EP1644660A2 - High mechanical and optical performance illumination system - Google Patents

High mechanical and optical performance illumination system

Info

Publication number
EP1644660A2
EP1644660A2 EP04767431A EP04767431A EP1644660A2 EP 1644660 A2 EP1644660 A2 EP 1644660A2 EP 04767431 A EP04767431 A EP 04767431A EP 04767431 A EP04767431 A EP 04767431A EP 1644660 A2 EP1644660 A2 EP 1644660A2
Authority
EP
European Patent Office
Prior art keywords
illuminating system
particles
phosphor particles
matrix
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04767431A
Other languages
German (de)
French (fr)
Inventor
Marie-Isabelle Watchi
Maxime Duran
Arnaud Huignard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0307573A external-priority patent/FR2856512A1/en
Priority claimed from FR0402931A external-priority patent/FR2867897A1/en
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP1644660A2 publication Critical patent/EP1644660A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/54Screens on or from which an image or pattern is formed, picked-up, converted, or stored; Luminescent coatings on vessels
    • H01J1/62Luminescent screens; Selection of materials for luminescent coatings on vessels
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7777Phosphates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7794Vanadates; Chromates; Molybdates; Tungstates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/38Devices for influencing the colour or wavelength of the light
    • H01J61/40Devices for influencing the colour or wavelength of the light by light filters; by coloured coatings in or on the envelope

Definitions

  • the present invention relates to particular shapings of phosphor particles known elsewhere, capable of guaranteeing high mechanical and optical properties, such as mechanical resistance under the most demanding handling conditions, resistance to impact, to abrasion, crushing, cracking, possibly delamination in the event of deposition on a substrate, shearing, bending ... on the one hand, transparency, almost no haze, controlled light transmission between values that can approach 100% and low values in the case of very diffusing materials, optical homogeneity, absence of degradation, yellowing, in particular under the effect of excitation, ... on the other hand.
  • phosphor particles refers to particles capable of emitting light, in particular in the visible wavelength range, under the effect of an excitation by uv radiation, electron beam, x-rays, radiation gamma, electric field; these particles are of dimensions for example between a few nanometers and a few microns, and used in particular in lamps in the form of powdery clusters.
  • application FR-A1-2 829 481 mentions separately the coating of phosphor particles with a stabilizing film of sodium silicate, on the one hand, and the deposition of the dispersions with other phosphors possibly, in the form of transparent films. on a glass substrate, on the other hand.
  • the document does not specify how to obtain a film, let alone a transparent film.
  • the invention now provides composites of phosphor particles capable of retaining state and shape integrity for long periods, under usual conditions of use (assembly, installation, cleaning, etc.). This object is achieved by the invention which relates to an illuminating system consisting of phosphor particles dispersed in a solid and durable matrix by allowing manipulation by a user.
  • Luminophoric particles falling within the scope of the invention are, for example:
  • LaPO 4 Ce (Mg, Ba) AlnOi 9 : Ce
  • phosphor particles or mixtures of phosphor particles are characterized by the emission of radiation of wavelengths in the visible range, corresponding to different colors, of white light, or in the ir or the uv.
  • the last three cited in the above list are remarkable for the intensity, persistence and duration of their activity, after all sources of excitement have been removed, especially at night.
  • the invention therefore makes it possible to have solid, manipulative, honest and resistant lighting objects which can take a multitude of forms such as coating on a substrate, capable of lighting in different colors, opening the way to the most original aesthetic or artistic creations. and varied.
  • the particles are luminophores in the visible range, in which most of the applications envisaged below are of the greatest interest.
  • the particles are excitable by electromagnetic radiation in the field of UV, visible, ir, either by X-rays or gamma rays, or by a beam of particles (electrons, ions), or by a field. electric.
  • Excitation by UV can come from the de-excitation of a plasma or an ionized gas.
  • the matrix is inorganic and comprises, in a particularly preferred manner, lithium silicate.
  • sodium silicates and, to a lesser extent, potassium are suitable for an opaque lighting system, lithium silicate being particularly recommended for a transparent lighting system.
  • sodium silicate the migration to the surface of a very hygroscopic and diffusing crust based on soda is observed, which is constantly regenerating.
  • Lithium silicate has proven to be remarkable for the possibility of uniformly distributing therein high concentrations of phosphor particles in the most individualized state possible, as well as for its compatibility with numerous substrates, including glass.
  • the matrix comprises lithium silicate
  • the matrix is a product of partial or total transformation of lithium silicate, in particular silica, in which the lithium silicate and / or the lithium remains perfectly detectable.
  • the matrix comprises a polymerization / polycondensation product of silicon alkoxide such as tetraethoxysilane (TEOS), tetramethoxysilane (TMOS), methyltriethoxysilane (MTEOS) and the like.
  • TEOS tetraethoxysilane
  • TMOS tetramethoxysilane
  • MTEOS methyltriethoxysilane
  • the matrix is in the form of a thin layer in adhesion with a substrate consisting in particular of glass for example in the form of a sheet, but also of a slab intended to constitute a screen of a tube, especially for lighting, of fiber or fabric, or of plastic.
  • a transparent plastic material such as polycarbonate, polyvinyl butyral, polyolefin such as polyethylene, polypropylene, poly (ethylene terephthalate), polyurethane, acrylic polymer such as poly (methyl methacrylate), ionomer resin, various copolymers ...
  • the phosphor particles are in aqueous suspensions and their dimensions are at most equal to 100 nm, preferably to 30 nm, preferably to 10 nm, and the assembly which they form with the matrix is transparent.
  • the dimensions of the phosphor particles are between 0.5 and 10 ⁇ m, particles diffusing visible light which can then advantageously be integrated into the matrix (these may be particles other than the phosphor particles, dimensions in particular between 100 nm and 1 ⁇ m, in particular between 300 and 700 nm, such as alumina, or phosphor particles themselves; these particles diffusing visible light are dielectric, semiconductor or conductive).
  • phosphor particles with dimensions between 30 and 500 nm are not excluded from the invention, those in particular with dimensions at least equal to 400 nm being capable of diffusing visible light, which can make the addition of other particles unnecessary. diffusing.
  • the matrix in the form of a thin layer in adhesion with a substrate, the latter is able to excite the phosphor particles, it is in particular electroconductive, in particular of the electroluminescent type in the UV.
  • the substrate is capable of emitting a wavelength of the visible domain wavelength under an appropriate excitation; it is then, for example, made of glass with a cerium content, capable of emitting blue light under ultraviolet radiation.
  • the main methods for preparing the lighting system of the invention consist of - cold deposition methods by liquid, such as spray coating, flow coating, dip coating, spin coating, screen printing, followed by treatment thermal at 100-650 ° C for example (annealing, quenching, etc.), depending on the nature of the matrix; or
  • the subject of the invention is also: - the application of the lighting system described above to a transparent device;
  • the association of the lighting system with the glazing is compatible with all known functionalizations thereof, either on the same face as that supporting the lighting system, above or below, or on other sides of the glazing; hydrophobic / oleophobic, hydrophilic / oleophilic layer, antifouling photocatalytic, stack reflecting heat radiation (antisun) or ir (low-emissivity), antireflection ...
  • a glazing separating for example a building enclosure from the exterior atmosphere, the interior face of which is illuminating according to the invention, and the electrochromic exterior face, that is to say capable of darkening by energizing the layer.
  • the glazing guarantees maximum transparency and optical quality in the absence of excitation, and constitutes an illuminating surface in the presence of excitation.
  • the screen application of the display system can be generalized to all applications requiring a light source and means for processing it, in the form of a light box. These include wallpapers (backlight in English).
  • the invention is illustrated by the exemplary embodiments below.
  • the YVO: Eu nanoparticles are synthesized colloidally.
  • the entire synthesis of colloidal solutions is carried out in water, at a temperature of 60 ° C.
  • the insoluble citrate complex is formed by mixing 0.75 equivalent of sodium citrate (0.1 mol.l “1 , 15ml) and 1 equivalent of (Y, Eu) (NO 3 ) 3 (0.1 mol .l “1 , 20 ml).
  • 0.75 equivalent of a Na 3 VO 4 solution of pH 12.5 (0.1 mol.l " 1.15 ml) causes the dissolution of the precipitate and the start of the reaction.
  • the clear solution obtained is 7.6.
  • the colloidal solution obtained is then dialyzed in water at neutral pH in order to eliminate the various counter-ions (Na + , NO 3 " ) or any unreacted species.
  • the concentration of the colloidal solution is of the order of 10 "2 mol .. " 1 .
  • the colloidal solutions are then concentrated by dry evaporation of the water under mild conditions (40 ° C. and under vacuum). The powder obtained is easily redispersed in a very small volume of water, which makes it possible to obtain very concentrated colloidal solutions (up to 2 mol.1 "1 , or 400 gl " 1 ).
  • the size measured in light scattering after redispersion (10 +/- 3 nm) is identical to that of the colloid obtained after dialysis: the colloids undergo no aggregation during the concentration step.
  • concentrated colloidal solutions are optically transparent.
  • the transparent luminescent films were produced in the following manner. To 4 ml of colloidal solution of YVO 4 : Eu nanoparticles is added 0.2 to 1 ml of lithium silicate (30% by mass in water, pH 12). The soil obtained is filtered (glass fiber prefilter and 0.45 ⁇ m filter) and then deposited by centrifugation (speed of rotation of 1000 rpm for 60 seconds) on float glass substrate (5 x 5 cm 2 ).
  • the thin films obtained are finally annealed at 450 ° C for 12 hours.
  • the role of this heat treatment is to mechanically consolidate the film and increase luminescence (elimination of hydroxyl groups which inhibit the luminescence of europium ions).
  • the thin films after annealing are perfectly transparent and with a thickness of between 0.2 and 0.7 ⁇ m.
  • the thin films were placed under a UV lamp emitting at 254 nm. A red luminescence characteristic of europium ions within the YVO 4 matrix is observed. Luminance measurements were carried out and confirmed what is visually observed: the light emission is more intense on the edge of the film than in the center. Indeed, the luminance is 5 Cd / m 2 in the center, while it is 20 Cd / m 2 on the edge.
  • This example describes the preparation of diffusing luminescent layers.
  • To 176 g of deionized water are added 12.8 g of alumina particles with an average diameter of 500 nm and 0.24 g of polyacrylic acid (50% by weight solution in water). Soda is then added until a pH of 10 is reached. 5 g of LaP ⁇ 4 particles are then added. "Ce, Tb with an average diameter of 2 ⁇ m sold by the company Nichia.
  • the mixture is then homogenized in a turbine for 5 11 g of lithium silicate (solution at 30% by weight in water) are then added. After 5 minutes of homogenization in a turbine, the mixture is deposited on a 10 ⁇ 10 cm 2 glass substrate by flow coating.
  • the coating obtained has a TL of 60% and a haze close to 100%. Under photoexcitation at 257 nm, a green luminescence is observed produced in the coating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Electroluminescent Light Sources (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

The invention relates to an illumination system, comprising luminophore articles, dispersed in a solid durable matrix which may be manipulated by a user. The application of said illumination system is to a transparent device or light-diffusing device, in particular to monolithic and single- or multiple-layered glazing.

Description

SYSTEME ECLAIRANT A HAUTE PERFORMANCE MECANIQUE ET OPTIQUE LIGHTING SYSTEM WITH HIGH MECHANICAL AND OPTICAL PERFORMANCE
La présente invention a trait à des mises en forme particulières de particules luminophores connues par ailleurs, aptes à garantir des propriétés mécaniques et optiques élevées, telles que tenue mécanique dans les conditions de manipulation les plus exigeantes, résistance au choc, à l'abrasion, à l'écrasement, à la fissuration, éventuellement à la délamination en cas de dépôt sur un substrat, au cisaillement , à la flexion... d'une part, transparence, quasi- absence de voile, transmission lumineuse contrôlée entre des valeurs pouvant approcher 100 % et des valeurs faibles dans le cas de matériaux très diffusants, homogénéité optique, absence de dégradation, de jaunissement, notamment sous l'effet de l'excitation,... d'autre part. Le terme de particules luminophores se réfère à des particules aptes à émettre de la lumière, notamment dans le domaine des longueurs d'onde du visible, sous l'effet d'une excitation par rayonnement uv, faisceau d' électrons, rayons X, rayonnement gamma, champ électrique ; ces particules sont de dimensions par exemple comprises entre quelques nanomètres et quelques microns, et utilisées notamment dans des lampes sous forme d'amas pulvérulents. Par ailleurs la demande FR-A1-2 829 481 mentionne séparément l'enrobage de particules luminophores par une pellicule stabilisante de silicate de sodium, d'une part, et le dépôt des dispersions avec d'autres luminophores éventuellement, sous forme de films transparents sur un substrat en verre, d'autre part. Cependant, le document ne précise pas comment obtenir un film, ni a fortiori un film transparent. L'invention met à présent à disposition des composites de particules luminophores aptes à conserver une intégrité d'état et de forme pendant de longues périodes, dans des conditions habituelles d'utilisation (assemblage, installation, nettoyage...). Ce but est atteint par l'invention qui a pour objet un système éclairant constitué de particules luminophores dispersées dans une matrice solide et durable en permettant la manipulation par un utilisateur. Des particules luminophores entrant dans le cadre de l'invention sont, par exemple :The present invention relates to particular shapings of phosphor particles known elsewhere, capable of guaranteeing high mechanical and optical properties, such as mechanical resistance under the most demanding handling conditions, resistance to impact, to abrasion, crushing, cracking, possibly delamination in the event of deposition on a substrate, shearing, bending ... on the one hand, transparency, almost no haze, controlled light transmission between values that can approach 100% and low values in the case of very diffusing materials, optical homogeneity, absence of degradation, yellowing, in particular under the effect of excitation, ... on the other hand. The term phosphor particles refers to particles capable of emitting light, in particular in the visible wavelength range, under the effect of an excitation by uv radiation, electron beam, x-rays, radiation gamma, electric field; these particles are of dimensions for example between a few nanometers and a few microns, and used in particular in lamps in the form of powdery clusters. Furthermore, application FR-A1-2 829 481 mentions separately the coating of phosphor particles with a stabilizing film of sodium silicate, on the one hand, and the deposition of the dispersions with other phosphors possibly, in the form of transparent films. on a glass substrate, on the other hand. However, the document does not specify how to obtain a film, let alone a transparent film. The invention now provides composites of phosphor particles capable of retaining state and shape integrity for long periods, under usual conditions of use (assembly, installation, cleaning, etc.). This object is achieved by the invention which relates to an illuminating system consisting of phosphor particles dispersed in a solid and durable matrix by allowing manipulation by a user. Luminophoric particles falling within the scope of the invention are, for example:
Caιo(PO4)6FCI :Sb,MnCaιo (PO 4 ) 6 FCI: Sb, Mn
(Sr,Mg)2P2O7:Eu(Sr, Mg) 2 P 2 O 7 : Eu
Sr2P2O7:EuSr 2 P 2 O 7 : Eu
Sr5(PO4)3CI:EuSr 5 (PO 4 ) 3 CI: Eu
(Sr,Ca,Ba)5(PO4)3CI:Eu(Sr, Ca, Ba) 5 (PO 4 ) 3 CI: Eu
BaMg2Alι6θ27:Eu BaMg 2 Alι 6 θ 27 : Eu
CaWO4 CaWO 4
CaWO4:Pb CaWO 4 : Pb
(Ba,Ca)5(PO4)3CI:Eu(Ba, Ca) 5 (PO 4 ) 3 CI: Eu
Zn2SiO4 :MnZn 2 SiO 4 : Mn
Y3AI5O12 :CeY 3 AI 5 O 12 : This
MgAlnOig MgAlnOig
LaPO4 :Ce,TbLaPO 4 : Ce, Tb
Y(PN)O4 :Eu 3,5MgO.0,5MgF2.GeO2:MnY (PN) O 4 : Eu 3.5MgO.0.5MgF 2 .GeO 2 : Mn
(Sr,Mg)3(PO4)2:Sn(Sr, Mg) 3 (PO 4 ) 2 : Sn
Y2O3:EuY 2 O 3 : Eu
CaSiO3:Pb,Mn BaSi2O5 :PbCaSiO 3 : Pb, Mn BaSi 2 O 5 : Pb
(Ba,Sr,Mg)3Si2θ7:Pb(Ba, Sr, Mg) 3 Si 2 θ 7 : Pb
SrB4O7:EuSrB 4 O 7 : Eu
YPO4:CeYPO 4 : This
LaPO4 :Ce (Mg,Ba)AlnOi9 :CeLaPO 4 : Ce (Mg, Ba) AlnOi 9 : Ce
LiAIO2 :FeLiAIO 2 : Fe
ZnS :Ag,CIZnS: Ag, CI
ZnS: nZnS: n
ZnS :Ag,AIZnS: Ag, AI
ZnS:Cu,AIZnS: Cu, Al
ZnS :Cu,Au,AIZnS: Cu, Au, AI
Y2O2S :Eu ZnS :Ag+(Zn,Cd)S :CuY 2 O 2 S: Eu ZnS: Ag + (Zn, Cd) S: Cu
ZnS:(Zn)ZnS: (Zn)
(KF,MgF2):Mn(KF, MgF 2 ): Mn
(Zn,Cd)S:Ag(Zn, Cd) S: Ag
(Zn,Cd)S:Cu(Zn, Cd) S: Cu
ZnO:ZnZnO: Zn
(Zn,Cd)S:Cu,CI(Zn, Cd) S: Cu, Cl
ZnS:CuZnS: Cu
ZnS:Cu,AgZnS: Cu, Ag
MgF2:MnMgF 2 : Mn
(Zn,Mg)F2:Mn(Zn, Mg) F 2 : Mn
Zn2SiO4:Mn,AsZn 2 SiO 4 : Mn, As
Gd2O2S:TbGd 2 O 2 S: Tb
Y2O2S:TbY 2 O 2 S: Tb
Y3(AI,Ga)5O12:CeY 3 (AI, Ga) 5 O 12 : Ce
Y2SiO5:CeY 2 SiO 5 : This
Y3AI52:Tb Y3(AI,Ga)52:TbY 3 AI 52 : Tb Y 3 (AI, Ga) 52 : Tb
lnBO3:TblnBO 3 : Tb
lnBO3 :EulnBO 3 : Eu
ZnS :AgZnS: Ag
Y2SiO5 :TbY 2 SiO 5 : Tb
(Zn,Cd)S :Cu,CI+(Zn,Cd)S :Ag,CI(Zn, Cd) S: Cu, CI + (Zn, Cd) S: Ag, CI
lnBO3:Tb+lnBO3:EulnBO 3 : Tb + lnBO 3 : Eu
ZnS:Ag+ZnS:Cu(ou ZnS:Cu,Au)+Y2O2S :EuZnS: Ag + ZnS: Cu (or ZnS: Cu, Au) + Y 2 O 2 S: Eu
lnBO3 :Tb+lnBO3 :Eu+ZnS :AglnBO 3 : Tb + lnBO 3 : Eu + ZnS: Ag
Gd2O2S:EuGd 2 O 2 S: Eu
(Y.Sr)TaO4 (Y.Sr) TaO 4
(Y.Sr)TaO4:Gd(Y.Sr) TaO 4 : Gd
(Y.Sr)TaO4:Nb(Y.Sr) TaO 4 : Nb
BaFCI.ΕuBaFCI.Εu
BaFBπEuBaFBπEu
BaMgAlι0O17:EuBaMgAlι 0 O 17 : Eu
YBO3:Tb BaAI12O19:MnYBO 3 : Tb BaAI 12 O 19 : Mn
(Y,Gd)BO3 :Eu(Y, Gd) BO 3 : Eu
YBO3 :EuYBO 3 : Eu
Sr4AI14O25 :Eu,DySr 4 AI 14 O 25 : Eu, Dy
SrAI2O4:Eu,DySrAI 2 O 4 : Eu, Dy
CaAI2O4 :Eu,NdCaAI 2 O 4 : Eu, Nd
Y2O2S :Eu,Mg,TiY 2 O 2 S: Eu, Mg, Ti
Ces particules luminophores ou ces mélanges de particules luminophores se caractérisent par l'émission de rayonnements de longueurs d'ondes dans le domaine du visible, correspondant à différentes couleurs, de lumière blanche, ou dans l'ir ou l'uv. Les trois derniers cités de la liste ci-dessus sont remarquables par l'intensité, la persistance et la durée de leur activité, après que toute source d'excitation en a été éloignée, notamment la nuit. L'invention permet donc de disposer d'objets éclairants solides, manipulables, intègres et résistants pouvant revêtir une multitude de formes telles que de revêtement sur un substrat, aptes à éclairer dans différentes couleurs, ouvrant la voie aux créations esthétiques ou artistiques les plus originales et variées. De préférence, les particules sont luminophores dans le domaine du visible, dans lequel la plupart des applications envisagées ci-dessous présentent le plus grand intérêt. Les particules sont excitables par un rayonnement électromagnétique dans le domaine de l'uv, du visible, de l'ir, soit par des rayons X ou des rayons gamma, soit par un faisceau de particules (électrons, ions), soit par un champ électrique.These phosphor particles or mixtures of phosphor particles are characterized by the emission of radiation of wavelengths in the visible range, corresponding to different colors, of white light, or in the ir or the uv. The last three cited in the above list are remarkable for the intensity, persistence and duration of their activity, after all sources of excitement have been removed, especially at night. The invention therefore makes it possible to have solid, manipulative, honest and resistant lighting objects which can take a multitude of forms such as coating on a substrate, capable of lighting in different colors, opening the way to the most original aesthetic or artistic creations. and varied. Preferably, the particles are luminophores in the visible range, in which most of the applications envisaged below are of the greatest interest. The particles are excitable by electromagnetic radiation in the field of UV, visible, ir, either by X-rays or gamma rays, or by a beam of particles (electrons, ions), or by a field. electric.
L'excitation par uv peut provenir de la désexcitation d'un plasma ou d'un gaz ionisé. Selon un mode de réalisation préféré, la matrice est inorganique et comprend, de manière particulièrement préférée, du silicate de lithium. Il doit être précisé que les silicates de sodium et dans une moindre mesure de potassium conviennent à la rigueur pour un système éclairant opaque, le silicate de lithium étant particulièrement recommandé pour un système éclairant transparent. Ainsi, on observe avec le silicate de sodium la migration en surface d'une croûte très hygroscopique et diffusante à base de soude, qui se régénère continuellement. Le silicate de lithium s'est avéré remarquable pour la possibilité d'y répartir de manière homogène des concentrations élevées de particules luminophores à l'état le plus individualisé qui soit, ainsi que pour sa compatibilité avec de nombreux substrats, dont le verre. Par le fait que la matrice comprend du silicate de lithium, on entend en réalité que la matrice est un produit de transformation partielle ou totale du silicate de lithium, en particulier la silice, dans lequel le silicate de lithium et/ou le lithium demeure parfaitement détectable. Selon un autre mode de réalisation, la matrice comprend un produit de polymérisation/polycondensation d'alkoxyde de silicium tel que tétraéthoxysilane (TEOS), tétraméthoxysilane (TMOS), méthyltriéthoxysilane (MTEOS) et similaires. Ces précurseurs de la matrice offrent d'excellentes conditions de compatibilité avec de nombreuses particules luminophores parmi celles précitées. Dans une réalisation pratique et efficace de l'invention, la matrice est sous forme d'une couche mince en adhésion avec un substrat constitué notamment de verre par exemple sous forme d'une feuille, mais aussi d'une dalle destinée à constituer un écran électronique, d'un tube notamment pour l'éclairage, de fibre ou tissu, ou de matière plastique. Citons pour cette dernière toute matière plastique transparente en général, telle que polycarbonate, polyvinylbutyral, polyoléfine telle que polyéthylène, polypropylène, poly(téréphtalate d'éthylène), polyuréthane, polymère acrylique tel que poly(méthacrylate de méthyle), résine ionomère, divers copolymères...dont l'utilisation est limitée, bien entendu, par une éventuelle formation de la couche mince à une température susceptible d'affecter ou dégrader la matière plastique. L'invention comprend deux variantes principales. Selon la première variante, les particules luminophores sont en suspensions aqueuses et leurs dimensions sont au plus égales à 100 nm, de préférence à 30 nm, de préférence à 10 nm, et l'ensemble qu'elles forment avec la matrice est transparent. Selon la seconde variante, les dimensions des particules luminophores sont comprises entre 0,5 et 10 μm, des particules diffusant la lumière visible pouvant alors avantageusement être intégrées dans la matrice (il peut s'agir d'autres particules que les particules luminophores, de dimensions notamment comprises entre 100 nm et 1 μm, notamment entre 300 et 700 nm, telles que d'alumine, ou des particules luminophores elles-mêmes ; ces particules diffusant la lumière visible sont diélectriques, semiconductrices ou conductrices). Ainsi, les particules luminophores de dimensions comprises entre 30 et 500 nm ne sont pas exclues de l'invention, celles notamment de dimensions au moins égales à 400 nm étant susceptibles de diffuser la lumière visible, pouvant rendre inutile l'ajout d'autres particules diffusantes. Dans une mise en œuvre particulièrement intéressante du système éclairant de l'invention, dans le cas où la matrice est sous forme d'une couche mince en adhésion avec un substrat, ce dernier est apte à exciter les particules luminophores, il est notamment électroconducteur, en particulier du type électroluminescent dans l'uv. Dans une réalisation également avantageuse, le substrat est apte à émettre une onde de longueur d'onde du domaine du visible sous une excitation appropriée ; il est alors, par exemple, en verre à teneur en cérium, apte à émettre une lumière bleue sous rayonnement ultra-violet. Selon une autre alternative de conception du système éclairant, on peut distinguer les deux cas dans lesquels - des particules luminophores émettant différentes longueurs d'ondes sont associées, individualisées et homogénéisées, de manière à produire une lumière blanche, jaune... d'une part ; et - des particules luminophores identiques ou émettant différentes longueurs d'ondes sont associées selon des compositions et/ou concentrations variables, de manière à former des signes tels qu'écrits ou similaires, ou dans tout autre but notamment décoratif. Les principaux procédés de préparation du système éclairant de l'invention consistent - en des procédés de dépôt à froid par voie liquide, tels que spray coating, flow coating, dip coating, spin coating, sérigraphie, suivis d'un traitement thermique à 100-650 °C par exemple (recuit, trempe...), selon la nature de la matrice ; ouExcitation by UV can come from the de-excitation of a plasma or an ionized gas. According to a preferred embodiment, the matrix is inorganic and comprises, in a particularly preferred manner, lithium silicate. It should be noted that sodium silicates and, to a lesser extent, potassium are suitable for an opaque lighting system, lithium silicate being particularly recommended for a transparent lighting system. Thus, with sodium silicate, the migration to the surface of a very hygroscopic and diffusing crust based on soda is observed, which is constantly regenerating. Lithium silicate has proven to be remarkable for the possibility of uniformly distributing therein high concentrations of phosphor particles in the most individualized state possible, as well as for its compatibility with numerous substrates, including glass. By the fact that the matrix comprises lithium silicate, it is in reality meant that the matrix is a product of partial or total transformation of lithium silicate, in particular silica, in which the lithium silicate and / or the lithium remains perfectly detectable. According to another embodiment, the matrix comprises a polymerization / polycondensation product of silicon alkoxide such as tetraethoxysilane (TEOS), tetramethoxysilane (TMOS), methyltriethoxysilane (MTEOS) and the like. These matrix precursors offer excellent compatibility conditions with many of the phosphor particles among those mentioned above. In a practical and effective embodiment of the invention, the matrix is in the form of a thin layer in adhesion with a substrate consisting in particular of glass for example in the form of a sheet, but also of a slab intended to constitute a screen of a tube, especially for lighting, of fiber or fabric, or of plastic. For the latter, mention may be made of any transparent plastic material in general, such as polycarbonate, polyvinyl butyral, polyolefin such as polyethylene, polypropylene, poly (ethylene terephthalate), polyurethane, acrylic polymer such as poly (methyl methacrylate), ionomer resin, various copolymers ... whose use is limited, of course, by a possible formation of the thin layer at a temperature capable of affecting or degrading the plastic. The invention comprises two main variants. According to the first variant, the phosphor particles are in aqueous suspensions and their dimensions are at most equal to 100 nm, preferably to 30 nm, preferably to 10 nm, and the assembly which they form with the matrix is transparent. According to the second variant, the dimensions of the phosphor particles are between 0.5 and 10 μm, particles diffusing visible light which can then advantageously be integrated into the matrix (these may be particles other than the phosphor particles, dimensions in particular between 100 nm and 1 μm, in particular between 300 and 700 nm, such as alumina, or phosphor particles themselves; these particles diffusing visible light are dielectric, semiconductor or conductive). Thus, phosphor particles with dimensions between 30 and 500 nm are not excluded from the invention, those in particular with dimensions at least equal to 400 nm being capable of diffusing visible light, which can make the addition of other particles unnecessary. diffusing. In a particularly advantageous implementation of the lighting system of the invention, in the case where the matrix is in the form of a thin layer in adhesion with a substrate, the latter is able to excite the phosphor particles, it is in particular electroconductive, in particular of the electroluminescent type in the UV. In an equally advantageous embodiment, the substrate is capable of emitting a wavelength of the visible domain wavelength under an appropriate excitation; it is then, for example, made of glass with a cerium content, capable of emitting blue light under ultraviolet radiation. According to another alternative design of the lighting system, we can distinguish the two cases in which - phosphor particles emitting different wavelengths are associated, individualized and homogenized, so as to produce white, yellow light ... go ; and - identical phosphor particles or emitting different wavelengths are associated according to variable compositions and / or concentrations, so as to form signs such as written or similar, or for any other purpose, in particular decorative. The main methods for preparing the lighting system of the invention consist of - cold deposition methods by liquid, such as spray coating, flow coating, dip coating, spin coating, screen printing, followed by treatment thermal at 100-650 ° C for example (annealing, quenching, etc.), depending on the nature of the matrix; or
- en un procédé de dépôt sous vide . D'autre part, l'invention a aussi pour objets : - l'application du système éclairant décrit précédemment à un dispositif transparent ;- in a vacuum deposition process. On the other hand, the subject of the invention is also: - the application of the lighting system described above to a transparent device;
- l'application du système éclairant à un dispositif diffusant la lumière ;- the application of the lighting system to a light diffusing device;
- l'application du système éclairant à une lampe, notamment de très faible épaisseur, ou à un dispositif éclairant la nuit, notamment pour la signalisation, ou décoratif, à une lampe plane telle que décrite dans la demande WO 04/15739 ;the application of the lighting system to a lamp, in particular of very small thickness, or to a device lighting at night, in particular for signaling, or decorative, to a flat lamp as described in application WO 04/15739;
- l'application du système éclairant à un vitrage monolithique, feuilleté, simple ou multiple destiné au bâtiment, à un véhicule de transport, tel que lunette arrière, vitre latérale ou de toit d'automobile, à tout autre véhicule terrestre, aquatique ou aérien, au mobilier urbain tel qu'abribus, panneau de signalisation ou publicitaire, à un aquarium, une vitrine, une serre, à l'ameublement intérieur, à un miroir, un écran de système d'affichage du type ordinateur, télévision, téléphone, un vitrage électrocommandable comme un vitrage électrochrome, à cristaux liquides, électroluminescent, ou un vitrage photovoltaïque. Il est précisé que dans cette dernière application, l'association du système éclairant au vitrage est compatible avec toutes fonctionnalisations connues de celui-ci, soit sur la même face que celle supportant le système éclairant, au- dessus ou en-dessous, soit sur d'autres faces du vitrage ; couche hydrophobe/oléophobe, hydrophile/oléophile, photocatalytique antisalissure, empilement réfléchissant le rayonnement thermique (antisolaire) ou ir (bas- émissif), antireflet... Citons à titre d'exemple intéressant un vitrage séparant par exemple une enceinte de bâtiment de l'atmosphère extérieure, dont la face intérieure est éclairante selon l'invention, et la face extérieure électrochrome, c'est-à-dire apte à s'assombrir par mise sous tension de la couche. Ainsi obtient-on une fonctionnalité d'éclairage vers l'intérieur, et d'occultation des lumières extérieures. Dans l'application de vitrage éclairant selon l'invention, le vitrage garantit une transparence et une qualité optique maximales en l'absence d'excitation, et constitue une surface éclairante en présence d'une excitation. L'application écran de système d'affichage est généralisable à toutes applications nécessitant une source de lumière et des moyens de traitements de celle-ci, sous forme d'une boîte à lumière. Il s'agit notamment de fonds d'écran (backlight en anglais). L'invention est illustrée par les exemples de réalisation ci-dessous.- the application of the lighting system to monolithic, laminated, single or multiple glazing intended for the building, to a transport vehicle, such as rear window, side window or automobile roof, to any other land, water or air vehicle , to urban furniture such as bus shelters, signage or advertising, to an aquarium, a display case, a greenhouse, to interior furnishings, to a mirror, a display system screen of the computer, television, telephone, electrically controllable glazing such as electrochromic, liquid crystal, electroluminescent glazing, or photovoltaic glazing. It is specified that in this last application, the association of the lighting system with the glazing is compatible with all known functionalizations thereof, either on the same face as that supporting the lighting system, above or below, or on other sides of the glazing; hydrophobic / oleophobic, hydrophilic / oleophilic layer, antifouling photocatalytic, stack reflecting heat radiation (antisun) or ir (low-emissivity), antireflection ... Let us cite as an example interesting a glazing separating for example a building enclosure from the exterior atmosphere, the interior face of which is illuminating according to the invention, and the electrochromic exterior face, that is to say capable of darkening by energizing the layer. Thus we obtain a functionality of lighting inwards, and concealment of exterior lights. In the application of illuminating glazing according to the invention, the glazing guarantees maximum transparency and optical quality in the absence of excitation, and constitutes an illuminating surface in the presence of excitation. The screen application of the display system can be generalized to all applications requiring a light source and means for processing it, in the form of a light box. These include wallpapers (backlight in English). The invention is illustrated by the exemplary embodiments below.
EXEMPLE 1EXAMPLE 1
Il est tout d'abord procédé à la synthèse des nanoparticules YVO :Eu par voie colloïdale. L'ensemble de la synthèse des solutions colloïdales est conduite dans l'eau, à une température de 60°C. Le complexe de citrate insoluble est formé par mélange de 0,75 équivalent de citrate de sodium (0,1 mol.l"1, 15ml) et de 1 équivalent de (Y,Eu)(NO3)3 (0,1 mol.l"1, 20 ml). L'addition de 0,75 équivalent d'une solution Na3VO4 de pH 12,5 (0,1 mol.l"1 , 15 ml) provoque la dissolution du précipité et le début de la réaction. Le pH de la solution limpide obtenue est de 7,6. Au bout de 30 minutes de réaction, le chauffage est arrêté. La solution colloïdale obtenue est alors dialysée dans de l'eau à pH neutre afin d'éliminer les différents contre-ions (Na+, NO3 ") ou les éventuelles espèces n'ayant pas réagi. Après l'étape de dialyse, la concentration de la solution colloïdale est de l'ordre de 10"2 mol.."1. Les solutions colloïdales sont ensuite concentrées par évaporation à sec de l'eau dans des conditions douces (40°C et sous vide). La poudre obtenue se redisperse facilement dans un très faible volume d'eau, ce qui permet d'obtenir des solutions colloïdales très concentrées (jusqu'à 2 mol.1"1, soit 400 g.l"1). En outre, la taille mesurée en diffusion de la lumière après redispersion (10+/-3 nm) est identique à celle du colloïde obtenu après dialyse : les colloïdes ne subissent aucune agrégation lors de l'étape de concentration. En conséquence, les solutions colloïdales concentrées sont optiquement transparentes. Les films luminescents transparents ont été élaborés de la façon suivante. A 4 ml de solution colloïdale de nanoparticules YVO4 :Eu concentrée est ajouté de 0,2 à 1 ml de silicate de lithium (30% massique dans l'eau, pH 12). Le sol obtenu est filtré (préfiltre en fibres de verre et filtre à 0,45μm) puis déposé par centrifugation (vitesse de rotation de 1000 tr/min pendant 60 secondes) sur substrat de verre float (5 x 5 cm2). Les films minces obtenus sont finalement recuits à 450°C pendant 12 heures. Le rôle de ce traitement thermique est de consolider mécaniquement le film et d'augmenter la luminescence (élimination de groupements hydroxyles qui inhibent la luminescence des ions europium). Les films minces après recuit sont parfaitement transparents et d'épaisseur comprise entre 0,2 et 0,7 μm. Les films minces ont été placés sous une lampe uv émettant à 254 nm. Une luminescence rouge caractéristique des ions europium au sein de la matrice YVO4 est observée. Des mesures de luminance ont été effectuées et ont confirmé ce qui est visuellement observé : l'émission lumineuse est plus intense sur la tranche du film qu'au centre. En effet, la luminance est de 5 Cd/m2 au centre, alors qu'elle est de 20 Cd/m2 sur la tranche.First of all, the YVO: Eu nanoparticles are synthesized colloidally. The entire synthesis of colloidal solutions is carried out in water, at a temperature of 60 ° C. The insoluble citrate complex is formed by mixing 0.75 equivalent of sodium citrate (0.1 mol.l "1 , 15ml) and 1 equivalent of (Y, Eu) (NO 3 ) 3 (0.1 mol .l "1 , 20 ml). The addition of 0.75 equivalent of a Na 3 VO 4 solution of pH 12.5 (0.1 mol.l " 1.15 ml) causes the dissolution of the precipitate and the start of the reaction. The clear solution obtained is 7.6. After 30 minutes of reaction, the heating is stopped.The colloidal solution obtained is then dialyzed in water at neutral pH in order to eliminate the various counter-ions (Na + , NO 3 " ) or any unreacted species. After the dialysis step, the concentration of the colloidal solution is of the order of 10 "2 mol .. " 1 . The colloidal solutions are then concentrated by dry evaporation of the water under mild conditions (40 ° C. and under vacuum). The powder obtained is easily redispersed in a very small volume of water, which makes it possible to obtain very concentrated colloidal solutions (up to 2 mol.1 "1 , or 400 gl " 1 ). In addition, the size measured in light scattering after redispersion (10 +/- 3 nm) is identical to that of the colloid obtained after dialysis: the colloids undergo no aggregation during the concentration step. As a result, concentrated colloidal solutions are optically transparent. The transparent luminescent films were produced in the following manner. To 4 ml of colloidal solution of YVO 4 : Eu nanoparticles is added 0.2 to 1 ml of lithium silicate (30% by mass in water, pH 12). The soil obtained is filtered (glass fiber prefilter and 0.45 μm filter) and then deposited by centrifugation (speed of rotation of 1000 rpm for 60 seconds) on float glass substrate (5 x 5 cm 2 ). The thin films obtained are finally annealed at 450 ° C for 12 hours. The role of this heat treatment is to mechanically consolidate the film and increase luminescence (elimination of hydroxyl groups which inhibit the luminescence of europium ions). The thin films after annealing are perfectly transparent and with a thickness of between 0.2 and 0.7 μm. The thin films were placed under a UV lamp emitting at 254 nm. A red luminescence characteristic of europium ions within the YVO 4 matrix is observed. Luminance measurements were carried out and confirmed what is visually observed: the light emission is more intense on the edge of the film than in the center. Indeed, the luminance is 5 Cd / m 2 in the center, while it is 20 Cd / m 2 on the edge.
EXEMPLE 2EXAMPLE 2
Cet exemple décrit la préparation de couches luminescentes diffusantes. A 176 g d'eau déionisée on ajoute 12,8 g de particules d'alumine de diamètre moyen 500 nm et 0,24 g d'acide polyacrylique (solution à 50 % en poids dans l'eau). De la soude est ensuite ajoutée jusqu'à atteindre un pH de 10. On ajoute ensuite 5 g de particules LaPθ4."Ce,Tb de diamètre moyen 2 μm commercialisé par la société Nichia. Le mélange est ensuite homogénéisé dans une turbine pendant 5 minutes. On ajoute alors 11 g de silicate de lithium (solution à 30 % en poids dans l'eau). Après 5 minutes d'homogénéisation dans une turbine, le mélange est déposé sur un substrat en verre de 10X10 cm2 par flow coating . On sèche thermiquement sous lampe ir (température du revêtement d'environ 80°C). Le revêtement obtenu présente une TL de 60 % et un flou proche de 100 %. Sous photoexcitation à 257 nm, on observe une luminescence verte produite dans le revêtement. This example describes the preparation of diffusing luminescent layers. To 176 g of deionized water are added 12.8 g of alumina particles with an average diameter of 500 nm and 0.24 g of polyacrylic acid (50% by weight solution in water). Soda is then added until a pH of 10 is reached. 5 g of LaPθ 4 particles are then added. "Ce, Tb with an average diameter of 2 μm sold by the company Nichia. The mixture is then homogenized in a turbine for 5 11 g of lithium silicate (solution at 30% by weight in water) are then added. After 5 minutes of homogenization in a turbine, the mixture is deposited on a 10 × 10 cm 2 glass substrate by flow coating. It is thermally dried under an ir lamp (coating temperature of approximately 80 ° C.). The coating obtained has a TL of 60% and a haze close to 100%. Under photoexcitation at 257 nm, a green luminescence is observed produced in the coating.

Claims

REVENDICATIONS
1. Système éclairant constitué de particules luminophores dispersées dans une matrice solide et durable en permettant la manipulation par un utilisateur.1. Illuminating system consisting of phosphor particles dispersed in a solid and durable matrix allowing manipulation by a user.
2. Système éclairant selon la revendication 1 , caractérisé en ce que les particules sont luminophores dans le domaine du visible.2. Illuminating system according to claim 1, characterized in that the particles are phosphors in the visible range.
3. Système éclairant selon la revendication 1 ou 2, caractérisé en ce que les particules sont excitables par un rayonnement électromagnétique dans le domaine de l'uv, du visible, de l'ir, soit par des rayons X ou des rayons gamma, soit par un faisceau de particules (électrons, ions), soit par un champ électrique.3. Illuminating system according to claim 1 or 2, characterized in that the particles are excitable by electromagnetic radiation in the field of uv, visible, ir, either by X-rays or gamma rays, or by a beam of particles (electrons, ions), or by an electric field.
4. Système éclairant selon l'une des revendications précédentes, caractérisé en ce que la matrice est inorganique. 4. Illuminating system according to one of the preceding claims, characterized in that the matrix is inorganic.
5. Système éclairant selon la revendication 4, caractérisé en ce que la matrice comprend du silicate de lithium. 5. Illuminating system according to claim 4, characterized in that the matrix comprises lithium silicate.
6. Système éclairant selon la revendication 4, caractérisé en ce que la matrice comprend un produit de polymérisation/polycondensation d'alkoxyde de silicium. 6. Illuminating system according to claim 4, characterized in that the matrix comprises a polymerization / polycondensation product of silicon alkoxide.
7. Système éclairant selon l'une des revendications précédentes, caractérisé en ce que la matrice est sous forme d'une couche mince en adhésion avec un substrat.7. Illuminating system according to one of the preceding claims, characterized in that the matrix is in the form of a thin layer in adhesion with a substrate.
8. Système éclairant selon l'une des revendications précédentes, caractérisé en ce que les particules luminophores sont en suspensions aqueuses, et en ce que leurs dimensions sont au plus égales à 100 nm, de préférence à 30 nm, de préférence à 10 nm, et que l'ensemble qu'elles forment avec la matrice est transparent.8. Illuminating system according to one of the preceding claims, characterized in that the phosphor particles are in aqueous suspensions, and in that their dimensions are at most equal to 100 nm, preferably to 30 nm, preferably to 10 nm, and that the whole they form with the matrix is transparent.
9. Système éclairant selon l'une des revendications 1 à 7, caractérisé en ce que les dimensions des particules luminophores sont comprises entre 0,5 et 10 μm.9. Illuminating system according to one of claims 1 to 7, characterized in that the dimensions of the phosphor particles are between 0.5 and 10 microns.
10. Système éclairant selon la revendication 9, caractérisé en ce que la matrice comprend des particules diffusant la lumière visible.10. Illuminating system according to claim 9, characterized in that the matrix comprises particles diffusing visible light.
11. Système éclairant selon l'une des revendications 7 à 10, caractérisé en ce que le substrat est apte à exciter les particules luminophores, notamment électroconducteur, en particulier du type électroluminescent dans l'uv.11. Illuminating system according to one of claims 7 to 10, characterized in that the substrate is capable of exciting the phosphor particles, in particular electroconductive, in particular of the electroluminescent type in the UV.
12. Système éclairant selon l'une des revendications 7 à 10, caractérisé en ce que le substrat est apte à émettre une onde de longueur d'onde du domaine du visible sous une excitation appropriée.12. Illuminating system according to one of claims 7 to 10, characterized in that the substrate is capable of emitting a wavelength wave of the visible range under an appropriate excitation.
13. Système éclairant selon la revendication 12, caractérisé en ce que le substrat est en verre à teneur en cérium apte à émettre une lumière bleue sous rayonnement ultra-violet.13. Illuminating system according to claim 12, characterized in that the substrate is made of glass with a cerium content capable of emitting blue light under ultraviolet radiation.
14. Système éclairant selon la revendication 7, caractérisé en ce que le substrat est en verre, notamment sous forme d'une feuille, dalle, tube, fibre ou tissu.14. An lighting system according to claim 7, characterized in that the substrate is made of glass, in particular in the form of a sheet, slab, tube, fiber or fabric.
15. Système éclairant selon la revendication 7, caractérisé en ce que le substrat est en matière plastique.15. Lighting system according to claim 7, characterized in that the substrate is made of plastic.
16. Système éclairant selon l'une des revendications précédentes, caractérisé en ce que des particules luminophores émettant différentes longueurs d'ondes y sont associées, individualisées et homogénéisées, de manière à produire une lumière notamment blanche.16. Illuminating system according to one of the preceding claims, characterized in that phosphor particles emitting different wavelengths are associated therewith, individualized and homogenized, so as to produce a light, in particular white.
17. Système éclairant selon l'une des revendications 1 à 15, caractérisé en ce que des particules luminophores identiques ou émettant différentes longueurs d'ondes y sont associées selon des compositions et/ou concentrations variables, de manière à former des signes tels qu'écrits ou similaires, ou dans tout autre but notamment décoratif.17. Illuminating system according to one of claims 1 to 15, characterized in that identical phosphor particles or emitting different wavelengths are associated therewith according to variable compositions and / or concentrations, so as to form signs such as written or similar, or for any other purpose, particularly decorative.
18. Application d'un système éclairant selon l'une des revendications précédentes à un dispositif transparent. 18. Application of an lighting system according to one of the preceding claims to a transparent device.
19. Application d'un système éclairant selon l'une des revendications 1 à 17 à un dispositif diffusant la lumière. 19. Application of an lighting system according to one of claims 1 to 17 to a light scattering device.
20. Application selon la revendication 18 ou 19 à une lampe, notamment de très faible épaisseur, ou à un dispositif éclairant la nuit, notamment pour la signalisation, ou décoratif, ou à une lampe plane. 20. Application according to claim 18 or 19 to a lamp, in particular of very small thickness, or to a device lighting at night, in particular for signaling, or decorative, or to a flat lamp.
21. Application selon l'une des revendications 18 à 20, à un vitrage monolithique, feuilleté, simple ou multiple destiné au bâtiment, à un véhicule de transport, tel que lunette arrière, vitre latérale ou de toit d'automobile, à tout autre véhicule terrestre, aquatique ou aérien, au mobilier urbain tel qu'abribus, panneau de signalisation ou publicitaire, à un aquarium, une vitrine, une serre, à l'ameublement intérieur, à un miroir, un écran de système d'affichage du type ordinateur, télévision, téléphone, un vitrage electrocommandable comme un vitrage électrochrome, à cristaux liquides, électroluminescent, ou un vitrage photovoltaïque. 21. Application according to one of claims 18 to 20, to a monolithic, laminated, single or multiple glazing intended for the building, for a transport vehicle, such as rear window, side window or automobile roof, to any other land, water or air vehicle, with street furniture such as bus shelters, signage or advertising, an aquarium, a display case, a greenhouse, interior furnishings, a mirror, a display system screen such as a computer, television, telephone, electrically controllable glazing such as electrochromic, liquid crystal, electroluminescent glazing, or a photovoltaic glazing.
EP04767431A 2003-06-23 2004-06-23 High mechanical and optical performance illumination system Withdrawn EP1644660A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0307573A FR2856512A1 (en) 2003-06-23 2003-06-23 Lighting system comprises excitable luminescent particles dispersed in user manipulated solid and durable matrix for lighting and other illuminating applications
FR0402931A FR2867897A1 (en) 2004-03-22 2004-03-22 Illumination system comprises luminophore particles dispersed in durable solid matrix, permitting manipulation by user
PCT/FR2004/001575 WO2005001872A2 (en) 2003-06-23 2004-06-23 High mechanical and optical performance illumination system

Publications (1)

Publication Number Publication Date
EP1644660A2 true EP1644660A2 (en) 2006-04-12

Family

ID=33554075

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04767431A Withdrawn EP1644660A2 (en) 2003-06-23 2004-06-23 High mechanical and optical performance illumination system

Country Status (5)

Country Link
US (1) US7329983B2 (en)
EP (1) EP1644660A2 (en)
JP (1) JP2007527440A (en)
KR (1) KR20060017882A (en)
WO (1) WO2005001872A2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007038467A2 (en) * 2005-09-29 2007-04-05 Osram Sylvania Inc. Uv-emitting phosphors, phosphor blend and lamp containing same
US8168447B2 (en) 2005-10-07 2012-05-01 University Of Florida Research Foundation, Inc. Multiple component nanoparticles for multiplexed signaling and optical encoding
JP2008115332A (en) * 2006-11-07 2008-05-22 Mitsubishi Chemicals Corp Phosphor-containing composition, light-emitting device, lighting device, and image display device
KR100827598B1 (en) * 2006-11-16 2008-05-07 매스브라이트 테크날러지 캄퍼니 리미티드 Flat fluorescent lamp
JP2009143192A (en) * 2007-12-18 2009-07-02 Dainippon Printing Co Ltd Recording medium
CN102361953A (en) * 2009-03-27 2012-02-22 柯尼卡美能达精密光学株式会社 Phosphor member, method for producing phosphor member, and lighting device
JP5839648B2 (en) 2010-04-27 2016-01-06 株式会社日立製作所 Power generation method using solar cell and solar cell power generation system
JP5229748B2 (en) * 2010-07-06 2013-07-03 Necライティング株式会社 Phosphor and light emitting device including the phosphor
US10112209B2 (en) * 2015-12-11 2018-10-30 VITRO S.A.B. de C.V. Glass drawdown coating system
JP2021533227A (en) * 2018-08-03 2021-12-02 ボード オブ リージェンツ, ザ ユニバーシティ オブ テキサス システムBoard Of Regents, The University Of Texas System Methods and Compositions for Improving Fluorescent Dispersion in Polymeric Matrix

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3392039A (en) * 1964-12-17 1968-07-09 Philadelphia Quartz Company Of Lithium silicate composition
JPS6348723A (en) * 1986-08-18 1988-03-01 Nec Kansai Ltd Formation of fluorescent film
JP3267523B2 (en) * 1996-11-29 2002-03-18 ウシオ電機株式会社 Phosphorescent phosphor composition coating liquid, lamp and lamp device
JPH10298546A (en) * 1997-04-24 1998-11-10 Toshiba Corp Fluorescent substance and its production
JP3677538B2 (en) * 2001-01-16 2005-08-03 独立行政法人産業技術総合研究所 Ultrafine particle dispersed glass and display element using the same
JP2004071908A (en) * 2002-08-07 2004-03-04 Matsushita Electric Works Ltd Light emitting device
JP2005105244A (en) * 2003-01-24 2005-04-21 National Institute Of Advanced Industrial & Technology Semiconductor ultrafine particle and fluorescent substance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005001872A2 *

Also Published As

Publication number Publication date
US20060289832A1 (en) 2006-12-28
WO2005001872A3 (en) 2005-02-17
KR20060017882A (en) 2006-02-27
WO2005001872A2 (en) 2005-01-06
JP2007527440A (en) 2007-09-27
US7329983B2 (en) 2008-02-12

Similar Documents

Publication Publication Date Title
JP6553259B2 (en) Lighting decoration signboard using quantum dots
EP2423173B1 (en) Laminated lighting structure with a porous layer
CA2410396C (en) Diffusing coating
BE1017182A3 (en) DIFFUSING STRUCTURE WITH ABSORPTION PROPERTIES IN THE UTRAVIOLET
EP2092379B1 (en) Flat diffusing structure, its manufacturing process and its applications
FR2844364A1 (en) Diffusing substrate for back-lighting system is made of a glass substrate and a diffusing layer with a high light transmission value
EP2326601B1 (en) Method for manufacturing a submillimetric electrically conductive grid coated with an overgrid, and submillimetric electrically conductive grid coated with an overgrid
WO2009044066A2 (en) Material with photocatalytic properties
EP1644660A2 (en) High mechanical and optical performance illumination system
EP2665601A1 (en) Luminous glass panel
KR20120127515A (en) Planar luminous body
EP3279709A1 (en) Quantum dot protective film, and wavelength conversion sheet and backlight unit obtained using same
CN115668009B (en) Barrier film, wavelength conversion sheet, backlight source and display device
JP6862814B2 (en) A backlight having a quantum dot sheet and a liquid crystal display device equipped with the backlight.
FR2856512A1 (en) Lighting system comprises excitable luminescent particles dispersed in user manipulated solid and durable matrix for lighting and other illuminating applications
FR2867897A1 (en) Illumination system comprises luminophore particles dispersed in durable solid matrix, permitting manipulation by user
WO2019107285A1 (en) Green phosphor, phosphor sheet, and light-emitting device
JP6736049B2 (en) Glass composite, transparent screen including the same, and image projection system including the same
EP2227652B1 (en) Device for a building, comprising a light conversion material, e.g. for converting ultraviolet light into visible light
WO2005012957A1 (en) Diffusing structure
WO2024141734A1 (en) Luminous glazing unit
FR3144078A1 (en) LUMINOUS GLAZING
FR3106208A1 (en) PROCESS FOR VERIFYING THE HOMOGENEITY OF A LAYER OF METAL NANOWIRES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060123

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20060718

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130103