and are arranged in the through holes, which open through openings in the cavity and on the other hand in the hot gas space and at least one second cavity for admixing a second means in fluid communication with the passage openings.
  • the invention further relates to a combustion chamber and a gas turbine.
  • Combustor walls as well as gas turbine blades are subject to high physical stress during normal operation of the gas turbine.
  • these components are provided with a cooling. If air is used as a coolant, it is taken from a combustion chamber upstream compressor with diffuser and is lost to the combustion process. As a result, flame temperatures and NO x emissions increase.
  • the wall of a combustion chamber is cooled either open or closed.
  • the open cooling is designed as convective cooling, film cooling or as impingement cooling with a cooling air outlet in the combustion chamber.
  • the closed cooling requires a higher design effort and leads to an increased pressure loss due to the cooling air flow and the cooling itself.
  • cooling air extraction In order to reduce the negative effect caused by the cooling air extraction, it is known to add fuel. In the prior art, this is as cooling air reheating or further Meaning also known as stepped combustion.
  • a combustion chamber of a gas turbine with a plurality of hollow freestanding spokes known in the cavity of a fuel is performed.
  • the cavity is connected through openings with the combustion chamber.
  • air is supplied to the ports in a supply passage disposed in the outer wall of the spokes to receive, in conjunction with the fuel, a combustible mixture which is fed into the combustion chamber for NO x reduction during operation of the gas turbine.
  • a disadvantage of the known concepts is that for the mixing of cooling air and fuel, a volume is to be provided by the reactants by self-ignition or ignite flashback in the components. As a result, under certain circumstances, stable combustion processes develop, so that the cooling effect of the fuel-air mixture is lost or the component can be damaged by the internal combustion occurring.
  • the second cavity is formed by supply channels provided in the outer wall, which are connected via transverse channels with the through holes formed as a through-hole, so that the two means are miscible only within the through holes.
  • the invention further proposes a combustion chamber for a gas turbine with a wall element, which has a corresponding arrangement.
  • the invention turns away.
  • This allows the previously formed between the double wall second cavity be embedded as a supply channel in the outer wall, which is connected via separate transverse channels with the through holes.
  • a possibility is thus created for the first time to substantially completely avoid a mixing volume in the component, as a result of which flashback and auto-ignition in the component can be largely avoided.
  • a flame temperature increase can be reduced with open cooling, since the cooling air can now be enriched with fuel without the disadvantages described above.
  • the present invention therefore allows the cooling air flow to be increased without adversely affecting combustion.
  • the passage opening can be provided, for example, for the cooling air to flow into the combustion chamber of the combustion chamber.
  • fuel Via the supply channel provided in the outer wall of the component, fuel can be supplied which mixes with the cooling air as it flows into the passage opening and thus forms a combustible mixture.
  • a flashback is avoided insofar as there is no ignitable mixture in one of the supply channels or in the cavities before the mouth of the transverse channel in the passage opening.
  • the outer wall has a multiplicity of through-bores, a multiplicity of supply channels extending between the bores, and a multiplicity of further transverse channels crosslinking the supply channels with the through-bores. Due to the net-like structure of the channels and holes, a homogenization of the flowing mixture into the combustion chamber of fuel and cooling air can be achieved. About that In addition, it is possible to cool the component more uniformly, so that local overheating can be avoided.
  • the component has at least two interconnectable layers.
  • one layer may have the channel, while a second layer is formed on the combustion chamber side of a particularly resistant material.
  • a high load capacity of the component can be achieved.
  • the channel is introduced in at least one layer surface of one of the layers on the connection side.
  • the channel can be introduced in this way by milling or similar material-removing processes in the surface of a layer, wherein by assembling the adjacent layers closed channels are formed.
  • the channel can thereby be introduced into the component by means of known and also cost-effective methods.
  • the cavity with a first fluid source and the supply channel with a second fluid source is connectable.
  • Both fluids ie means, can be used to cool the blade so as to reduce the amount of air required for cooling. A larger amount of air is available to the combustion process, so that high flame temperatures and NO x emissions can be reduced.
  • the blade is basically the same principle as for the wall element of the combustion chamber at the bottom. Again, there is essentially no mixing volume, so that flashback and autoignition are largely avoided. The reliability of the gas turbine with respect to defective blades can be increased. As with the combustion chamber, the cooling air flow can be increased without negative effects on the combustion and the flame acoustics are detuned.
  • the invention also proposes that one of the two fluid sources is an oxidant source and the other fluid source is a fuel source.
  • an ignitable mixture is formed only in the region of the mouth of the passage opening in the flow channel of the gas turbine, when the mouth of the channels is arranged sufficiently close to the mouth of the passage opening in the flow channel.
  • the invention also proposes a gas turbine, wherein the gas turbine has a combustion chamber according to the invention.
  • the negative effects, as described above, can be largely reduced by supplying fuel, wherein the combustion chamber according to the invention enables safe operation with respect to auto-ignition and flashback. Furthermore, it is advantageous to influence the flame acoustics in order to reduce the stresses and wear caused by this.
  • the invention also proposes a gas turbine with a component designed as a blade.
  • the cooling effect for the blade of the turbine unit which can be designed as a fixed guide blade as well as a rotating blade can be improved by increasing the cooling air flow, the negative effects on the combustion can be largely avoided.
  • an influence on the detuning of the flame acoustics can be exerted. Wear and tear can be further reduced.
  • Fig. 1 shows a section through an inventive designed as a wall element 2 component with a plurality of through holes 3, can enter through the cooling air into the combustion chamber.
  • the wall element 2 also has transverse channels 4, which open at one end in each case into a passage opening 3. Via connecting channels 9, a fluid fuel can be supplied, which is guided via the transverse channels 4 to the through holes 3 and is introduced there into the flow of cooling air.
  • Fig. 2 illustrates this system of channels for the fuel supply.
  • the wall element 2 has two interconnectable layers 6, 7. In the connection-side layer surface of the layer 6, the channel system is introduced by milling. By the connection of the layers 6 and 7 closed channels 4 and 9 are formed.
  • Fig. 3 shows a plan view of the surface of the layer 6 of the wall element 2 in which the channels 4 and 9 are introduced.
  • the connecting channel 9 is formed integrally with the wall element.
  • FIG. 4 schematically shows a section of a flow channel of a gas turbine, in which a blade 10 is arranged.
  • hot gas space 21 open through holes 12, wherein in the mouth region junctions of transverse channels 13 are indicated schematically.
  • FIG. 5 A section through such a blade 10 is shown in FIG. 5.
  • a blade wall 14 encloses a cavity 15, wherein the blade wall 17 is provided with passage openings 12. Cooling air can be supplied via the cavity 15 and exits through the passage openings 12 into the flow channel 11.
  • the blade wall 14 is further provided with a system of supply channels 13, which are connected via transverse channels 4 each with the through holes 12.
  • the supply channels 13 are in fluid communication with a fluid fuel source.
  • the blade 14 is constructed in two layers, consisting of an outer layer 16 and a cavity 15 forming inner layer 17.
  • the inner layer 17 has on its side facing the layer 16 by milling introduced recesses, which the channel system with the supply channels 13 form.
  • air is conducted as cooling air for the blade 10 via through holes 12 as oxidizing agent into the flow channel 11.
  • the fluid fuel is introduced into the passage openings 12 of the blade wall 14, so that an ignitable mixture is formed.
  • the ignitable mixture is formed only in the region of the mouth of the passage openings 3, 12 in the combustion chamber or the flow channel 11 of the gas turbine. In this way, a flashback is prevented in the respective channel system with the damage caused thereby.
  • Targeted variation of the fuel supply can also influence the flame acoustics. This also has an advantageous effect on the wear and the reliability of the gas turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft ein Offen gekühltes Bauteil für eine Gasturbine mit einer heißgasbeaufschlagten Außenwand (20), welche zumindest teilweise einen ersten Hohlraum (15) für ein erstes Mittel begrenzt und in der Durchgangsöffnungen (3, 12) angeordnet sind, welche Durchgangsöffnungen (3, 12) einerseits in den Hohlraum (15) und andererseits in den Heißgasraum (21) münden sowie mit zumindest einem zweiten Hohlraum zum Zumischen eines ein zweiten Mittels, der mit den Durchgangöffnungen (3, 12) in Strömungsverbindung steht. Um ein Bauteil für eine Gasturbine anzugeben, mit denen Flammenrückschlag und Selbstzündung bei Zufuhr von Brennstoff in die Kühlluft reduziert werden können, wird vorgeschlagen, dass der zweite Hohlraum durch in der Außenwand vorgesehenen (20) Versorgungskanäle (9, 13) gebildet wird, die über Querkanäle (4) mit den als Durchgangbohrung ausgebildeten Durchgangsöffnungen (3, 12) in Verbindung stehen, so dass die beiden Mittel erst innerhalb der Durchgangsbohrungen vermischbar sind. Ferner wird eine Brennkammer für eine Gasturbine und eine Gasturbine mit einem solchen Bauteil vorgeschlagen.

Description

  • Die vorliegende Erfindung betrifft ein offen gekühltes Bauteil für eine Gasturbine mit einer heißgasbeaufschlagten Außenwand, welche zumindest teilweise einen ersten Hohlraum für ein erstes Mittel begrenzt und in der Durchgangsöffnungen angeordnet sind, welche Durchgangsöffnungen einerseits in den Hohlraum und andererseits in den Heißgasraum münden sowie mit zumindest einem zweiten Hohlraum zum Zumischen eines zweiten Mittels, der mit den Durchgangöffnungen in Strömungsverbindung steht. Die Erfindung betrifft ferner eine Brennkammer sowie eine Gasturbine.
  • Brennkammerwände sowie auch Gasturbinenschaufeln sind beim bestimmungsgemäßen Betrieb der Gasturbine einer hohen physikalischen Beanspruchung ausgesetzt. Um die Brennkammer sowie die Schaufel gegen die hohe Beanspruchung beständiger zu machen, sind diese Bauteile mit einer Kühlung versehen. Sofern Luft als Kühlmittel verwendet wird, wird diese aus einem der Brennkammer vorgeschalteten Verdichter mit Diffusor entnommen und geht dem Verbrennungsprozess verloren. Als Folge steigen Flammentemperaturen sowie NOx-Emissionen an.
  • Die Wand einer Brennkammer wird entweder offen oder geschlossen gekühlt. Die offene Kühlung ist dabei als konvektive Kühlung, Filmkühlung oder auch als Prallkühlung mit einem Kühlluftauslass in den Verbrennungsraum ausgebildet. Die geschlossene Kühlung erfordert einen höheren konstruktiven Aufwand und führt zu einem erhöhten Druckverlust aufgrund der Kühlluftführung und der Kühlung selbst.
  • Um den negativen Effekt, den die Kühlluftentnahme verursacht, zu reduzieren, ist es bekannt Brennstoff zuzugeben. Im Stand der Technik ist dies als Kühlluftnachheizung oder im weiteren Sinne auch als gestufte Verbrennung bekannt.
  • Hierzu zeigt die US 5,125,793 eine Turbinenschaufel einer Gasturbine mit einer einen Hohlraum umschließenden doppelwandigen Außenwand. In der doppelwandigen Außenwand ist ein Strömungskanal für Luft angeordnet. Im Hohlraum strömt ein flüssiger Brennstoff, welcher durch Durchgangsösffnungen in den in der Doppelwand befindlichen Strömungskanal eingedüst wird und der dort auf einen Katalysator trifft. Durch den Katalysator zerlegt sich der Brennstoff endothermisch in zumindest ein brennbares Gas, was die Schaufel kühlt. Die Luft transportiert die Gase zum einem Auslass, von dem aus das Gemisch in die Turbine einströmen und dort verbrennen kann.
  • Ferner ist aus der US 6,192,688 eine Brennkammer einer Gasturbine mit mehreren hohlen freistehenden Speichen bekannt, in deren Hohlraum ein Brennstoff geführt wird. Der Hohlraum ist durch Öffnungen mit dem Verbrennungsraum verbunden. In einem in der Außenwand der Speichen angeordneten Versorgungskanal wird zusätzlich Luft zu den Öffnungen geführt, um in Verbindung mit dem Brennstoff ein brennbares Gemisch zu erhalten, welches in die Brennkammer zur NOx-Reduzierung während des Betriebs der Gasturbine eingespeist wird.
  • Außerdem ist aus der US 4,347,037 eine hohle Turbinenschaufel bekannt, bei der in den von Heißgas umströmbaren Seitenwände gleichmäßig verteilte Filmkühlöffnungen eingebracht sind. Für jede Filmkühlöffnung ist jeweils ein Auslasskanal vorgesehen. An deren in der Schaufelwand liegenden Eingängen münden jeweils zwei getrennte, am inneren Hohlraum der Turbinenschaufel beginnende Zuführkanäle, um die zur Filmkühlung notwendige Kühlluft vom Hohlraum zur Filmkühlöffnung führen zu können.
  • Nachteilig an den bekannten Konzepten ist, dass zur Vermischung von Kühlluft und Brennstoff ein Volumen bereitzustellen ist, indem sich die Reaktionspartner durch Selbstzündung oder Flammenrückschlag in den Bauteilen entzünden können. Hierdurch bilden sich unter Umständen stabile Verbrennungsvorgänge aus, so dass die Kühlwirkung des Brennstoff-Luftgemisches verloren geht bzw. das Bauteil durch die intern auftretende Verbrennung Schaden nehmen kann.
  • Es ist daher die Aufgabe der vorliegenden Erfindung, ein Bauteil für eine Gasturbine, eine Brennkammer sowie eine Gasturbine anzugeben, mit denen die oben beschriebenen Nachteile reduziert werden können.
  • Die Aufgabe wird durch die Merkmale des Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.
  • Die Lösung sieht vor, dass eine getrennte Führung von Kühlmittel und Brennstoff in getrennten Kanälen erfolgt. Die Vermischung dieser beiden Mittel zu einem brennbaren Gemisch geschieht daher erst kurz vor der Ausblasung in das Heißgas. Somit wird verhindert, dass das brennbare Gemisch in den Bauteilen selber, also außerhalb des Strömungskanals und/oder außerhalb der Brennkammer, sich durch Flammenrückschlag oder Selbstentzündung entzündet.
  • Dies wird erreicht, indem der zweite Hohlraum durch in der Außenwand vorgesehenen Versorgungskanäle gebildet wird, die über Querkanäle mit den als Durchgangsbohrung ausgebildeten Durchgangsöffnungen in Verbindung stehen, so dass die beiden Mittel erst innerhalb der Durchgangsbohrungen vermischbar sind.
  • Mit der Erfindung wird ferner eine Brennkammer für eine Gasturbine mit einem Wandelement vorgeschlagen, welches eine dementsprechende Anordnung aufweist.
  • Von der doppelwandigen aus dem Stand der Technik bekannten Ausführung wendet sich die Erfindung ab. Dadurch kann der bisher zwischen der Doppelwand gebildete zweite Hohlraum als Versorgungskanal in die Außenwand eingebettet werden, welcher über separate Querkanäle mit den Durchgangsöffnungen verbunden wird. Hierdurch wird erstmals somit eine Möglichkeit geschaffen, ein Mischvolumen im Bauteil im wesentlichen vollständig zu vermeiden, wodurch Flammenrückschlag und Selbstzündung im Bauteil weitgehend vermieden werden können. Ferner kann mit einem als Wandelement einer Brennkammer ausgebildeten Bauteil eine Flammentemperaturerhöhung bei einer offenen Kühlung reduziert werden, da die Kühlluft nunmehr ohne die oben beschriebenen Nachteile mit Brennstoff angereichert werden kann. Die vorliegende Erfindung ermöglicht daher, dass der Kühlluftstrom ohne negative Auswirkungen auf die Verbrennung angehoben werden kann.
  • Mit der vorliegenden Erfindung kann ferner erreicht werden, dass die Flammenakustik beeinflusst, insbesondere verstimmt, werden kann. Die Durchgangsöffnung kann beispielsweise dazu vorgesehen sein, dass die Kühlluft in den Brennraum der Brennkammer strömt. Über den in der Außenwand des Bauteils vorgesehenen Versorgungskanal kann Brennstoff zugeführt werden, der sich beim Einströmen in die Durchgangsöffnung mit der Kühlluft mischt und so ein brennbares Gemisch bildet. Ein Flammenrückschlag wird insofern vermieden, als dass vor der Mündung des Querkanals in der Durchgangsöffnung kein zündfähiges Gemisch in einem der Versorgungskanäle oder in den Hohlräumen vorliegt. Somit können die oben genannten unerwünschten, teilweise gefährlichen, Zustände vermieden werden.
  • In einer weiteren Ausgestaltung wird vorgeschlagen dass, die Außenwand eine Vielzahl von Durchgangsbohrungen, eine Vielzahl von zwischen den Bohrungen verlaufenden Versorgungskanälen und eine Vielzahl von die Versorgungskanäle mit den Durchgangsbohrungen vernetzenden weiteren Querkanälen aufweist. Durch die netzartige Struktur der Kanäle und Bohrungen kann eine Vergleichmäßigung des in die Brennkammer strömenden Gemisches aus Brennstoff und Kühlluft erreicht werden. Darüber hinaus besteht die Möglichkeit, das Bauteil gleichmäßiger zu kühlen, so dass lokale Überhitzungen vermieden werden können.
  • Darüber hinaus wird vorgeschlagen, dass das Bauteil wenigstens zwei miteinander verbindbare Schichten aufweist. So kann beispielsweise eine Schicht den Kanal aufweisen, während eine zweite Schicht brennkammerseitig aus einem besonders widerstandsfähigem Werkstoff gebildet ist. Eine höhe Belastbarkeit des Bauteils kann erreicht werden.
  • Es wird ferner vorgeschlagen, dass der Kanal in wenigstens einer Schichtoberfläche einer der Schichten verbindungsseitig eingebracht ist. Der Kanal kann auf diese Weise durch Fräsen oder ähnliche Werkstoff abtragende Verfahren in die Oberfläche einer Schicht eingebracht werden, wobei durch Zusammensetzen der benachbarten Schichten geschlossene Kanäle gebildet werden. Der Kanal kann hierdurch mittels bekannter sowie auch kostengünstiger Verfahren in das Bauteil eingebracht werden.
  • In einer weiteren vorteilhaften Ausgestaltung wird vorgeschlagen, dass der Hohlraum mit einer ersten Fluidquelle und der Versorgungskanal mit einer zweiten Fluidquelle verbindbar ist. Beide Fluide, d.h. Mittel, können zur Kühlung der Schaufel so verwendet werden, dass die zur Kühlung erforderliche Luftmenge reduziert wird. Eine größere Luftmenge steht dem Verbrennungsprozess zur Verfügung, so dass hohe Flammentemperaturen sowie NOx-Emission reduziert werden können. Der Schaufel liegt grundsätzlich dasselbe Prinzip wie für das Wandelement der Brennkammer zu Grunde. Auch hier existiert im Wesentlichen kein Mischvolumen, so dass Flammenrückschlag und Selbstzündung weitgehend vermieden werden. Die Zuverlässigkeit der Gasturbine in Bezug auf defekte Schaufeln kann erhöht werden. Wie auch bei der Brennkammer kann der Kühlluftstrom ohne negative Auswirkungen auf die Verbrennung erhöht werden sowie die Flammenakustik verstimmt werden.
  • Mit der Erfindung wird ferner vorgeschlagen, dass einer der beiden Fluidquellen eine Oxidationsmittelquelle und die andere Fluidquelle eine Brennstoffquelle ist. Vorteilhaft kann erreicht werden, dass ein zündfähiges Gemisch erst im Bereich der Mündung der Durchgangsöffnung in den Strömungskanal der Gasturbine entsteht, wenn die Mündung der Kanäle hinreichend nahe der Mündung der Durchgangsöffnung im Strömungskanal angeordnet ist.
  • Die Erfindung schlägt auch eine Gasturbine vor, wobei die Gasturbine eine erfindungsgemäße Brennkammer aufweist. Die negativen Auswirkungen, wie sie oben beschrieben sind, können durch Zuführung von Brennstoff weitgehend reduziert werden, wobei die erfindungsgemäße Brennkammer einen sicheren Betrieb hinsichtlich Selbstzündung und Flammenrückschlag ermöglicht. Ferner kann vorteilhaft auf die Flammenakustik Einfluss genommen werden, um hierdurch bedingte Beanspruchungen und Verschleiß zu reduzieren.
  • Die Erfindung schlägt darüber hinaus eine Gasturbine mit einem als Schaufel ausgebildeten Bauteil vor. Die Kühlwirkung für die Schaufel der Turbineneinheit, welche als feststehende Leitschaufel sowie auch als rotierende Laufschaufel ausgebildet sein kann, kann durch Erhöhung der Kühlluftströmung verbessert werden, wobei die negativen Auswirkungen auf die Verbrennung weitgehend vermieden werden können. Auch mit dieser erfindungsgemäßen Ausgestaltung lässt sich ein Einfluss auf das Verstimmen der Flammenakustik ausüben. Verschleißerscheinungen können weiter reduziert werden.
  • Weitere Vorteile und Merkmale sind der folgenden Beschreibung von Ausführungsbeispielen zu entnehmen. Im Wesentlichen gleichbleibende Elemente sind mit den gleichen Bezugszeichen bezeichnet. Ferner wird bezüglich gleicher Merkmale und Funktionen auf die Beschreibung zum Ausführungsbeispiel in Fig. 1 verwiesen.
  • Es zeigen:
  • Fig. 1:
    einen Schnitt durch ein erfindungsgemäßes Wandelement für eine Brennkammer,
    Fig. 2:
    einen Schnitt durch das Wandelement in Fig. 1 entlang einer Linie I-I,
    Fig. 3:
    eine schematische Darstellung eines Systems von Kanälen in einem Wandelement gemäß der vorliegenden Erfindung,
    Fig. 4:
    eine schematische Darstellung einer Schaufel in einem Strömungskanal einer Gasturbine und
    Fig. 5:
    einen Schnitt durch eine erfindungsgemäße Schaufel.
  • Fig. 1 zeigt einen Schnitt durch ein erfindungsgemäßes als Wandelement 2 ausgebildetes Bauteil mit einer Vielzahl von Durchgangsöffnungen 3, durch die Kühlluft in die Brennkammer eintreten kann. Das Wandelement 2 weist ferner Querkanäle 4 auf, die mit einem Ende jeweils in eine Durchgangsöffnung 3 münden. Über Verbindungskanäle 9 ist ein fluider Brennstoff zuführbar, der über die Querkanäle 4 zu den Durchgangsöffnungen 3 geführt wird und dort in die Strömung der Kühlluft eingeleitet wird. Fig. 2 verdeutlicht dieses System von Kanälen für die Brennstoffzufuhr. Das Wandelement 2 weist zwei miteinander verbindbare Schichten 6, 7 auf. In der verbindungsseitigen Schichtoberfläche der Schicht 6 ist das Kanalsystem durch Fräsen eingebracht. Durch die Verbindung der Schichten 6 und 7 werden geschlossene Kanäle 4 und 9 gebildet.
  • Fig. 3 zeigt eine Draufsicht auf die Oberfläche der Schicht 6 des Wandelements 2 in dem die Kanäle 4 und 9 eingebracht sind. Der Verbindungskanal 9 ist einstückig mit dem Wandelement ausgebildet.
  • In der vorliegenden Ausgestaltung ist die Brennkammer aus einer Vielzahl von Wandelementen 2 modular aufgebaut. Das Wandelement 2 kann vorteilhaft auch als Hitzeschild, Liner und dergleichen verwendet werden.
  • In Fig. 4 ist ein Ausschnitt aus einem Strömungskanal einer Gasturbine schematisch dargestellt, in dem eine Schaufel 10 angeordnet ist. In den als Strömungskanal 11 ausgebildeten Heißgasraum 21 münden Durchgangsöffnungen 12, wobei in deren Mündungsbereich Einmündungen von Querkanälen 13 schematisch angedeutet sind.
  • Einen Schnitt durch eine solche Schaufel 10 zeigt Fig. 5. In dieser Ausgestaltung umschließt eine Schaufelwand 14 einen Hohlraum 15, wobei die Schaufelwand 17 mit Durchgangsöffnungen 12 versehen ist. Über den Hohlraum 15 ist Kühlluft zuführbar, die durch die Durchgangsöffnungen 12 in den Strömungskanal 11 austritt. Die Schaufelwand 14 ist ferner mit einem System aus Versorgungskanälen 13 versehen, die über Querkanäle 4 jeweils mit den Durchgangsöffnungen 12 verbunden sind. Die Versorgungskanäle 13 sind mit einer fluiden Brennstoffquelle in strömungstechnischer Verbindung. In dieser Ausgestaltung ist die Schaufel 14 zweischichtig aufgebaut, bestehend aus einer äußeren Schicht 16 sowie einer den Hohlraum 15 bildenden inneren Schicht 17. Die innere Schicht 17 weist auf ihrer der Schicht 16 zugewandten Seite durch Fräsen eingebrachte Ausnehmungen auf, die das Kanalsystem mit den Versorgungskanälen 13 bilden.
  • Erfindungsgemäß wird Luft als Kühlluft für die Schaufel 10 über Durchgangsöffnungen 12 als Oxidationsmittel in den Strömungskanal 11 geführt. An der Einmündung des Querkanals 13 wird der fluide Brennstoff in die Durchgangsöffnungen 12 der Schaufelwand 14 eingeleitet, so dass ein zündfähiges Gemisch entsteht.
  • Hinsichtlich des Wandelements 2 der Brennkammer wird Luft als Kühlmittel und Oxidationsmittel durch die Durchgangsöffnung 3 des Wandelements 2 in die Brennkammer geführt. Zugleich wird in die Kühlluftströmung im Bereich der Kanalmündung 5 des Querkanals 4 ein fluider Brennstoff in die Kühlluft eingeführt, so dass ebenfalls ein zündfähiges Gemisch entsteht.
  • Aus dem Vorliegenden ergibt sich, dass das zündfähige Gemisch erst im Bereich der Mündung der Durchgangsöffnungen 3, 12 in die Brennkammer bzw. den Strömungskanal 11 der Gasturbine entsteht. Auf diese Weise wird ein Flammenrückschlag in das jeweilige Kanalsystem hinein mit den hierdurch verursachten Schäden verhindert. Durch gezielte Variation der Brennstoffzufuhr kann darüber hinaus die Flammenakustik beeinflusst werden. Dies wirkt sich ebenfalls vorteilhaft auf den Verschleiss und die Zuverlässigkeit der Gasturbine aus.
  • Die in den Figuren dargestellten Ausführungsbeispiele dienen lediglich der Erläuterung der Erfindung und sind für diese nicht beschränkend. So können insbesondere die Zahl und Anordnung der Kanäle und Durchgangsöffnungen sowie auch die Verfahren zur Herstellung variiert werden, ohne den Schutzbereich der Erfindung zu verlassen. Auch eine Verwendung anderer Fluide als Luft wie beispielsweise Stickstoff, Kohlendioxid oder auch flüssige Stoffe kann im Rahmen der Erfindung vorgesehen sein. Insbesondere ist auch eine Kombination eines bereits vorhanden Kühlsystems mit der vorliegenden Erfindung umfasst.

Claims (10)

  1. Offen gekühltes Bauteil für eine Gasturbine, mit einer heißgasbeaufschlagten Außenwand (20), welche zumindest teilweise einen ersten Hohlraum (15) für ein erstes Mittel begrenzt und in der Durchgangsöffnungen (3, 12) angeordnet sind, welche Durchgangsöffnungen (3, 12) einerseits in den Hohlraum (15) und andererseits in den Heißgasraum (21) münden sowie mit zumindest einem zweiten Hohlraum zum Zumischen eines zweiten Mittels, der mit den Durchgangöffnungen (3, 12) in Strömungsverbindung steht,
    dadurch gekennzeichnet,
    dass der zweite Hohlraum durch in der Außenwand vorgesehenen (20) Versorgungskanäle (9, 13) gebildet wird, die über Querkanäle (4) mit den als Durchgangsbohrung ausgebildeten Durchgangsöffnungen (3, 12) in Verbindung stehen, so dass die beiden Mittel erst innerhalb der Durchgangsbohrungen vermischbar sind.
  2. Bauteil nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Außenwand (20) eine Vielzahl von Durchgangsbohrungen, eine Vielzahl von zwischen den Bohrungen verlaufenden Versorgungskanälen (9, 13) und eine Vielzahl von die Versorgungskanälen (9, 13) mit den Durchgangsbohrungen vernetzenden weiteren Querkanälen (4) aufweist.
  3. Bauteil nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass die Außenwand (2) wenigstens zwei miteinander verbindbare Schichten (6, 7, 16, 17) aufweist.
  4. Bauteil nach Anspruch 1, 2 oder 3,
    dadurch gekennzeichnet,
    dass die Kanäle (4, 9, 13) zwischen den beiden Schichten (6, 7) in wenigstens einer Schichtoberfläche (6) eingebracht ist.
  5. Bauteil nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass der erste Hohlraum (15) mit einer ersten Fluidquelle und die Versorgungskanäle (9, 13) mit einer zweiten Fluidquelle verbindbar ist.
  6. Bauteil nach Anspruch 5,
    dadurch gekennzeichnet,
    dass einer der beiden Fluidquellen eine Oxidationsmittelquelle und die andere Fluidquelle eine Brennstoffquelle ist.
  7. Bauteil nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass das Bauteil ein Wandelement (2) einer Brennkammer oder eine Schaufel (10) einer Gasturbine ist.
  8. Brennkammer für eine Gasturbine mit einem als Wandelement (2) ausgebildeten Bauteil nach einem der Ansprüche 1 bis 7.
  9. Gasturbine mit einer Brennkammer nach Anspruch 8.
  10. Gasturbine mit einem als Schaufel ausgebildetem Bauteil nach einem der Ansprüche 1 bis 7.
EP04739955A 2003-07-04 2004-06-16 Offen gekühltes bauteil für eine gasturbine, brennkammer und gasturbine Expired - Lifetime EP1651841B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL04739955T PL1651841T3 (pl) 2003-07-04 2004-06-16 Chłodzony w systemie otwartym element dla turbiny gazowej, komora spalania i turbina gazowa
EP04739955A EP1651841B1 (de) 2003-07-04 2004-06-16 Offen gekühltes bauteil für eine gasturbine, brennkammer und gasturbine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP03015216 2003-07-04
PCT/EP2004/006491 WO2005003517A1 (de) 2003-07-04 2004-06-16 Offen gekühltes bauteil für eine gasturbine, brennkammer und gasturbine
EP04739955A EP1651841B1 (de) 2003-07-04 2004-06-16 Offen gekühltes bauteil für eine gasturbine, brennkammer und gasturbine

Publications (2)

Publication Number Publication Date
EP1651841A1 EP1651841A1 (de) 2006-05-03
EP1651841B1 true EP1651841B1 (de) 2007-08-22

Family

ID=33560756

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04739955A Expired - Lifetime EP1651841B1 (de) 2003-07-04 2004-06-16 Offen gekühltes bauteil für eine gasturbine, brennkammer und gasturbine

Country Status (7)

Country Link
US (2) US7658076B2 (de)
EP (1) EP1651841B1 (de)
CN (1) CN100353032C (de)
DE (1) DE502004004752D1 (de)
ES (1) ES2288687T3 (de)
PL (1) PL1651841T3 (de)
WO (1) WO2005003517A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1847696A1 (de) * 2006-04-21 2007-10-24 Siemens Aktiengesellschaft Bauteil für eine gestufte Verbrennung in einer Gasturbine und entsprechende Gasturbine.
EP1847684A1 (de) * 2006-04-21 2007-10-24 Siemens Aktiengesellschaft Turbinenschaufel
US20080134685A1 (en) * 2006-12-07 2008-06-12 Ronald Scott Bunker Gas turbine guide vanes with tandem airfoils and fuel injection and method of use
US8291705B2 (en) * 2008-08-13 2012-10-23 General Electric Company Ultra low injection angle fuel holes in a combustor fuel nozzle
US9068743B2 (en) * 2009-02-26 2015-06-30 8 Rivers Capital, LLC & Palmer Labs, LLC Apparatus for combusting a fuel at high pressure and high temperature, and associated system
US8986002B2 (en) 2009-02-26 2015-03-24 8 Rivers Capital, Llc Apparatus for combusting a fuel at high pressure and high temperature, and associated system
WO2010099452A2 (en) * 2009-02-26 2010-09-02 Palmer Labs, Llc Apparatus and method for combusting a fuel at high pressure and high temperature, and associated system and device
US8397516B2 (en) * 2009-10-01 2013-03-19 General Electric Company Apparatus and method for removing heat from a gas turbine
US8959886B2 (en) * 2010-07-08 2015-02-24 Siemens Energy, Inc. Mesh cooled conduit for conveying combustion gases
US8894363B2 (en) 2011-02-09 2014-11-25 Siemens Energy, Inc. Cooling module design and method for cooling components of a gas turbine system
US8640974B2 (en) 2010-10-25 2014-02-04 General Electric Company System and method for cooling a nozzle
US9249977B2 (en) * 2011-11-22 2016-02-02 Mitsubishi Hitachi Power Systems, Ltd. Combustor with acoustic liner
US9284231B2 (en) 2011-12-16 2016-03-15 General Electric Company Hydrocarbon film protected refractory carbide components and use
DE102012205055B4 (de) * 2012-03-29 2020-08-06 Detlef Haje Gasturbinenbauteil für Hochtemperaturanwendungen, sowie Verfahren zum Betreiben und Herstellen eines solchen Gasturbinenbauteils
US9174309B2 (en) 2012-07-24 2015-11-03 General Electric Company Turbine component and a process of fabricating a turbine component
US9709274B2 (en) 2013-03-15 2017-07-18 Rolls-Royce Plc Auxetic structure with stress-relief features
EP2846096A1 (de) * 2013-09-09 2015-03-11 Siemens Aktiengesellschaft Rohrbrennkammer mit einem Flammrohr-Endbereich und Gasturbine
DE102015111843A1 (de) * 2015-07-21 2017-01-26 Rolls-Royce Deutschland Ltd & Co Kg Turbine mit gekühlten Turbinenleitschaufeln
US20170176012A1 (en) * 2015-12-22 2017-06-22 General Electric Company Fuel injectors and staged fuel injection systems in gas turbines
WO2018162994A1 (en) 2017-03-07 2018-09-13 8 Rivers Capital, Llc System and method for operation of a flexible fuel combustor for a gas turbine
MX2019010633A (es) 2017-03-07 2019-12-19 8 Rivers Capital Llc Sistema y metodo para la combustion de combustibles solidos y sus derivados.
US11572828B2 (en) 2018-07-23 2023-02-07 8 Rivers Capital, Llc Systems and methods for power generation with flameless combustion
CN113202566B (zh) * 2021-04-19 2022-12-02 中国航发湖南动力机械研究所 涡轮导向叶片及燃气涡轮发动机

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2647368A (en) * 1949-05-09 1953-08-04 Hermann Oestrich Method and apparatus for internally cooling gas turbine blades with air, fuel, and water
US2981066A (en) * 1956-04-12 1961-04-25 Elmer G Johnson Turbo machine
US3037351A (en) * 1956-05-14 1962-06-05 Paul O Tobeler Combustion turbine
US4347037A (en) * 1979-02-05 1982-08-31 The Garrett Corporation Laminated airfoil and method for turbomachinery
GB2049152B (en) * 1979-05-01 1983-05-18 Rolls Royce Perforate laminated material
US4302940A (en) * 1979-06-13 1981-12-01 General Motors Corporation Patterned porous laminated material
US4928481A (en) * 1988-07-13 1990-05-29 Prutech Ii Staged low NOx premix gas turbine combustor
US5405242A (en) * 1990-07-09 1995-04-11 United Technologies Corporation Cooled vane
US5125793A (en) * 1991-07-08 1992-06-30 The United States Of America As Represented By The Secretary Of The Air Force Turbine blade cooling with endothermic fuel
US5486093A (en) * 1993-09-08 1996-01-23 United Technologies Corporation Leading edge cooling of turbine airfoils
GB2310896A (en) 1996-03-05 1997-09-10 Rolls Royce Plc Air cooled wall
US6047550A (en) * 1996-05-02 2000-04-11 General Electric Co. Premixing dry low NOx emissions combustor with lean direct injection of gas fuel
DE19737845C2 (de) 1997-08-29 1999-12-02 Siemens Ag Verfahren zum Herstellen einer Gasturbinenschaufel, sowie nach dem Verfahren hergestellte Gasturbinenschaufel
US20030024234A1 (en) * 2001-08-02 2003-02-06 Siemens Westinghouse Power Corporation Secondary combustor for low NOx gas combustion turbine
US7217088B2 (en) * 2005-02-02 2007-05-15 Siemens Power Generation, Inc. Cooling fluid preheating system for an airfoil in a turbine engine

Also Published As

Publication number Publication date
CN100353032C (zh) 2007-12-05
US8347632B2 (en) 2013-01-08
US20070101722A1 (en) 2007-05-10
EP1651841A1 (de) 2006-05-03
ES2288687T3 (es) 2008-01-16
PL1651841T3 (pl) 2008-01-31
DE502004004752D1 (de) 2007-10-04
CN1806094A (zh) 2006-07-19
US20100083665A1 (en) 2010-04-08
WO2005003517A1 (de) 2005-01-13
US7658076B2 (en) 2010-02-09

Similar Documents

Publication Publication Date Title
EP1651841B1 (de) Offen gekühltes bauteil für eine gasturbine, brennkammer und gasturbine
EP2010773B1 (de) Turbinenschaufel für eine turbine
EP2010757B1 (de) Turbinenschaufel
DE2143012C3 (de) Brenneranordnung bei einer Gasturbinen-Brennkammer
DE602005001742T2 (de) Aerodynamisches aufschäumendes Brennstoff/Luft Einspritzungssystem für eine Gasturbinenbrennkammer
DE69820967T2 (de) Brennkammer für eine Turbomaschine
EP2156095B1 (de) Drallfreie stabilisierung der flamme eines vormischbrenners
EP2307806B1 (de) Brenneranordnung für fluidische brennstoffe und verfahren zum herstellen der brenneranordnung
DE102014117621A1 (de) Brennstoffinjektor mit Vormisch-Pilotdüse
WO2010066516A2 (de) Brennstofflanze für einen brenner
CH699760A2 (de) Brennstoffdüse mit einem Brennstoff-Luft-Vormischer für eine Gasturbinenbrennkammer.
DE102005048815A1 (de) Kostengünstige Zweibrennstoffbrennkammer und zugehöriges Verfahren
EP1245806B1 (de) Gekühlte Gasturbinenschaufel
DE2122696A1 (de) Brennkammer für eine Gasturbine
CH702737A2 (de) Brennkammer mit zwei Brennräumen.
EP1319895A2 (de) Magervormischbrenner für eine Gasturbine sowie Verfahren zum Betrieb eines Magervormischbrenners
DE2730791A1 (de) Brennkammer fuer gasturbinentriebwerke
EP2014978A1 (de) Verwendung von Inertgasen zur Abschirmung von Oxidator und Brennstoff
DE19859210A1 (de) Brennstoff-Luft-Mischanordnung für Verbrennungsvorrichtungen
DE112015004429B4 (de) Kraft-bzw. Brennstoffeinspritzdüse und Gasturbine
CH710503B1 (de) Flüssigbrennstoffinjektor für eine Gasturbinenbrennstoffdüse.
EP2161502A1 (de) Vormischbrenner zur Verbrennung eines niederkalorischen sowie hochkalorischen Brennstoffes
WO2014177371A1 (de) Brennerlanze mit hitzeschild für einen brenner einer gasturbine
DE2116429A1 (de) Brennkammer fur Gasturbinenmaschinen
EP2295858A1 (de) Stabilisierung der Flamme eines Brenners

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE ES GB IT LI PL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE ES GB IT LI PL

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES GB IT LI PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070822

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004004752

Country of ref document: DE

Date of ref document: 20071004

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2288687

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080526

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120626

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130610

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20130522

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20130711

Year of fee payment: 10

Ref country code: CH

Payment date: 20130909

Year of fee payment: 10

Ref country code: DE

Payment date: 20130819

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130616

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004004752

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140616

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004004752

Country of ref document: DE

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140616

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140616

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140617