EP1650316A1 - Gold alloy - Google Patents
Gold alloy Download PDFInfo
- Publication number
- EP1650316A1 EP1650316A1 EP04405652A EP04405652A EP1650316A1 EP 1650316 A1 EP1650316 A1 EP 1650316A1 EP 04405652 A EP04405652 A EP 04405652A EP 04405652 A EP04405652 A EP 04405652A EP 1650316 A1 EP1650316 A1 EP 1650316A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gold
- copper
- alloys
- alloy
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/02—Alloys based on gold
Definitions
- the present invention relates to the field of alloys based on gold and copper.
- Such alloys exist in various compositions (or caratages), and are used, for example, in jewelery and in the watch or dental industry.
- the object of the present invention is to overcome this drawback by proposing a gold-copper alloy having a more stable disordered structure during the machining and thermal steps necessary for the shaping of mechanical parts.
- the invention relates to an alloy based on gold and copper, characterized in that it is doped with an element selected from antimony and tin.
- the table on page 4 shows the composition of the various gold and copper alloys that were studied during the development of the present invention, as well as the hardness values obtained after homogenization and rolling. Some of them contain, in addition, silver or platinum. In total, six alloys were tested, doped or not, with 0.2% antimony. The percentage of gold expressed by weight varies between 37.5% for 9-carat gold and 80% for the gold-copper binary alloy.
- ingots of thickness 5mm were cast from gold and silver shot, copper plates and pieces of antimony.
- the ingots were subsequently rolled to a thickness of 1 mm, and their Vickers hardness was measured after this second step. The measured values are reported in the last column of the table.
- the rolling step has the effect, on the one hand, to increase the Vickers hardness and on the other hand to standardize the results between the different alloys and between respectively doped and undoped alloys.
- the gold-copper binary alloy and the gold-platinum-copper tertiary alloy Two alloys have Vickers hardness values substantially higher than other alloys, and their doped alloys have a lower Vickers hardness than corresponding undoped alloys. This is explained in these alloys by the absence of silver, which has the effect of increasing the ductility in other alloys and masking the effect of doping after rolling.
- the rolled ingots were cured by successive annealing of a duration of five minutes, at temperatures of between 100 ° C. and 280 ° C.
- the Vickers hardness was measured after each annealing, and the values were reported on the various graphs 1 to 6, each graph representing the temperature behavior of the Vickers hardness of one of the six alloys studied as well as that of the alloy. corresponding doped with antimony.
- Graphs 1 to 6 refer, in order, to the 18-carat red, 14-carat yellow, 14-carat red, 9-carat red, binary gold-copper and gold-copper-platinum alloys, whose compositions are shown in the table.
- A refers to undoped alloys
- B refers to doped alloys.
- the Vickers hardness increases with the annealing temperature due to the easy reordering of the alloy structure.
- the increase in hardness is low up to 150 ° C, then increases more significantly up to 280 ° C.
- graphs 1 to 6 this trend is true, except for graph 4 representing the 9-carat red alloy, for which the hardness is maximum at 200 ° C, then decreases to 280 ° C.
- doped and undoped alloys have a substantially parallel evolution, the doped alloy being almost always at a level of hardness lower than that of the undoped alloy. Only the 9-carat red alloy exhibits again a different behavior, the doped alloy being harder than the undoped alloy at all temperatures. This alloy is the only one of the alloys studied to have a percentage of gold lower than the percentage of copper, which could explain a behavior significantly different from the behavior of other alloys
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Adornments (AREA)
- Dental Preparations (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
La présente invention concerne le domaine des alliages à base d'or et de cuivre. De tels alliages existent dans des compositions (ou caratages) variées, et sont utilisés, par exemple, en bijouterie et dans l'industrie horlogère ou dentaire.The present invention relates to the field of alloys based on gold and copper. Such alloys exist in various compositions (or caratages), and are used, for example, in jewelery and in the watch or dental industry.
Leur couleur va du jaune, pour les alliages contenant de l'argent dans des proportions de l'ordre de 20%, au rouge, pour les alliages or-cuivre binaires ou contenant peu d'argent (moins de 10%). Leurs propriétés mécaniques, en particulier leur dureté, dépendent fortement de leur composition chimique et de leur structure cristalline. Ainsi, les alliages or-cuivre formant une solution solide ordonnée sont sensiblement plus durs que les mêmes alliages formant une solution solide désordonnée. Or, les alliages présentant une dureté élevée s'usinent et se mettent en forme difficilement. C'est pourquoi la structure désordonnée est plus avantageuse, du point de vue de l'usinabilité, que la structure ordonnée.Their color ranges from yellow, for alloys containing silver in the order of 20%, to red, for gold-copper alloys binary or containing little money (less than 10%). Their mechanical properties, in particular their hardness, depend strongly on their chemical composition and their crystalline structure. Thus, the gold-copper alloys forming an ordered solid solution are substantially harder than the same alloys forming a disordered solid solution. However, the alloys having a high hardness are machined and difficult to form. This is why the disordered structure is more advantageous, from the point of view of machinability, than the ordered structure.
Dans les alliages or-cuivre, une structure désordonnée est obtenue par trempage de l'alliage. Cependant, cette structure n'est pas stable lors des étapes d'usinage, de recuit, ou même parfois de séchage ultérieures à la trempe, et évolue en structure ordonnée. Cette évolution peut causer un durcissement local et, par suite, une fissuration de la pièce sous l'effet d'un gradient de coefficient de dilatation. De plus, certaines pièces de grandes dimensions ne refroidissent pas assez rapidement sur l'ensemble du volume, et des inhomogénéités de dureté apparaissent, entraînant, de la même façon, fissures et difficultés d'usinage. Enfin, certains alliages évoluent spontanément, par vieillissement, vers une structure ordonnée.In gold-copper alloys, a disordered structure is obtained by dipping the alloy. However, this structure is not stable during the machining, annealing, or even subsequent drying steps after quenching, and evolves in an orderly structure. This evolution can cause local hardening and, consequently, cracking of the part under the effect of a coefficient of expansion gradient. In addition, some large parts do not cool quickly enough on the entire volume, and inhomogeneities of hardness appear, causing, in the same way, cracks and machining difficulties. Finally, some alloys evolve spontaneously, by aging, towards an orderly structure.
Une solution à ce type de problème dans les alliages or-cuivre, est l'introduction d'argent, dans des proportions suffisantes, ce qui a pour effet de les rendre plus malléables. Cette technique cause toutefois un jaunissement de l'alliage et n'est donc pas appropriée pour les alliages or-cuivre rouges.A solution to this type of problem in gold-copper alloys is the introduction of silver, in sufficient proportions, which has the effect of making them more malleable. This technique, however, causes yellowing of the alloy and is therefore not suitable for red gold-copper alloys.
La présente invention a pour but de pallier cet inconvénient en proposant un alliage or-cuivre présentant une structure désordonnée plus stable lors des étapes d'usinage et thermiques nécessaires à la mise en forme de pièces mécaniques.The object of the present invention is to overcome this drawback by proposing a gold-copper alloy having a more stable disordered structure during the machining and thermal steps necessary for the shaping of mechanical parts.
Plus précisément, l'invention concerne un alliage à base d'or et de cuivre caractérisé en ce qu'il est dopé à l'aide d'un élément choisi parmi l'antimoine et l'étain.More specifically, the invention relates to an alloy based on gold and copper, characterized in that it is doped with an element selected from antimony and tin.
De façon avantageuse, l'invention comporte encore les caractéristiques suivantes :
- la proportion dudit élément représente entre 10ppm et 1% du poids total de l'alliage.
- la proportion d'or, exprimée en poids, est supérieure à 37.5% du poids total.
- l'alliage comporte, exprimé en poids, 75 à 76% d'or, 7 à 11% d'argent et 14 à 18% de cuivre.
- l'alliage comporte, exprimé en poids, 75 à 76% d'or, 2 à 6% d'argent et 18 à 22% de cuivre.
- l'alliage comporte, exprimé en poids, 58 à 59% d'or, 24 à 28% d'argent et 13 à 17% de cuivre.
- l'alliage comporte, exprimé en poids, 58 à 59% d'or, 7 à 11% d'argent et 30 à 34% de cuivre.
- l'alliage comporte, exprimé en poids, 37 à 38% d'or, 2 à 6% d'argent et 56 à 60% de cuivre.
- l'alliage comporte, exprimé en poids, 76 à 77% d'or, 500ppm à 4% de platine et 19 à 23% de cuivre.
- l'alliage comporte, exprimé en poids, 78 à 82% d'or et 18 à 22% de cuivre.
- the proportion of said element represents between 10 ppm and 1% of the total weight of the alloy.
- the proportion of gold, expressed by weight, is greater than 37.5% of the total weight.
- the alloy comprises, expressed by weight, 75 to 76% of gold, 7 to 11% of silver and 14 to 18% of copper.
- the alloy comprises, expressed by weight, 75 to 76% of gold, 2 to 6% of silver and 18 to 22% of copper.
- the alloy comprises, expressed by weight, 58 to 59% of gold, 24 to 28% of silver and 13 to 17% of copper.
- the alloy comprises, expressed by weight, 58 to 59% of gold, 7 to 11% of silver and 30 to 34% of copper.
- the alloy comprises, expressed by weight, 37 to 38% of gold, 2 to 6% of silver and 56 to 60% of copper.
- the alloy comprises, expressed by weight, 76 to 77% gold, 500 ppm to 4% platinum and 19 to 23% copper.
- the alloy comprises, expressed by weight, 78 to 82% of gold and 18 to 22% of copper.
D'autres caractéristiques de l'invention ressortiront de l'explication qui va suivre faite en regard du dessin annexé, dans lequel les graphes 1 à 6 représentent l'évolution en température de la dureté de chacun des alliages étudiés.Other features of the invention will emerge from the following explanation with reference to the accompanying drawings, in which
Le tableau de la page 4 présente la composition des différents alliages d'or et de cuivre ayant été étudiés durant la mise au point de la présente invention, ainsi que les valeurs de dureté obtenues après homogénéisation et laminage. Certains d'entre eux contiennent, en outre, de l'argent ou du platine. Au total, six alliages ont été testés, dopés ou non, avec 0.2% d'antimoine. Le pourcentage d'or exprimé en poids varie entre 37.5% pour l'or 9 carats, et 80% pour l'alliage binaire or-cuivre.The table on
Ces alliages, jusqu'ici non dopés, sont classiquement utilisés dans l'industrie horlogère ou dentaire en fonction de leur couleur, et sont appelés à subir différents traitements mécaniques ou thermiques tels que le laminage ou le recuit, durant l'élaboration de pièces telles qu'une boîte de montré ou une prothèse dentaire. Les propriétés mécaniques de ces alliages, et en particulier la dureté, évoluent en fonction de ces différents traitements. Or, il est souhaitable de conserver une dureté raisonnable durant tout le cycle de fabrication d'une pièce, afin d'en faciliter l'usinage et la mise en forme. C'est pourquoi, il est nécessaire de connaître non seulement les propriétés initiales de l'alliage, mais aussi leur évolution en fonction des traitements thermiques et mécaniques.These alloys, previously undoped, are conventionally used in the watch or dental industry depending on their color, and are expected to undergo various mechanical or thermal treatments such as rolling or annealing, during the development of such parts. a box shown or a dental prosthesis. The mechanical properties of these alloys, and in particular the hardness, evolve according to these different treatments. However, it is desirable to maintain a reasonable hardness throughout the manufacturing cycle of a part, in order to facilitate machining and shaping. Therefore, it is necessary to know not only the initial properties of the alloy, but also their evolution as a function of thermal and mechanical treatments.
Dans ce but, des lingots d'épaisseur 5mm ont été coulés à partir de grenaille d'or et d'argent, de plaquettes de cuivre et de morceaux d'antimoine.For this purpose, ingots of thickness 5mm were cast from gold and silver shot, copper plates and pieces of antimony.
Les lingots ont, dans un premier temps, été homogénéisés à 650°C et leur dureté Vickers a été mesurée directement après cette étape. Les valeurs mesurées sont reportées dans l'avant-dernière colonne du tableau.
Il apparaît clairement que les valeurs de dureté Vickers après homogénéisation des alliages dopés à l'antimoine sont sensiblement inférieures aux valeurs de ces mêmes alliages ne contenant pas d'antimoine, à l'exception de l'alliage 9 carats rouge, plus dur dans sa forme dopée que non dopée.It is clear that the Vickers hardness values after homogenization of alloys doped with antimony are substantially lower than the values of these alloys containing no antimony, with the exception of the 9-carat red alloy, harder in its doped form than undoped.
Les lingots ont, par la suite, été laminés jusqu'à une épaisseur de 1mm, et leur dureté Vickers a été mesurée après cette seconde étape. Les valeurs mesurées sont reportées dans la dernière colonne du tableau. De manière générale, l'étape de laminage a pour effet, d'une part, d'augmenter la dureté Vickers et d'autre part d'uniformiser les résultats entre les différents alliages et entre alliages respectivement dopés et non dopés. Deux exceptions sont à noter : l'alliage binaire or-cuivre et l'alliage tertiaire or-platine-cuivre. Ces deux alliages présentent des valeurs de dureté Vickers sensiblement supérieures aux autres alliages, et leurs alliages dopés présentent une dureté Vickers inférieure à celle des alliages non dopés correspondants. Ceci s'explique, dans ces alliages, par l'absence d'argent, qui a pour effet d'augmenter la ductilité dans les autres alliages et de masquer l'effet du dopage après laminage.The ingots were subsequently rolled to a thickness of 1 mm, and their Vickers hardness was measured after this second step. The measured values are reported in the last column of the table. In general, the rolling step has the effect, on the one hand, to increase the Vickers hardness and on the other hand to standardize the results between the different alloys and between respectively doped and undoped alloys. Two exceptions are worth noting: the gold-copper binary alloy and the gold-platinum-copper tertiary alloy. These two alloys have Vickers hardness values substantially higher than other alloys, and their doped alloys have a lower Vickers hardness than corresponding undoped alloys. This is explained in these alloys by the absence of silver, which has the effect of increasing the ductility in other alloys and masking the effect of doping after rolling.
Enfin, lors d'une troisième étape, les lingots laminés ont été durcis par des recuits successifs d'une durée de cinq minutes, à des températures comprises entre 100°C et 280°C. La dureté Vickers a été mesurée après chaque recuit, et les valeurs ont été reportées sur les différents graphes 1 à 6, chaque graphe représentant le comportement en température de la dureté Vickers de l'un des six alliages étudiés ainsi que celui de l'alliage correspondant dopé à l'antimoine. Les graphes 1 à 6 font référence, dans l'ordre, aux alliages 18 carats rouge, 14 carats jaune, 14 carats rouge, 9 carats rouge, binaire or-cuivre et or-cuivre-platine, dont les compositions figurent dans le tableau. La mention A se rapporte aux alliages non dopés, tandis que la mention B se rapporte aux alliage dopés.Finally, in a third step, the rolled ingots were cured by successive annealing of a duration of five minutes, at temperatures of between 100 ° C. and 280 ° C. The Vickers hardness was measured after each annealing, and the values were reported on the
De manière générale, la dureté Vickers augmente avec la température de recuit en raison du réordonnancement facilité de la structure de l'alliage. L'augmentation de la dureté est faible jusqu'à 150°C, puis augmente plus sensiblement jusqu'à 280°C. Sur les graphes 1 à 6, cette tendance se vérifie, à l'exception toutefois du graphe 4 représentant l'alliage 9 carats rouge, pour lequel la dureté est maximale à 200°C, puis décroît jusqu'à 280°C. Par ailleurs, il apparaît clairement que les alliages dopés et non dopés ont une évolution sensiblement parallèle, l'alliage dopé se situant quasi systématiquement à un niveau de dureté inférieur à celui de l'alliage non dopé. Seul l'alliage 9 carats rouge exhibe à nouveau un comportement différent, l'alliage dopé étant plus dur que l'alliage non dopé, à toutes les températures. Cet alliage est le seul, parmi les alliages étudiés, à présenter un pourcentage d'or inférieur au pourcentage de cuivre, ce qui pourrait expliquer un comportement significativement différent du comportement des autres alliagesIn general, the Vickers hardness increases with the annealing temperature due to the easy reordering of the alloy structure. The increase in hardness is low up to 150 ° C, then increases more significantly up to 280 ° C. On
Ces résultats semblent indiquer que le dopage à 0.2% d'antimoine des alliages or-cuivre, selon l'invention, agit sur la structure cristalline de ces alliages, grâce à la taille importante et la saturation de la couche 4d des atomes d'antimoine, qui s'opposent au processus de transformation de la phase désordonnée vers la phase ordonnée. Ils permettent, en outre, de prévoir que l'étain, élément proche de l'antimoine dans la table périodique et possédant les mêmes caractéristiques de taille et de structure électronique (couche 4d saturée), peut également être utilisé efficacement comme dopant de l'alliage or-cuivre.These results seem to indicate that the 0.2% antimony doping of gold-copper alloys, according to the invention, acts on the crystalline structure of these alloys, thanks to the large size and the saturation of the 4d layer of the antimony atoms. , which oppose the process of transformation from the disordered phase to the ordered phase. They also make it possible to provide that tin, an element close to antimony in the periodic table and having the same characteristics of size and electronic structure (saturated layer 4d), can also be used effectively as dopant of the gold-copper alloy.
Claims (10)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04405652A EP1650316A1 (en) | 2004-10-20 | 2004-10-20 | Gold alloy |
EP05797014A EP1815031A1 (en) | 2004-10-20 | 2005-10-18 | Gold alloy |
PCT/EP2005/055334 WO2006042846A1 (en) | 2004-10-20 | 2005-10-18 | Gold alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04405652A EP1650316A1 (en) | 2004-10-20 | 2004-10-20 | Gold alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1650316A1 true EP1650316A1 (en) | 2006-04-26 |
Family
ID=34932326
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04405652A Withdrawn EP1650316A1 (en) | 2004-10-20 | 2004-10-20 | Gold alloy |
EP05797014A Withdrawn EP1815031A1 (en) | 2004-10-20 | 2005-10-18 | Gold alloy |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05797014A Withdrawn EP1815031A1 (en) | 2004-10-20 | 2005-10-18 | Gold alloy |
Country Status (2)
Country | Link |
---|---|
EP (2) | EP1650316A1 (en) |
WO (1) | WO2006042846A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3783124A1 (en) * | 2019-08-23 | 2021-02-24 | Omega SA | Gold timepiece, ornament or jewellery |
WO2022033749A1 (en) * | 2020-08-12 | 2022-02-17 | Egf - Eduard G. Fidel Gmbh | Piece of jewelry |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1323492A1 (en) * | 2001-03-23 | 2003-07-02 | Citizen Watch Co. Ltd. | Brazing filler metal |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3380814A (en) * | 1965-06-18 | 1968-04-30 | Sel Rex Corp | Electrolyte and method for coating articles with a gold-copper-antimony alloy and article thereof |
DE3132143C2 (en) * | 1981-08-14 | 1985-07-04 | Degussa Ag, 6000 Frankfurt | Precious metal alloy for the production of crowns and bridges that can be veneered with ceramic bodies |
NL9001986A (en) * | 1990-09-10 | 1992-04-01 | Elephant Edelmetaal Bv | DENTAL PORCELAIN, METHOD FOR MANUFACTURING A DENTAL RESTORATION, DENTAL ALLOY. |
JP3578831B2 (en) * | 1995-05-18 | 2004-10-20 | 株式会社徳力本店 | Gold alloy for jewelry |
DE19958800A1 (en) * | 1999-06-30 | 2001-01-04 | Wieland Edelmetalle | White gold jewelry alloy for all jewelry purposes contains alloying additions of silver and iron |
-
2004
- 2004-10-20 EP EP04405652A patent/EP1650316A1/en not_active Withdrawn
-
2005
- 2005-10-18 WO PCT/EP2005/055334 patent/WO2006042846A1/en active Application Filing
- 2005-10-18 EP EP05797014A patent/EP1815031A1/en not_active Withdrawn
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1323492A1 (en) * | 2001-03-23 | 2003-07-02 | Citizen Watch Co. Ltd. | Brazing filler metal |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3783124A1 (en) * | 2019-08-23 | 2021-02-24 | Omega SA | Gold timepiece, ornament or jewellery |
US11441210B2 (en) | 2019-08-23 | 2022-09-13 | Omega Sa | Timepiece or piece of jewellery or gemstone jewellery made of gold |
WO2022033749A1 (en) * | 2020-08-12 | 2022-02-17 | Egf - Eduard G. Fidel Gmbh | Piece of jewelry |
Also Published As
Publication number | Publication date |
---|---|
WO2006042846A1 (en) | 2006-04-27 |
EP1815031A1 (en) | 2007-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2393951B1 (en) | Method for producing a piece made from a superalloy based on nickel and corresponding piece | |
EP2984195B1 (en) | Process of manufacturing a rolled al-cu-li sheet with improved formability and corrosion resistance | |
EP3315620B1 (en) | Non-magnetic precious alloy for clockmaking applications | |
EP3241078B1 (en) | Timepiece or jewellery item made from lightweight precious alloy comprising titanium | |
FR2853666A1 (en) | HIGH-STRENGTH Al-Zn ALLOY, PROCESS FOR PRODUCING PRODUCTS IN SUCH AN ALLOY, AND PRODUCTS OBTAINED ACCORDING TO THIS PROCESS | |
CA2851592A1 (en) | Improved method for processing sheet metal made of an al-cu-li alloy | |
US8771591B1 (en) | Silver alloy with high tarnish resistance | |
FR2532662A1 (en) | PROCESS FOR PRODUCING BERYLLIUM COPPER ALLOY AND THE ALLOY | |
EP2981632B1 (en) | Thin sheets made of an aluminium-copper-lithium alloy for producing airplane fuselages | |
EP3502288A1 (en) | Method for manufacturing a hairspring for clock movement | |
EP0864664A1 (en) | Process for producing a superelastic article from an alloy of nickel and titanium | |
WO2012029772A1 (en) | Solar cell lead wire and method of manufacturing thereof | |
EP3117017B1 (en) | Precipitation hardening nickel alloy, part made of said alloy, and manufacturing method thereof | |
FR2799210A1 (en) | ZIRCONIUM ALLOY AND METHOD FOR MANUFACTURING COMPONENT FOR ASSEMBLING NUCLEAR FUEL INTO SUCH ALLOY | |
EP2588635B1 (en) | Gold alloy with improved hardness | |
EP2546371A1 (en) | 18-carat grey gold | |
EP1650316A1 (en) | Gold alloy | |
CH620245A5 (en) | ||
EP3796101A1 (en) | Hairspring for clock movement | |
EP1483422B1 (en) | Use of thin strip aluminium-iron alloy | |
EP3656245B1 (en) | Gold based alloy comprising at least 990 per mille gold by weight, item of jewellery or watch comprising gold based alloy comprising at least 990 per mille gold by weight, and method of manufacturing said alloy | |
EP3845971B1 (en) | Method for manufacturing an hairspring for clock movement | |
EP4060425A1 (en) | Hairspring for timepiece movement | |
FR2751990A1 (en) | COPPER-BASED ALLOY WITH HIGH ELECTRICAL CONDUCTIVITY AND SOFTENING TEMPERATURE FOR ELECTRONIC APPLICATIONS | |
FR2489847A1 (en) | PROCESS FOR THE HEAT TREATMENT OF A TITANIUM ALLOY NEAR ALPHA |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
AKX | Designation fees paid | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20061027 |