EP1649731A1 - Organic electroluminescent element - Google Patents

Organic electroluminescent element

Info

Publication number
EP1649731A1
EP1649731A1 EP04741151A EP04741151A EP1649731A1 EP 1649731 A1 EP1649731 A1 EP 1649731A1 EP 04741151 A EP04741151 A EP 04741151A EP 04741151 A EP04741151 A EP 04741151A EP 1649731 A1 EP1649731 A1 EP 1649731A1
Authority
EP
European Patent Office
Prior art keywords
occurrence
organic electroluminescent
different
same
electroluminescent device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04741151A
Other languages
German (de)
French (fr)
Inventor
Aurelie Falcou
Frank Meyer
Amir Parham
Heinrich Becker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Covion Organic Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10333232A external-priority patent/DE10333232A1/en
Priority claimed from DE10357318A external-priority patent/DE10357318A1/en
Application filed by Merck Patent GmbH, Covion Organic Semiconductors GmbH filed Critical Merck Patent GmbH
Publication of EP1649731A1 publication Critical patent/EP1649731A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/54Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings
    • C07C13/547Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings at least one ring not being six-membered, the other rings being at the most six-membered
    • C07C13/567Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings at least one ring not being six-membered, the other rings being at the most six-membered with a fluorene or hydrogenated fluorene ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C25/00Compounds containing at least one halogen atom bound to a six-membered aromatic ring
    • C07C25/18Polycyclic aromatic halogenated hydrocarbons
    • C07C25/22Polycyclic aromatic halogenated hydrocarbons with condensed rings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Definitions

  • Organic and organometallic compounds are used as functional materials in a number of applications that can be broadly attributed to the electronics industry.
  • the market for organic electroluminescent devices (for a general description of the structure, see US Pat. No. 4,539,507 and US Pat. No. 5,151,629) and their individual components, organic light-emitting diodes (OLEDs), has already taken place, as have car radios with an "organic display” from Pioneer or use a digital camera from Kodak. Other such products are about to be launched. Nevertheless, significant improvements are still necessary to make these displays a real competitor to the currently dominant liquid crystal displays (LCD) or to surpass them.
  • LCD liquid crystal displays
  • organometallic complexes which show phosphorescence instead of fluorescence (M.A. Baldo et al., Appl. Phys. Lett. 1999, 75, 4-6).
  • organometallic compounds For theoretical spin-statistical reasons, using organometallic compounds as
  • Phosphorescence emitters allow up to four times the energy and power efficiency. In order to improve phosphorescent OLEDs, it is not only important to develop the organometallic compounds themselves, but above all to develop other components that are specifically required for this purpose, such as matrix or hole blocking materials.
  • An organic electroluminescent device usually consists of several layers which are applied to one another by means of vacuum methods or different printing techniques.
  • these layers are in detail:
  • Carrier plate substrate (usually glass or plastic film);
  • Transparent anode usually indium tin oxide, ITO
  • a matrix material e.g. B. 4,4'-bis (carbazol-9-yl) - biphenyl (CBP) with a phosphorescent dye, e.g. B. tris (phenylpyridyl)
  • HBL Hole blocking layer
  • BAIq bis (2-methyl-8-hydroxyquinolinato) - (4- phenylphenolato) aluminum
  • Electron Transport Layer mostly based on aluminum tris-8-hydroxyquinolinate (AIQ 3 );
  • thin layer of a material with a high dielectric constant such as.
  • Cathode usually metals, metal combinations or metal alloys with a low work function, e.g. B. Ca, Ba, Mg, Al, In, Mg / Ag, but also organic-inorganic hybrid cathodes. Depending on the device structure, several of these layers can coincide, or each of these layers need not necessarily be present. It is also possible to use thin insulator layers or dielectric layers between two of the active layers.
  • the short lifespan poses a problem: Especially for full color applications, it is particularly bad if the individual colors age at different speeds, as is currently the case. This means that there is a significant shift in the white point before the end of the service life (which is usually defined by a drop to 50% of the initial brightness). H. the color fidelity of the display is worse.
  • the operating voltage required is quite high, especially in the case of efficient phosphorescent OLEDs, and must therefore be reduced in order to improve the power efficiency. 5.
  • the efficiency, in particular the power efficiency (measured in Im / W), of phosphorescent OLEDs is acceptable, but improvements are still desired here as well.
  • the structure of the OLEDs is complex and technologically complex due to the large number of organic layers; a reduction in the number of layers is desirable for production in order to reduce the number of production steps, thereby simplifying the technology and increasing production reliability. The reasons mentioned above make improvements in the production of OLEDs necessary.
  • HBL hole blocking layer
  • BCP bathoproin
  • Another hole blocking material is bis (2-methyl-8-hydroxyquinolinato) - (4-phenylphenolato) aluminum (III) (BAIq). This significantly improved the stability and lifespan of the devices, but with the disadvantage that the quantum efficiency of the devices with BAIq is significantly (approx. 40%) lower than with BCP (T. Watanabe et al., Proc. SPIE 2001, 4105, 175). Kwong et al. (Appl. Phys. Lett.
  • hole blocking materials used to date lead to unsatisfactory results. There is therefore still a need for hole blocking materials which lead to good efficiencies in OLEDs, but at the same time also have a long service life. It has now surprisingly been found that OLEDs, the specific - listed below - Contain spirobifluorene derivatives as hole blocking materials, have significant improvements over the prior art. With these hole blocking materials, it is possible to obtain high efficiencies and good lifetimes at the same time, which is not possible with materials according to the prior art. It was also found that an electron transport layer does not necessarily have to be used with the new hole blocking materials, which is also a technological advantage.
  • EP 00676461 describes the use of spirobifluorene oligophenylene derivatives and other spirobifluorene derivatives in the emitting layer or in a charge transport or injection layer in a fluorescent OLED. However, this document does not show how these compounds could be used to advantage in phosphorescent OLEDs.
  • the invention relates to organic electroluminescent devices containing an anode, a cathode and at least one emission layer containing at least one matrix material which is doped with at least one phosphorescent emitter, characterized in that at least one hole-blocking layer is introduced between the emission layer and the cathode, the at least one contains a compound of the formula (1),
  • Aryl is the same or different in each occurrence, an aromatic or heteroaromatic ring system with 1 to 40 aromatic C atoms, which can be substituted by one or more radicals R;
  • the aryl substituent can be used at any point with the spirobifluorene
  • An aromatic or heteroaromatic ring system in the sense of this invention is to be understood as a system which does not necessarily only contain simple aromatic or heteroaromatic groups, but which can also contain oligo- and polycyclic systems and condensed aromatic units and in which also several aromatic or heteroaromatic groups can be interrupted by a short non-aromatic unit, such as sp 3 -hybridized C, O, N, etc.
  • a short non-aromatic unit such as sp 3 -hybridized C, O, N, etc.
  • systems such as 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamine, diphenyl ether, etc. should also be understood as aromatic systems.
  • the OLED can also contain further layers, such as, for example, hole injection layer, hole transport layer, electron injection layer and / or electron transport layer.
  • An insulator layer between two of the active layers can also be useful. However, it should be pointed out that all of these layers do not necessarily have to be present. So good results are still obtained if, for. B. no hole injection layer and / or no hole transport layer and / or no electron transport layer and / or no electron injection layer can be used. It has thus been found that OLEDs according to the invention which contain a hole blocking layer of the formula (1) continue to provide comparably good efficiencies and lifetimes with reduced operating voltage if no electron injection and electron transport layers are used.
  • the hole blocking layer according to the invention preferably contains at least 50% of compounds of the formula (1), particularly preferably at least 80%, very particularly preferably consists only of compounds of the formula (1).
  • aryl is the same or different in each occurrence, an aromatic or heteroaromatic ring system with 1 to 20 aromatic carbon atoms, which can be substituted by one or more radicals R;
  • R 1 is as defined above; n is the same or different at each occurrence 1 or 2; m is the same or different at each occurrence 0, 1 or 2; o is the same or different at each occurrence 2 or 3; p is the same or different at each occurrence 2, 3 or 4; the aryl substituent is preferably linked via the positions
  • Organic electroluminescent devices are particularly preferred in which the following applies to compounds of the formula (1):
  • Aryl is the same or different in each occurrence, is composed of phenyl and / or pyridine groups, contains a total of 5 to 18 aromatic C atoms and can be substituted by one or more radicals R;
  • R 1 is as defined above; n is 1 on each occurrence; m is the same or different at each occurrence 0 or; o is 3 for each occurrence; p is the same or different at each occurrence 3 or 4; the aryl substituent and the substituents R which are not equal to H are preferably linked via position 2 or also via positions 7, 2 'and / or T.
  • Compounds according to formula (1) very particularly preferably contain a total of two aryl substituents which are linked to the spirobifluorene unit either via positions 2 and 7 or via positions 2 and 2 ', or they contain a total of four aryl substituents which via the Positions 2, 2 ', 7 and 7' are linked to the spirobifluorene unit.
  • the glass transition temperature of the compounds of the formula (1) is preferably> 100 ° C, particularly preferably> 120 ° C, very particularly preferably> 140 ° C. It has been shown that the glass transition temperature of oligoarylene compounds which contain at least one spirobifluorene unit are usually in this range, while the glass transition temperature of simple oligophenylenes is often significantly lower. Without wishing to be bound by any particular theory, this may be caused by the sterically demanding molecular structure. This justifies the preference of these materials over simple oligophenylenes according to the prior art. It has been shown that the best results (in terms of efficiency and service life) are achieved if the layer thickness of the hole blocking layer is 1 to 50 nm, preferably 5 to 30 nm.
  • Electroluminescent device which does not contain an electron transport layer and in which the hole blocking layer is directly adjacent to the electron injection layer or the cathode. This is a surprising result, since the same device structure with BCP as hole blocking material without ETL delivers significantly shorter lifetimes.
  • the present invention is illustrated by the following examples of hole blocking materials according to formula (1), without wishing to restrict them thereto.
  • the person skilled in the art can produce further electroluminescent devices according to the invention with similar hole blocking materials from the description and the examples given without inventive step.
  • the matrix for the phosphorescent emitter is preferably selected from the classes of carbazoles, e.g. B. according to WO 00/057676, EP 01/202358 and WO 02/074015, the ketones and imines, e.g. B. according to the unpublished application DE 10317556.3, the phosphine oxides, the phosphine sulfides, the phosphine selenides, the phosphazenes, the sulfones, the sulfoxides, for. B. according to the unpublished application DE 10330761.3, the silanes, the polypodal metal complexes, for. B.
  • the phosphorescent emitter is preferably a compound which has at least one element with an atomic number greater than 36 and less than 84.
  • the phosphorescent emitter particularly preferably contains at least one element with an atomic number greater than 56 and less than 80, very particularly preferably molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, iridium, palladium, platinum, silver, gold and / or europium, e.g. B.
  • One or more layers are preferably coated in the organic electroluminescent device using a sublimation process.
  • the low molecular weight materials are evaporated in vacuum sublimation systems at a pressure ⁇ 10 "5 mbar, preferably ⁇ 10 " 6 mbar, particularly preferably ⁇ 10 "7 mbar.
  • One or more layers are likewise preferably coated in the organic electroluminescent device using the OVPD process (Organic Vapor Phase Deposition) or with the aid of carrier gas sublimation.
  • OVPD process Organic Vapor Phase Deposition
  • the low molecular weight materials are applied at a pressure between 10 "5 mbar and 1 bar.
  • one or more layers in the organic electroluminescent device with a printing process, such as.
  • a printing process such as.
  • LITI Light Induced Thermal Imaging, thermal transfer printing
  • InkJet printing inkjet printing
  • the operating voltages are lower in devices according to the invention than in devices according to the prior art.
  • the layer structure can be simplified because a separate electron transport layer does not necessarily have to be used. This is a surprising result, since the same device structure with BCP instead of compounds according to formula (1) without a separate electron transport layer delivers significantly poorer lifetimes and efficiencies. 5. If no separate electron transport layer is used, there is a further advantage: the operating voltages are much lower here; this increases the performance efficiency considerably. This is a surprising result, since the same device structure with BAIq instead of compounds according to formula (1) results in a hardly reduced operating voltage.
  • organic light-emitting diodes and the corresponding displays are aimed at.
  • O-SCs organic solar cells
  • O-lasers organic laser diodes
  • Example 1 Synthesis of 2,7-bis (4-biphenyl-1-yl) -2 ', 7'-di-tert-butyl-spiro-9,9' - bifluorene (HB 1) A degassed suspension of 73.3 g (125 mmol) 2,7-dibromo-2 ', 7'-di-te / t-butyl-9,9'-spirobifluorene, 69.3 g (350 mmol) 4-biphenylboronic acid and 111.5 g (525 mmol) tripotassium phosphate in one Mixture of 700 mL toluene, 100 mL dioxane and 500 mL water was mixed with 2.28 g (7.5 mmol) tris-o-tolylphosphine and then 281 mg (1.25 mmol) of palladium (II) acetate were added.
  • HB 1 2,7-bis (4-biphenyl-1-yl
  • Example 2 Synthesis of 2-2S7,7'-tetrakis (2-biphenyl-1-yl) spiro-9.9 ' bifluorene (HBM2) A degassed suspension from 158.0 g (80 mmol) 2,2', 7, 7'-tetrabromo-9.9 ' ⁇ spirobifluorene, 75.1 g (379 mmol) 2-biphenylboronic acid and 142.7 g (672 mmol) tripotassium phosphate in a mixture of 400 mL toluene, 50 mL dioxane and 300 mL water was mixed with 2.19 g (7.2 mmol) of tris-o-tolylphosphine and then mixed with 270 mg (1.2 mmol) of palladium (II) acetate. This suspension was heated under reflux for 16 h. The one that failed after cooling to room temperature
  • the OLEDs were produced using a general process which was adapted to the particular circumstances in each individual case (e.g. layer thickness variation to optimize efficiency or color).
  • a compound of the formula (1) was used as the hole blocking layer and the electron transport layer was optionally omitted.
  • Electroluminescent devices according to the invention can be represented as described for example in DE10330761.3. The following examples show the results of various OLEDs, both with hole blocking materials according to formula (1) and with BCP and BAIq as comparison materials.
  • the basic structure, the materials used and layer thicknesses (except for the HBLs) were identical for better comparability.
  • Phosphorescent OLEDs with the following structure were produced in accordance with the above-mentioned general procedure: PEDOT (HIL) 60 nm (spun on from water; obtained as Baytron P from HC Starck; poly (3,4-ethylenedioxy-2,5-thiophene)) NaphDATA ( HTL) 20 nm (evaporated; obtained from SynTec; 4,4 ', 4 "tris (N-1-naphthyl-N-phenylamino) -triphenylamine)
  • HTL S-TAD
  • EML tetrakis (diphenylamino) -spirobifluorene)
  • HBL matrix material
  • AIQ 3 (ETL) not available in all devices (see Table 1); if available: evaporated (obtained from SynTec; Tris (8-hydroxyquinolinato) aluminum (III)) Ba-Al (cathode) 3 nm Ba, then 150 nm AI.
  • OLEDs which have not yet been optimized, have been characterized as standard; the electroluminescence spectra, the efficiency (measured in cd / A), the power efficiency (measured in Im / W) depending on the brightness and the service life were determined.
  • the lifetime is defined as the time after which the initial brightness of the OLED has dropped by half at a constant current density of 10 mA / cm 2 .
  • Table 1 summarizes the results of the OLEDs according to the invention and of some comparative examples (with BCP and BAIq) (Examples 4 and 5). Only the hole blocking layer and the electron conductor layer (composition and layer thickness) are listed in the table. The other layers correspond to the structure mentioned above.
  • the OLEDs all show green emission with the CIE color coordinates (0.39; 0.57) resulting from the dopant Ir (PPy) 3 (Table 1, Examples 4 and 5).
  • BAIq (example 4c) only achieved 27.3 cd / A or 18.8 Im / W and BCP (example 4d) reached 32.6 cd / A, but only a power efficiency of 18.2 Im / W.
  • a similarly good behavior is obtained for OLEDs without AIQ 3 as ETL and with HBM2 as a hole blocking layer, as can be seen from Table 1, Example 5.
  • HBM2 you get an efficiency of 31.0 cd / A, with BAIq only 24.8 cd / A and with BCP even only 16.7 cd / A.
  • the power efficiency with HBM2 is 18.1 Im / W, in contrast with BAIq only 14.7 Im / W and with BCP only 8.7 Im / W.
  • Table 1 shows that HBM1 (Example 4a) with 910 h at 10 mA / cm 2 has the best lifetime, followed by HBM2 with 650 h. OLEDs without AIQ 3 as ETL all have a shorter lifespan, with HBM2 (example 5a) performing best at 580 h. The lifespan is usually the time after which only 50% of the initial luminance is reached. From the measured lifetimes, lifetimes can now be calculated for an initial brightness of 400 cd / m 2 . In the case of HBM1 (example 4a), a service life of over 60,000 h is obtained and with HBM2 (example 5a) over 40,000 h, which is significantly higher than the 10,000 h required for display applications.
  • phosphorescent OLEDs which contain hole blocking materials according to formula (1) have high efficiencies with long lifetimes and low operating voltages, as can easily be seen from the examples in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The invention relates to the improvement of phosphorescent organic electroluminescent devices, whereby materials of formula (1) are used for the hole blocking layer.

Description

Beschreibungdescription
Organisches ElektrolumineszenzelementOrganic electroluminescent element
Organische und metallorganische Verbindungen finden Einsatz als funktionelle Materialien in einer Reihe von Anwendungen, die im weitesten Sinne der Elektronikindustrie zugerechnet werden können. Bei den organischen Elektrolumineszenzvorrichtungen (allg. Beschreibung des Aufbaus vgl. US 4,539,507 und US 5,151 ,629) bzw. deren Einzelbauteilen, den organischen lichtemittierenden Dioden (OLEDs), ist die Markteinführung bereits erfolgt, wie die Autoradios mit "organischem Display" der Firma Pioneer oder eine Digitalkamera der Firma Kodak belegen. Weitere derartige Produkte stehen kurz vor der Einführung. Dennoch sind hier noch deutliche Verbesserungen nötig, um diese Displays zu einer echten Konkurrenz zu den derzeit marktbeherrschenden Flüssigkristallanzeigen (LCD) zu machen bzw. diese zu überflügeln.Organic and organometallic compounds are used as functional materials in a number of applications that can be broadly attributed to the electronics industry. The market for organic electroluminescent devices (for a general description of the structure, see US Pat. No. 4,539,507 and US Pat. No. 5,151,629) and their individual components, organic light-emitting diodes (OLEDs), has already taken place, as have car radios with an "organic display" from Pioneer or use a digital camera from Kodak. Other such products are about to be launched. Nevertheless, significant improvements are still necessary to make these displays a real competitor to the currently dominant liquid crystal displays (LCD) or to surpass them.
Eine Entwicklung, die sich in den letzten Jahren abzeichnet, ist der Einsatz metallorganischer Komplexe, die Phosphoreszenz statt Fluoreszenz zeigen (M. A. Baldo et al., Appl. Phys. Lett. 1999, 75, 4-6). Aus theoretischen Spin-statistischen Gründen ist unter Verwendung metallorganischer Verbindungen alsA development that has emerged in recent years is the use of organometallic complexes which show phosphorescence instead of fluorescence (M.A. Baldo et al., Appl. Phys. Lett. 1999, 75, 4-6). For theoretical spin-statistical reasons, using organometallic compounds as
Phosphoreszenz-Emitter eine bis zu vierfache Energie- und Leistungseffizienz möglich. Für die Verbesserung phosphoreszierender OLEDs ist nicht nur die Entwicklung der metallorganischen Verbindungen selbst von Bedeutung, sondern vor allem auch von weiteren speziell hierfür benötigten Komponenten, wie beispielsweise Matrix- oder Lochblockiermaterialien.Phosphorescence emitters allow up to four times the energy and power efficiency. In order to improve phosphorescent OLEDs, it is not only important to develop the organometallic compounds themselves, but above all to develop other components that are specifically required for this purpose, such as matrix or hole blocking materials.
Üblicherweise besteht eine organische Elektrolumineszenzvorrichtung aus mehreren Schichten, die mittels Vakuummethoden oder unterschiedlicher Drucktechniken aufeinander aufgebracht werden. Für phosphoreszierende organische Elektrolumineszenzvorrichtungen sind diese Schichten im Einzelnen:An organic electroluminescent device usually consists of several layers which are applied to one another by means of vacuum methods or different printing techniques. For phosphorescent organic electroluminescent devices, these layers are in detail:
1. Trägerplatte = Substrat (üblicherweise Glas oder Kunststofffolie);1. Carrier plate = substrate (usually glass or plastic film);
2. Transparente Anode (üblicherweise Indium-Zinn-Oxid, ITO);2. Transparent anode (usually indium tin oxide, ITO);
3. Lochinjektionsschicht (Hole injection Layer = HIL): z. B. auf der Basis von Kupferphthalocyanin (CuPc) oder leitfähigen Polymeren; 4. Lochtransportschicht(en) (Hole Transport Layer = HTL): üblicherweise auf Basis von Triarylaminderivaten; 5. Emissionsschicht(en) (Emission Layer = EML): bei phosphoreszierenden Devices üblicherweise aus einem Matrixmaterial, z. B. 4,4'-Bis(carbazol-9-yl)- biphenyl (CBP), das mit einem Phosphoreszenzfarbstoff, z. B. Tris(phenylpyridyl)-iridium (lr(PPy)3) oder Tris(2-benzothiophenylpyridyl)-iridium (lr(BTP)3), dotiert ist;3. Hole injection layer (HIL): z. B. based on copper phthalocyanine (CuPc) or conductive polymers; 4. Hole Transport Layer (HTL): usually based on triarylamine derivatives; 5. Emission Layer (s) (Emission Layer = EML): in phosphorescent devices usually made of a matrix material, e.g. B. 4,4'-bis (carbazol-9-yl) - biphenyl (CBP) with a phosphorescent dye, e.g. B. tris (phenylpyridyl) iridium (lr (PPy) 3 ) or tris (2-benzothiophenylpyridyl) iridium (lr (BTP) 3 ), is doped;
6. Lochblockierschicht (Hole Blocking Layer = HBL): üblicherweise aus BCP (2,9-Dimethyl-4,7-diphenyl-1 ,10-phenanthrolin = Bathocuproin) oder Bis(2- methyl-8-hydroxychinolinato)-(4-phenylphenolato)-aluminium(lll) (BAIq);6.Hole blocking layer (HBL): usually from BCP (2,9-dimethyl-4,7-diphenyl-1, 10-phenanthroline = bathocuproin) or bis (2-methyl-8-hydroxyquinolinato) - (4- phenylphenolato) aluminum (III) (BAIq);
7. Elektronentransportschicht (Electron Transport Layer = ETL): meist auf Basis von AIuminium-tris-8-hydroxychinolinat (AIQ3);7. Electron Transport Layer (ETL): mostly based on aluminum tris-8-hydroxyquinolinate (AIQ 3 );
8. Elektroneninjektionsschicht (Electron Injection Layer = EIL, auch Isolatorschicht = ISL genannt): dünne Schicht aus einem Material mit einer hohen Dielektrizitätskonstanten, wie z. B. LiF, Li2O, BaF2, MgO, NaF;8. Electron Injection Layer (EIL, also called insulator layer = ISL): thin layer of a material with a high dielectric constant, such as. B. LiF, Li 2 O, BaF 2 , MgO, NaF;
9. Kathode: in der Regel Metalle, Metallkombinationen oder Metalllegierungen mit niedriger Austrittsarbeit, z. B. Ca, Ba, Mg, AI, In, Mg/Ag, aber auch organischanorganische Hybridkathoden. Je nach Deviceaufbau können auch mehrere dieser Schichten zusammenfallen, bzw. es muss nicht notwendigerweise jede dieser Schichten vorhanden sein. Auch die Verwendung von dünnen Isolatorschichten oder Dielektrikaschichten zwischen zwei der aktiven Schichten ist möglich.9. Cathode: usually metals, metal combinations or metal alloys with a low work function, e.g. B. Ca, Ba, Mg, Al, In, Mg / Ag, but also organic-inorganic hybrid cathodes. Depending on the device structure, several of these layers can coincide, or each of these layers need not necessarily be present. It is also possible to use thin insulator layers or dielectric layers between two of the active layers.
Allerdings gibt es immer noch erhebliche Probleme, die einer dringendenHowever, there are still significant problems that are urgent
Verbesserung bedürfen, um hochwertige Vollfarbanwendungen zu ermöglichen:Needs improvement to enable high quality full color applications:
1. So ist v. a. die operative Lebensdauer von OLEDs immer noch zu gering, so dass bislang nur einfache Anwendungen kommerziell realisiert werden konnten.1. So v. a. the operational lifespan of OLEDs is still too short, so that only simple applications have so far been commercially possible.
2. Aus der kurzen Lebensdauer ergibt sich ein Folgeproblem: Gerade für Vollfarb- Anwendungen ist es besonders schlecht, wenn die einzelnen Farben unterschiedlich schnell altern, wie dies derzeit der Fall ist. Dies führt dazu, dass es schon vor Ende der Lebensdauer (die in der Regel durch einen Abfall auf 50 % der Anfangshelligkeit definiert ist) zu einer deutlichen Verschiebung des Weißpunkts kommt, d. h. die Farbtreue der Darstellung im Display wird schlechter.2. The short lifespan poses a problem: Especially for full color applications, it is particularly bad if the individual colors age at different speeds, as is currently the case. This means that there is a significant shift in the white point before the end of the service life (which is usually defined by a drop to 50% of the initial brightness). H. the color fidelity of the display is worse.
3. Die Alterungsprozesse gehen i. d. R. mit einem Anstieg der Spannung einher. Dieser Effekt macht spannungsgetriebene organische Elektrolumineszenzvorrichtungen schwierig bzw. unmöglich. Eine stromgetriebene Ansteuerung ist aber gerade in diesem Fall aufwändiger und teurer.3. The aging processes go i. d. Usually accompanied by an increase in voltage. This effect makes voltage-driven organic electroluminescent devices difficult or impossible. In this case, however, a current-driven control is more complex and expensive.
4. Die benötigte Betriebsspannung ist gerade bei effizienten phosphoreszierenden OLEDs recht hoch und muss daher verringert werden, um die Leistungseffizienz zu verbessern. 5. Die Effizienz, insbesondere die Leistungseffizienz (gemessen in Im/W), von phosphoreszierenden OLEDs ist zwar akzeptabel, aber auch hier sind immer noch Verbesserungen erwünscht. 6. Der Aufbau der OLEDs ist durch die Vielzahl organischer Schichten komplex und technologisch aufwändig; eine Reduktion der Schichtenanzahl ist für die Produktion wünschenswert, um die Anzahl der Produktionsschritte zu verringern, dadurch die Technologie zu vereinfachen und die Produktionssicherheit zu erhöhen. Die oben genannten Gründe machen Verbesserungen bei der Herstellung von OLEDs notwendig.4. The operating voltage required is quite high, especially in the case of efficient phosphorescent OLEDs, and must therefore be reduced in order to improve the power efficiency. 5. The efficiency, in particular the power efficiency (measured in Im / W), of phosphorescent OLEDs is acceptable, but improvements are still desired here as well. 6. The structure of the OLEDs is complex and technologically complex due to the large number of organic layers; a reduction in the number of layers is desirable for production in order to reduce the number of production steps, thereby simplifying the technology and increasing production reliability. The reasons mentioned above make improvements in the production of OLEDs necessary.
Bei phosphoreszierenden OLEDs wird üblicherweise eine Lochblockierschicht (HBL) folgend auf die Emitterschicht zur Steigerung der Effizienz und Lebensdauer verwendet. Diese Devicestrukturen werden meist nach dem Kriterium der maximalen Effizienz optimiert. Dabei kommt häufig BCP (Bathocuproin) als Lochblockiermaterial zum Einsatz, womit sehr gute Effizienzen erzielt werden (z. B. D. F. O'Brien et al., Appl. Phys. Lett. 1999, 74, 442), allerdings mit dem entscheidenden Nachteil, dass die Lebensdauer der OLEDs hier sehr niedrig ist. T. Tsutsui et al. (Japanese J. Appl. Phys. 1999, 38, L1502) geben als Grund hierfür die geringe Stabilität von BCP an, so dass diese Devices nicht in hochwertigen Displays Verwendung finden können. Ein weiteres Lochblockiermaterial ist Bis(2-methyl-8- hydroxychinolinato)-(4-phenylphenolato)-aluminium(lll) (BAIq). Damit konnten die Stabilität und die Lebensdauer der Devices deutlich verbessert werden, allerdings mit dem Nachteil, dass die Quanteneffizienz der Devices mit BAIq deutlich (ca. 40 %) niedriger ist als mit BCP (T. Watanabe et al., Proc. SPIE 2001, 4105, 175). Kwong et al. (Appl. Phys. Lett. 2002, 81, 162) erzielten damit Lebensdauern von - 10000 h bei 100 cd/m2 mit Tris(phenylpyridyl)iridium(lll) als Emitter. Allerdings zeigte dieses Device nur eine Effizienz von 19 cd/A, was weit hinter dem Stand der Technik zurückliegt. Somit ermöglicht BAIq zwar gute Lebensdauern, insgesamt ist es jedoch kein zufriedenstellendes Lochblockiermaterial, da die erreichte Effizienz zu niedrig ist.With phosphorescent OLEDs, a hole blocking layer (HBL) is usually used following the emitter layer in order to increase the efficiency and service life. These device structures are usually optimized according to the criterion of maximum efficiency. BCP (bathocuproin) is often used as the hole blocking material, which achieves very good efficiencies (e.g. BDF O'Brien et al., Appl. Phys. Lett. 1999, 74, 442), but with the decisive disadvantage that the Lifetime of the OLEDs is very low here. T. Tsutsui et al. (Japanese J. Appl. Phys. 1999, 38, L1502) cite the low stability of BCP as the reason for this, so that these devices cannot be used in high-quality displays. Another hole blocking material is bis (2-methyl-8-hydroxyquinolinato) - (4-phenylphenolato) aluminum (III) (BAIq). This significantly improved the stability and lifespan of the devices, but with the disadvantage that the quantum efficiency of the devices with BAIq is significantly (approx. 40%) lower than with BCP (T. Watanabe et al., Proc. SPIE 2001, 4105, 175). Kwong et al. (Appl. Phys. Lett. 2002, 81, 162) thus achieved lifetimes of - 10000 h at 100 cd / m 2 with tris (phenylpyridyl) iridium (III) as emitter. However, this device only showed an efficiency of 19 cd / A, which is far behind the state of the art. Thus, BAIq enables good lifetimes, but overall it is not a satisfactory hole blocking material because the efficiency achieved is too low.
Aus dieser Beschreibung geht klar hervor, dass die bislang verwendeten Lochblockiermaterialien zu unbefriedigenden Ergebnissen führen. Es besteht also weiterhin ein Bedarf an Lochblockiermaterialien, die in OLEDs zu guten Effizienzen führen, gleichzeitig aber auch zu hohen Lebensdauern. Es wurde nun überraschend gefunden, dass OLEDs, die bestimmte - im Folgenden aufgeführte - Spirobifluorenderivate als Lochblockiermaterialien enthalten, deutliche Verbesserungen gegenüber dem Stand der Technik aufweisen. Mit diesen Lochblockiermaterialien ist es möglich, gleichzeitig hohe Effizienzen und gute Lebensdauern zu erhalten, was mit Materialen gemäß dem Stand der Technik nicht möglich ist. Zudem wurde gefunden, dass mit den neuen Lochblockiermaterialien nicht notwendigerweise eine Elektronentransportschicht verwendet werden muss, was ebenfalls einen technologischen Vorteil darstellt.From this description it is clear that the hole blocking materials used to date lead to unsatisfactory results. There is therefore still a need for hole blocking materials which lead to good efficiencies in OLEDs, but at the same time also have a long service life. It has now surprisingly been found that OLEDs, the specific - listed below - Contain spirobifluorene derivatives as hole blocking materials, have significant improvements over the prior art. With these hole blocking materials, it is possible to obtain high efficiencies and good lifetimes at the same time, which is not possible with materials according to the prior art. It was also found that an electron transport layer does not necessarily have to be used with the new hole blocking materials, which is also a technological advantage.
Die Verwendung einfacher Oligophenylene (1 ,3,5-Tris(4-biphenylyl)benzol und Derivate davon) als Lochblockiermaterial in phosphoreszierenden OLEDs wurde in der Literatur bereits beschrieben (z. B. K. Okumoto et al., Chem. Mater. 2003, 15, 699). Allerdings sind die Glasübergangstemperaturen dieser Verbindungen niedrig, teilweise deutlich unter 100 °C, was der Verwendung dieser Verbindungsklasse in Displayanwendungen im Wege steht. Außerdem werden mit dieser Devicekonfiguration keine Spitzeneffizienzen erreicht, so dass man erkennen kann, dass dieses Lochblockiermaterial offensichtlich nicht für die Herstellung von qualitativ hochwertigen Devices geeignet ist.The use of simple oligophenylenes (1,3,5-tris (4-biphenylyl) benzene and derivatives thereof) as hole-blocking material in phosphorescent OLEDs has already been described in the literature (e.g. BK Okumoto et al., Chem. Mater. 2003, 15, 699). However, the glass transition temperatures of these connections are low, sometimes well below 100 ° C, which prevents the use of this connection class in display applications. In addition, no peak efficiencies are achieved with this device configuration, so that it can be seen that this hole blocking material is obviously not suitable for the production of high-quality devices.
In EP 00676461 wird die Verwendung von Spirobifluoren-Oligophenylenderivaten und anderen Spirobifluorenderivaten in der emittierenden Schicht oder in einer Ladungstransport- oder -injektionsschicht in einer fluoreszierenden OLED beschrieben. Aus dieser Schrift geht jedoch nicht hervor, wie diese Verbindungen nutzbringend in phosphoreszierenden OLEDs eingesetzt werden könnten.EP 00676461 describes the use of spirobifluorene oligophenylene derivatives and other spirobifluorene derivatives in the emitting layer or in a charge transport or injection layer in a fluorescent OLED. However, this document does not show how these compounds could be used to advantage in phosphorescent OLEDs.
Gegenstand der Erfindung sind organische Elektrolumineszenzvorrichtungen, enthaltend eine Anode, eine Kathode und mindestens eine Emissionsschicht, enthaltend mindestens ein Matrixmaterial, welches mit mindestens einem phosphoreszierenden Emitter dotiert ist, dadurch gekennzeichnet, dass zwischen die Emissionsschicht und die Kathode mindestens eine Lochblockierschicht eingebracht ist, die mindestens eine Verbindung gemäß Formel (1) enthält,The invention relates to organic electroluminescent devices containing an anode, a cathode and at least one emission layer containing at least one matrix material which is doped with at least one phosphorescent emitter, characterized in that at least one hole-blocking layer is introduced between the emission layer and the cathode, the at least one contains a compound of the formula (1),
(Formel 1) wobei für die verwendeten Symbole und Indizes gilt: Aryl ist bei jedem Auftreten gleich oder verschieden ein aromatisches oder heteroaromatisches Ringsystem mit 1 bis 40 aromatischen C-Atomen, das durch einen oder mehrere Reste R substituiert sein kann; (Formula 1) where for the symbols and indices used: Aryl is the same or different in each occurrence, an aromatic or heteroaromatic ring system with 1 to 40 aromatic C atoms, which can be substituted by one or more radicals R;
R ist bei jedem Auftreten gleich oder verschieden H, F, Cl, Br, I, NO2, CN oder eine geradkettige, verzweigte oder cyclische Alkyl- oder Alkoxygruppe mit 1 bis 40 C-Atomen, wobei ein oder mehrere nicht benachbarte CH2-Gruppen durch -R1C=CR1-, -C -£-, Si(R1)2, Ge(R1)2, Sn(R1)2) -O-, -S- oder -NR1- ersetzt sein können und wobei ein oder mehrere H-Atome durch F oder eine aromatische Gruppe R1 ersetzt sein können, wobei zwei oder mehrere Substituenten R oder R mit Aryl ein weiteres mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem aufspannen können;Each occurrence of R is the same or different H, F, Cl, Br, I, NO 2 , CN or a straight-chain, branched or cyclic alkyl or alkoxy group with 1 to 40 C atoms, one or more non-adjacent CH 2 - Groups by -R 1 C = CR 1 -, -C - £ -, Si (R 1 ) 2 , Ge (R 1 ) 2 , Sn (R 1 ) 2) -O-, -S- or -NR 1 - can be replaced and one or more H atoms can be replaced by F or an aromatic group R 1 , where two or more substituents R or R with aryl can span another mono- or polycyclic, aliphatic or aromatic ring system;
R1 ist bei jedem Auftreten gleich oder verschieden H oder ein aliphatischer oder aromatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, wobei zwei oder mehrere Substituenten R1 bzw. R1 mit R und/oder Aryl auch ein weiteres mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem aufspannen können; n ist bei jedem Auftreten gleich oder verschieden 1 , 2, 3 oder 4; m ist bei jedem Auftreten gleich oder verschieden 0, 1 , 2, 3 oder 4; o ist bei jedem Auftreten gleich oder verschieden 0, 1 , 2 oder 3; p ist bei jedem Auftreten gleich oder verschieden 0, 1 , 2, 3 oder 4; mit der Maßgabe, dass die Summe n + o = 4 und die Summe m + p = 4 pro Ring ergibt, weiterhin mit der Maßgabe, dass das Lochblockiermaterial nicht identisch zum Matrixmaterial ist, und mit der weiteren Maßgabe, dass Aryl keine Diazin-,Each time R 1 is the same or different, H or an aliphatic or aromatic hydrocarbon radical having 1 to 20 C atoms, two or more substituents R 1 or R 1 with R and / or aryl also being another mono- or polycyclic, aliphatic or can span aromatic ring system; n is the same or different at each occurrence 1, 2, 3 or 4; m is the same or different at each occurrence 0, 1, 2, 3 or 4; o is the same or different at each occurrence 0, 1, 2 or 3; p is the same or different at each occurrence 0, 1, 2, 3 or 4; with the proviso that the sum n + o = 4 and the sum m + p = 4 per ring, further with the proviso that the hole blocking material is not identical to the matrix material, and with the further proviso that aryl does not contain diazine,
Triazin- oder Tetrazin-Gruppe enthält.Contains triazine or tetrazine group.
Dabei kann der Aryl-Substituent an jeder beliebigen Stelle mit dem Spirobifluoren-The aryl substituent can be used at any point with the spirobifluorene
Grundgerüst verknüpft sein.Basic structure to be linked.
Unter einem aromatischen bzw. heteroaromatischen Ringsystem im Sinne dieser Erfindung soll ein System verstanden werden, das nicht notwendigerweise nur einfache aromatische bzw. heteroaromatische Gruppen enthält, sondern das auch oligo- und polycyclische Systeme und kondensierte aromatische Einheiten enthalten kann und in dem auch mehrere aromatische bzw. heteroaromatische Gruppen durch eine kurze nicht-aromatische Einheit, wie beispielsweise sp3-hybridisierter C, O, N, etc. unterbrochen sein können. So sollen also beispielsweise auch Systeme wie 9,9'-Spirobifluoren, 9,9-DiaryIfluoren, Triarylamin, Diphenylether, etc. als aromatische Systeme verstanden werden. Die OLED kann noch weitere Schichten enthalten, wie zum Beispiel Lochinjektionsschicht, Lochtransportschicht, Elektroneninjektionsschicht und/oder Elektronentransportschicht. Auch eine Isolatorschicht zwischen zwei der aktiven Schichten kann sinnvoll sein. Es sei allerdings darauf verwiesen, dass nicht notwendigerweise alle diese Schichten vorhanden sein müssen. So werden weiterhin gute Ergebnisse erhalten, wenn z. B. keine Lochinjektionsschicht und/oder keine Lochtransportschicht und/oder keine Elektronentransportschicht und/oder keine Elektroneninjektionsschicht verwendet werden. So wurde gefunden, dass erfindungsgemäße OLEDs, die eine Lochblockierschicht gemäß Formel (1) enthalten, weiterhin vergleichbar gute Effizienzen und Lebensdauern bei verringerter Betriebsspannung liefern, wenn keine Elektroneninjektions- und Elektronentransportschichten verwendet werden.An aromatic or heteroaromatic ring system in the sense of this invention is to be understood as a system which does not necessarily only contain simple aromatic or heteroaromatic groups, but which can also contain oligo- and polycyclic systems and condensed aromatic units and in which also several aromatic or heteroaromatic groups can be interrupted by a short non-aromatic unit, such as sp 3 -hybridized C, O, N, etc. Thus, for example, systems such as 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamine, diphenyl ether, etc. should also be understood as aromatic systems. The OLED can also contain further layers, such as, for example, hole injection layer, hole transport layer, electron injection layer and / or electron transport layer. An insulator layer between two of the active layers can also be useful. However, it should be pointed out that all of these layers do not necessarily have to be present. So good results are still obtained if, for. B. no hole injection layer and / or no hole transport layer and / or no electron transport layer and / or no electron injection layer can be used. It has thus been found that OLEDs according to the invention which contain a hole blocking layer of the formula (1) continue to provide comparably good efficiencies and lifetimes with reduced operating voltage if no electron injection and electron transport layers are used.
Bevorzugt enthält die erfindungsgemäße Lochblockierschicht mindestens 50 % Verbindungen gemäß Formel (1 ), besonders bevorzugt mindestens 80 %, ganz besonders bevorzugt besteht diese nur aus Verbindungen gemäß Formel (1 ).The hole blocking layer according to the invention preferably contains at least 50% of compounds of the formula (1), particularly preferably at least 80%, very particularly preferably consists only of compounds of the formula (1).
Bevorzugt sind organische Elektrolumineszenzvorrichtungen, bei denen fürOrganic electroluminescent devices are preferred in which for
Verbindungen gemäß Formel (1 ) gilt: Aryl ist bei jedem Auftreten gleich oder verschieden ein aromatisches oder heteroaromatisches Ringsystem mit 1 bis 20 aromatischen C-Atomen, das durch einen oder mehrere Reste R substituiert sein kann;Compounds according to formula (1) apply: aryl is the same or different in each occurrence, an aromatic or heteroaromatic ring system with 1 to 20 aromatic carbon atoms, which can be substituted by one or more radicals R;
R ist bei jedem Auftreten gleich oder verschieden H, F, Cl, NO2, CN, N(R1)2 oder eine geradkettige, verzweigte oder cyclische Alkyl- oder Alkoxygruppe mit 1 bis 20 C-Atomen, wobei ein oder mehrere nicht benachbarte CH2-Gruppen durch -R1C=CR1-, -C --C-, Si(R1)2, Ge(R1)2, Sn(R1)2, -O-, -S- oder -NR1- ersetzt sein können und wobei ein oder mehrere H-Atome durch F oder eine aromatische Gruppe R1 ersetzt sein können, wobei zwei oder mehrere Substituenten R ein weiteres mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem aufspannen können;Each occurrence of R is the same or different H, F, Cl, NO 2 , CN, N (R 1 ) 2 or a straight-chain, branched or cyclic alkyl or alkoxy group with 1 to 20 C atoms, one or more not being adjacent CH 2 groups by -R 1 C = CR 1 -, -C --C-, Si (R 1 ) 2 , Ge (R 1 ) 2 , Sn (R 1 ) 2 , -O-, -S- or -NR 1 - can be replaced and wherein one or more H atoms can be replaced by F or an aromatic group R 1 , where two or more substituents R can span another mono- or polycyclic, aliphatic or aromatic ring system;
R1 ist wie oben definiert; n ist bei jedem Auftreten gleich oder verschieden 1 oder 2; m ist bei jedem Auftreten gleich oder verschieden 0, 1 oder 2; o ist bei jedem Auftreten gleich oder verschieden 2 oder 3; p ist bei jedem Auftreten gleich oder verschieden 2, 3 oder 4; dabei erfolgt die Verknüpfung des Aryl-Substituenten bevorzugt über die PositionenR 1 is as defined above; n is the same or different at each occurrence 1 or 2; m is the same or different at each occurrence 0, 1 or 2; o is the same or different at each occurrence 2 or 3; p is the same or different at each occurrence 2, 3 or 4; the aryl substituent is preferably linked via the positions
2 und/oder 4, bzw., wenn vorhanden, auch über die Positionen 5, 7, 2', 4', 5' und/oder T. Besonders bevorzugt sind organische Elektrolumineszenzvorrichtungen, bei denen für Verbindungen gemäß Formel (1) gilt:2 and / or 4, or, if available, also via positions 5, 7, 2 ', 4', 5 'and / or T. Organic electroluminescent devices are particularly preferred in which the following applies to compounds of the formula (1):
Aryl ist bei jedem Auftreten gleich oder verschieden, ist aufgebaut aus Phenyl- und/oder Pyridingruppen, enthält insgesamt 5 bis 18 aromatische C-Atome und kann durch einen oder mehrere Reste R substituiert sein;Aryl is the same or different in each occurrence, is composed of phenyl and / or pyridine groups, contains a total of 5 to 18 aromatic C atoms and can be substituted by one or more radicals R;
R ist bei jedem Auftreten gleich oder verschieden H, F, NO2, CN oder eine geradkettige, verzweigte oder cyclische Alkyl- oder Alkoxygruppe mit 1 bis 10 C-Atomen, wobei ein oder mehrere nicht benachbarte CH2-Gruppen durch -R1C=CR1-, -C--C-, Si(R1)2, Ge(R1)2, Sn(R1)2, -O-, -S- oder -NR1- ersetzt sein können und wobei ein oder mehrere H-Atome durch F oder eine aromatische Gruppe R1 ersetzt sein können, wobei zwei oder mehrere Substituenten R ein weiteres mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem aufspannen können;Each occurrence of R is the same or different H, F, NO 2 , CN or a straight-chain, branched or cyclic alkyl or alkoxy group with 1 to 10 C atoms, one or more non-adjacent CH 2 groups being represented by -R 1 C = CR 1 -, -C - C-, Si (R 1 ) 2 , Ge (R 1 ) 2 , Sn (R 1 ) 2 , -O-, -S- or -NR 1 - can be replaced and wherein one or more H atoms can be replaced by F or an aromatic group R 1 , where two or more substituents R can span another mono- or polycyclic, aliphatic or aromatic ring system;
R1 ist wie oben definiert; n ist bei jedem Auftreten gleich 1 ; m ist bei jedem Auftreten gleich oder verschieden 0 oder ; o ist bei jedem Auftreten gleich 3; p ist bei jedem Auftreten gleich oder verschieden 3 oder 4; dabei erfolgt die Verknüpfung des Aryl-Substituenten und der Substituenten R, die ungleich H sind, bevorzugt über die Position 2, bzw. auch über die Positionen 7, 2' und/oder T.R 1 is as defined above; n is 1 on each occurrence; m is the same or different at each occurrence 0 or; o is 3 for each occurrence; p is the same or different at each occurrence 3 or 4; the aryl substituent and the substituents R which are not equal to H are preferably linked via position 2 or also via positions 7, 2 'and / or T.
Ganz besonders bevorzugt enthalten Verbindungen gemäß Formel (1) insgesamt zwei Aryl-Substituenten, die entweder über die Positionen 2 und 7 oder über die Positionen 2 und 2' mit der Spirobifluoreneinheit verknüpft sind, oder sie enthalten insgesamt vier Aryl-Substituenten, die über die Positionen 2, 2', 7 und 7' mit der Spirobifluoreneinheit verknüpft sind.Compounds according to formula (1) very particularly preferably contain a total of two aryl substituents which are linked to the spirobifluorene unit either via positions 2 and 7 or via positions 2 and 2 ', or they contain a total of four aryl substituents which via the Positions 2, 2 ', 7 and 7' are linked to the spirobifluorene unit.
Die Glasübergangstemperatur der Verbindungen gemäß Formel (1) ist bevorzugt > 100 °C, besonders bevorzugt > 120 °C, ganz besonders bevorzugt > 140 °C. Es hat sich gezeigt, dass die Glasübergangstemperatur von Oligoarylenverbindungen, die mindestens eine Spirobifluoreneinheit enthalten, meist in diesem Bereich liegen, während die Glasübergangstemperatur einfacher Oligophenylene häufig deutlich darunter liegt. Ohne an eine bestimmte Theorie gebunden sein zu wollen, ist dies eventuell durch den sterisch anspruchsvollen Molekülaufbau verursacht. Dies begründet die Bevorzugung dieser Materialien gegenüber einfachen Oligophenylenen gemäß dem Stand der Technik. Es hat sich gezeigt, dass die besten Ergebnisse (in Bezug auf die Effizienz und die Lebensdauer) erzielt werden, wenn die Schichtdicke der Lochblockierschicht 1 bis 50 nm beträgt, bevorzugt 5 bis 30 nm.The glass transition temperature of the compounds of the formula (1) is preferably> 100 ° C, particularly preferably> 120 ° C, very particularly preferably> 140 ° C. It has been shown that the glass transition temperature of oligoarylene compounds which contain at least one spirobifluorene unit are usually in this range, while the glass transition temperature of simple oligophenylenes is often significantly lower. Without wishing to be bound by any particular theory, this may be caused by the sterically demanding molecular structure. This justifies the preference of these materials over simple oligophenylenes according to the prior art. It has been shown that the best results (in terms of efficiency and service life) are achieved if the layer thickness of the hole blocking layer is 1 to 50 nm, preferably 5 to 30 nm.
Weiterhin hat sich gezeigt, dass besonders gute Ergebnisse, insbesondere in Bezug auf die Betriebsspannung und die Leistungseffizienz, erhalten werden, wenn zwischen die Lochblockierschicht und die Kathode bzw. die Elektroneninjektionsschicht keine Elektronentransportschicht (ETL) eingebracht wird. Bevorzugt ist also ebenfalls eine erfindungsgemäßeFurthermore, it has been shown that particularly good results, in particular with regard to the operating voltage and the power efficiency, are obtained if no electron transport layer (ETL) is introduced between the hole blocking layer and the cathode or the electron injection layer. An inventive one is also preferred
Elektrolumineszenzvorrichtung, die keine Elektronentransportschicht enthält und in der die Lochblockierschicht direkt an die Elektroneninjektionsschicht oder die Kathode angrenzt. Dies ist ein überraschendes Ergebnis, da dieselbe Devicestruktur mit BCP als Lochblockiermaterial ohne ETL deutlich kürzere Lebensdauern liefert.Electroluminescent device which does not contain an electron transport layer and in which the hole blocking layer is directly adjacent to the electron injection layer or the cathode. This is a surprising result, since the same device structure with BCP as hole blocking material without ETL delivers significantly shorter lifetimes.
Die vorliegende Erfindung wird durch die folgenden Beispiele für Lochblockiermaterialien gemäß Formel (1 ) näher erläutert, ohne sie darauf einschränken zu wollen. Der Fachmann kann aus der Beschreibung und den aufgeführten Beispielen ohne erfinderisches Zutun weitere erfindungsgemäße Elektrolumineszenzvorrichtungen mit ähnlichen Lochblockiermaterialien herstellen.The present invention is illustrated by the following examples of hole blocking materials according to formula (1), without wishing to restrict them thereto. The person skilled in the art can produce further electroluminescent devices according to the invention with similar hole blocking materials from the description and the examples given without inventive step.
Beispiel 1 Beispiel 2 Beispiel 3 Example 1 Example 2 Example 3
Beispiel 4 Beispiel 5 Beispiel 6 Example 4 Example 5 Example 6
Beispiel 7 Beispiel 8 Beispiel 9 Example 7 Example 8 Example 9
Die Matrix für den phosphoreszierenden Emitter ist bevorzugt ausgewählt aus den Klassen der Carbazole, z. B. gemäß WO 00/057676, EP 01/202358 und WO 02/074015, der Ketone und Imine, z. B. gemäß der nicht offen gelegten Anmeldung DE 10317556.3, der Phosphinoxide, der Phosphinsulfide, der Phosphinselenide, der Phosphazene, der Sulfone, der Sulfoxide, z. B. gemäß der nicht offen gelegten Anmeldung DE 10330761.3, der Silane, der polypodalen Metallkomplexe, z. B. gemäß der nicht offen gelegten Anmeldung DE 103,10887.4, oder der Oligophenylene basierend auf Spirobifluorenen, z. B. gemäß EP 676461 und WO 99/40051 ; besonders bevorzugt sind Ketone, Phosphinoxide, Sulfoxide und Sulfone.The matrix for the phosphorescent emitter is preferably selected from the classes of carbazoles, e.g. B. according to WO 00/057676, EP 01/202358 and WO 02/074015, the ketones and imines, e.g. B. according to the unpublished application DE 10317556.3, the phosphine oxides, the phosphine sulfides, the phosphine selenides, the phosphazenes, the sulfones, the sulfoxides, for. B. according to the unpublished application DE 10330761.3, the silanes, the polypodal metal complexes, for. B. according to the unpublished application DE 103,10887.4, or the oligophenylenes based on spirobifluorenes, for. B. according to EP 676461 and WO 99/40051; ketones, phosphine oxides, sulfoxides and sulfones are particularly preferred.
Der phosphoreszierende Emitter ist bevorzugt eine Verbindung, die mindestens ein Element der Ordnungszahl größer 36 und kleiner 84 aufweist. Besonders bevorzugt enthält der phosphoreszierende Emitter mindestens ein Element der Ordnungszahl größer 56 und kleiner 80, ganz besonders bevorzugt Molybdän, Wolfram, Rhenium, Ruthenium, Osmium, Rhodium, Iridium, Palladium, Platin, Silber, Gold und/oder Europium, z. B. gemäß WO 98/01011 , US 02/0034656, US 03/0022019, WO 00/70655, WO 01/41512, WO 02/02714, WO 02/15645, EP 1191613, EP 1191612, EP 1191614, WO 03/040257 und WO 03/084972.The phosphorescent emitter is preferably a compound which has at least one element with an atomic number greater than 36 and less than 84. The phosphorescent emitter particularly preferably contains at least one element with an atomic number greater than 56 and less than 80, very particularly preferably molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, iridium, palladium, platinum, silver, gold and / or europium, e.g. B. according to WO 98/01011, US 02/0034656, US 03/0022019, WO 00/70655, WO 01/41512, WO 02/02714, WO 02/15645, EP 1191613, EP 1191612, EP 1191614, WO 03 / 040257 and WO 03/084972.
Bevorzugt werden in der organischen Elektrolumineszenzvorrichtung eine oder mehrere Schichten mit einem Sublimationsverfahren beschichtet. Dabei werden die niedermolekularen Materialien in Vakuum-Sublimationsanlagen bei einem Druck < 10"5 mbar, bevorzugt < 10"6 mbar, besonders bevorzugt < 10"7 mbar aufgedampft.One or more layers are preferably coated in the organic electroluminescent device using a sublimation process. The low molecular weight materials are evaporated in vacuum sublimation systems at a pressure <10 "5 mbar, preferably <10 " 6 mbar, particularly preferably <10 "7 mbar.
Ebenfalls bevorzugt werden in der organischen Elektrolumineszenzvorrichtung eine oder mehrere Schichten mit dem OVPD-Verfahren (Organic Vapour Phase Deposition) oder mit Hilfe der Trägergassublimation beschichtet. Dabei werden die niedermolekularen Materialien bei einem Druck zwischen 10"5 mbar und 1 bar aufgebracht.One or more layers are likewise preferably coated in the organic electroluminescent device using the OVPD process (Organic Vapor Phase Deposition) or with the aid of carrier gas sublimation. The low molecular weight materials are applied at a pressure between 10 "5 mbar and 1 bar.
Ebenfalls bevorzugt werden in der organischen Elektrolumineszenzvorrichtung eine oder mehrere Schichten mit einem Druckverfahren, wie z. B. Flexodruck oder Offsetdruck, bevorzugt aber LITI (Light Induced Thermai Imaging, Thermotransferdruck) oder InkJet Druck (Tintenstrahl-Druck), beschichtet.Also preferred are one or more layers in the organic electroluminescent device with a printing process, such as. As flexo printing or offset printing, but preferably LITI (Light Induced Thermal Imaging, thermal transfer printing) or InkJet printing (inkjet printing), coated.
Die oben beschriebenen emittierenden Vorrichtungen weisen nun folgende überraschende Vorteile gegenüber dem Stand der Technik auf:The emitting devices described above now have the following surprising advantages over the prior art:
1. Die Effizienz entsprechender Vorrichtungen ist höher im Vergleich zu Systemen gemäß dem Stand der Technik, die BAIq als HBL enthalten.1. The efficiency of corresponding devices is higher compared to systems according to the prior art, which contain BAIq as HBL.
2. Die Lebensdauer entsprechender Vorrichtungen ist höher im Vergleich zu Systemen, die BCP als HBL enthalten. Dadurch erhält man Vorrichtungen, deren Lebensdauer und Effizienz vergleichbar sind mit den besten Werten gemäß Stand der Technik und in denen nicht nur eine der beiden Eigenschaften gute Ergebnisse liefert, wie dies mit BAIq oder BCP der Fall ist.2. The lifespan of corresponding devices is longer compared to systems that contain BCP as HBL. This results in devices whose service life and efficiency are comparable to the best values according to the prior art and in which not only one of the two properties gives good results, as is the case with BAIq or BCP.
3. Die Betriebsspannungen sind in erfindungsgemäßen Vorrichtungen niedriger als in Vorrichtungen gemäß Stand der Technik. 4. Der Schichtaufbau kann vereinfacht werden, weil nicht notwendigerweise eine separate Elektronentransportschicht verwendet werden muss. Dies ist ein überraschendes Ergebnis, da dieselbe Devicestruktur mit BCP statt mit Verbindungen gemäß Formel (1) ohne separate Elektronentransportschicht deutlich schlechtere Lebensdauern und Effizienzen liefert. 5. Wenn keine separate Elektronentransportschicht verwendet wird, ergibt sich ein weiterer Vorteil: Die Betriebsspannungen sind hier wesentlich geringer; dadurch erhöht sich die Leistungseffizienz erheblich. Dies ist ein überraschendes Ergebnis, da dieselbe Devicestruktur mit BAIq statt mit Verbindungen gemäß Formel (1) in kaum verringerter Betriebsspannung resultiert.3. The operating voltages are lower in devices according to the invention than in devices according to the prior art. 4. The layer structure can be simplified because a separate electron transport layer does not necessarily have to be used. This is a surprising result, since the same device structure with BCP instead of compounds according to formula (1) without a separate electron transport layer delivers significantly poorer lifetimes and efficiencies. 5. If no separate electron transport layer is used, there is a further advantage: the operating voltages are much lower here; this increases the performance efficiency considerably. This is a surprising result, since the same device structure with BAIq instead of compounds according to formula (1) results in a hardly reduced operating voltage.
6. Der Produktionsaufwand wird ohne Verwendung einer separaten Elektronentransportschicht ebenfalls geringer. Dies ist ein erheblicher technologischer Vorteil im Produktionsprozess, da bei der herkömmlichen Herstellungsweise für jede organische Schicht eine separate Aufdampfeinrichtung benötigt wird.6. The production effort is also reduced without the use of a separate electron transport layer. This is a considerable technological advantage in the production process, since the conventional method of manufacture requires a separate vapor deposition device for each organic layer.
Details zu den hier gemachten Angaben finden sich in den unten beschriebenen Beispielen.Details of the information given here can be found in the examples described below.
Im vorliegenden Anmeldetext und in den folgenden Beispielen wird auf organische Leuchtdioden und die entsprechenden Displays abgezielt. Trotz dieser Beschränkung der Beschreibung ist es für den Fachmann ohne weiteres erfinderisches Zutun möglich, das entsprechende erfindungsgemäße Design auch für andere, verwandte Vorrichtungen, z. B. für organische Solarzellen (O-SCs), organische Transistoren, organische integrierte Schaltungen, organischen Photorezeptoren oder auch organische Laserdioden (O-Laser), um nur einige weitere Anwendungen zu nennen, zu verwenden. Diese sind also auch Gegenstand der vorliegenden Anmeldung.In the present application text and in the following examples, organic light-emitting diodes and the corresponding displays are aimed at. Despite this limitation of the description, it is possible for the person skilled in the art without further inventive intervention to also apply the corresponding design according to the invention to other, related devices, for. B. for organic solar cells (O-SCs), organic transistors, organic integrated circuits, organic photoreceptors or organic laser diodes (O-lasers), to name just a few other applications. These are also the subject of the present application.
Beispiele:Examples:
Die nachfolgenden Synthesen wurden, sofern nicht anders angegeben, unter einer Schutzgasatmosphäre in getrockneten Lösungsmitteln durchgeführt. Die Edukte (2-Biphenylboronsäure, 4-Biphenylboronsäure, Trikaliumphosphat, Palladiumacetat, Tris-o-tolylphosphin) wurden von Aldrich bzw. Lancaster bezogen. 2,2', 7,7'- Tetrabrom-9,9!-spirobifIuoren wurde nach WO 9842655 und 2,7-Dibrom-2',7'-di-fe/τ- butyl-9, 9 '-spirobifluoren wurde nach WO 02/077060 dargestellt.Unless stated otherwise, the following syntheses were carried out under an inert gas atmosphere in dried solvents. The starting materials (2-biphenylboronic acid, 4-biphenylboronic acid, tripotassium phosphate, palladium acetate, tris-o-tolylphosphine) were obtained from Aldrich or Lancaster. 2.2 ', 7.7'- tetrabromo-9.9 ! Spirobifluorene was prepared according to WO 9842655 and 2,7-dibromo-2 ', 7'-di-fe / τ-butyl-9, 9' -spirobifluorene was prepared according to WO 02/077060.
Beispiel 1 : Synthese von 2,7-Bis(4-biphenyl-1 -yl)-2',7'-di-ferf-butyl-spiro-9,9'- bifluoren (HB 1) Eine entgaste Suspension aus 73.3 g (125 mmol) 2,7-Dibrom-2',7'-di-te/t-butyl-9,9'- spirobifluoren, 69.3 g (350 mmol) 4-Biphenylboronsäure und 111.5 g (525 mmol) Trikaliumphosphat in einem Gemisch aus 700 mL Toluol, 100 mL Dioxan und 500 mL Wasser wurde mit 2.28 g (7.5 mmol) Tris-o-tolylphosphin und anschließend mit 281 mg (1.25 mmol) Palladium(ll)acetat versetzt. Diese Suspension wurde 16 h unter Rückfluss erhitzt. Der nach Abkühlen auf Raumtemperatur ausgefallene Niederschlag wurde abfiltriert, in 1000 mL Dichlormethan gelöst und anschließend über eine kurze Säule aus Kieselgel filtriert. Das Filtrat wurde zur Trockene eingeengt, anschließend sechsmal aus je 400 mL Dioxan umkristallisiert und nach Erreichen einer Reinheit von > 99.9 % (HPLC) im Hochvakuum sublimiert. Die Ausbeute bei einer Reinheit von > 99.9 % (HPLC) betrug 70.8 g (96 mmol), entsprechend 77.3 % der Theorie. Tg = 174 °C. 1H-NMR (CDCI3): [ppm] = 7.97 (m, 2H), 7.76 (m, 2H), 7.70 (m, 2H), 7.60-7.51 (m, 12H), 7.42 (m, 6H), 7.33 (m, 2H), 7.01 (s, 2H), 6.77 (s, 2H), 1.17 (s, 18H).Example 1: Synthesis of 2,7-bis (4-biphenyl-1-yl) -2 ', 7'-di-tert-butyl-spiro-9,9' - bifluorene (HB 1) A degassed suspension of 73.3 g (125 mmol) 2,7-dibromo-2 ', 7'-di-te / t-butyl-9,9'-spirobifluorene, 69.3 g (350 mmol) 4-biphenylboronic acid and 111.5 g (525 mmol) tripotassium phosphate in one Mixture of 700 mL toluene, 100 mL dioxane and 500 mL water was mixed with 2.28 g (7.5 mmol) tris-o-tolylphosphine and then 281 mg (1.25 mmol) of palladium (II) acetate were added. This suspension was heated under reflux for 16 h. The precipitate which precipitated after cooling to room temperature was filtered off, dissolved in 1000 ml of dichloromethane and then filtered through a short column of silica gel. The filtrate was evaporated to dryness, then recrystallized six times from 400 mL dioxane each time and sublimed after a purity of> 99.9% (HPLC) in a high vacuum. The yield with a purity of> 99.9% (HPLC) was 70.8 g (96 mmol), corresponding to 77.3% of theory. T g = 174 ° C. 1 H-NMR (CDCI 3 ): [ppm] = 7.97 (m, 2H), 7.76 (m, 2H), 7.70 (m, 2H), 7.60-7.51 (m, 12H), 7.42 (m, 6H), 7.33 (m, 2H), 7.01 (s, 2H), 6.77 (s, 2H), 1.17 (s, 18H).
Beispiel 2: Synthese von 2-2S7,7'-Tetrakis(2-biphenyl-1-yl)spiro-9,9'-bifluoren (HBM2) Eine entgaste Suspension aus 158.0 g (80 mmol) 2,2',7,7'-Tetrabrom-9,9'~ spirobifluoren, 75.1 g (379 mmol) 2-Biphenylboronsäure und 142.7 g (672 mmol) Trikaliumphosphat in einem Gemisch aus 400 mL Toluol, 50 mL Dioxan und 300 mL Wasser wurde mit 2.19 g (7.2 mmol) Tris-o-tolylphosphin und anschließend mit 270 mg (1.2 mmol) Palladium(ll)acetat versetzt. Diese Suspension wurde 16 h unter Rückfluss erhitzt. Der nach Abkühlen auf Raumtemperatur ausgefalleneExample 2: Synthesis of 2-2S7,7'-tetrakis (2-biphenyl-1-yl) spiro-9.9 ' bifluorene (HBM2) A degassed suspension from 158.0 g (80 mmol) 2,2', 7, 7'-tetrabromo-9.9 '~ spirobifluorene, 75.1 g (379 mmol) 2-biphenylboronic acid and 142.7 g (672 mmol) tripotassium phosphate in a mixture of 400 mL toluene, 50 mL dioxane and 300 mL water was mixed with 2.19 g (7.2 mmol) of tris-o-tolylphosphine and then mixed with 270 mg (1.2 mmol) of palladium (II) acetate. This suspension was heated under reflux for 16 h. The one that failed after cooling to room temperature
Niederschlag wurde abfiltriert, in 1000 mL Dichlormethan gelöst und anschließend über eine kurze Säule aus Kieselgel filtriert. Das Filtrat wurde zur Trockene eingeengt, anschließend viermal aus je 300 mL DMF umkristallisiert und nach Erreichen einer Reinheit von > 99.9 % (HPLC) im Hochvakuum sublimiert. Die Ausbeute bei einer Reinheit von > 99.9 % (HPLC) betrug 52.0 g (56 mmol), entsprechend 70.4 % der Theorie. Tg = 133 °C.The precipitate was filtered off, dissolved in 1000 ml of dichloromethane and then filtered through a short column of silica gel. The filtrate was evaporated to dryness, then recrystallized four times from 300 mL DMF and sublimed after a purity of> 99.9% (HPLC) in a high vacuum. The yield with a purity of> 99.9% (HPLC) was 52.0 g (56 mmol), corresponding to 70.4% of theory. T g = 133 ° C.
1H-NMR (CDCI3): [ppm] = 7.45 (m, 4H), 7.35-7.29 (m, 16H), 7.00-6.96 (m, 20H), 6.93-6.88 (m, 4H), 6.55 (d, 4H). 1 H NMR (CDCI 3 ): [ppm] = 7.45 (m, 4H), 7.35-7.29 (m, 16H), 7.00-6.96 (m, 20H), 6.93-6.88 (m, 4H), 6.55 (d , 4H).
Beispiel 3: DeviceaufbauExample 3: Device structure
Die Herstellung der OLEDs erfolgte nach einem allgemeinen Verfahren, das im Einzelfall auf die jeweiligen Gegebenheiten (z. B. Schichtdickenvariation zur Optimierung der Effizienz bzw. der Farbe) angepasst wurde. Für die Herstellung der erfindungsgemäßen Vorrichtungen wurde als Lochblockierschicht eine Verbindung gemäß Formel (1) verwendet und optional die Elektronentransportschicht weggelassen. Erfindungsgemäße Elektrolumineszenzvorrichtungen können wie beispielsweise in DE10330761.3 beschrieben dargestellt werden. Die folgenden Beispiele zeigen die Ergebnisse verschiedener OLEDs, sowohl mit Lochblockiermaterialien gemäß Formel (1) wie auch mit BCP und BAIq als Vergleichsmaterialien. Der grundlegende Aufbau, die verwendeten Materialien und Schichtdicken (außer der HBLs) waren zur besseren Vergleichbarkeit identisch. Gemäß dem o. g. allgemeinen Verfahren wurden phosphoreszierende OLEDs mit folgendem Aufbau erzeugt: PEDOT (HIL) 60 nm (aus Wasser aufgeschleudert; bezogen als Baytron P von H. C. Starck; Poly-(3,4-ethylendioxy-2,5-thiophen)) NaphDATA (HTL) 20 nm (aufgedampft; bezogen von SynTec; 4,4',4"-Tris(N-1- naphthyl-N-phenylamino)-triphenylamin)The OLEDs were produced using a general process which was adapted to the particular circumstances in each individual case (e.g. layer thickness variation to optimize efficiency or color). For the production of the devices according to the invention, a compound of the formula (1) was used as the hole blocking layer and the electron transport layer was optionally omitted. Electroluminescent devices according to the invention can be represented as described for example in DE10330761.3. The following examples show the results of various OLEDs, both with hole blocking materials according to formula (1) and with BCP and BAIq as comparison materials. The basic structure, the materials used and layer thicknesses (except for the HBLs) were identical for better comparability. Phosphorescent OLEDs with the following structure were produced in accordance with the above-mentioned general procedure: PEDOT (HIL) 60 nm (spun on from water; obtained as Baytron P from HC Starck; poly (3,4-ethylenedioxy-2,5-thiophene)) NaphDATA ( HTL) 20 nm (evaporated; obtained from SynTec; 4,4 ', 4 "tris (N-1-naphthyl-N-phenylamino) -triphenylamine)
S-TAD (HTL) 20 nm (aufgedampft; hergestellt nach WO 99/12888; 2,2,,7,7,- Tetrakis(diphenylamino)-spirobifluoren) (EML) 30 nm (aufgedampft); 10 % IrPPy in Bis(9,9'-spirobifluoren- 2-yl)keton als Matrixmaterial (HBL) Materialien und Schichtdicken: siehe Beispiele in Tabelle 1S-TAD (HTL) 20 nm (evaporated; produced according to WO 99/12888; 2.2 , 7.7 , - tetrakis (diphenylamino) -spirobifluorene) (EML) 30 nm (evaporated); 10% IrPPy in bis (9,9'-spirobifluoren-2-yl) ketone as matrix material (HBL) materials and layer thicknesses: see examples in Table 1
AIQ3 (ETL) nicht in allen Devices vorhanden (siehe Tabelle 1 ); wenn vorhanden: aufgedampft (bezogen von SynTec; Tris(8- hydroxychinolinato)aluminium(lll)) Ba-Al (Kathode) 3 nm Ba, darauf 150 nm AI.AIQ 3 (ETL) not available in all devices (see Table 1); if available: evaporated (obtained from SynTec; Tris (8-hydroxyquinolinato) aluminum (III)) Ba-Al (cathode) 3 nm Ba, then 150 nm AI.
Diese noch nicht optimierten OLEDs wurden standardmäßig charakterisiert; hierfür wurden die Elektrolumineszenzspektren, die Effizienz (gemessen in cd/A), die Leistungseffizienz (gemessen in Im/W) in Abhängigkeit der Helligkeit und die Lebensdauer bestimmt. Als Lebensdauer wird die Zeit definiert, nach der die Anfangshelligkeit der OLED bei einer konstanten Stromdichte von 10 mA/cm2 auf die Hälfte abgesunken ist.These OLEDs, which have not yet been optimized, have been characterized as standard; the electroluminescence spectra, the efficiency (measured in cd / A), the power efficiency (measured in Im / W) depending on the brightness and the service life were determined. The lifetime is defined as the time after which the initial brightness of the OLED has dropped by half at a constant current density of 10 mA / cm 2 .
In Tabelle 1 sind die Ergebnisse der erfindungsgemäßen OLEDs und einiger Vergleichsbeispiele (mit BCP und BAIq) zusammengefasst (Beispiele 4 und 5). In der Tabelle ist lediglich die Lochblockierschicht und die Elekronenleiterschicht (Zusammensetzung und Schichtdicke) aufgeführt. Die anderen Schichten entsprechen dem oben genannten Aufbau.Table 1 summarizes the results of the OLEDs according to the invention and of some comparative examples (with BCP and BAIq) (Examples 4 and 5). Only the hole blocking layer and the electron conductor layer (composition and layer thickness) are listed in the table. The other layers correspond to the structure mentioned above.
Die oben bzw. in der Tabelle 1 verwendeten Abkürzungen entsprechen den folgenden Verbindungen: Ir(PPy)3 Bis(9,9'-spirobifluoren-2-yl)ketonThe abbreviations used above or in Table 1 correspond to the following compounds: Ir (PPy) 3 bis (9,9'-spirobifluoren-2-yl) ketone
HBM1 HBM1
HB 2 HB 2
BAlq BCP BAlq BCP
Beispiele 4 und 5: Vergleich von erfindungsgemäßen Lochblockiermaterialien (HBM1, HBM2) und Vergleichsmaterialien (BAIq und BCP) gemäß Stand der TechnikExamples 4 and 5: Comparison of hole blocking materials according to the invention (HBM1, HBM2) and comparison materials (BAIq and BCP) according to the prior art
Elektrolumineszenzspektren:electroluminescence:
Die OLEDs zeigen alle grüne Emission mit den CIE-Farbkoordinaten (0.39; 0.57) resultierend aus dem Dotanden lr(PPy)3 (Tabelle 1 , Beispiel 4 und 5).The OLEDs all show green emission with the CIE color coordinates (0.39; 0.57) resulting from the dopant Ir (PPy) 3 (Table 1, Examples 4 and 5).
Effizienz als Funktion der Helligkeit:Efficiency as a function of brightness:
Für OLEDs hergestellt mit HBM1 erhält man die beste Effizienz (s. Fig. 1 (A) und Tabelle 1 , Beispiel 4a) von 33.3 cd/A und die beste Leistungseffizienz (s. Fig. 2 (A) und Tabelle 1 , Beispiel 4a) von 23.8 Im/W. Eine ähnlich gute Effizienz von 31.6 cd/A und Leistungseffizienz von 21.7 Im/W erreicht man mit HBM2 (Tabelle 1 , Beispiel 4b). Bei den Vergleichsbeispielen ist entweder die Effizienz (Fig. 1 (■) und Tabelle 1 , Beispiel 4c) und/oder die Leistungseffizienz (Fig. 2 (■) und Tabelle 1 , Beispiel 4c und 4d) deutlich schlechter. BAIq (Beispiel 4c) erreicht nur 27.3 cd/A bzw. 18.8 Im/W und BCP (Beispiel 4d) erreicht zwar 32.6 cd/A, aber nur eine Leistungseffizienz von 18.2 Im/W. Ein ähnlich gutes Verhalten erhält man für OLEDs ohne AIQ3 als ETL und mit HBM2 als Lochblockierschicht, wie aus Tabelle 1 , Beispiel 5 ersichtlich wird. Mit HBM2 erhält man eine Effizienz von 31.0 cd/A, mit BAIq nur 24.8 cd/A und mit BCP sogar nur 16.7 cd/A. Die Leistungseffizienz beträgt mit HBM2 18.1 Im/W, dagegen mit BAIq nur 14.7 Im/W und mit BCP nur 8.7 Im/W.For OLEDs produced with HBM1, the best efficiency (see FIG. 1 (A) and table 1, example 4a) of 33.3 cd / A and the best power efficiency (see FIG. 2 (A) and table 1, example 4a) are obtained ) from 23.8 Im / W. A similarly good efficiency of 31.6 cd / A and power efficiency of 21.7 Im / W can be achieved with HBM2 (Table 1, Example 4b). In the comparative examples, either the efficiency (FIG. 1 (■) and table 1, example 4c) and / or the power efficiency (FIG. 2 (■) and table 1, examples 4c and 4d) is significantly poorer. BAIq (example 4c) only achieved 27.3 cd / A or 18.8 Im / W and BCP (example 4d) reached 32.6 cd / A, but only a power efficiency of 18.2 Im / W. A similarly good behavior is obtained for OLEDs without AIQ 3 as ETL and with HBM2 as a hole blocking layer, as can be seen from Table 1, Example 5. With HBM2 you get an efficiency of 31.0 cd / A, with BAIq only 24.8 cd / A and with BCP even only 16.7 cd / A. The power efficiency with HBM2 is 18.1 Im / W, in contrast with BAIq only 14.7 Im / W and with BCP only 8.7 Im / W.
Lebensdauervergleich:Lifetime comparison:
Tabelle 1 zeigt, dass HBM1 (Beispiel 4a) mit 910 h bei 10 mA/cm2 die beste Lebensdauer aufweist, gefolgt von HBM2 mit 650 h. OLEDs ohne AIQ3 als ETL haben alle eine kürzere Lebensdauer, wobei HBM2 (Beispiel 5a) mit 580 h am besten abschneidet. Als Lebensdauer bezeichnet man üblicherweise die Zeit, nach der nur noch 50 % der Anfangsleuchtdichte erreicht werden. Aus den gemessenen Lebensdauern lassen sich nun Lebensdauern für eine Anfangshelligkeit von 400 cd/m2 berechnen. Im Falle des HBM1 (Beispiel 4a) erhält man eine Lebensdauer von über 60000 h und mit HBM2 (Beispiel 5a) über 40000 h, was deutlich über den geforderten 10000 h für Displayanwendungen liegt. Table 1 shows that HBM1 (Example 4a) with 910 h at 10 mA / cm 2 has the best lifetime, followed by HBM2 with 650 h. OLEDs without AIQ 3 as ETL all have a shorter lifespan, with HBM2 (example 5a) performing best at 580 h. The lifespan is usually the time after which only 50% of the initial luminance is reached. From the measured lifetimes, lifetimes can now be calculated for an initial brightness of 400 cd / m 2 . In the case of HBM1 (example 4a), a service life of over 60,000 h is obtained and with HBM2 (example 5a) over 40,000 h, which is significantly higher than the 10,000 h required for display applications.
Tabelle 1Table 1
Zusammenfassend kann gesagt werden, dass phosphoreszierende OLEDs, die Lochblockiermaterialien gemäß Formel (1 ) enthalten, hohe Effizienzen bei gleichzeitig langen Lebensdauern und niedrigen Betriebsspannungen aufweisen, wie man leicht den Beispielen aus Tabelle 1 entnehmen kann. In summary, it can be said that phosphorescent OLEDs which contain hole blocking materials according to formula (1) have high efficiencies with long lifetimes and low operating voltages, as can easily be seen from the examples in Table 1.

Claims

Patentansprüche claims
1. Organische Elektrolumineszenzvorrichtung, enthaltend eine Anode, eine Kathode und mindestens eine Emissionsschicht, enthaltend mindestens ein Matrixmaterial, welches mit mindestens einem phosphoreszierenden Emitter dotiert ist, dadurch gekennzeichnet, dass zwischen die Emissionsschicht und die Kathode mindestens eine Lochblockierschicht eingebracht ist, die mindestens eine Verbindung gemäß Formel (1 ) enthält,1. Organic electroluminescent device containing an anode, a cathode and at least one emission layer containing at least one matrix material which is doped with at least one phosphorescent emitter, characterized in that at least one hole blocking layer is introduced between the emission layer and the cathode, the at least one connection according to formula (1) contains
(Formel 1 ) wobei für die verwendeten Symbole und Indizes gilt: Aryl ist bei jedem Auftreten gleich oder verschieden ein aromatisches oder heteroaromatisches Ringsystem mit 1 bis 40 aromatischen C-Atomen, das durch einen oder mehrere Reste R substituiert sein kann; R ist bei jedem Auftreten gleich oder verschieden H, F, Cl, Br, I, NO2, CN oder eine geradkettige, verzweigte oder cyclische Alkyl- oder Alkoxygruppe mit 1 bis 40 C-Atomen, wobei ein oder mehrere nicht benachbarte CH2-Gruppen durch -R1C=CR1-, -C=C-, Si(R1)2, Ge(R1)2, Sn(R1)2, -O-, -S- oder -NR1- ersetzt sein können und wobei ein oder mehrere H-Atome durch F oder eine aromatische Gruppe R1 ersetzt sein können, wobei zwei oder mehrere Substituenten R bzw. R mit Aryl ein weiteres mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem aufspannen können; R1 ist bei jedem Auftreten gleich oder verschieden H oder ein aliphatischer oder aromatischer Kohlenwasserstoff rest mit 1 bis 20 C-Atomen, wobei zwei oder mehrere Substituenten R1 bzw. R1 mit R und/oder Aryl auch ein weiteres mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem aufspannen können; n ist bei jedem Auftreten gleich oder verschieden 1 , 2, 3 oder 4; m ist bei jedem Auftreten gleich oder verschieden 0, 1 , 2, 3 oder 4; o ist bei jedem Auftreten gleich oder verschieden 0, 1 , 2 oder 3; p ist bei jedem Auftreten gleich oder verschieden 0, 1 , 2, 3 oder 4; mit der Maßgabe, dass die Summe n + o = 4 und die Summe m + p = 4 ergibt, weiterhin mit der Maßgabe, dass das Lochblockiermaterial nicht identisch zum Matrixmaterial ist, und mit der weiteren Maßgabe, dass Aryl keine Diazin-, Triazin- oder Tetrazin-Gruppe enthält. (Formula 1) the following applies to the symbols and indices used: aryl is the same or different in each occurrence, an aromatic or heteroaromatic ring system with 1 to 40 aromatic C atoms, which can be substituted by one or more radicals R; Each occurrence of R is the same or different H, F, Cl, Br, I, NO 2 , CN or a straight-chain, branched or cyclic alkyl or alkoxy group with 1 to 40 C atoms, one or more non-adjacent CH 2 - Groups by -R 1 C = CR 1 -, -C = C-, Si (R 1 ) 2 , Ge (R 1 ) 2 , Sn (R 1 ) 2, -O-, -S- or -NR 1 - can be replaced and one or more H atoms can be replaced by F or an aromatic group R 1 , where two or more substituents R or R with aryl can span another mono- or polycyclic, aliphatic or aromatic ring system; Each time R 1 is the same or different, H or an aliphatic or aromatic hydrocarbon radical having 1 to 20 C atoms, two or more substituents R 1 or R 1 with R and / or aryl also being another mono- or polycyclic, can span aliphatic or aromatic ring system; n is the same or different at each occurrence 1, 2, 3 or 4; m is the same or different at each occurrence 0, 1, 2, 3 or 4; o is the same or different at each occurrence 0, 1, 2 or 3; p is the same or different at each occurrence 0, 1, 2, 3 or 4; with the proviso that the sum n + o = 4 and the sum m + p = 4, with the proviso that the hole blocking material is not identical to the matrix material, and with the further proviso that aryl contains no diazine, triazine or contains tetrazine group.
2. Organische Elektrolumineszenzvorrichtung gemäß Anspruch 1 , dadurch gekennzeichnet, dass eine Lochinjektionsschicht und/oder eine Lochtransportschicht und/oder eine Elektroneninjektionsschicht und/oder eine Elektronentransportschicht und gegebenenfalls noch weitere Schichten anwesend sind.2. Organic electroluminescent device according to claim 1, characterized in that a hole injection layer and / or a hole transport layer and / or an electron injection layer and / or an electron transport layer and optionally further layers are present.
3. Organische Elektrolumineszenzvorrichtung gemäß Anspruch 1 und/oder 2, dadurch gekennzeichnet, dass die Lochblockierschicht mindestens 50 % Verbindungen gemäß Formel (1 ) enthält.3. Organic electroluminescent device according to claim 1 and / or 2, characterized in that the hole blocking layer contains at least 50% compounds according to formula (1).
4. Organische Elektrolumineszenzvorrichtung gemäß Anspruch 3, dadurch gekennzeichnet, dass die Lochblockierschicht nur aus Verbindungen gemäß Formel (1 ) besteht.4. Organic electroluminescent device according to claim 3, characterized in that the hole blocking layer consists only of compounds according to formula (1).
5. Organische Elektrolumineszenzvorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass für Verbindungen gemäß Formel (1 ) gilt: Aryl ist bei jedem Auftreten gleich oder verschieden ein aromatisches oder heteroaromatisches Ringsystem mit 1 bis 20 aromatischen C-Atomen, das durch einen oder mehrere Reste R substituiert sein kann; R ist bei jedem Auftreten gleich oder verschieden H, F, Cl, NO2, CN, N(R1)2 oder eine geradkettige, verzweigte oder cyclische Alkyl- oder Alkoxygruppe mit 1 bis 20 C-Atomen, wobei ein oder mehrere nicht benachbarte CH2-Gruppen durch -R1C=CR1-, -C--C-, Si(R1)2, Ge(R )2, Sn(R )2, -O-, -S- oder -NR1- ersetzt sein können und wobei ein oder mehrere H-Atome durch F oder eine aromatische Gruppe R1 ersetzt sein können, wobei zwei oder mehrere Substituenten R ein weiteres mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem aufspannen können; R1 ist wie unter Anspruch 1 definiert; n ist bei jedem Auftreten gleich oder verschieden 1 oder 2; m ist bei jedem Auftreten gleich oder verschieden 0, 1 oder 2; o ist bei jedem Auftreten gleich oder verschieden 2 oder 3; p ist bei jedem Auftreten gleich oder verschieden 2, 3 oder 4; dabei erfolgt die Verknüpfung des Aryl-Substituenten über die Positionen 2 und/oder 4, bzw., wenn vorhanden, auch über die Positionen 5,-7, 2', 4', 5' und/oder 7'.5. Organic electroluminescent device according to one or more of claims 1 to 4, characterized in that for compounds according to formula (1) applies: aryl is the same or different with each occurrence an aromatic or heteroaromatic ring system with 1 to 20 aromatic carbon atoms, the can be substituted by one or more radicals R; Each occurrence of R is the same or different H, F, Cl, NO 2 , CN, N (R 1 ) 2 or a straight-chain, branched or cyclic alkyl or alkoxy group with 1 to 20 C atoms, one or more not being adjacent CH 2 groups by -R 1 C = CR 1 -, -C - C-, Si (R 1 ) 2 , Ge (R) 2 , Sn (R) 2 , -O-, -S- or -NR 1 - can be replaced and one or more H atoms can be replaced by F or an aromatic group R 1 , where two or more substituents R can span another mono- or polycyclic, aliphatic or aromatic ring system; R 1 is as defined in claim 1; n is the same or different at each occurrence 1 or 2; m is the same or different at each occurrence 0, 1 or 2; o is the same or different at each occurrence 2 or 3; p is the same or different at each occurrence 2, 3 or 4; the aryl substituent is linked via positions 2 and / or 4, or, if present, also via positions 5, -7, 2 ', 4', 5 'and / or 7'.
6. Organische Elektrolumineszenzvorrichtung gemäß Anspruch 5, dadurch gekennzeichnet, dass für Verbindungen gemäß Formel (1) Folgendes gilt: Aryl ist bei jedem Auftreten gleich oder verschieden, ist aufgebaut aus Phenyl und/oder Pyridingruppen, enthält insgesamt 5 bis 18 aromatische C-Atome und kann durch einen oder mehrere nicht- aromatische Reste R substituiert sein; R ist bei jedem Auftreten gleich oder verschieden H, F, NO2, CN oder eine geradkettige, verzweigte oder cyclische Alkyl- oder Alkoxygruppe mit 1 bis 10 C-Atomen, wobei ein oder mehrere nicht benachbarte CH2-Gruppen durch -R1C=CR1-, -C--C-, Si(R1)2, Ge(R1)2, Sn(R1)2, -O-, -S- oder -NR1- ersetzt sein können und wobei ein oder mehrere H- Atome durch F oder eine aromatische Gruppe R1 ersetzt sein können, wobei zwei oder mehrere Substituenten R ein weiteres mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem aufspannen können; R1 ist wie unter Anspruch 1 definiert; n ist bei jedem Auftreten gleich 1 ; m ist bei jedem Auftreten gleich oder verschieden 0 oder 1 ; o ist bei jedem Auftreten gleich 3; p ist bei jedem Auftreten gleich oder verschieden 3 oder 4; dabei erfolgt die Verknüpfung des Aryl-Substituenten und der Substituenten R, die ungleich H sind, über die Position 2, bzw. auch über die Positionen 7, 2' und/oder 7'.6. Organic electroluminescent device according to claim 5, characterized in that the following applies to compounds according to formula (1): aryl is the same or different with each occurrence, is composed of phenyl and / or pyridine groups, contains a total of 5 to 18 aromatic carbon atoms and can be substituted by one or more non-aromatic radicals R; Each occurrence of R is the same or different H, F, NO 2 , CN or a straight-chain, branched or cyclic alkyl or alkoxy group with 1 to 10 C atoms, one or more non-adjacent CH 2 groups being represented by -R 1 C = CR 1 -, -C - C-, Si (R 1 ) 2 , Ge (R 1 ) 2 , Sn (R 1 ) 2 , -O-, -S- or -NR 1 - can be replaced and wherein one or more H atoms can be replaced by F or an aromatic group R 1 , it being possible for two or more substituents R to span another mono- or polycyclic, aliphatic or aromatic ring system; R 1 is as defined in claim 1; n is 1 on each occurrence; m is the same or different at each occurrence 0 or 1; o is 3 for each occurrence; p is the same or different at each occurrence 3 or 4; the aryl substituent and the substituents R, which are not equal to H, are linked via position 2 or also via positions 7, 2 'and / or 7'.
7. Organische Elektrolumineszenzvorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Verbindungen gemäß Formel (1 ) insgesamt zwei Aryl-Substituenten enthalten, die entweder über die Positionen 2 und 7 oder über die Positionen 2 und 2' mit der Spirobifluoreneinheit verknüpft sind, oder dass sie insgesamt vier Aryl- Substituenten enthalten, die über die Positionen 2, 2', 7 und 7' mit der Spirobifluoreneinheit verknüpft sind.7. Organic electroluminescent device according to one or more of claims 1 to 6, characterized in that the compounds according to formula (1) contain a total of two aryl substituents, either via positions 2 and 7 or via positions 2 and 2 'with the Spirobifluorene unit are linked, or that they contain a total of four aryl substituents which are linked to the spirobifluorene unit via positions 2, 2 ', 7 and 7'.
8. Organische Elektrolumineszenzvorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Glasübergangstemperatur der Verbindungen gemäß Formel (1) > 100 °C ist. 8. Organic electroluminescent device according to one or more of claims 1 to 7, characterized in that the glass transition temperature of the compounds according to formula (1) is> 100 ° C.
9. Organische Elektrolumineszenzvorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Glasübergangstemperatur der Verbindungen gemäß Formel (1) > 140 °C ist.9. Organic electroluminescent device according to one or more of claims 1 to 7, characterized in that the glass transition temperature of the compounds according to formula (1)> 140 ° C.
10. Organische Elektrolumineszenzvorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Schichtdicke der Lochblockierschicht 1 bis 50 nm beträgt.10. Organic electroluminescent device according to one or more of claims 1 to 9, characterized in that the layer thickness of the hole blocking layer is 1 to 50 nm.
11. Organische Elektrolumineszenzvorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Lochblockierschicht ohne Verwendung einer Elektronentransportschicht direkt an die Kathode bzw. die Elektroneninjektionsschicht angrenzt.11. Organic electroluminescent device according to one or more of claims 1 to 10, characterized in that the hole blocking layer directly adjoins the cathode or the electron injection layer without using an electron transport layer.
12. Organische Elektrolumineszenzvorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass das Matrixmaterial ausgewählt ist aus den Klassen der Carbazole, der Ketone und Imine, der Phosphinoxide, der Phosphinsulfide, der Phosphinselenide, der Phosphazene, der Sulfone, der Sulfoxide, der Silane, der polypodalen Metallkomplexe oder der Oligophenylene basierend auf Spirobifluorenen.12. Organic electroluminescent device according to one or more of claims 1 to 11, characterized in that the matrix material is selected from the classes of carbazoles, ketones and imines, phosphine oxides, phosphine sulfides, phosphine selenides, phosphazenes, sulfones, sulfoxides , the silanes, the polypodal metal complexes or the oligophenylenes based on spirobifluorenes.
13. Organische Elektrolumineszenzvorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass der phosphoreszierende Emitter mindestens ein Element der Ordnungszahl größer 36 und kleiner 84 aufweist.13. Organic electroluminescent device according to one or more of claims 1 to 12, characterized in that the phosphorescent emitter has at least one element of the atomic number greater than 36 and less than 84.
14. Organische Elektrolumineszenzvorrichtung gemäß Anspruch 13, dadurch gekennzeichnet, dass der phosphoreszierende Emitter mindestens ein Element aus der Gruppe Molybdän, Wolfram, Rhenium, Ruthenium, Osmium, Rhodium, Iridium, Palladium, Platin, Silber, Gold oder Europium enthält.14. Organic electroluminescent device according to claim 13, characterized in that the phosphorescent emitter contains at least one element from the group of molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, iridium, palladium, platinum, silver, gold or europium.
15. Organische Elektrolumineszenzvorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass eine oder mehrere Schichten mit einem Sublimationsverfahren beschichtet werden.15. Organic electroluminescent device according to one or more of claims 1 to 14, characterized in that one or more layers are coated with a sublimation process.
16. Organische Elektrolumineszenzvorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass eine oder mehrere Schichten mit dem OVPD-Verfahren (Organic Vapour Phase Deposition) oder mit Hilfe der Trägergassublimation beschichtet werden. 16. Organic electroluminescent device according to one or more of claims 1 to 14, characterized in that one or more layers are coated with the OVPD process (Organic Vapor Phase Deposition) or with the aid of carrier gas sublimation.
17. Organische Elektrolumineszenzvorrichtung gemäß einem oder mehreren der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass eine oder mehrere Schichten mit einem Druckverfahren beschichtet werden.17. Organic electroluminescent device according to one or more of claims 1 to 14, characterized in that one or more layers are coated with a printing process.
18. Verwendung des Designs der elektronischen Vorrichtungen gemäß einem oder mehreren der Ansprüche 1 bis 17 für organische Transistoren, organische integrierte Schaltungen, organische Solarzellen, organische Laserdioden oder organische Photorezeptoren. 18. Use of the design of the electronic devices according to one or more of claims 1 to 17 for organic transistors, organic integrated circuits, organic solar cells, organic laser diodes or organic photoreceptors.
EP04741151A 2003-07-21 2004-07-20 Organic electroluminescent element Withdrawn EP1649731A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10333232A DE10333232A1 (en) 2003-07-21 2003-07-21 Organic electroluminescent element
DE10357318A DE10357318A1 (en) 2003-12-05 2003-12-05 Organic electroluminescent device, useful e.g. in organic transistors and integrated circuits, comprises electrodes, doped emission layer and a hole-blocking layer containing a spiro-bifluorene compound
PCT/EP2004/008071 WO2005011334A1 (en) 2003-07-21 2004-07-20 Organic electroluminescent element

Publications (1)

Publication Number Publication Date
EP1649731A1 true EP1649731A1 (en) 2006-04-26

Family

ID=34105469

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04741151A Withdrawn EP1649731A1 (en) 2003-07-21 2004-07-20 Organic electroluminescent element

Country Status (5)

Country Link
US (1) US7862904B2 (en)
EP (1) EP1649731A1 (en)
JP (1) JP4865551B2 (en)
KR (1) KR101175808B1 (en)
WO (1) WO2005011334A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339136A (en) * 2003-05-15 2004-12-02 Idemitsu Kosan Co Ltd Spiro linkage-containing compound, luminescent coating film-forming material and organic electroluminescent device using the same
US20050025993A1 (en) * 2003-07-25 2005-02-03 Thompson Mark E. Materials and structures for enhancing the performance of organic light emitting devices
JP4351935B2 (en) * 2004-03-10 2009-10-28 富士フイルム株式会社 Organic electroluminescence device
US20070241670A1 (en) * 2006-04-17 2007-10-18 Battelle Memorial Institute Organic materials with phosphine sulfide moieties having tunable electric and electroluminescent properties
TWI343648B (en) * 2007-04-19 2011-06-11 Au Optronics Corp Organic electroluminescent structure and method of making the same
JP5407241B2 (en) * 2007-09-28 2014-02-05 大日本印刷株式会社 Electroluminescence element
US20090191427A1 (en) * 2008-01-30 2009-07-30 Liang-Sheng Liao Phosphorescent oled having double hole-blocking layers
JP5243972B2 (en) * 2008-02-28 2013-07-24 ユー・ディー・シー アイルランド リミテッド Organic electroluminescence device
JP5304010B2 (en) * 2008-04-23 2013-10-02 コニカミノルタ株式会社 Organic electroluminescence element, display device and lighting device
JP4781474B1 (en) * 2010-03-31 2011-09-28 キヤノン株式会社 Organic light emitting device
WO2012048820A1 (en) 2010-10-11 2012-04-19 Solvay (Societe Anonyme) A spirobifluorene compound for light emitting devices
EP2733761A4 (en) 2011-07-15 2015-06-17 Univ Kyushu Nat Univ Corp Delayed-fluorescence material and organic electroluminescence element using same
JP5828518B2 (en) * 2011-07-15 2015-12-09 国立大学法人九州大学 Delayed fluorescent material, organic electroluminescence device and compound using the same
US9059420B2 (en) 2011-11-18 2015-06-16 Jx Nippon Oil & Energy Corporation Organic EL element with light extraction and light emission efficiency
JP5889730B2 (en) 2012-06-27 2016-03-22 Lumiotec株式会社 Organic electroluminescent device and lighting device
JP5724987B2 (en) * 2012-10-31 2015-05-27 コニカミノルタ株式会社 Organic electroluminescence element, display device and lighting device
KR102409803B1 (en) 2014-10-10 2022-06-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting element, display device, electronic device, and lighting device
KR102235612B1 (en) 2015-01-29 2021-04-02 삼성전자주식회사 Semiconductor device having work-function metal and method of forming the same
KR102627398B1 (en) * 2015-12-11 2024-01-22 삼성디스플레이 주식회사 Condensed-cyclic compound and organic light emitting device comprising the same
CN107394051B (en) * 2017-08-14 2019-12-27 上海天马有机发光显示技术有限公司 Light emitting device and display device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539507A (en) 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
US5151629A (en) 1991-08-01 1992-09-29 Eastman Kodak Company Blue emitting internal junction organic electroluminescent device (I)
EP0676461B1 (en) * 1994-04-07 2002-08-14 Covion Organic Semiconductors GmbH Spiro compounds and their application as electroluminescence materials
DE4436773A1 (en) * 1994-10-14 1996-04-18 Hoechst Ag Conjugated polymers with spirocenters and their use as electroluminescent materials
US6299796B1 (en) * 1997-12-18 2001-10-09 Fuji Photo Film Co., Ltd. Styryl compound, method for the preparation thereof and electroluminescent element employing the same
US6097147A (en) * 1998-09-14 2000-08-01 The Trustees Of Princeton University Structure for high efficiency electroluminescent device
TW463528B (en) * 1999-04-05 2001-11-11 Idemitsu Kosan Co Organic electroluminescence element and their preparation
DE10037390A1 (en) * 2000-08-01 2002-02-14 Covion Organic Semiconductors Process for the preparation of olefin-substituted aromatics or heteroaromatics
JP4554047B2 (en) * 2000-08-29 2010-09-29 株式会社半導体エネルギー研究所 Light emitting device
CN1221555C (en) * 2000-12-22 2005-10-05 科文有机半导体有限公司 Spiro compounds based on boron or aluminium and the use of the same in the electronics industry
JP3669333B2 (en) * 2001-02-06 2005-07-06 ソニー株式会社 Organic electroluminescent device and display device
JP2002337839A (en) * 2001-05-21 2002-11-27 Nobuhiro Kawabata Drink container
JP2003109768A (en) * 2001-07-25 2003-04-11 Toray Ind Inc Light emitting element
US6603150B2 (en) * 2001-09-28 2003-08-05 Eastman Kodak Company Organic light-emitting diode having an interface layer between the hole-transporting layer and the light-emitting layer
JP2003138251A (en) * 2001-10-30 2003-05-14 Canon Inc Organic luminescent device
JP3848224B2 (en) * 2002-08-27 2006-11-22 キヤノン株式会社 Spiro compound and organic light emitting device using the same
JP4045932B2 (en) * 2002-11-21 2008-02-13 コニカミノルタホールディングス株式会社 Organic electroluminescence element and display device
KR101030158B1 (en) * 2002-12-23 2011-04-18 메르크 파텐트 게엠베하 Organic electroluminescent element

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2005011334A1 *

Also Published As

Publication number Publication date
KR101175808B1 (en) 2012-08-24
JP2006528836A (en) 2006-12-21
JP4865551B2 (en) 2012-02-01
WO2005011334A1 (en) 2005-02-03
US20060159951A1 (en) 2006-07-20
KR20060061798A (en) 2006-06-08
US7862904B2 (en) 2011-01-04

Similar Documents

Publication Publication Date Title
EP2251396B1 (en) Organic emission-capable materials and electronic components containing same
EP1687857B1 (en) Organic electroluminescent element
EP2712000B1 (en) Materials for Organic Electroluminescent Devices
DE102020101561A1 (en) ORGANIC LIGHT-EMITTING MATERIALS CONTAINING A CYANO-SUBSTITUTED LIGAND
EP1763501B1 (en) Compounds for organic electronic devices
EP1668718B1 (en) Organic electroluminescent element
EP1649731A1 (en) Organic electroluminescent element
DE102004008304A1 (en) Organic electronic devices
EP2281861A2 (en) Mixture of organic emission-enabled semiconductors and matrix materials, use of same and electronic components containing same
EP1869141A1 (en) Compounds for organic electronic devices
DE112011103404T5 (en) Novel 3,9-linked oligocarbazole-based hosts containing DBT and DBF fragments separated by spacers.
EP1697483B1 (en) Organic electroluminescent element
DE10317556B4 (en) Mixtures of organic semiconductors capable of emission and matrix materials, their use and electronic components containing them
DE10330761A1 (en) New organometallic compounds are useful for the production of electronic components, organic light emitting diodes, organic integrated circuits and organic field effect transistors
EP1761547A2 (en) Compounds for organic electronic devices
DE10357318A1 (en) Organic electroluminescent device, useful e.g. in organic transistors and integrated circuits, comprises electrodes, doped emission layer and a hole-blocking layer containing a spiro-bifluorene compound
DE10355380A1 (en) New organometallic compounds are useful for the production of electronic components, organic light emitting diodes, organic integrated circuits and organic field effect transistors
WO2020148303A1 (en) Materials for organic electroluminescent devices
DE10355358A1 (en) Mixtures for use in organic electronic devices of simplified layer structure comprise matrix materials (some of which in e.g. (hetero)aromatic ketone form are new) and emitters containing an element of atomic number above 20
DE10355381A1 (en) Organic electroluminescent device for semiconductors/organic LEDs has an anode, a cathode and a matrix layer with matrix material doped with a phosphorescent emitter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MERCK PATENT GMBH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GERHARD, ANJA

Inventor name: VESTWEBER, HORST

Inventor name: STOESSEL, PHILIPP

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB NL

17Q First examination report despatched

Effective date: 20100301

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170316

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170727