EP1644615B1 - Cooling circuit for gas turbine fixed ring - Google Patents

Cooling circuit for gas turbine fixed ring Download PDF

Info

Publication number
EP1644615B1
EP1644615B1 EP04767617.6A EP04767617A EP1644615B1 EP 1644615 B1 EP1644615 B1 EP 1644615B1 EP 04767617 A EP04767617 A EP 04767617A EP 1644615 B1 EP1644615 B1 EP 1644615B1
Authority
EP
European Patent Office
Prior art keywords
cavity
ring
ring segment
cooling circuit
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04767617.6A
Other languages
German (de)
French (fr)
Other versions
EP1644615A1 (en
Inventor
Stéphane CAMUS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP1644615A1 publication Critical patent/EP1644615A1/en
Application granted granted Critical
Publication of EP1644615B1 publication Critical patent/EP1644615B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling

Definitions

  • the present invention relates to fixed rings surrounding gas turbine gas passages, and more particularly to the cooling of gas turbine fixed rings.
  • a gas turbine in particular a turbomachine high-pressure turbine, typically comprises a plurality of stationary vanes arranged alternately with a plurality of blades in the passage of hot gases from the combustion chamber of the turbomachine.
  • the turbine blades are surrounded circumferentially by a fixed ring which is generally formed of a plurality of ring segments. These ring segments partially define the passage for the flow of hot gases through the blades of the turbine.
  • the ring segments of the turbine are thus subjected to the high temperatures of the hot gases from the combustion chamber of the turbomachine. For the mechanical and thermal resistance of the turbine ring, it is therefore necessary to provide the ring segments with cooling devices.
  • One of the known methods of cooling is to supply cooling air with an impact plate mounted on the body of the ring segments.
  • the plate is provided with a plurality of orifices for the passage of the air which comes, under the pressure difference on either side of the plate, to cool the ring segment by impact.
  • the cooling air is then discharged into the passage of the hot gases through holes made through the ring segment.
  • Such a method does not make it possible to obtain efficient and homogeneous cooling of the ring segments, in particular at the upstream end of the ring segment, which is a zone particularly exposed to hot gases. The life of the ring segments is thus affected.
  • this technology requires excessive sampling of cooling air, which reduces the performance of the turbine.
  • the present invention therefore aims at overcoming such drawbacks by proposing a stationary gas turbine ring, each ring segment of which is provided with internal cooling circuits requiring a low air flow and making it possible to effectively cool the ring segment by convection. thermal.
  • the upper and lower internal cooling circuits benefit from high heat exchange coefficients in order to ensure efficient and homogeneous cooling of each ring segment. These circuits make it possible in particular to cool the areas of the ring segment which are most exposed to hot gases. It is thus possible to reduce the air flow necessary for the cooling of the ring segments, even under severe thermodynamic operating conditions of the turbine.
  • the upper cooling circuit makes it possible, in particular, to cool the upstream side of the ring segment and to improve the efficiency of the lower cooling circuit.
  • the lower cooling circuit is used to cool the inner surface of the ring segment and possibly the adjacent ring segments.
  • the internal circuits of upper and lower cooling are independent of one another, which has the advantages of being able to dissociate the cooling provided by each cooling circuit and to adapt the flow of air supplying each circuit. For example, a high flow rate for the upper circuit can be used to effectively cool the upstream side of the ring segment (which is the hottest zone) and a lower flow rate for the lower circuit.
  • the independence between the cooling circuits also makes it possible to optimize cooling independently.
  • FIG. 1 schematically represents a portion of a high-pressure turbine 1 of a turbomachine.
  • the high-pressure turbine 1 comprises in particular a fixed annular housing 2 forming a casing of the turbomachine.
  • a fixed turbine ring 4 is fixed to this housing 2 and surrounds a plurality of blades 6 of the turbine. These blades 6 are arranged upstream of blades 8 with respect to the flow direction 10 of hot gases from a combustion chamber 12 of the turbomachine and passing through the turbine.
  • the turbine ring 4 surrounds a flow passage 14 for the hot gases.
  • the turbine ring 4 is composed of a plurality of ring segments arranged circumferentially around the axis of the turbine (not shown) so as to form a circular and continuous surface.
  • the turbine ring is composed of only one continuous piece. The present invention applies equally to a single turbine ring and a turbine ring segment.
  • each ring segment 16 forming the fixed ring has an inner annular surface 18 and an outer annular surface 20 radially offset from the inner surface 18.
  • the inner surface 18 faces the flow passage 14 hot gases.
  • Each ring segment 16 furthermore has, at its upstream transverse wall 16a, an upstream hook 22 and, at its downstream transverse wall 16b, a downstream hook 24.
  • the upstream and downstream hooks 24 allow the fixing of the ring segment 16 on the fixed annular housing 2 of the turbine.
  • the fixed annular housing 2 and the turbine ring formed by the ring segments 16 define between them an annular cooling chamber 26 which is supplied with cooling air via at least one orifice 28 passing through the annular housing. 2.
  • the cooling air supplying this cooling chamber 26 typically comes from a portion of the outside air passing through a fan and bypasses the combustion chamber of the turbomachine.
  • each ring segment 16 is provided with an upper internal cooling circuit A and a lower internal cooling circuit B, B ', the lower cooling circuit B, B' being independent of the cooling circuit.
  • the upper cooling circuit A is intended to cool the outer annular surface 20 and the upstream side of the ring segment 16 which is the side of the ring segment most exposed to hot gases.
  • the lower cooling circuit B, B ' is used to cool the inner annular surface 18 of the ring segment 16 which is the surface most exposed to the flow of hot gases.
  • the upper cooling circuit A also improves the cooling efficiency achieved by the lower circuit B, B '.
  • the upper cooling circuit A comprises at least a first internal cavity 32 which extends angularly between longitudinal walls 16c, 16d of the ring segment 16. This first cavity 32 also extends axially on only a part the width of the ring segment 16 defined between its upstream transverse walls 16a and downstream 16b.
  • the upper cooling circuit A also comprises at least one second internal cavity 34 extending angularly between the longitudinal walls 16c, 16d of the ring segment 16.
  • This second cavity 34 is disposed axially upstream of the first cavity 32, that is between an upstream transverse wall of the first cavity 32 and the upstream transverse wall 16a of the ring segment 16.
  • the width of the second cavity 34 (that is to say the distance between its transverse walls) is substantially less than that of the first cavity 32.
  • At least one cooling air supply port 36 opens into the cooling chamber 26 and opens into the first cavity 32 to supply the upper circuit A with cooling air. More precisely, this supply orifice 36 opens into the cooling chamber 26 and opens on the downstream side of the first cavity 32.
  • a plurality of emission holes 38 opening in the first cavity 32 and opening into the second cavity 34 are also provided. These emission holes 38 make it possible to cool the second cavity 34 by air impact.
  • the upper cooling circuit A further comprises a plurality of outlet holes 40a, 40b opening in the second cavity 34 and opening into the passage 14 of the hot gases, on the upstream side of the ring segment 16. The cooling air circulating in the upper circuit A is thus discharged through these outlet holes 40a, 40b.
  • a first series of exit holes 40a which open into the passage 14 of the hot, at the inner annular surface 18 of the ring segment 16 and a second series of outlet holes 40b which open into the passage 14 of the hot gases at the upstream transverse wall 16a of the ring segment.
  • the outlet holes 40a of the first series may be inclined with respect to the direction of flow of the hot gases, while the outlet holes 40b of the second series may be substantially parallel to this direction of flow.
  • the upper cooling circuit A has other series of outlet holes opening into the passage of the hot gases, on the upstream side of the ring segment 16.
  • the exit holes 40a and 40b are substantially aligned in an axial direction relative to the emission holes 38 opening in the first cavity 32 and opening into the second cavity 34. Such an arrangement thus makes it possible to reduce the pressure losses. . However, it is also conceivable that the exit holes 40a and 40b are not aligned with the emission holes 38.
  • the lower internal cooling circuit B is provided with at least three internal cavities 42, 44 and 46 which extend angularly between the longitudinal walls 16c, 16d of the ring segment 16.
  • These three cavities 42, 44 and 46 are furthermore offset radially with respect to the first cavity 32 of the upper cooling circuit A, ie they are arranged between the first cavity 32 of the upper circuit A and the annular surface. internal 18 of the ring segment 16.
  • At least one first internal cavity 42 is disposed on the downstream side of the ring segment 16. At least one second internal cavity 44 is disposed axially upstream of the first cavity 42. Likewise, at least one third cavity internal 46 is disposed axially upstream of the second cavity 44.
  • the lower cooling circuit B is supplied with cooling air by at least one air supply opening 48 opening in the cooling chamber 26 and opening into the first cavity 42.
  • the lower cooling circuit B also comprises at least a first passage 50 communicating the first cavity 42 with the second cavity 42 and at least a second passage 52 communicating the second cavity 44 with the third cavity 46.
  • a plurality of outlet holes 54 open in the third cavity 46 and open into the passage 14 of the hot gases, the upstream side of the ring segment 16 to cool it.
  • the outlet holes 54 open on the upstream side of the ring segment, at the inner annular surface 18. They are, for example, inclined with respect to the flow direction of the hot gases. The cooling air circulating in the lower circuit B is thus discharged through these outlet holes 54.
  • the second cavity 44 of this lower cooling circuit B is provided with disturbers 56 so as to increase heat transfer.
  • these disrupters 56 may be ribs extending longitudinally perpendicular to the direction of flow of air in the second cavity 44.
  • the disrupters may also take the form of pins or bridges for example.
  • the air supply port 48 and the second passage 52 of the lower circuit B are arranged on the side of one of the longitudinal walls 16c (or 16d) of the ring segment 16, while the first passage 50 of the lower circuit B is disposed on the side of the other longitudinal wall 16d (or 16c) of the ring segment.
  • Such an arrangement increases the flow path of the cooling air in the lower circuit B to increase heat transfer.
  • FIGS. Figures 5 and 6 Another embodiment of the ring segment according to the invention will now be described with reference to FIGS. Figures 5 and 6 .
  • the upper cooling circuit A of the ring segment is identical to that described above.
  • the lower cooling circuit B ' is different.
  • This lower cooling circuit B comprises at least four internal cavities 58, 60, 62 and 64 which extend axially between the upstream transverse walls 16a and downstream 16b of the ring segment 16.
  • These four cavities 58, 60, 62 and 64 are further radially offset relative to the first cavity 32 of the upper cooling circuit A, ie they are arranged between the first cavity 32 of the upper circuit A and the inner annular surface 18 of the ring segment 16.
  • the first cavity 58 of this lower cooling circuit B ' is disposed on the side of one of the longitudinal walls 16c (or 16d) of the ring segment 16.
  • the second cavity 60 is angularly offset relative to the first cavity 58
  • the third cavity 62 is angularly offset relative to the second
  • the fourth cavity 64 is angularly shifted relative to the third.
  • These cavities are arranged so that the fourth cavity 64 is disposed on the side of the longitudinal wall 16d (or 16c) opposite that of the first cavity 58.
  • At least a first 66 and a second 68 cooling air supply ports open into the cooling chamber 26 and open respectively into the second 60 and third cavities 62 to supply them with cooling air.
  • the lower cooling circuit B ' also comprises at least a first passage 70 communicating the second cavity 60 with the first cavity 58. Similarly, at least one second passage 72 communicates the third cavity 62 with the fourth cavity 64.
  • the lower cooling circuit B ' is provided with at least a plurality of first outlet holes 74 opening in the first cavity 58 and opening into the passage 14 of the hot gases, at the longitudinal wall 16c of the segment ring 16 on the side of which is arranged the first cavity 58.
  • these subcircuits may be substantially symmetrical with respect to a median longitudinal axis of the ring segment.
  • These lower sub-circuits are independently supplied by the supply ports 66, 68 and have independent outlet holes 74, 76 which enable the ring segments adjacent to the ring segment concerned to be cooled.
  • the second 60 and third 62 cavities of the lower cooling circuit B 'each comprise disruptors 78 so as to increase the heat transfer.
  • These disrupters 78 may take the form of ribs (as on the Figures 5 and 6 ), pimples or bridges.
  • first 66 and a second 68 supply ports of the lower circuit B ' are advantageously made on the side of one of the transverse walls 16a, 16b of the ring segment 16 (on the figure 6 , on the side of the downstream wall 16b) and the first 70 and second 72 passages of the lower circuit B 'are formed on the side of the other transverse wall 16b, 16a of the ring segment 16 (on the figure 6 on the side of the upstream wall 16a).
  • Such an arrangement makes it possible to increase the circulation path of the cooling air in the second lower circuit B 'in order to increase the heat transfer.

Description

Arrière-plan de l'inventionBackground of the invention

La présente invention est relative aux anneaux fixes entourant des passages de gaz de turbines à gaz, et plus particulièrement au refroidissement des anneaux fixes de turbine à gaz.The present invention relates to fixed rings surrounding gas turbine gas passages, and more particularly to the cooling of gas turbine fixed rings.

Une turbine à gaz, notamment une turbine haute-pression de turbomachine, comporte typiquement une pluralité d'aubes fixes disposées en alternance avec une pluralité d'aubes mobiles dans le passage de gaz chauds issus de la chambre de combustion de la turbomachine. Les aubes mobiles de la turbine sont entourées sur toute la circonférence par un anneau fixe qui est généralement formé d'une pluralité de segments d'anneau. Ces segments d'anneau définissent en partie le passage pour l'écoulement des gaz chauds à travers les aubes de la turbine.A gas turbine, in particular a turbomachine high-pressure turbine, typically comprises a plurality of stationary vanes arranged alternately with a plurality of blades in the passage of hot gases from the combustion chamber of the turbomachine. The turbine blades are surrounded circumferentially by a fixed ring which is generally formed of a plurality of ring segments. These ring segments partially define the passage for the flow of hot gases through the blades of the turbine.

Les segments d'anneau de la turbine sont ainsi soumis aux températures élevées des gaz chauds issus de la chambre de combustion de la turbomachine. Pour la tenue mécanique et thermique de l'anneau de turbine, il est donc nécessaire de munir les segments d'anneau de dispositifs de refroidissement.The ring segments of the turbine are thus subjected to the high temperatures of the hot gases from the combustion chamber of the turbomachine. For the mechanical and thermal resistance of the turbine ring, it is therefore necessary to provide the ring segments with cooling devices.

L'une des méthodes connues de refroidissement consiste à alimenter en air de refroidissement une plaque d'impact montée sur le corps des segments d'anneau. La plaque est munie d'une pluralité d'orifices pour le passage de l'air qui vient, sous la différence de pression de part et d'autre de la plaque, refroidir le segment d'anneau par impact. L'air de refroidissement est alors évacué dans le passage des gaz chauds par des perçages pratiqués au travers du segment d'anneau.One of the known methods of cooling is to supply cooling air with an impact plate mounted on the body of the ring segments. The plate is provided with a plurality of orifices for the passage of the air which comes, under the pressure difference on either side of the plate, to cool the ring segment by impact. The cooling air is then discharged into the passage of the hot gases through holes made through the ring segment.

Une telle méthode ne permet pas d'obtenir un refroidissement efficace et homogène des segments d'anneau, notamment au niveau de l'extrémité amont du segment d'anneau qui est une zone particulièrement exposée aux gaz chauds. La durée de vie des segments d'anneau s'en trouve donc affectée. Par ailleurs, cette technologie nécessite un prélèvement trop important en air de refroidissement, ce qui diminue les performances de la turbine.Such a method does not make it possible to obtain efficient and homogeneous cooling of the ring segments, in particular at the upstream end of the ring segment, which is a zone particularly exposed to hot gases. The life of the ring segments is thus affected. In addition, this technology requires excessive sampling of cooling air, which reduces the performance of the turbine.

On connait aussi les documents US 4,679,981 et FR 2,540,937 et US 5,993,150 qui divulguent un anneau fixe de turbine muni de deux circuits internes de refroidissement.We also know the documents US 4,679,981 and FR 2,540,937 and US 5,993,150 which disclose a fixed turbine ring provided with two internal cooling circuits.

Objet et résumé de l'inventionObject and summary of the invention

La présente invention vise donc à pallier de tels inconvénients en proposant un anneau fixe de turbine à gaz dont chaque segment d'anneau est muni de circuits internes de refroidissement nécessitant un faible débit en air et permettant de refroidir efficacement le segment d'anneau par convection thermique.The present invention therefore aims at overcoming such drawbacks by proposing a stationary gas turbine ring, each ring segment of which is provided with internal cooling circuits requiring a low air flow and making it possible to effectively cool the ring segment by convection. thermal.

A cet effet, il est prévu un anneau fixe selon la revendication 1.For this purpose, there is provided a fixed ring according to claim 1.

Les circuits internes de refroidissement supérieur et inférieur bénéficient de coefficients d'échanges thermiques élevés afin d'assurer un refroidissement efficace et homogène de chaque segment d'anneau. Ces circuits permettent notamment de refroidir les zones du segment d'anneau qui sont les plus exposées aux gaz chauds. Il est ainsi possible de diminuer le débit d'air nécessaire au refroidissement des segments d'anneau, même dans des conditions thermodynamiques sévères de fonctionnement de la turbine.The upper and lower internal cooling circuits benefit from high heat exchange coefficients in order to ensure efficient and homogeneous cooling of each ring segment. These circuits make it possible in particular to cool the areas of the ring segment which are most exposed to hot gases. It is thus possible to reduce the air flow necessary for the cooling of the ring segments, even under severe thermodynamic operating conditions of the turbine.

De la sorte, la durée de vie de l'anneau fixe de la turbine peut être augmentée et les performances de la turbine ne sont que peu affectées par les prélèvements d'air destinés au refroidissement des segments d'anneau.In this way, the life of the fixed ring of the turbine can be increased and the performance of the turbine are only slightly affected by the air samples for cooling the ring segments.

Le circuit de refroidissement supérieur permet notamment d'assurer le refroidissement du côté amont du segment d'anneau et d'améliorer l'efficacité du circuit de refroidissement inférieur. Le circuit de refroidissement inférieur permet de refroidir la surface interne du segment d'anneau et éventuellement les segments d'anneau adjacents.The upper cooling circuit makes it possible, in particular, to cool the upstream side of the ring segment and to improve the efficiency of the lower cooling circuit. The lower cooling circuit is used to cool the inner surface of the ring segment and possibly the adjacent ring segments.

Les circuits internes de refroidissement supérieur et inférieur sont indépendants l'un de l'autre, ce qui présente comme avantages de pouvoir dissocier le refroidissement assuré par chaque circuit de refroidissement et d'adapter le débit d'air alimentant chaque circuit. Par exemple, on pourra utiliser un débit important pour le circuit supérieur afin de refroidir efficacement le côté amont du segment d'anneau (qui est la zone la plus chaude) et un débit moins important pour le circuit inférieur. L'indépendance entre les circuits de refroidissement permet également d'optimiser le refroidissement de manière indépendante.The internal circuits of upper and lower cooling are independent of one another, which has the advantages of being able to dissociate the cooling provided by each cooling circuit and to adapt the flow of air supplying each circuit. For example, a high flow rate for the upper circuit can be used to effectively cool the upstream side of the ring segment (which is the hottest zone) and a lower flow rate for the lower circuit. The independence between the cooling circuits also makes it possible to optimize cooling independently.

Brève description des dessinsBrief description of the drawings

D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins annexés qui en illustrent un exemple de réalisation dépourvu de tout caractère limitatif. Sur les figures :

  • la figure 1 représente schématiquement une partie d'une turbine à gaz illustrant l'emplacement d'un anneau fixe par rapport à celui des aubes mobiles ;
  • la figure 2 est une vue en coupe longitudinale d'un segment d'anneau selon un mode de réalisation l'invention ;
  • les figures 3 et 4 sont des vues en coupes respectives selon III-III et IV-IV de la figure 2 ;
  • la figure 5 est une vue en coupe longitudinale d'un segment d'anneau selon un autre mode de réalisation l'invention ; et
  • la figure 6 est une vue en coupe selon VI-VI de la figure 5.
Other features and advantages of the present invention will become apparent from the description given below, with reference to the accompanying drawings which illustrate an embodiment having no limiting character. In the figures:
  • the figure 1 schematically represents a portion of a gas turbine illustrating the location of a fixed ring relative to that of the blades;
  • the figure 2 is a longitudinal sectional view of a ring segment according to one embodiment of the invention;
  • the figures 3 and 4 are views in respective sections according to III-III and IV-IV of the figure 2 ;
  • the figure 5 is a longitudinal sectional view of a ring segment according to another embodiment of the invention; and
  • the figure 6 is a sectional view according to VI-VI of the figure 5 .

Description détaillée d'un mode de réalisationDetailed description of an embodiment

On se réfère d'abord à la figure 1 qui représente schématiquement une partie d'une turbine haute-pression 1 d'une turbomachine.We first refer to the figure 1 which schematically represents a portion of a high-pressure turbine 1 of a turbomachine.

La turbine haute-pression 1 comporte notamment un logement annulaire fixe 2 formant un carter de la turbomachine. Un anneau fixe 4 de turbine est fixé à ce logement 2 et entoure une pluralité d'aubes mobiles 6 de la turbine. Ces aubes mobiles 6 sont disposées en amont d'aubes fixes 8 par rapport à la direction d'écoulement 10 de gaz chauds issus d'une chambre de combustion 12 de la turbomachine et traversant la turbine. Ainsi, l'anneau 4 de turbine entoure un passage 14 d'écoulement des gaz chauds.The high-pressure turbine 1 comprises in particular a fixed annular housing 2 forming a casing of the turbomachine. A fixed turbine ring 4 is fixed to this housing 2 and surrounds a plurality of blades 6 of the turbine. These blades 6 are arranged upstream of blades 8 with respect to the flow direction 10 of hot gases from a combustion chamber 12 of the turbomachine and passing through the turbine. Thus, the turbine ring 4 surrounds a flow passage 14 for the hot gases.

De manière générale, l'anneau de turbine 4 se compose d'une pluralité de segments d'anneau disposés circonférentiellement autour de l'axe de la turbine (non représenté) de façon à former une surface circulaire et continue. Toutefois, on peut aussi imaginer que l'anneau de turbine ne soit composé que d'une seule et même pièce continue. La présente invention s'applique indifféremment à un anneau unique de turbine et à un segment d'anneau de turbine.In general, the turbine ring 4 is composed of a plurality of ring segments arranged circumferentially around the axis of the turbine (not shown) so as to form a circular and continuous surface. However, one can also imagine that the turbine ring is composed of only one continuous piece. The present invention applies equally to a single turbine ring and a turbine ring segment.

En se référant à la figure 2, on voit que chaque segment d'anneau 16 formant l'anneau fixe présente une surface annulaire interne 18 et une surface annulaire externe 20 décalée radialement par rapport à la surface interne 18. La surface interne 18 est en regard du passage 14 d'écoulement des gaz chauds. Chaque segment d'anneau 16 présente en outre, au niveau de sa paroi transversale amont 16a, un crochet amont 22 et, au niveau de sa paroi transversale aval 16b, un crochet aval 24. Les crochets amont 22 et aval 24 permettent la fixation du segment d'anneau 16 sur le logement annulaire fixe 2 de la turbine.Referring to the figure 2 it will be seen that each ring segment 16 forming the fixed ring has an inner annular surface 18 and an outer annular surface 20 radially offset from the inner surface 18. The inner surface 18 faces the flow passage 14 hot gases. Each ring segment 16 furthermore has, at its upstream transverse wall 16a, an upstream hook 22 and, at its downstream transverse wall 16b, a downstream hook 24. The upstream and downstream hooks 24 allow the fixing of the ring segment 16 on the fixed annular housing 2 of the turbine.

Le logement annulaire fixe 2 et l'anneau de turbine formé par les segments d'anneau 16 définissent entre eux une chambre annulaire de refroidissement 26 qui est alimentée en air de refroidissement par l'intermédiaire d'au moins un orifice 28 traversant le logement annulaire fixe 2. L'air de refroidissement alimentant cette chambre de refroidissement 26 provient typiquement d'une partie de l'air extérieur qui traverse une soufflante et contourne la chambre de combustion de la turbomachine.The fixed annular housing 2 and the turbine ring formed by the ring segments 16 define between them an annular cooling chamber 26 which is supplied with cooling air via at least one orifice 28 passing through the annular housing. 2. The cooling air supplying this cooling chamber 26 typically comes from a portion of the outside air passing through a fan and bypasses the combustion chamber of the turbomachine.

Selon l'invention, chaque segment d'anneau 16 est muni d'un circuit interne de refroidissement supérieur A et d'un circuit interne de refroidissement inférieur B, B', le circuit de refroidissement inférieur B, B' étant indépendant du circuit de refroidissement supérieur A et décalé radialement par rapport à celui-ci. Ces circuits de refroidissement supérieur A et inférieur B, B' permettent d'assurer un refroidissement des segments d'anneau par convection thermique.According to the invention, each ring segment 16 is provided with an upper internal cooling circuit A and a lower internal cooling circuit B, B ', the lower cooling circuit B, B' being independent of the cooling circuit. upper cooling A and radially offset with respect thereto. These upper and lower cooling circuits B, B 'make it possible to ensure cooling of the ring segments by thermal convection.

Plus précisément, le circuit de refroidissement supérieur A est destiné à refroidir la surface annulaire externe 20 et le côté amont du segment d'anneau 16 qui est le côté du segment d'anneau le plus exposé aux gaz chauds. Le circuit de refroidissement inférieur B, B' permet de refroidir la surface annulaire interne 18 du segment d'anneau 16 qui est la surface la plus exposée à l'écoulement des gaz chauds. Le circuit de refroidissement supérieur A permet également d'améliorer l'efficacité du refroidissement réalisé par le circuit inférieur B,B'.More specifically, the upper cooling circuit A is intended to cool the outer annular surface 20 and the upstream side of the ring segment 16 which is the side of the ring segment most exposed to hot gases. The lower cooling circuit B, B 'is used to cool the inner annular surface 18 of the ring segment 16 which is the surface most exposed to the flow of hot gases. The upper cooling circuit A also improves the cooling efficiency achieved by the lower circuit B, B '.

On décrira un mode de réalisation du segment d'anneau selon l'invention en se référant aux figures 2 à 4.An embodiment of the ring segment according to the invention will be described with reference to the Figures 2 to 4 .

Sur ces figures, le circuit de refroidissement supérieur A comporte au moins une première cavité interne 32 qui s'étend angulairement entre des parois longitudinales 16c, 16d du segment d'anneau 16. Cette première cavité 32 s'étend également axialement sur une partie seulement de la largeur du segment d'anneau 16 définie entre ses parois transversales amont 16a et aval 16b.In these figures, the upper cooling circuit A comprises at least a first internal cavity 32 which extends angularly between longitudinal walls 16c, 16d of the ring segment 16. This first cavity 32 also extends axially on only a part the width of the ring segment 16 defined between its upstream transverse walls 16a and downstream 16b.

Le circuit de refroidissement supérieur A comporte également au moins une seconde cavité interne 34 s'étendant angulairement entre les parois longitudinales 16c, 16d du segment d'anneau 16. Cette seconde cavité 34 est disposée axialement en amont de la première cavité 32, c'est à dire entre une paroi transversale amont de la première cavité 32 et la paroi transversale amont 16a du segment d'anneau 16. La largeur de la seconde cavité 34 (c'est à dire la distance entre ses parois transversales) est sensiblement inférieure à celle de la première cavité 32.The upper cooling circuit A also comprises at least one second internal cavity 34 extending angularly between the longitudinal walls 16c, 16d of the ring segment 16. This second cavity 34 is disposed axially upstream of the first cavity 32, that is between an upstream transverse wall of the first cavity 32 and the upstream transverse wall 16a of the ring segment 16. The width of the second cavity 34 (that is to say the distance between its transverse walls) is substantially less than that of the first cavity 32.

Au moins un orifice d'alimentation en air de refroidissement 36 s'ouvre dans la chambre de refroidissement 26 et débouche dans la première cavité 32 afin d'alimenter le circuit supérieur A en air de refroidissement. Plus précisément, cet orifice d'alimentation 36 s'ouvre dans la chambre de refroidissement 26 et débouche du côté aval de la première cavité 32.At least one cooling air supply port 36 opens into the cooling chamber 26 and opens into the first cavity 32 to supply the upper circuit A with cooling air. More precisely, this supply orifice 36 opens into the cooling chamber 26 and opens on the downstream side of the first cavity 32.

Une pluralité de trous d'émission 38 s'ouvrant dans la première cavité 32 et débouchant dans la seconde cavité 34 sont également prévus. Ces trous d'émission 38 permettent de refroidir par impact d'air la seconde cavité 34.A plurality of emission holes 38 opening in the first cavity 32 and opening into the second cavity 34 are also provided. These emission holes 38 make it possible to cool the second cavity 34 by air impact.

Le circuit de refroidissement supérieur A comporte en outre une pluralité de trous de sortie 40a, 40b s'ouvrant dans la seconde cavité 34 et débouchant dans le passage 14 des gaz chauds, du côté amont du segment d'anneau 16. L'air de refroidissement circulant dans le circuit supérieur A est donc évacué par ces trous de sortie 40a, 40b.The upper cooling circuit A further comprises a plurality of outlet holes 40a, 40b opening in the second cavity 34 and opening into the passage 14 of the hot gases, on the upstream side of the ring segment 16. The cooling air circulating in the upper circuit A is thus discharged through these outlet holes 40a, 40b.

Plus précisément, il est prévu une première série de trous de sortie 40a qui débouchent dans le passage 14 des chauds, au niveau de la surface annulaire interne 18 du segment d'anneau 16 et une seconde série de trous de sortie 40b qui débouchent dans le passage 14 des gaz chauds, au niveau de la paroi transversale amont 16a du segment d'anneau. A cet effet, les trous de sortie 40a de la première série peuvent être inclinés par rapport à la direction d'écoulement 10 des gaz chauds, tandis que les trous de sortie 40b de la seconde série peuvent être sensiblement parallèles à cette direction d'écoulement.More specifically, there is provided a first series of exit holes 40a which open into the passage 14 of the hot, at the inner annular surface 18 of the ring segment 16 and a second series of outlet holes 40b which open into the passage 14 of the hot gases at the upstream transverse wall 16a of the ring segment. For this purpose, the outlet holes 40a of the first series may be inclined with respect to the direction of flow of the hot gases, while the outlet holes 40b of the second series may be substantially parallel to this direction of flow. .

Bien entendu, on peut aussi imaginer que le circuit de refroidissement supérieur A présente d'autres séries de trous de sortie débouchant dans le passage des gaz chauds, du côté amont du segment d'anneau 16.Of course, it is also conceivable that the upper cooling circuit A has other series of outlet holes opening into the passage of the hot gases, on the upstream side of the ring segment 16.

On remarquera également que, sur la figure 3, les trous de sortie 40a et 40b sont sensiblement alignés selon une direction axiale par rapport aux trous d'émission 38 s'ouvrant dans la première cavité 32 et débouchant dans la seconde cavité 34. Une telle disposition permet ainsi de diminuer les pertes de charges. Toutefois, on peut aussi imaginer que les trous de sortie 40a et 40b ne sont pas alignés avec les trous d'émission 38.It will also be noted that on the figure 3 , the exit holes 40a and 40b are substantially aligned in an axial direction relative to the emission holes 38 opening in the first cavity 32 and opening into the second cavity 34. Such an arrangement thus makes it possible to reduce the pressure losses. . However, it is also conceivable that the exit holes 40a and 40b are not aligned with the emission holes 38.

Dans le mode de réalisation illustré par les figures 2 à 4, le circuit interne de refroidissement inférieur B est muni d'au moins trois cavités internes 42, 44 et 46 qui s'étendent angulairement entre les parois longitudinales 16c, 16d du segment d'anneau 16.In the embodiment illustrated by the Figures 2 to 4 , the lower internal cooling circuit B is provided with at least three internal cavities 42, 44 and 46 which extend angularly between the longitudinal walls 16c, 16d of the ring segment 16.

Ces trois cavités 42, 44 et 46 sont en outre décalées radialement par rapport à la première cavité 32 du circuit de refroidissement supérieur A, c'est à dire qu'elles sont disposées entre la première cavité 32 du circuit supérieur A et la surface annulaire interne 18 du segment d'anneau 16.These three cavities 42, 44 and 46 are furthermore offset radially with respect to the first cavity 32 of the upper cooling circuit A, ie they are arranged between the first cavity 32 of the upper circuit A and the annular surface. internal 18 of the ring segment 16.

De façon plus précise, au moins une première cavité interne 42 est disposée du côté aval du segment d'anneau 16. Au moins une deuxième cavité interne 44 est disposée axialement en amont de la première cavité 42. De même, au moins une troisième cavité interne 46 est disposée axialement en amont de la deuxième cavité 44.More specifically, at least one first internal cavity 42 is disposed on the downstream side of the ring segment 16. At least one second internal cavity 44 is disposed axially upstream of the first cavity 42. Likewise, at least one third cavity internal 46 is disposed axially upstream of the second cavity 44.

On notera que, sur les figures 2 et 4, ces trois cavités 42, 44 et 46 présentent une largeur (distance entre leurs parois transversales respectives) sensiblement identique et qu'elles sont espacées l'une de l'autre d'une distance sensiblement équivalente.It should be noted that figures 2 and 4 these three cavities 42, 44 and 46 have a width (distance between their respective transverse walls) substantially identical and they are spaced from each other by a substantially equivalent distance.

Le circuit de refroidissement inférieur B est alimenté en air de refroidissement par au moins un orifice d'alimentation en air 48 s'ouvrant dans la chambre de refroidissement 26 et débouchant dans la première cavité 42.The lower cooling circuit B is supplied with cooling air by at least one air supply opening 48 opening in the cooling chamber 26 and opening into the first cavity 42.

Le circuit de refroidissement inférieur B comporte également au moins un premier passage 50 faisant communiquer la première cavité 42 avec la deuxième cavité 42 et au moins un second passage 52 faisant communiquer la deuxième cavité 44 avec la troisième cavité 46.The lower cooling circuit B also comprises at least a first passage 50 communicating the first cavity 42 with the second cavity 42 and at least a second passage 52 communicating the second cavity 44 with the third cavity 46.

Une pluralité de trous de sortie 54 s'ouvrent dans la troisième cavité 46 et débouchent dans le passage 14 des gaz chauds, du côté amont du segment d'anneau 16 afin de refroidir celui-ci. Les trous de sortie 54 s'ouvrent du côté amont du segment d'anneau, au niveau de la surface annulaire interne 18. Ils sont par exemple inclinés par rapport à la direction d'écoulement 10 des gaz chauds. L'air de refroidissement circulant dans le circuit inférieur B est ainsi évacué par ces trous de sortie 54.A plurality of outlet holes 54 open in the third cavity 46 and open into the passage 14 of the hot gases, the upstream side of the ring segment 16 to cool it. The outlet holes 54 open on the upstream side of the ring segment, at the inner annular surface 18. They are, for example, inclined with respect to the flow direction of the hot gases. The cooling air circulating in the lower circuit B is thus discharged through these outlet holes 54.

De préférence, la deuxième cavité 44 de ce circuit de refroidissement inférieur B est munie de perturbateurs 56 de manière à accroître les transferts thermiques. Comme illustré sur la figure 4, ces perturbateurs 56 peuvent être des nervures s'étendant longitudinalement de façon perpendiculaire à la direction de circulation de l'air dans la deuxième cavité 44. Les perturbateurs peuvent également prendre la forme de picots ou de pontets par exemple.Preferably, the second cavity 44 of this lower cooling circuit B is provided with disturbers 56 so as to increase heat transfer. As illustrated on the figure 4 these disrupters 56 may be ribs extending longitudinally perpendicular to the direction of flow of air in the second cavity 44. The disrupters may also take the form of pins or bridges for example.

Avantageusement, l'orifice d'alimentation en air 48 et le second passage 52 du circuit inférieur B sont disposés du côté de l'une des parois longitudinales 16c (ou 16d) du segment d'anneau 16, tandis que le premier passage 50 du circuit inférieur B est disposé du côté de l'autre paroi longitudinale 16d (ou 16c) du segment d'anneau. Une telle disposition permet d'augmenter le trajet de circulation de l'air de refroidissement dans le circuit inférieur B afin d'accroître les transferts thermiques.Advantageously, the air supply port 48 and the second passage 52 of the lower circuit B are arranged on the side of one of the longitudinal walls 16c (or 16d) of the ring segment 16, while the first passage 50 of the lower circuit B is disposed on the side of the other longitudinal wall 16d (or 16c) of the ring segment. Such an arrangement increases the flow path of the cooling air in the lower circuit B to increase heat transfer.

On décrira maintenant un autre mode de réalisation du segment d'anneau selon l'invention en se référant aux figures 5 et 6.Another embodiment of the ring segment according to the invention will now be described with reference to FIGS. Figures 5 and 6 .

Dans ce mode de réalisation, le circuit de refroidissement supérieur A du segment d'anneau est identique à celui décrit précédemment. Le circuit de refroidissement inférieur B' est en revanche différent.In this embodiment, the upper cooling circuit A of the ring segment is identical to that described above. In contrast, the lower cooling circuit B 'is different.

Ce circuit de refroidissement inférieur B' comporte au moins quatre cavités internes 58, 60, 62 et 64 qui s'étendent axialement entre les parois transversales amont 16a et aval 16b du segment d'anneau 16.This lower cooling circuit B 'comprises at least four internal cavities 58, 60, 62 and 64 which extend axially between the upstream transverse walls 16a and downstream 16b of the ring segment 16.

Ces quatre cavités 58, 60, 62 et 64 sont en outre décalées radialement par rapport à la première cavité 32 du circuit de refroidissement supérieur A, c'est à dire qu'elles sont disposées entre la première cavité 32 du circuit supérieur A et la surface annulaire interne 18 du segment d'anneau 16.These four cavities 58, 60, 62 and 64 are further radially offset relative to the first cavity 32 of the upper cooling circuit A, ie they are arranged between the first cavity 32 of the upper circuit A and the inner annular surface 18 of the ring segment 16.

La première cavité 58 de ce circuit de refroidissement inférieur B' est disposée du côté de l'une des parois longitudinales 16c (ou 16d) du segment d'anneau 16. La deuxième cavité 60 est décalée angulairement par rapport à la première cavité 58, la troisième cavité 62 est décalée angulairement par rapport à la deuxième et la quatrième cavité 64 est décalée angulairement par -rapport à la troisième. Ces cavités sont disposées de sorte que la quatrième cavité 64 est disposée du côté de la paroi longitudinale 16d (ou 16c) opposée à celle de la première cavité 58.The first cavity 58 of this lower cooling circuit B 'is disposed on the side of one of the longitudinal walls 16c (or 16d) of the ring segment 16. The second cavity 60 is angularly offset relative to the first cavity 58, the third cavity 62 is angularly offset relative to the second and the fourth cavity 64 is angularly shifted relative to the third. These cavities are arranged so that the fourth cavity 64 is disposed on the side of the longitudinal wall 16d (or 16c) opposite that of the first cavity 58.

Au moins un premier 66 et un second 68 orifices d'alimentation en air de refroidissement s'ouvrent dans la chambre de refroidissement 26 et débouchent respectivement dans les deuxième 60 et troisième 62 cavités afin d'alimenter celles-ci en air de refroidissement.At least a first 66 and a second 68 cooling air supply ports open into the cooling chamber 26 and open respectively into the second 60 and third cavities 62 to supply them with cooling air.

Le circuit de refroidissement inférieur B' comporte également au moins un premier passage 70 faisant communiquer la deuxième cavité 60 avec la première cavité 58. De même, au moins un second passage 72 fait communiquer la troisième cavité 62 avec la quatrième cavité 64.The lower cooling circuit B 'also comprises at least a first passage 70 communicating the second cavity 60 with the first cavity 58. Similarly, at least one second passage 72 communicates the third cavity 62 with the fourth cavity 64.

Enfin, le circuit de refroidissement inférieur B' est muni d'au moins une pluralité de premiers trous de sortie 74 s'ouvrant dans la première cavité 58 et débouchant dans le passage 14 des gaz chauds, au niveau de la paroi longitudinale 16c du segment d'anneau 16 du côté duquel est aménagée la première cavité 58.Finally, the lower cooling circuit B 'is provided with at least a plurality of first outlet holes 74 opening in the first cavity 58 and opening into the passage 14 of the hot gases, at the longitudinal wall 16c of the segment ring 16 on the side of which is arranged the first cavity 58.

De même, il est prévu au moins une pluralité de seconds trous de sortie 76 s'ouvrant dans la quatrième cavité 64 et débouchant dans le passage 14 des gaz chauds, au niveau de l'autre paroi longitudinale 16d du segment d'anneau 16.Similarly, at least a plurality of second outlet holes 76 opening in the fourth cavity 64 and opening into the passage 14 of the hot gases at the other longitudinal wall 16d of the ring segment 16 are provided.

De la sorte, on obtient deux sous-circuits inférieurs indépendants l'un de l'autre. Comme illustré sur la figure 6, ces sous-circuits peuvent être sensiblement symétriques par rapport à un axe longitudinal médian du segment d'anneau. Ces sous-circuits inférieurs sont alimentés de manière indépendantes par les orifices d'alimentation 66, 68 et présentent des trous de sortie 74, 76 indépendants qui permettent de refroidir les segments d'anneau adjacents au segment d'anneau concerné.In this way, we obtain two lower sub-circuits independent of each other. As illustrated on the figure 6 these subcircuits may be substantially symmetrical with respect to a median longitudinal axis of the ring segment. These lower sub-circuits are independently supplied by the supply ports 66, 68 and have independent outlet holes 74, 76 which enable the ring segments adjacent to the ring segment concerned to be cooled.

De préférence, les deuxième 60 et troisième 62 cavités du circuit de refroidissement inférieur B' comportent chacune des perturbateurs 78 de manière à accroître les transferts thermiques. Ces perturbateurs 78 peuvent prendre la forme de nervures (comme sur les figures 5 et 6), de picots ou bien de pontets.Preferably, the second 60 and third 62 cavities of the lower cooling circuit B 'each comprise disruptors 78 so as to increase the heat transfer. These disrupters 78 may take the form of ribs (as on the Figures 5 and 6 ), pimples or bridges.

Par ailleurs, les premier 66 et un second 68 orifices d'alimentation du circuit inférieur B' sont avantageusement pratiqués du côté de l'une des parois transversales 16a, 16b du segment d'anneau 16 (sur la figure 6, du côté de la paroi aval 16b) et les premier 70 et second 72 passages du circuit inférieur B' sont pratiqués du côté de l'autre paroi transversale 16b, 16a du segment d'anneau 16 (sur la figure 6, du côté de la paroi amont 16a). Une telle disposition permet d'augmenter le trajet de circulation de l'air de refroidissement dans le second circuit inférieur B' afin d'accroître les transferts thermiques.Furthermore, the first 66 and a second 68 supply ports of the lower circuit B 'are advantageously made on the side of one of the transverse walls 16a, 16b of the ring segment 16 (on the figure 6 , on the side of the downstream wall 16b) and the first 70 and second 72 passages of the lower circuit B 'are formed on the side of the other transverse wall 16b, 16a of the ring segment 16 (on the figure 6 on the side of the upstream wall 16a). Such an arrangement makes it possible to increase the circulation path of the cooling air in the second lower circuit B 'in order to increase the heat transfer.

Claims (9)

  1. A stationary ring (4) surrounding a hot gas passage (14) of a gas turbine (1), said ring (4) being surrounded by a stationary annular housing (2) so as to co-operate therewith to define an annular cooling chamber (26) into which there opens out at least one orifice (28) passing through said stationary housing, said ring (4) being made up of a plurality of ring segments (16), the ring being characterized in that each ring segment (16) includes a top internal cooling circuit (A) and a bottom internal cooling circuit (B, B'), said bottom cooling circuit (B, B') being independent of said top cooling circuit (A), being radially offset relative to said top cooling circuit (A), and including at least one cooling air feed orifice (48) leading from the cooling chamber (26).
  2. A ring (4) according to claim 1, characterized in that said top cooling circuit (A) of each ring segment (16) comprises :
    at least one first internal cavity (32) extending circumferentially between the longitudinal walls (16c, 16d) of said ring segment (16);
    at least one second internal cavity (34) extending circumferentially between the longitudinal walls (16c, 16d) of said ring segment (16) and disposed axially upstream from said first cavity;
    at least one cooling air feed orifice (36) leading from the cooling chamber (26) and into said first cavity (32) in order to feed said first cavity;
    a plurality of emission holes (38) leading from said first cavity (32) into said second cavity (34) so as to cool said second cavity (34) by air impact; and
    a plurality of outlet holes (40a, 40b) leading from said second cavity (34) and into the hot gas passage (14) at the upstream end of said ring segment (16).
  3. A ring (4) according to claim 1 or claim 2, characterized in that said bottom cooling circuit (B) of each ring segment (16) comprises:
    at least one first internal cavity (42) extending circumferentially between the longitudinal walls (16c, 16d) of said ring segment (16) and disposed at the downstream end of said ring segment;
    at least one second internal cavity (44) extending circumferentially between the longitudinal walls (16c, 16d) of said ring segment (16) and disposed axially upstream from said first cavity;
    at least one third internal cavity (46) extending circumferentially between the longitudinal walls (16c, 16d) of said ring segment (16) and disposed axially upstream from said second cavity (44);
    at least first and second passages (50, 52) respectively putting said first cavity (42) into communication with said second cavity (44), and said second cavity (44) into communication with said third cavity (46); and
    a plurality of outlet holes (54) leading from said third cavity (46) into the hot gas passage (14) at the upstream end of said ring segment (16), the cooling air feed orifice (48) leading into the first cavity (42) in order to feed it with air.
  4. A ring (4) according to claim 3, characterized in that said second internal cavity (44) of the bottom cooling circuit (B) is provided with baffles (56) so as to increase heat transfer.
  5. A ring (4) according to claim 2 or claim 3, characterized in that said air feed orifice (48) and said second passage (52) of the bottom cooling circuit (B) are formed beside one of the longitudinal walls (16c, 16d) of the ring segment (16), and said first passage (50) of the bottom cooling circuit (B) is formed beside the other longitudinal wall (16d, 16c) of the ring segment (16) in such a manner as to increase the cooling air flow path length.
  6. A ring (4) according to claim 1 or claim 2, characterized in that said bottom circuit cooling (B1) of each ring segment (16) comprises:
    at least one first internal cavity (58) extending axially between upstream and downstream transverse walls (16a, 16b) of said ring segment (16) and disposed beside one of the longitudinal walls (16c, 16d) of said ring segment (16);
    at least one second internal cavity (60) extending axially between the upstream and downstream transverse walls (16a, 16b) of said ring segment (16) and circumferentially offset relative to said first cavity (58);
    at least one third internal cavity (62) extending axially between the upstream and downstream transverse walls (16a, 16b) of said ring segment (16) and circumferentially offset relative to said second cavity (60);
    at least one fourth internal cavity (64) extending axially between the upstream and downstream transverse walls (16a, 16b) of said ring segment (16) and circumferentially offset relative to said third cavity (62);
    at least first and second cooling air feed orifices (60, 68) leading from the cooling chamber (26) into said second and third cavities (60, 62) respectively in order to feed said second and third cavities;
    at least first and second passages (70, 72) putting respectively said second cavity (60) into communication with said first cavity (58), and said third cavity (62) into communication with said fourth cavity (64);
    a plurality of first outlet holes (74) leading from said first cavity (58) into the hot gas passage (14) through the longitudinal wall (16c, 16d) of said ring segment (16) beside which said first internal cavity (58) is disposed; and
    a plurality of second outlet holes (76) leading from said fourth cavity (64) into the hot gas passage (14) through the other longitudinal wall (16d, 16c) of said ring segment (16).
  7. A ring (4) according to claim 6, characterized in that each of said second and third internal cavities (60, 62) of the bottom cooling circuit (B1) includes baffles (78) for increasing heat transfer.
  8. A ring (4) according to claim 6 or claim 7, characterized in that said first and second feed orifices (66, 68) of the bottom cooling circuit (B1) are formed beside one of the transverse walls (16b, 16a) of said ring segment (16) and said first and second passages (70, 72) of the bottom cooling circuit (B1) are formed beside the other transverse wall (16a, 16b) of said ring segment (16) so as to increase the cooling air flow path length.
  9. A turbine engine comprising a stationary ring (4) according to any one of claims 1 to 8.
EP04767617.6A 2003-07-10 2004-07-08 Cooling circuit for gas turbine fixed ring Active EP1644615B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0308483A FR2857406B1 (en) 2003-07-10 2003-07-10 COOLING THE TURBINE RINGS
PCT/FR2004/001785 WO2005008033A1 (en) 2003-07-10 2004-07-08 Cooling circuit for gas turbine fixed ring

Publications (2)

Publication Number Publication Date
EP1644615A1 EP1644615A1 (en) 2006-04-12
EP1644615B1 true EP1644615B1 (en) 2015-04-01

Family

ID=33522945

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04767617.6A Active EP1644615B1 (en) 2003-07-10 2004-07-08 Cooling circuit for gas turbine fixed ring

Country Status (8)

Country Link
US (1) US7517189B2 (en)
EP (1) EP1644615B1 (en)
JP (1) JP4536723B2 (en)
CA (1) CA2531519C (en)
FR (1) FR2857406B1 (en)
RU (1) RU2348817C2 (en)
UA (1) UA83835C2 (en)
WO (1) WO2005008033A1 (en)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7621719B2 (en) * 2005-09-30 2009-11-24 United Technologies Corporation Multiple cooling schemes for turbine blade outer air seal
FR2906295B1 (en) * 2006-09-22 2011-11-18 Snecma DEVICE FOR INSULATING SHEETS ON A CARTER FOR IMPROVING THE GAME IN A DAWN TOP
US7650926B2 (en) * 2006-09-28 2010-01-26 United Technologies Corporation Blade outer air seals, cores, and manufacture methods
US7665953B2 (en) * 2006-11-30 2010-02-23 General Electric Company Methods and system for recuperated cooling of integral turbine nozzle and shroud assemblies
US7722315B2 (en) * 2006-11-30 2010-05-25 General Electric Company Method and system to facilitate preferentially distributed recuperated film cooling of turbine shroud assembly
US8123466B2 (en) * 2007-03-01 2012-02-28 United Technologies Corporation Blade outer air seal
US8128348B2 (en) * 2007-09-26 2012-03-06 United Technologies Corporation Segmented cooling air cavity for turbine component
US8061979B1 (en) * 2007-10-19 2011-11-22 Florida Turbine Technologies, Inc. Turbine BOAS with edge cooling
US8177492B2 (en) * 2008-03-04 2012-05-15 United Technologies Corporation Passage obstruction for improved inlet coolant filling
EP2159381A1 (en) * 2008-08-27 2010-03-03 Siemens Aktiengesellschaft Turbine lead rotor holder for a gas turbine
EP3006678B1 (en) * 2009-08-24 2017-12-20 Mitsubishi Heavy Industries, Ltd. Ring segment with cooling system and gas turbine
JP4634528B1 (en) * 2010-01-26 2011-02-23 三菱重工業株式会社 Split ring cooling structure and gas turbine
JP5791232B2 (en) * 2010-02-24 2015-10-07 三菱重工航空エンジン株式会社 Aviation gas turbine
JP5683573B2 (en) * 2010-04-20 2015-03-11 三菱重工業株式会社 Split ring cooling structure and gas turbine
US8894352B2 (en) * 2010-09-07 2014-11-25 Siemens Energy, Inc. Ring segment with forked cooling passages
US8845272B2 (en) 2011-02-25 2014-09-30 General Electric Company Turbine shroud and a method for manufacturing the turbine shroud
US9151179B2 (en) * 2011-04-13 2015-10-06 General Electric Company Turbine shroud segment cooling system and method
FR2974839B1 (en) * 2011-05-04 2015-08-14 Snecma SECTORIZED TURBINE RING WITH VENTILATION ORIFICES, AND TURBOMACHINE EQUIPPED WITH SUCH A RING
US9127549B2 (en) * 2012-04-26 2015-09-08 General Electric Company Turbine shroud cooling assembly for a gas turbine system
GB201308605D0 (en) 2013-05-14 2013-06-19 Rolls Royce Plc A shroud arrangement for a gas turbine engine
GB201308602D0 (en) * 2013-05-14 2013-06-19 Rolls Royce Plc A Shroud Arrangement for a Gas Turbine Engine
EP2894301A1 (en) * 2014-01-14 2015-07-15 Alstom Technology Ltd Stator heat shield segment
US20150198063A1 (en) * 2014-01-14 2015-07-16 Alstom Technology Ltd Cooled stator heat shield
US9416675B2 (en) 2014-01-27 2016-08-16 General Electric Company Sealing device for providing a seal in a turbomachine
WO2016028310A1 (en) * 2014-08-22 2016-02-25 Siemens Aktiengesellschaft Shroud cooling system for shrouds adjacent to airfoils within gas turbine engines
US10329934B2 (en) 2014-12-15 2019-06-25 United Technologies Corporation Reversible flow blade outer air seal
US10099290B2 (en) 2014-12-18 2018-10-16 General Electric Company Hybrid additive manufacturing methods using hybrid additively manufactured features for hybrid components
GB201508551D0 (en) * 2015-05-19 2015-07-01 Rolls Royce Plc A heat exchanger for a gas turbine engine
CA2936977A1 (en) * 2015-07-24 2017-01-24 Rolls-Royce Corporation A seal segment for a gas turbine engine
US10107128B2 (en) * 2015-08-20 2018-10-23 United Technologies Corporation Cooling channels for gas turbine engine component
US9926799B2 (en) * 2015-10-12 2018-03-27 United Technologies Corporation Gas turbine engine components, blade outer air seal assemblies, and blade outer air seal segments thereof
US10145257B2 (en) * 2015-10-16 2018-12-04 United Technologies Corporation Blade outer air seal
GB201612646D0 (en) * 2016-07-21 2016-09-07 Rolls Royce Plc An air cooled component for a gas turbine engine
US10544683B2 (en) 2016-08-30 2020-01-28 Rolls-Royce Corporation Air-film cooled component for a gas turbine engine
JP6925862B2 (en) * 2017-05-16 2021-08-25 三菱パワー株式会社 Manufacturing method of gas turbine and blade ring
GB201720121D0 (en) * 2017-12-04 2018-01-17 Siemens Ag Heatshield for a gas turbine engine
US10502093B2 (en) * 2017-12-13 2019-12-10 Pratt & Whitney Canada Corp. Turbine shroud cooling
US11274569B2 (en) * 2017-12-13 2022-03-15 Pratt & Whitney Canada Corp. Turbine shroud cooling
US10533454B2 (en) 2017-12-13 2020-01-14 Pratt & Whitney Canada Corp. Turbine shroud cooling
US10570773B2 (en) * 2017-12-13 2020-02-25 Pratt & Whitney Canada Corp. Turbine shroud cooling
US10989068B2 (en) * 2018-07-19 2021-04-27 General Electric Company Turbine shroud including plurality of cooling passages
US10815828B2 (en) 2018-11-30 2020-10-27 General Electric Company Hot gas path components including plurality of nozzles and venturi
US11578609B2 (en) * 2019-02-08 2023-02-14 Raytheon Technologies Corporation CMC component with integral cooling channels and method of manufacture
US11098608B2 (en) 2019-03-13 2021-08-24 Raytheon Technologies Corporation CMC BOAS with internal support structure
JP6666500B1 (en) * 2019-03-29 2020-03-13 三菱重工業株式会社 High temperature component and method of manufacturing high temperature component
GB201907545D0 (en) * 2019-05-29 2019-07-10 Siemens Ag Heatshield for a gas turbine engine
KR102226741B1 (en) 2019-06-25 2021-03-12 두산중공업 주식회사 Ring segment, and turbine including the same
FR3101915B1 (en) 2019-10-11 2022-10-28 Safran Helicoptere Engines Turbomachinery turbine ring including internal cooling ducts
KR102291801B1 (en) * 2020-02-11 2021-08-24 두산중공업 주식회사 Ring segment and gas turbine including the same
KR102299164B1 (en) * 2020-03-31 2021-09-07 두산중공업 주식회사 Apparatus for controlling tip clearance of turbine blade and gas turbine compring the same
US11365645B2 (en) 2020-10-07 2022-06-21 Pratt & Whitney Canada Corp. Turbine shroud cooling
KR102510535B1 (en) * 2021-02-23 2023-03-15 두산에너빌리티 주식회사 Ring segment and turbo-machine comprising the same
KR102510537B1 (en) * 2021-02-24 2023-03-15 두산에너빌리티 주식회사 Ring segment and turbo-machine comprising the same
KR102636366B1 (en) * 2021-09-15 2024-02-13 두산에너빌리티 주식회사 Ring segment and rotary machine including the same

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2416345A1 (en) * 1978-01-31 1979-08-31 Snecma IMPACT COOLING DEVICE FOR TURBINE SEGMENTS OF A TURBOREACTOR
FR2438165A1 (en) * 1978-10-06 1980-04-30 Snecma TEMPERATURE CONTROL DEVICE FOR GAS TURBINES
FR2516597A1 (en) * 1981-11-16 1983-05-20 Snecma ANNULAR AIR-COOLED WEAR AND SEAL DEVICE FOR GAS TURBINE WHEEL WELDING OR COMPRESSOR
FR2540937B1 (en) * 1983-02-10 1987-05-22 Snecma RING FOR A TURBINE ROTOR OF A TURBOMACHINE
US4573866A (en) * 1983-05-02 1986-03-04 United Technologies Corporation Sealed shroud for rotating body
FR2574473B1 (en) * 1984-11-22 1987-03-20 Snecma TURBINE RING FOR A GAS TURBOMACHINE
US4650395A (en) * 1984-12-21 1987-03-17 United Technologies Corporation Coolable seal segment for a rotary machine
US4668164A (en) * 1984-12-21 1987-05-26 United Technologies Corporation Coolable stator assembly for a gas turbine engine
US5098257A (en) * 1990-09-10 1992-03-24 Westinghouse Electric Corp. Apparatus and method for minimizing differential thermal expansion of gas turbine vane structures
US5165847A (en) * 1991-05-20 1992-11-24 General Electric Company Tapered enlargement metering inlet channel for a shroud cooling assembly of gas turbine engines
US5486090A (en) * 1994-03-30 1996-01-23 United Technologies Corporation Turbine shroud segment with serpentine cooling channels
US5584651A (en) * 1994-10-31 1996-12-17 General Electric Company Cooled shroud
US5538393A (en) * 1995-01-31 1996-07-23 United Technologies Corporation Turbine shroud segment with serpentine cooling channels having a bend passage
US5536143A (en) * 1995-03-31 1996-07-16 General Electric Co. Closed circuit steam cooled bucket
US5993150A (en) * 1998-01-16 1999-11-30 General Electric Company Dual cooled shroud
JP3631898B2 (en) * 1998-03-03 2005-03-23 三菱重工業株式会社 Cooling structure of split ring in gas turbine
US6139257A (en) * 1998-03-23 2000-10-31 General Electric Company Shroud cooling assembly for gas turbine engine
FR2803871B1 (en) * 2000-01-13 2002-06-07 Snecma Moteurs DIAMETER ADJUSTMENT ARRANGEMENT OF A GAS TURBINE STATOR

Also Published As

Publication number Publication date
RU2348817C2 (en) 2009-03-10
JP2007516375A (en) 2007-06-21
US20070041827A1 (en) 2007-02-22
CA2531519C (en) 2011-08-30
FR2857406A1 (en) 2005-01-14
EP1644615A1 (en) 2006-04-12
JP4536723B2 (en) 2010-09-01
RU2005141577A (en) 2006-06-27
CA2531519A1 (en) 2005-01-27
FR2857406B1 (en) 2005-09-30
WO2005008033A1 (en) 2005-01-27
UA83835C2 (en) 2008-08-26
US7517189B2 (en) 2009-04-14

Similar Documents

Publication Publication Date Title
EP1644615B1 (en) Cooling circuit for gas turbine fixed ring
CA2398663C (en) Improvements to cooling circuits for gas turbine blade
EP1288438B1 (en) Cooling fluid flow configuration for a gas turbine blade
EP1134360B1 (en) Device for adjusting the diameter of the stator of a gas turbine engine
CA2475083C (en) Cooling circuits for gas turbine blades
EP2771618B1 (en) Annular wall of a combustion chamber with improved cooling at the primary and/or dilution holes
EP1741875B1 (en) Cooling circuit for a rotor blade of a turbomachine
EP1790819B1 (en) Turbine blade comprising a cooling circuit
EP1593814B1 (en) Feather seal configuration for a gas turbine shroud
CA2254259C (en) Cooling system for turbine distributor blades
CA2981994A1 (en) Ceramic core for a multi-cavity turbine blade
EP0785339A1 (en) Cooled turbine vane
FR2560287A1 (en) STATOR TUYERE AND TURBINE ENGINE
EP3519679B1 (en) Turbine blade comprising a cooling channel
EP2053311B1 (en) Combustion chamber walls with optimised dilution and cooling, combustion chamber and turbomachine equipped with same
FR2996289A1 (en) COMBUSTION CHAMBER COMPRISING A FIXED FLAME TUBE USING THREE CENTERING ELEMENTS.
EP1452695B1 (en) Cooled turbine blade having reduced cooling air leakage
EP1452691B1 (en) Annular stator blade platform for low pressure turbine in a gas turbine engine
FR2895766A1 (en) IMPROVEMENTS TO A GAME CONTROL SYSTEM
WO2023275459A1 (en) Turbomachine vane provided with a cooling circuit and method for lost-wax manufacturing of such a vane
FR3066783B1 (en) SHIRT FOR OPTIMIZED COOLING TURBINE BLADE
FR2832178A1 (en) Gas turbine fixed ring cooler has cavities fitted with particle impact covers pierced with holes for passage of cooling air
EP3942157A1 (en) Turbine engine vane equipped with a cooling circuit and lost-wax method for manufacturing such a vane
WO2021209713A1 (en) Turbine housing cooling device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050930

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 20060823

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: CAMUS, STEPHANE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141205

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004046900

Country of ref document: DE

Effective date: 20150507

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004046900

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160105

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES, FR

Effective date: 20170719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230620

Year of fee payment: 20

Ref country code: FR

Payment date: 20230621

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230622

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230620

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 20