EP1649142A1 - Compressed air rotary engine - Google Patents

Compressed air rotary engine

Info

Publication number
EP1649142A1
EP1649142A1 EP04767760A EP04767760A EP1649142A1 EP 1649142 A1 EP1649142 A1 EP 1649142A1 EP 04767760 A EP04767760 A EP 04767760A EP 04767760 A EP04767760 A EP 04767760A EP 1649142 A1 EP1649142 A1 EP 1649142A1
Authority
EP
European Patent Office
Prior art keywords
piston
passage
air
motor according
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04767760A
Other languages
German (de)
French (fr)
Other versions
EP1649142B1 (en
Inventor
André-Laurent BERNARD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BERNARD Cecile
Original Assignee
BERNARD Cecile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BERNARD Cecile filed Critical BERNARD Cecile
Publication of EP1649142A1 publication Critical patent/EP1649142A1/en
Application granted granted Critical
Publication of EP1649142B1 publication Critical patent/EP1649142B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/18Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/356Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/002Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0827Vane tracking; control therefor by mechanical means
    • F01C21/0836Vane tracking; control therefor by mechanical means comprising guiding means, e.g. cams, rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0827Vane tracking; control therefor by mechanical means
    • F01C21/0845Vane tracking; control therefor by mechanical means comprising elastic means, e.g. springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/40Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C2/08 or F04C2/22 and having a hinged member
    • F04C2/46Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C2/08 or F04C2/22 and having a hinged member with vanes hinged to the outer member

Definitions

  • the invention relates to a rotary compressed air motor essentially comprising:
  • a chamber delimited, longitudinally, by the cylindrical walls facing said stator and said rotor and, laterally, by two facing flanges;
  • each decompression chamber being delimited, longitudinally, at one end, by a wall, acting as a piston, integral with the rotor and extending to the stator and, at the other end, by a wall, retractable, arranged upstream the corresponding air inlet pipe, integral in translation with the stator and extending to the rotor, associated with a means adapted to make it retractable during the passage of the piston.
  • the invention aims to produce a rotary motor of simple, new and original design, making it possible to achieve high yields.
  • each air inlet pipe is associated with a means suitable for blowing, into the corresponding decompression chamber, after the passage of the piston over the inlet pipe, a quantity of air of well determined pressure and volume.
  • the means adapted to move the retractable wall during the passage of the piston is chosen from mechanical devices with cams, electromechanical relays and pneumatic cylinders;
  • the means adapted to move the retractable wall during the passage of the piston is the piston itself which has a shape adapted to disengage said wall during its passage;
  • a quantity of air under well defined pressure is chosen from mechanical, electromechanical and pneumatic devices with valves or with valves;
  • the means adapted to breathe into the decompression chamber, after the passage of the piston over the air intake pipe, a well defined quantity of air under pressure, is a retractable shutter valve for closing the end of said pipe, which has a shape adapted to release said end under the effect of the passage of said piston.
  • - Figure 1 is a cross-sectional view AA of the rotary motor;
  • - Figure 2 is a diametrical sectional view BB of said motor;
  • FIG. 3 is a cross-sectional view AA of the rotary engine comprising two decompression chambers
  • FIG. 4 is a principle view of a triangular piston chamber
  • FIG. 5 is an abacus giving the pressure received by the piston for an injection of volume 100 times lower than that of the chamber and according to the position of the piston in its stroke;
  • FIG. 6 is a principle view of a compressor with triangular compression chamber associated with a motor with rectangular decompression chamber;
  • FIG. 7 is an abacus giving, in the case of a triangular compression chamber, the variations of the successive heights of a piston as a function of its position along its stroke.
  • the rotary compressed air motor shown in the figures includes:
  • V volume chamber delimited, longitudinally, by the cylindrical walls opposite said stator and said rotor and, laterally, by two flanges (3) and (4) facing;
  • each decompression chamber (Va) is delimited, longitudinally, at one end, by a wall (7), acting as a piston, integral with the rotor (2) and extending to the stator (1) and, at the other end, by a retractable wall (8), disposed upstream of the corresponding air inlet pipe (5), integral in translation with the stator (1) and extending to the rotor (2), associated to a means adapted to make it retractable during the passage of the piston (7).
  • Each air inlet pipe (5) is associated with a means suitable for blowing, into the corresponding decompression chamber (Va), after the passage of the piston (7) over said inlet pipe, a quantity of air under pressure (P) well defined at each rotor revolution.
  • the means adapted to move the retractable wall (8) when. of the passage of the piston (7) can be chosen from mechanical cam devices, electromechanical relays and pneumatic cylinders. It can also be the piston (7) itself which has a shape (fig. 1) adapted to disengage said wall during its passage.
  • retractable valve (9) for closing the end of said pipe (5), which has a shape adapted to release said end under the effect of the passage of said piston.
  • the retractable wall (8) is associated with a means, in particular a spring, adapted to return it to its initial position after the passage of the piston (7).
  • the retractable valve (9) is associated with a means, in particular a spring, adapted to return it to its initial position after the passage of the piston (7).
  • the piston (7) can be produced by means of an elastic blade bearing on the cylindrical inner wall of the stator (1).
  • decompression chambers (Va) each associated with a pressurized air supply line (5), a residual air discharge line (6), a piston (7) and a retractable wall (8), are arranged uniformly distributed
  • the decompression chamber (Va) fills with pressurized air as soon as said piston has crossed the inlet pipe (5).
  • the volume of said chamber then represents a small part of the volume (V) of the overall circular chamber.
  • the residual air (R) is either evacuated into the atmosphere or recycled.
  • a turbine dedicated to compressing atmospheric air at room temperature delivers more than 1 Ncm 3 compressed to 5 bars from a motor energy consumption of 1 joule.
  • a second contiguous turbine of different size is wedged on the same shaft (for example) drives the first.
  • FIG. 5 represents the pressure (P) received by the piston for an injection of 1/100 ee of the volume of the chamber per cycle, therefore the corresponding force as a function of the position (C) of the piston in its course:
  • the final pressure is multiplied in proportion to the percentage of the chamber selected.
  • the consumption which for 1/100 e of the volume consumed is:
  • the engine chamber (Cm) receives, per pulse and per revolution, a percentage of its volume at a selected pressure. It has a rectangular profile. Its exact capacity is calculated since it is a ring profile by subtracting from the total area of the largest circle, the area of the small inner circle.
  • the engine part could also be coupled to the compressor part to recover the calories.
  • the compressor part must only consist of compression chambers with a triangular profile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Percussion Or Vibration Massage (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

The invention relates to a compressed air engine comprising a stator (1) and a rotor (2), cylinders and concentrics describing a volume chamber (V), at least one pipe (P) for supplying compressed air to at least one decompression chamber (Va) belonging to said volume (V) and defined by a piston (7) and retractable bottom (8) and at least one pipe (6) for removing residual air (R) at the end of a decompression cycle. The inventive engine is characterised in that each air supply pipe (5) is connected to means for injecting a defined quantity and volume of compressed air into the decompression chamber when the piston (7) moves on the supply pipe (5).

Description

MOTEUR ROTATIF A AIR COMPRIME DESCRIPTION ROTARY COMPRESSED AIR ENGINE DESCRIPTION
DOMAINE DE L'INVENTIONFIELD OF THE INVENTION
L'invention concerne un moteur rotatif à air comprimé comportant essentiellement :The invention relates to a rotary compressed air motor essentially comprising:
- un stator et un rotor cylindriques et concentriques ;- a cylindrical and concentric stator and rotor;
- une chambre délimitée, longitudinalement, par les parois cylindriques en regard dudit stator et dudit rotor et, latéralement, par deux flasques en regard ;- A chamber delimited, longitudinally, by the cylindrical walls facing said stator and said rotor and, laterally, by two facing flanges;
- au moins une canalisation d'arrivée d'air sous pression dans au moins une chambre de décompression appartenant audit volume et au moins une canalisation d'évacuation de l'air résiduel en fin de cycle de décompression ; chaque chambre de décompression étant délimitée, longitudinalement, à une extrémité, par une paroi, faisant office de piston, solidaire du rotor et s'étendant jusqu'au stator et, à l'autre extrémité, par une paroi, escamotable, disposée en amont de la canalisation d'arrivée d'air correspondante, solidaire en translation du stator et s'étendant jusqu'au rotor, associée à un moyen adapté pour la rendre escamotable lors du passage du piston. ARRIERE PLAN TECHNOLOGIQUE- At least one pressure air inlet pipe in at least one decompression chamber belonging to said volume and at least one pipe for discharging residual air at the end of the decompression cycle; each decompression chamber being delimited, longitudinally, at one end, by a wall, acting as a piston, integral with the rotor and extending to the stator and, at the other end, by a wall, retractable, arranged upstream the corresponding air inlet pipe, integral in translation with the stator and extending to the rotor, associated with a means adapted to make it retractable during the passage of the piston. TECHNOLOGICAL BACKGROUND
Les documents de l'état de la technique décrivant des moteurs à air comprimé sont nombreux, notamment ceux utilisant des pistons et des cylindres de type vérins ou mettant en œuvre des chambres de décompression plus ou moins sophistiquées.There are many prior art documents describing compressed air motors, in particular those using pistons and cylinders of the jack type or using more or less sophisticated decompression chambers.
Leur réalisation n'est pas toujours aisée et leur rendement est le plus souvent faible pour envisager une exploitation rentable.Their realization is not always easy and their yield is generally low to consider a profitable exploitation.
RESUME DE L'INVENTIONSUMMARY OF THE INVENTION
L'invention vise à réaliser un moteur rotatif de conception simple, nouvelle et originale, permettant d'atteindre des rendements élevés.The invention aims to produce a rotary motor of simple, new and original design, making it possible to achieve high yields.
Elle concerne à cet effet un moteur qui se caractérise essentiellement en ce que chaque canalisation d'arrivée d'air est associée à un moyen adapté pour insuffler, dans la chambre de décompression correspondante, après le passage du piston sur la canalisation d'arrivée, une quantité d'air de pression et de volume bien déterminés.To this end, it relates to an engine which is essentially characterized in that each air inlet pipe is associated with a means suitable for blowing, into the corresponding decompression chamber, after the passage of the piston over the inlet pipe, a quantity of air of well determined pressure and volume.
Selon des particularités de réalisation de l'invention : - le moyen adapté pour déplacer la paroi escamotable lors du passage du piston, est choisi parmi des dispositifs mécaniques à cames, électromécaniques à relais et pneumatiques à vérins ; - le moyen adapté pour déplacer la paroi escamotable lors du passage du piston, est le piston lui même qui possède une forme adaptée pour dégager ladite paroi lors de son passage ;According to particular features of the invention: - the means adapted to move the retractable wall during the passage of the piston, is chosen from mechanical devices with cams, electromechanical relays and pneumatic cylinders; - The means adapted to move the retractable wall during the passage of the piston, is the piston itself which has a shape adapted to disengage said wall during its passage;
- le moyen adapté pour insuffler dans la chambre de décompression, après le passage du piston sur la canalisation d'arrivée d'air, une quantité d'air sous pression bien définie, est choisi parmi des dispositifs mécaniques, électromécaniques et pneumatiques à clapets ou à vannes ;the means adapted to breathe into the decompression chamber, after the passage of the piston over the air intake pipe, a quantity of air under well defined pressure is chosen from mechanical, electromechanical and pneumatic devices with valves or with valves;
- le moyen adapté pour insuffler dans la chambre de décompression, après le passage du piston sur la canalisation d'arrivée d'air, une quantité d'air sous pression bien définie, est un clapet escamotable d'obturation de l'extrémité de ladite canalisation, qui possède une forme adaptée pour dégager ladite extrémité sous l'effet du passage dudit piston.- The means adapted to breathe into the decompression chamber, after the passage of the piston over the air intake pipe, a well defined quantity of air under pressure, is a retractable shutter valve for closing the end of said pipe, which has a shape adapted to release said end under the effect of the passage of said piston.
PRESENTATION DES FIGURESPRESENTATION OF THE FIGURES
Les caractéristiques et les avantages de l'invention vont apparaître plus clairement à la lecture de la description détaillée qui suit d'au moins un mode de réalisation préféré de celle-ci donné à titre d'exemple non limitatif et représenté aux dessins annexés.The characteristics and advantages of the invention will appear more clearly on reading the following detailed description of at least one preferred embodiment of the latter given by way of non-limiting example and shown in the accompanying drawings.
Sur ces dessins :In these drawings:
- la figure 1 est une vue en coupe transversale AA moteur rotatif ; - la figure 2 est une vue en coupe diamétrale BB dudit moteur ;- Figure 1 is a cross-sectional view AA of the rotary motor; - Figure 2 is a diametrical sectional view BB of said motor;
- la figure 3 est une vue en coupe transversale AA du moteur rotatif comprenant deux chambres de décompression ;- Figure 3 is a cross-sectional view AA of the rotary engine comprising two decompression chambers;
- la figure 4 est une vue de principe d'une chambre à piston triangulaire ;- Figure 4 is a principle view of a triangular piston chamber;
- la figure 5 est une abaque donnant la pression reçue par le piston pour une injection de volume 100 fois inférieur à celui de la chambre et selon la position du piston dans sa course ;- Figure 5 is an abacus giving the pressure received by the piston for an injection of volume 100 times lower than that of the chamber and according to the position of the piston in its stroke;
- la figure 6 est une vue de principe d'un compresseur à chambre de compression triangulaire associé à un moteur à chambre de décompression rectangulaire ;- Figure 6 is a principle view of a compressor with triangular compression chamber associated with a motor with rectangular decompression chamber;
- la figure 7 est une abaque donnant, dans le cas d'une chambre de compression triangulaire, les variations des hauteurs successives d'un piston en fonction de sa position le long de sa course.- Figure 7 is an abacus giving, in the case of a triangular compression chamber, the variations of the successive heights of a piston as a function of its position along its stroke.
DESCRIPTION DETAILLEE DE L'INVENTIONDETAILED DESCRIPTION OF THE INVENTION
Le moteur rotatif a air comprimé représenté aux figures comporte :The rotary compressed air motor shown in the figures includes:
- un stator (1 ) et un rotor (2) cylindriques et concentriques ; - une chambre de volume (V) délimitée, longitudinalement, par les parois cylindriques en regard dudit stator et dudit rotor et, latéralement, par deux flasques (3) et (4) en regard ;- a cylindrical and concentric stator (1) and a rotor (2); - A volume chamber (V) delimited, longitudinally, by the cylindrical walls opposite said stator and said rotor and, laterally, by two flanges (3) and (4) facing;
- au moins une canalisation (5) d'arrivée d'air sous pression (P) dans au moins une chambre de décompression (Va) appartenant audit volume (V) et au moins une canalisation d'évacuation (6) de l'air résiduel (R) en fin de cycle de décompression. Chaque chambre de décompression (Va) est délimitée, longitudinalement, à une extrémité, par une paroi (7), faisant office de piston, solidaire du rotor (2) et s'étendant jusqu'au stator (1 ) et, à l'autre extrémité, par une paroi (8), escamotable, disposée en amont de la canalisation d'arrivée d'air (5) correspondante, solidaire en translation du stator (1 ) et s'étendant jusqu'au rotor (2), associée à un moyen adapté pour la rendre escamotable lors du passage du piston (7). Chaque canalisation d'arrivée d'air (5) est associée à un moyen adapté pour insuffler, dans la chambre de décompression (Va) correspondante, après le passage du piston (7) sur ladite canalisation d'arrivée, une quantité d'air sous pression (P) bien définie à chaque tour de rotor.- at least one pipe (5) for supplying pressurized air (P) into at least one decompression chamber (Va) belonging to said volume (V) and at least one air discharge pipe (6) residual (R) at the end of the decompression cycle. Each decompression chamber (Va) is delimited, longitudinally, at one end, by a wall (7), acting as a piston, integral with the rotor (2) and extending to the stator (1) and, at the other end, by a retractable wall (8), disposed upstream of the corresponding air inlet pipe (5), integral in translation with the stator (1) and extending to the rotor (2), associated to a means adapted to make it retractable during the passage of the piston (7). Each air inlet pipe (5) is associated with a means suitable for blowing, into the corresponding decompression chamber (Va), after the passage of the piston (7) over said inlet pipe, a quantity of air under pressure (P) well defined at each rotor revolution.
Le moyen adapté pour déplacer la paroi escamotable (8) lors. du passage du piston (7), peut être choisi parmi des dispositifs mécaniques à cames, électromécaniques à relais et pneumatiques à vérins. II peut être également le piston (7) lui même qui possède une forme (fig.1 ) adaptée pour dégager ladite paroi lors de son passage.The means adapted to move the retractable wall (8) when. of the passage of the piston (7), can be chosen from mechanical cam devices, electromechanical relays and pneumatic cylinders. It can also be the piston (7) itself which has a shape (fig. 1) adapted to disengage said wall during its passage.
Le moyen adapté pour insuffler dans la chambre de décompression (Va), après le passage du piston (7) sur la canalisation d'arrivée d'air (5), une quantité d'air sous pression (P) bien définie, est choisi parmi des dispositifs mécaniques, électromécaniques et pneumatiques à clapets ou à vannes.The means adapted to breathe into the decompression chamber (Va), after the passage of the piston (7) over the air intake pipe (5), a well-defined amount of pressurized air (P) is chosen. among mechanical, electromechanical and pneumatic devices with valves or valves.
Il peut être également un clapet escamotable (9) d'obturation de l'extrémité de ladite canalisation (5), qui possède une forme adaptée pour dégager ladite extrémité sous l'effet du passage dudit piston. La paroi escamotable (8) est associée à un moyen, notamment un ressort, adapté pour la ramener dans sa position initiale après le passage du piston (7).It can also be a retractable valve (9) for closing the end of said pipe (5), which has a shape adapted to release said end under the effect of the passage of said piston. The retractable wall (8) is associated with a means, in particular a spring, adapted to return it to its initial position after the passage of the piston (7).
Le clapet escamotable (9) est associée à un moyen, notamment un ressort, adapté pour le ramener dans sa position initiale après le passage du piston (7). Le piston (7) peut être réalisé au moyen d'une lame élastique prenant appui sur la paroi intérieure cylindrique du stator (1). Plusieurs chambres de décompression (Va), associées, chacune, à une canalisation d'arrivée d'air sous pression (5), à une canalisation d'évacuation d'air résiduel (6), à un piston (7) et à une paroi escamotable (8), sont disposées uniformément répartiesThe retractable valve (9) is associated with a means, in particular a spring, adapted to return it to its initial position after the passage of the piston (7). The piston (7) can be produced by means of an elastic blade bearing on the cylindrical inner wall of the stator (1). Several decompression chambers (Va), each associated with a pressurized air supply line (5), a residual air discharge line (6), a piston (7) and a retractable wall (8), are arranged uniformly distributed
(fig.3) autour de la chambre (V) afin d'additionner leurs effets. Plusieurs ensembles, comprenant, chacun, un stator (1 ), un rotor (2), des flasques(fig.3) around the chamber (V) in order to add their effects. Several assemblies, each comprising a stator (1), a rotor (2), flanges
(3) et (4), au moins un piston (7) et au moins une paroi escamotable (8) associés à des canalisation d'entrée (5) et d'évacuation (6), sont juxtaposés sur le même arbre(3) and (4), at least one piston (7) and at least one retractable wall (8) associated with inlet (5) and outlet (6) pipes, are juxtaposed on the same shaft
(10) afin d'additionner leurs effets.(10) in order to add their effects.
Le fonctionnement du moteur rotatif est exposé ci-après. La rotation du piston (7) solidaire du rotor (2) rencontre en premier la paroi (8) solidaire en translation du stator (1 ) qui s'escamote lors du passage dudit piston pour se refermer dès que celui-ci a franchi ledit obstacle.The operation of the rotary motor is explained below. The rotation of the piston (7) integral with the rotor (2) first encounters the wall (8) integral in translation with the stator (1) which retracts during the passage of said piston to close as soon as the latter has crossed said obstacle .
La chambre de décompression (Va) se remplit d'air sous pression dès que ledit piston a franchi la canalisation d'entrée (5). Le volume de ladite chambre représente alors une faible partie du volume (V) de la chambre circulaire globale. La détente de ce volume exerce sur le piston une pression décroissante (PV = constante) au fur et à mesure que celui-ci se déplace. Cette pression est donc une fonction directe de la pression initiale d'alimentation et exerce un couple proportionnel à celle-ci.The decompression chamber (Va) fills with pressurized air as soon as said piston has crossed the inlet pipe (5). The volume of said chamber then represents a small part of the volume (V) of the overall circular chamber. The expansion of this volume exerts on the piston a decreasing pressure (PV = constant) as it moves. This pressure is therefore a direct function of the initial supply pressure and exerts a torque proportional to it.
Un simple pointeau est donc suffisant pour commander le système en question (suppression de la boîte à vitesses).A simple needle is therefore sufficient to control the system in question (removal of the gearbox).
En fin de détente, lorsque le piston (7) a franchi la canalisation d'évacuation (6), l'air résiduel (R) est soit évacué dans l'atmosphère soit recyclé.At the end of expansion, when the piston (7) has passed through the evacuation pipe (6), the residual air (R) is either evacuated into the atmosphere or recycled.
PrincipesPrinciples
Une turbine dédiée à la compression de l'air atmosphérique à température ambiante délivre plus que 1 Ncm3 comprimé à 5 bars à partir d'une consommation d'énergie motrice de 1 joule. Une seconde turbine accolée de dimension différente est calée sur le même arbre (par exemple) entraîne la première.A turbine dedicated to compressing atmospheric air at room temperature delivers more than 1 Ncm 3 compressed to 5 bars from a motor energy consumption of 1 joule. A second contiguous turbine of different size is wedged on the same shaft (for example) drives the first.
Elle utilise de l'air à pression de 5 bars. Cette pression pouvant être augmentée par élévation de température de l'échange thermique avec des calories produites par la compression. La production d'énergie étant supérieure à 1 joule par Ncm3 consommés.It uses air at a pressure of 5 bars. This pressure can be increased by raising the temperature of the heat exchange with calories produced by compression. Energy production being greater than 1 joule per Ncm 3 consumed.
La vérification du calcul pour une chambre de compression est exposée ci-après. En projetant celle-ci, nous obtenons un piston triangulaire qui chasse l'air d'un vérin tel que représenté à la figure 4 où (E) est l'entrée du fluide, (S) la sortie de celui-ci,The verification of the calculation for a compression chamber is set out below. By projecting this, we obtain a triangular piston which expels the air from a jack as shown in Figure 4 where (E) is the inlet of the fluid, (S) the outlet thereof,
(H) la hauteur de la chambre et (C) la course du piston.(H) the height of the chamber and (C) the stroke of the piston.
Nous retenons arbitrairement les dimensions que nous retrouverons dans le descriptif de la turbine et qui sont 25,4 cm pour le diamètre extérieur de la chambre et 5 cm pour la hauteur et 10 cm pour la largeur de celle-ci.We arbitrarily retain the dimensions that we will find in the description of the turbine and which are 25.4 cm for the outside diameter of the chamber and 5 cm for the height and 10 cm for the width of the latter.
Nous retenons également 44,76 kg pour le couple moteur ; 0,204 m x 44,7 kg x 9,81We also retain 44.76 kg for the engine torque; 0.204 m x 44.7 kg x 9.81
= 89 m/N pour le moment du couple ; 2τrx M = 559 joules pour le travail absorbé par tour et 60 t/mn pour la vitesse. Ainsi, le piston représenté en linéaire reçoit une force de 44,76 kg (arbitraire), sa course (C) est de 16 cm et il consomme un travail de 44,76 kg x 0,16 m x 9,81 = 70 joules pour déplacer le volume de la chambre qui est de 16 x 5 x 10 / 2 = 400 cm3.= 89 m / N for the moment of the couple; 2τrx M = 559 joules for the work absorbed per revolution and 60 rpm for the speed. Thus, the piston represented in linear receives a force of 44.76 kg (arbitrary), its stroke (C) is 16 cm and it consumes a work of 44.76 kg x 0.16 mx 9.81 = 70 joules for move the volume of the chamber which is 16 x 5 x 10/2 = 400 cm 3 .
Nous verrons dans la turbine décrite que le couple a été déterminé par les contre pressions s'exerçant à chaque avancée du piston sur une surface de plus en plus réduite et calculée pour que la turbine compresseur débite dans une capacité où la pression (contrôlée par une soupape) n'excède pas 5 bars.We will see in the turbine described that the torque was determined by the counter pressures exerted at each advance of the piston on an increasingly reduced surface and calculated so that the compressor turbine delivers in a capacity where the pressure (controlled by a valve) does not exceed 5 bars.
Tant que la pression dans la capacité n'atteint pas la pression de tarage, la puissance absorbée est plus faible. Nous n'en tiendrons pas compte.As long as the pressure in the capacity does not reach the set pressure, the power absorbed is lower. We will ignore it.
Nous constatons que le piston virtuel ainsi schématisé produit 400 Ncm3 qui correspondent à 80 cm3 comprimés à 5 bars.We note that the virtual piston thus diagrammed produces 400 Ncm 3 which correspond to 80 cm3 compressed at 5 bars.
Nous voyons qu'avec un joule absorbé, le vérin virtuel dans cette configuration, délivre 400cm / 70 joules = 5,7 cm3.We see that with an absorbed joule, the virtual cylinder in this configuration, delivers 400cm / 70 joules = 5.7 cm 3 .
Nous retrouverons dans le calcul de la turbine de compression le travail absorbé pour une rotation qui s'écrit ainsi : 2τrx Moment 89 m/N = 559 joules. Comme pendant cette rotation, il y aura deux chambres de compression débitant à chaque quart de tour, le débit sera de : 400 Ncm3 x 2 x 4 = 3200 Ncm3.We will find in the calculation of the compression turbine the work absorbed for a rotation which is written as: 2τrx Moment 89 m / N = 559 joules. As during this rotation, there will be two compression chambers delivering at each quarter turn, the delivery will be: 400 Ncm 3 x 2 x 4 = 3200 Ncm 3 .
Soit : 1 joule = 3200 / 559 = 5,7 Ncm3 Or: 1 joule = 3200/559 = 5.7 Ncm 3
Vérification du calcul pour une chambre motriceVerification of the calculation for a motor chamber
Ici encore, pour faciliter la démonstration, imaginons la chambre moteur de la turbine en vérin virtuel.Here again, to facilitate the demonstration, imagine the engine chamber of the turbine in a virtual cylinder.
Reprenons les mêmes dimensions que celles décrites dans la turbine, c'est-à-dire :Let's take the same dimensions as those described in the turbine, that is to say:
Volume = 800 cm3 (puisque le piston n'est pas profilé), surface piston = 50 cm2 Volume = 800 cm 3 (since the piston is not profiled), piston surface = 50 cm 2
(5cm H x 10 cm L et course = 16 cm (virtuelle). L'abaque de la figure 5 représente la pression (P) reçue par le piston pour une injection de 1/100e e de volume de la chambre par cycle donc la force correspondante en fonction des position (C) du piston dans sa course :(5cm H x 10 cm W and stroke = 16 cm (virtual). The diagram in FIG. 5 represents the pressure (P) received by the piston for an injection of 1/100 ee of the volume of the chamber per cycle, therefore the corresponding force as a function of the position (C) of the piston in its course:
- en position 0 5 bars x 8 cm = 40 cte = 5 bars x 50 cm2 _= 250 kg- in position 0 5 bars x 8 cm = 40 sides = 5 bars x 50 cm 2 _ = 250 kg
- en position 1 40 / (8 + 1/8 x 100) = 0,37 bars x 50 cm2 = 16,5 kg- in position 1 40 / (8 + 1/8 x 100) = 0.37 bars x 50 cm 2 = 16.5 kg
- en position 2 40 / (8 + 2/8 x 100) = 0,19 bars x 50 cm2 = 9,5 kg- in position 2 40 / (8 + 2/8 x 100) = 0.19 bars x 50 cm 2 = 9.5 kg
- en position 3 40 / (8 + 3/8 x 100) = 0,13 bar x 50 cm2 = 6,5 kg- in position 3 40 / (8 + 3/8 x 100) = 0.13 bar x 50 cm 2 = 6.5 kg
- en position 4 40 / (8 + 4/8 x 100) = 0,09 bar x 50 cm2 = 4,5 kg- in position 4 40 / (8 + 4/8 x 100) = 0.09 bar x 50 cm 2 = 4.5 kg
- en position 5 40 / (8 + 5/8 x 100) = 0,08 bar x 50 cm2 = 4,0 kg- in position 5 40 / (8 + 5/8 x 100) = 0.08 bar x 50 cm 2 = 4.0 kg
- en position 6 40 / (8 + 6/8 x 100) = 0,065 bar x 50 cm2 = 3,25 kg- in position 6 40 / (8 + 6/8 x 100) = 0.065 bar x 50 cm 2 = 3.25 kg
- en position 7 40 / (8 + 7/8 x 100) = 0,056 bar x 50 cm2 = 2,8 kg- in position 7 40 / (8 + 7/8 x 100) = 0.056 bar x 50 cm 2 = 2.8 kg
- en position 8 40 / (8 + 8/8 x 100) = 0,05 bar x 50 cm2 = 2,5 kg- in position 8 40 / (8 + 8/8 x 100) = 0.05 bar x 50 cm 2 = 2.5 kg
La pression totale exercée sur le piston est la moyenne de la somme des pressions soit : 6 / 9 = 0,67 barThe total pressure exerted on the piston is the average of the sum of the pressures, that is: 6/9 = 0.67 bar
De même, la moyenne des couples est : 301 ,55 / 9 = 33,5 kgSimilarly, the average of the couples is: 301, 55/9 = 33.5 kg
Notons que chaque chambre de la turbine reçoit par impulsion une pression moyenne de 0,67 bar. Mais la pression décroît entre le choc du départ où elle est à son maximum de 5 bars ce qui donne un choc de 5 bar x 50 cm2 = 250 kg et la pression en fin de course de 0,05 bars ce qui donne en résiduel : 0,05 x 50 cm2 =Note that each turbine chamber receives an average pressure of 0.67 bar per pulse. But the pressure decreases between the shock at the start where it is at its maximum of 5 bars which gives a shock of 5 bar x 50 cm 2 = 250 kg and the pressure at the end of the stroke of 0.05 bars which gives a residual : 0.05 x 50 cm 2 =
2,5 kg (de couple pour compenser les frottements).2.5 kg (of torque to compensate for friction).
Cela induit en pratique :In practice, this leads to:
- de caler différentes chambres de façon que la rotation soit continue (montage en étoile) ;- to wedge different chambers so that the rotation is continuous (star mounting);
- de réduire ou d'augmenter le pourcentage du volume injecté de façon à obtenir une force résiduelle plus ou moins importante, par exemple avec un pourcentage injecté de 1/50e nous aurons en résiduel : 5 bars x 16 cm3 = 80 de cte / (16 + 800) = 0,10 bar.- to reduce or increase the percentage of the volume injected so as to obtain a more or less significant residual force, for example with a percentage injected of 1/50 e we will have a residual: 5 bars x 16 cm 3 = 80 sides / (16 + 800) = 0.10 bar.
Bien entendu le double, ce qui double aussi le couple : 0,1 b x 50 cm2 = 5 kg.Of course double, which also doubles the torque: 0.1 bx 50 cm 2 = 5 kg.
La pression finale est multipliée proportionnellement au pourcentage de la chambre retenue.The final pressure is multiplied in proportion to the percentage of the chamber selected.
Mais la production d'énergie n'est pas proportionnelle à la consommation.But energy production is not proportional to consumption.
Avec 1/100e nous obtenons un couple (compte tenu de. la configuration du moteur) de : 0,67 bar x 50 cm2 = 33,5 kg.With 1/100 e we obtain a torque (taking into account the engine configuration) of: 0.67 bar x 50 cm 2 = 33.5 kg.
Alors que pour 1/50e la pression moyenne devient : (5 + 0,74 + 0,37 + 0,26 +0,18 + 0,16 + 0,13 + 0,112 + 0,1) / 9 = 0,784 bar et donc que le couple moyen devient : 0,784 bar x 50 cm2 = 39,2 kg.Whereas for 1/50 th the average pressure becomes: (5 + 0.74 + 0.37 + 0.26 + 0.18 + 0.16 + 0.13 + 0.112 + 0.1) / 9 = 0.784 bar and therefore the average torque becomes: 0.784 bar x 50 cm 2 = 39.2 kg.
La consommation qui pour 1/100e du volume consommé est de :The consumption which for 1/100 e of the volume consumed is:
(800 cm3 x 5 bar) / 100 = 40 Ncm3 est doublée si le pourcentage diminue : (800 / 50) x 5 = 80 Ncm3.(800 cm 3 x 5 bar) / 100 = 40 Ncm 3 is doubled if the percentage decreases: (800/50) x 5 = 80 Ncm 3 .
Ceci pour nous permettre de noter que suivant ce que la turbine reçoit par injection, le rapport travail / consommation varie suivant la formule :This allows us to note that depending on what the turbine receives by injection, the work / consumption ratio varies according to the formula:
W = Force en kg x déplacement en mètre x 9,81 pour obtenir des joules ce qui donne : - pour 1/100ème = 33,5kg x 0,16 x 9,81 = 52,5 joules / 40 Ncm3 = 1 ,3 joule/Ncm3 W = Force in kg x displacement in meters x 9.81 to obtain joules which gives: - for 1/100 th = 33.5 kg x 0.16 x 9.81 = 52.5 joules / 40 Ncm 3 = 1 , 3 joule / Ncm 3
- pour 1/50eme = 39,2 kg x 0,16 x 9,81 = 61 ,5 joules / 80 Ncm3 = 0,769 joule/Ncm3 - for 1/50 th = 39.2 kg x 0.16 x 9.81 = 61.5 joules / 80 Ncm 3 = 0.769 joule / Ncm 3
La partie moteurThe engine part
La chambre moteur (Cm) reçoit par impulsion et par tour, un pourcentage de son volume à une pression choisie. Elle a un profil rectangulaire. Sa capacité exacte se calcule puisque c'est un profil d'anneau en soustrayant de la surface totale du plus grand cercle, la surface du petit cercle intérieur.The engine chamber (Cm) receives, per pulse and per revolution, a percentage of its volume at a selected pressure. It has a rectangular profile. Its exact capacity is calculated since it is a ring profile by subtracting from the total area of the largest circle, the area of the small inner circle.
Nous prendrons le cas d'une chambre de 25,4 cm de diamètre extérieur ; pour 5 cm de différence de rayon (hauteur de chambre) :We will take the case of a 25.4 cm outside diameter chamber; for 5 cm radius difference (chamber height):
12,7 x 12,7 x 3,14 = 506,62 cm2 7,7 x 7,7 x 3, 14 = 286,24 cm2 / 320,38 cm2 12.7 x 12.7 x 3.14 = 506.62 cm 2 7.7 x 7.7 x 3.14 = 286.24 cm 2 / 320.38 cm 2
En retenant une profondeur de chambre de 10 cm, le volume s'écrit :By retaining a chamber depth of 10 cm, the volume is written:
320,37 x 10 = 3203,8 cm3.320.37 x 10 = 3203.8 cm 3 .
La surface du piston étant de 5 x 10 = 50 cm2, en exerçant sur celui-ci une pression de 0,67 bars (figure 6) qui représente la pression moyenne du centième du volume de la chambre alimenté à 5 bars, nous obtenons une force de 0,67 x 50 = 33,5 kg.The surface of the piston being 5 x 10 = 50 cm 2 , by exerting on it a pressure of 0.67 bars (Figure 6) which represents the average pressure of one hundredth of the volume of the chamber supplied at 5 bars, we obtain a force of 0.67 x 50 = 33.5 kg.
Le déplacement du piston sur le diamètre moyen multiplié par cette force représente le travail W = F x D qui s'écrit ainsi pour une turbine : W = 2τr x D x couple x 9,81 =The displacement of the piston on the mean diameter multiplied by this force represents the work W = F x D which is written thus for a turbine: W = 2τr x D x couple x 9.81 =
6,28 x 0,204 m x (0,67 bars x 50 cm2) x 9,81 = 421 joules.6.28 x 0.204 mx (0.67 bar x 50 cm 2 ) x 9.81 = 421 joules.
La dépense de Ncm3 d'air utilisé à cette pression de 5 bars se calcule en convertissant les cm3 comprimés en normaux cm3, et pour cet exemple, en centième du volume. Chaque chambre débite huit fois par tour, à savoir :The expenditure of Ncm 3 of air used at this pressure of 5 bars is calculated by converting the compressed cm 3 into normal cm 3 , and for this example, in hundredths of the volume. Each room debits eight times per turn, namely:
3203,8 cm3 x 5 bars x 8 fois par tour / 4 chambres x 100 = 320,38 Ncm3/tour3203.8 cm 3 x 5 bars x 8 times per turn / 4 rooms x 100 = 320.38 Ncm 3 / turn
Ce qui peut se traduire et qui restera constant pour tout type de moteur : 1 Ncm3 engendre un travail de 421/ 320 = 1 ,3 joule. en condition isotherme. Ce coefficient étant calculé sous conditions isotherme. En considérant le réchauffement du moteur, disons à une température de 909° absolu alors que l'air insufflé resterait à la température ambiante, disons 303° absolu, la pression moyenne pour une échange parfait s'établirait à trois fois plus. (utilisation d'un miroir solaire par exemple).What can be translated and which will remain constant for any type of engine: 1 Ncm 3 generates a work of 421/320 = 1, 3 joule. in isothermal condition. This coefficient being calculated under isothermal conditions. Considering the engine warming up, say at a temperature of 909 ° absolute while the blown air remains at room temperature, say 303 ° absolute, the average pressure for a perfect exchange would be three times higher. (use of a solar mirror for example).
La partie moteur pourrait aussi être accouplée à la partie compresseur pour récupérer les calorie.The engine part could also be coupled to the compressor part to recover the calories.
La partie compresseurThe compressor part
Nous avons établi par expériences successives que, contrairement au moteur, le rapport entre les joules consommés et la production varie quelque peu en fonction de la technologie utilisée et du profil des chambres de compression (Ce). Nous développerons ici les calculs pour un compresseur défini, de façon à expliciter le fonctionnement. Pour faciliter la compréhension, nous retenons un compresseur identique au moteur de l'exemple ci-dessus. Sachant que le profil des chambres de compression pourra, en fonction des résultats recherchés, être réalisé de façon à « lisser » la courbe de variation du couple absorbé, nous retenons pour simplifier notre démonstration un profil (F), tel celui de la figure 6. Le volume de la chambre de compression sera moitié de celle du moteur (3203,8 cm3 / 2 = 1601 ,9 cm3).We have established by successive experiments that, unlike the engine, the ratio between the joules consumed and the production varies somewhat depending on the technology used and the profile of the compression chambers (Ce). We will develop here the calculations for a defined compressor, so as to explain the operation. To facilitate understanding, we retain a compressor identical to the engine in the example above. Knowing that the profile of the compression chambers may, depending on the desired results, be produced so as to “smooth” the variation curve of the absorbed torque, we retain to simplify our demonstration a profile (F), such as that of FIG. 6 . the volume of the compression chamber will be half that of the motor (3203.8 cm 3/2 = 1601, 9 cm 3).
Puisqu'il y a 4 chambres dans le système exposé réversible pris pour cet exemple, une chambre de compression a un volume de : 3203,8 / 4 = 800,95 / 2 = 400,475 cm3 (profil triangulaire). La partie compresseur ne doit être constituée que par des chambres de compression à profil triangulaire.Since there are 4 chambers in the reversible exposed system taken for this example, a compression chamber has a volume of: 3203.8 / 4 = 800.95 / 2 = 400.475 cm 3 (triangular profile). The compressor part must only consist of compression chambers with a triangular profile.
Pour apprécier visuellement l'énergie absorbée par le compresseur pour porter l'air aspiré de la pression atmosphérique à 5 bars, nous considérons le profil d'une chambre, tel que représenté à la figure 7, de longueur 400,475 cm3 x 2 / 5 cm de haut = 160,19 cm. (base du triangle projeté pour une hauteur de 5 cm et 10 cm de profondeur)To visually assess the energy absorbed by the compressor to bring the air drawn from atmospheric pressure to 5 bars, we consider the profile of a chamber, as shown in Figure 7, length 400.475 cm 3 x 2/5 cm high = 160.19 cm. (base of the projected triangle for a height of 5 cm and 10 cm deep)
A partir des mesures relevées sur l'abaque jointe, on peut écrire que, quand le piston passe de la position 0 à 1 , le volume de la chambre devient : Longueur = 12,816 cm x Hauteur = 4,1 x Profondeur 10 / 2 = 262,728 cm3 ceci en condition isotherme PV = cte (nous verrons plus loin l'influence des températures) la pression relative devient :From the measurements noted on the attached chart, we can write that, when the piston goes from position 0 to 1, the volume of the chamber becomes: Length = 12.816 cm x Height = 4.1 x Depth 10/2 = 262.728 cm 3 this in isothermal condition PV = cte (we will see below the influence of temperatures) the relative pressure becomes:
1atm. x 400,475 cm3 / 262,725 = 1,524 absolue soit 0,524 de pression relative. Cette pression s'exerçant sur une surface réduite du piston à chaque avancée :1 atm. x 400.475 cm 3 / 262.725 = 1.524 absolute or 0.524 relative pressure. This pressure being exerted on a reduced surface of the piston with each advance:
H 4,1 cm x L 10 cm = 41 cm2 la force absorbée est de : 0,524 x 41 cm = 21 ,484 kgH 4.1 cm x W 10 cm = 41 cm 2 the absorbed force is: 0.524 x 41 cm = 21, 484 kg
Retenons pour faire ensuite l'intégration, qu'il faut 21 ,484 kg pour passer de 0 àLet’s remember to do the integration afterwards, it takes 21.484 kg to go from 0 to
0,524 bars de pression relative.0.524 bar relative pressure.
En position 2, il faut : (1 x 400,475 x 2) / (9,612 cm x 3,1 x 10) - 1 = 1 ,688 bars d'où une force de : 1 ,688 x 3,1 x 10 = 52,328 kg.In position 2, you need: (1 x 400.475 x 2) / (9.612 cm x 3.1 x 10) - 1 = 1.688 bar, hence a force of: 1.688 x 3.1 x 10 = 52.328 kg.
En position 3, il faut : (400,475 x 2) / (6,4 x 2 x 10) - 1 = 5,257 bars d'où une force de : 5 bars x 2 x 10 = 100 kg.In position 3, you need: (400.475 x 2) / (6.4 x 2 x 10) - 1 = 5.257 bars, hence a force of: 5 bars x 2 x 10 = 100 kg.
Notons ici que nous avons choisi de ne refouler qu'à 5 bars (pression que nous retenons donc pour calculer le couple au lieu de 5,257 bars). En position 4, donc pour 5 bars : 5 bars x 1 x 10 = 50 kg.Note here that we have chosen to only discharge at 5 bars (pressure which we therefore use to calculate the torque instead of 5,257 bars). In position 4, therefore for 5 bars: 5 bars x 1 x 10 = 50 kg.
Avec ce profil, le couple moyen s'établit donc à 44,76 kg pour 5 bars de pression de refoulement, l'énergie consommée est de : 6,28 x 0,204 x 44,76 x 9,81 = 562 joules pour obtenir le débit de la chambre à 5 bars : 400,475 Ncm3 x 8 fois par tour =With this profile, the average torque is therefore 44.76 kg for 5 bar discharge pressure, the energy consumed is: 6.28 x 0.204 x 44.76 x 9.81 = 562 joules to obtain the chamber flow at 5 bars: 400.475 Ncm3 x 8 times per revolution =
3203,8 Ncm3. Bien entendu, l'invention n'est pas limitée aux modes de réalisation décrits et représentés pour lesquels on pourra prévoir d'autres Variantes, en particulier dans :3203.8 Ncm 3 . Of course, the invention is not limited to the embodiments described and shown for which other variants may be provided, in particular in:
- les types de stators, de rotors et de flasques et la nature des matériaux constitutifs ;- the types of stators, rotors and flanges and the nature of the constituent materials;
- les types et les formes des pistons et des cloisons escamotables ; - les types de moyens adaptés pour déplacer la paroi escamotable et pour insuffler de l'air dans la canalisation d'entrée ;- types and shapes of pistons and retractable partitions; - the types of means suitable for moving the retractable wall and for blowing air into the inlet pipe;
- le nombre de chambres de décompression et des circuits associés ; et l'étendre à toutes les applications destinées mettre en mouvement tout dispositif ou tout véhicule terrestre, aquatique ou aérien, soit totalement, soit en addition, et ce quelle que soit la source d'énergie complémentaire utilisée. - the number of decompression chambers and associated circuits; and extend it to all applications intended to set in motion any device or any land, water or air vehicle, either totally or in addition, regardless of the complementary energy source used.

Claims

REVENDICATIONS
1- Moteur rotatif à air comprimé comportant essentiellement : a) un stator (1 ) et un rotor (2) cylindriques et concentriques ; b) une chambre de volume (V) délimitée, longitudinalement, par les parois cylindriques en regard dudit stator et dudit rotor et, latéralement, par deux flasques (3) et (4) en regard ; c) au moins une canalisation (5) d'arrivée d'air sous pression (P) dans au moins une chambre de décompression (Va) appartenant audit volume (V) et au moins une canalisation d'évacuation (6) de l'air résiduel (R) en fin de cycle de décompression ; chaque chambre de décompression (Va) étant délimitée, longitudinalement, à une extrémité, par une paroi (7), faisant office de piston, solidaire du rotor (2) et s'étendant jusqu'au stator (1) et, à l'autre extrémité, par une paroi (8), escamotable, disposée en amont de la canalisation d'arrivée d'air (5) correspondante, solidaire en translation du stator (1 ) et s'étendant jusqu'au rotor (2), associée à un moyen adapté pour la rendre escamotable lors du passage du piston (7) ; caractérisé en ce que chaque canalisation d'arrivée d'air (5) est associée à un moyen adapté pour insuffler, dans la chambre de décompression (Va) correspondante, après le passage du piston (7) sur la canalisation d'arrivée (5), une quantité d'air de pression et de volume bien déterminés. 2- Moteur rotatif, selon la revendication 1 , caractérisé en ce que le moyen adapté pour déplacer la paroi escamotable (8) lors du passage du piston (7), est choisi parmi des dispositifs mécaniques à cames, électromécaniques à relais et pneumatiques à vérins. 3- Moteur rotatif, selon la revendication 1, caractérisé en ce que le moyen adapté pour déplacer la paroi escamotable (8) lors du passage du piston (7), est le piston (7) lui même qui possède une forme (F) adaptée pour dégager ladite paroi lors de son passage. 4- Moteur rotatif, selon la revendication 1, caractérisé en ce que le moyen adapté pour insuffler dans la chambre de décompression (Va), après le passage du piston (7) sur la canalisation d'arrivée d'air (5), une quantité d'air sous pression (P) bien définie, est choisi parmi des dispositifs mécaniques, électromécaniques et pneumatiques à clapets ou à vannes. 5- Moteur rotatif, selon la revendication 1 , caractérisé en ce que le moyen adapté pour insuffler dans la chambre de décompression (Va), après le passage du piston (7) sur la canalisation d'arrivée d'air (5), une quantité d'air sous pression (P) bien définie, est un clapet escamotable (9) d'obturation de l'extrémité de ladite canalisation (5), qui possède une forme adaptée pour dégager ladite extrémité sous l'effet du passage dudit piston. 6- Moteur rotatif, selon la revendication 3, caractérisé en ce que la paroi escamotable (8) est associée à un moyen, notamment un ressort de rappel, adapté pour la ramener dans sa position initiale après le passage du piston (7). 7- Moteur rotatif, selon la revendication 5, caractérisé en ce que le clapet escamotable (9) est associée à un moyen, notamment un ressort de rappel, adapté pour le ramener dans sa position initiale après le passage du piston (7). 8- Moteur rotatif, selon la revendication 1 , caractérisé en ce que le piston (7) est réalisé au moyen d'une lame élastique prenant appui sur la paroi intérieure cylindrique du stator (1 ). 9- Moteur rotatif, selon l'une quelconque des revendications précédentes, caractérisé en ce que plusieurs chambres de décompression (Va), associées, chacune, à une canalisation d'arrivée d'air sous pression (5), à une canalisation d'évacuation d'air résiduel (6), à un piston (7) et à une paroi escamotable (8), sont disposées uniformément réparties autour de la chambre (V) afin d'additionner leurs effets. 10- Moteur rotatif, selon l'une quelconque des revendications précédentes, caractérisé en ce que plusieurs ensembles, comprenant, chacun, un stator (1 ), un rotor (2), des flasques (3) et (4), au moins un piston (7) et au moins une paroi escamotable (8) associés à des canalisation d'entrée (5) et d'évacuation (6), sont juxtaposés sur le même arbre (10) afin d'additionner leurs effets. 1- Rotary compressed air motor essentially comprising: a) a cylindrical and concentric stator (1) and a rotor (2); b) a volume chamber (V) delimited, longitudinally, by the cylindrical walls facing said stator and said rotor and, laterally, by two flanges (3) and (4) facing; c) at least one pipe (5) for supplying pressurized air (P) in at least one decompression chamber (Va) belonging to said volume (V) and at least one discharge pipe (6) for the residual air (R) at the end of the decompression cycle; each decompression chamber (Va) being delimited, longitudinally, at one end, by a wall (7), acting as a piston, integral with the rotor (2) and extending to the stator (1) and, at the other end, by a retractable wall (8), disposed upstream of the corresponding air inlet pipe (5), integral in translation with the stator (1) and extending to the rotor (2), associated to a means adapted to make it retractable during the passage of the piston (7); characterized in that each air inlet pipe (5) is associated with a means suitable for blowing, into the corresponding decompression chamber (Va), after the passage of the piston (7) over the inlet pipe (5 ), a quantity of air of well determined pressure and volume. 2- rotary motor according to claim 1, characterized in that the means adapted to move the retractable wall (8) during the passage of the piston (7), is chosen from mechanical devices with cams, electromechanical relays and pneumatic cylinders . 3- rotary motor according to claim 1, characterized in that the means adapted to move the retractable wall (8) during the passage of the piston (7) is the piston (7) itself which has a shape (F) adapted to release said wall during its passage. 4- rotary motor according to claim 1, characterized in that the means adapted to breathe into the decompression chamber (Va), after the passage of the piston (7) on the air inlet pipe (5), a quantity of air under pressure (P) well defined, is chosen from mechanical, electromechanical and pneumatic devices with valves or valves. 5- rotary motor according to claim 1, characterized in that the means adapted to breathe into the decompression chamber (Va), after the passage of the piston (7) on the air inlet pipe (5), a well-defined amount of air under pressure (P) is a retractable valve (9) for closing off the end of said pipe (5) , which has a shape adapted to release said end under the effect of the passage of said piston. 6- rotary motor according to claim 3, characterized in that the retractable wall (8) is associated with a means, in particular a return spring, adapted to return it to its initial position after the passage of the piston (7). 7- rotary motor according to claim 5, characterized in that the retractable valve (9) is associated with means, in particular a return spring, adapted to return it to its initial position after the passage of the piston (7). 8- Rotary motor according to claim 1, characterized in that the piston (7) is produced by means of an elastic blade bearing on the cylindrical inner wall of the stator (1). 9- Rotary motor according to any one of the preceding claims, characterized in that several decompression chambers (Va), each associated with a supply line for pressurized air (5), with a supply line residual air discharge (6), a piston (7) and a retractable wall (8), are arranged uniformly distributed around the chamber (V) in order to add their effects. 10- rotary motor according to any one of the preceding claims, characterized in that several assemblies, each comprising a stator (1), a rotor (2), flanges (3) and (4), at least one piston (7) and at least one retractable wall (8) associated with inlet (5) and discharge (6) pipes, are juxtaposed on the same shaft (10) in order to add their effects.
EP04767760A 2003-07-24 2004-07-22 Compressed air rotary engine Not-in-force EP1649142B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0309196 2003-07-24
PCT/FR2004/001961 WO2005010322A1 (en) 2003-07-24 2004-07-22 Compressed air rotary engine

Publications (2)

Publication Number Publication Date
EP1649142A1 true EP1649142A1 (en) 2006-04-26
EP1649142B1 EP1649142B1 (en) 2009-02-11

Family

ID=34089844

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04767760A Not-in-force EP1649142B1 (en) 2003-07-24 2004-07-22 Compressed air rotary engine

Country Status (5)

Country Link
EP (1) EP1649142B1 (en)
CN (1) CN1829854B (en)
AT (1) ATE422601T1 (en)
DE (1) DE602004019421D1 (en)
WO (1) WO2005010322A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108800082A (en) * 2018-07-05 2018-11-13 深圳市伙伴科技有限公司 High thermal efficiency engine with recuperation of heat

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8347616B2 (en) * 2008-01-23 2013-01-08 Shofner Ii Frederick Michael Compressed air engine and power train system
CN104454330B (en) * 2014-12-15 2017-09-08 三一重型能源装备有限公司 Hydraulic rotating executive component and its control method
CN104653233A (en) * 2015-02-12 2015-05-27 梁运富 Cylinder-type high-pressure gas engine
US9995209B2 (en) * 2015-03-18 2018-06-12 International Engine Intellectual Property Company, Llc Rotary engine
CN108625901A (en) * 2018-07-05 2018-10-09 深圳市伙伴科技有限公司 Thermal powerplant
CN112081631A (en) * 2020-08-20 2020-12-15 东风汽车集团有限公司 Compressed gas engine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE232312C (en) *
DE116276C (en) *
BE390678A (en) *
US897519A (en) * 1908-01-25 1908-09-01 Levi Bonner Rotary engine.
US1647464A (en) * 1925-11-07 1927-11-01 William G Parmele Rotary steam engine
US3246573A (en) * 1964-01-23 1966-04-19 Zceveld William Fluid driven motor
CN2205446Y (en) * 1993-11-13 1995-08-16 杨国纬 Swing blade type rotary piston IC engine
US5961310A (en) * 1997-07-25 1999-10-05 Mcclure; Troy A. External combustion rotary engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005010322A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108800082A (en) * 2018-07-05 2018-11-13 深圳市伙伴科技有限公司 High thermal efficiency engine with recuperation of heat

Also Published As

Publication number Publication date
CN1829854B (en) 2010-05-05
ATE422601T1 (en) 2009-02-15
CN1829854A (en) 2006-09-06
EP1649142B1 (en) 2009-02-11
WO2005010322A1 (en) 2005-02-03
DE602004019421D1 (en) 2009-03-26

Similar Documents

Publication Publication Date Title
JP5629371B2 (en) Planetary rotary fluid motor or motor and compressor or pump
EP2935807B1 (en) Concentrating thermodynamic solar or conventional thermal power plant
EP3146167B1 (en) Compressed-air engine with an integrated active chamber and with active intake distribution
EP0407436A1 (en) Motor propulsion, in particular for an automobile vehicle and vehicle comprising such a unit.
EP2625400A1 (en) Self-pressure-regulating compressed air engine comprising an integrated active chamber
EP1649142B1 (en) Compressed air rotary engine
EP3303825A1 (en) Device and method for converting and storing electric energy in the form of compressed air
EP2227628A2 (en) Thermodynamic machine, particularly of the carnot and/or stirling type
US20140260245A1 (en) Volumetric energy recovery device with variable speed drive
EP3935281B1 (en) Hybrid thermodynamic compressor
EP2334906B1 (en) Multifunction rotary machine with deformable rhomb
EP0358655A1 (en) Process and device for equipping a post-filling two-stroke engine.
FR3097254A3 (en) Compressed air motor with active chamber included and active distribution with balanced valve
EP3596335A1 (en) Device for producing hydro-electric power
BE1010391A3 (en) Rotary piston volumetric effect machine and engine derived from such a machine
FR3033000B1 (en) MACHINE FOR COMPRESSING AND RELAXING A FLUID AND USE THEREOF IN A THERMAL ENERGY RECOVERY SYSTEM
EP3942199B1 (en) Hydromechanical power amplifier assembly
BE1015545A3 (en) System energy conversion device volume.
WO2021251836A1 (en) Automatic rotating shaft
FR2792364A1 (en) Mechanism used as compressor, turbine, vacuum pump or as engine with no piston, rod, nor camshaft, comprises snail-shaped rotor, and stator carrying blades
WO2023217413A1 (en) Compressed-air engine comprising an integrated active chamber and with active distribution and comprising a balanced exhaust valve for cylinder deactivation
FR3025001A1 (en) SIMPLIFIED VARIANT OF ROTARY THERMAL ENGINE
WO2023001436A1 (en) Device for generating mechanical energy, electrical energy and method therefor
FR2822895A1 (en) Rotary fluid motor has offset rotor with sliding vanes has stator with hub to guide vanes on rotor forming working chambers
FR3002007A1 (en) Oil pump for use in thermal engine of car, has control ring moved around pivot to move axis of external rotor closer to axis of internal rotor, and passage zones formed in ring to maximize sections of oil in aspiration and repression areas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602004019421

Country of ref document: DE

Date of ref document: 20090326

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090522

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090511

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090713

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090728

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090511

BERE Be: lapsed

Owner name: BERNARD, CECILE

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090211