EP2771618B1 - Annular wall of a combustion chamber with improved cooling at the primary and/or dilution holes - Google Patents
Annular wall of a combustion chamber with improved cooling at the primary and/or dilution holes Download PDFInfo
- Publication number
- EP2771618B1 EP2771618B1 EP12790620.4A EP12790620A EP2771618B1 EP 2771618 B1 EP2771618 B1 EP 2771618B1 EP 12790620 A EP12790620 A EP 12790620A EP 2771618 B1 EP2771618 B1 EP 2771618B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- orifices
- cooling
- annular wall
- rows
- additional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001816 cooling Methods 0.000 title claims description 46
- 238000002485 combustion reaction Methods 0.000 title claims description 41
- 238000010790 dilution Methods 0.000 title claims description 27
- 239000012895 dilution Substances 0.000 title claims description 27
- 230000007704 transition Effects 0.000 claims description 15
- 239000000446 fuel Substances 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 10
- 238000011144 upstream manufacturing Methods 0.000 claims description 8
- 239000000567 combustion gas Substances 0.000 claims description 4
- 238000000280 densification Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/002—Wall structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/02—Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
- F23R3/04—Air inlet arrangements
- F23R3/06—Arrangement of apertures along the flame tube
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/03041—Effusion cooled combustion chamber walls or domes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R2900/00—Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
- F23R2900/03042—Film cooled combustion chamber walls or domes
Definitions
- the present invention relates to the general field of turbomachine combustion chambers. It is more particularly an annular wall for direct combustion chamber or reverse flow cooled by a process known as "multiperforation".
- annular turbomachine combustion chamber is formed of an inner annular wall (also called inner shell) and an outer annular wall (also called outer shell) which are connected upstream by a transverse wall forming chamber bottom.
- the inner and outer shrouds are each provided with a plurality of holes and various orifices allowing air circulating around the combustion chamber to penetrate inside thereof.
- so-called “primary” and “dilution” holes are formed in these ferrules to convey air inside the combustion chamber.
- the air passing through the primary holes helps to create an air / fuel mixture that is burned in the chamber, while the air from the dilution holes is intended to promote the dilution of the same air / fuel mixture.
- the inner and outer shells are subjected to the high temperatures of the gases from the combustion of the air / fuel mixture.
- multiperforation holes are also drilled through these ferrules over their entire surface. These multiperforation orifices, generally inclined at 60 °, allow the air circulating outside the chamber to penetrate inside thereof by forming cooling air films along the shells.
- the document US 6,145,319 proposes to make transition holes in the zone of the walls situated directly downstream of each of the primary and dilution holes, these transition holes having a greater inclination than that of the multiperforation orifices.
- this solution is unfortunately particularly expensive and significantly increases the time of manufacture of the walls.
- the document US 2007/0084219 A1 shows an annular turbomachine combustion chamber wall according to the preamble of claim 1.
- the present invention therefore aims to overcome such drawbacks by providing an annular combustion chamber wall which provides adequate cooling of the areas directly downstream of the primary and dilution holes.
- annular wall of a turbomachine combustion chamber according to claim 1.
- additional cooling orifices arranged in an inclined manner in a plane perpendicular to the direction of flow of the combustion gases, directly downstream and as close as possible to the primary and dilution holes, makes it possible to ensure efficient cooling with respect to the classical axial multiperforation where the film of air is stopped by the presence of these holes and this without modifying the flow in the primary zone.
- it further comprises, at a transition zone formed downstream of said plurality of rows of additional orifices, at least two rows of orifices whose geometric axes of each of said orifices are inclined, with respect to a plane perpendicular to said axial direction D, of a different determined inclination for each of said two rows.
- said inclination ⁇ 2 of said additional orifices relative to the normal N to said annular wall is identical to that ⁇ 1 of said cooling orifices.
- a diameter d2 of said additional orifices is identical to a diameter d1 of said cooling orifices and a pitch p2 of said additional orifices is identical to a pitch p1 of said cooling orifices and said additional orifices may have a greater densification just downstream of the holes. primary and dilution holes.
- said inclinations are 30 ° and 60 ° respectively.
- Said two rows of orifices are then either two rows of additional orifices arranged immediately upstream of a row of cooling orifices, or two rows of cooling orifices arranged immediately in downstream of a row of additional orifices, or a row of additional orifices and a row of adjacent cooling orifices.
- said inclinations are regularly distributed between 0 ° and 90 °.
- the direction of inclination of said additional orifices is constrained by the direction of flow of the air / fuel mixture downstream of said combustion chamber.
- the present invention also relates to a combustion chamber and a turbomachine (having a combustion chamber) comprising an annular wall as defined above.
- the figure 1 illustrates in its environment a combustion chamber 10 for a turbomachine.
- a turbomachine comprises in particular a compression section (not shown) in which air is compressed before being injected into a chamber housing 12, then into the combustion chamber 10 mounted inside thereof. Compressed air is introduced into the combustion chamber and mixed with fuel before being burned. The gases resulting from this combustion are then directed to a high-pressure turbine 14 disposed at the outlet of the combustion chamber.
- the combustion chamber is of the annular type. It is formed of an inner annular wall 16 and an outer annular wall 18 which are joined upstream by a transverse wall 20 forming the chamber bottom. It can be direct as illustrated or reverse flow. In this case, a return bend that can also be cooled by multi-piercing is placed between the combustion chamber and the turbine distributor.
- the inner annular walls 16 and outer 18 extend along a longitudinal axis slightly inclined relative to the longitudinal axis 22 of the turbomachine.
- the chamber bottom 20 is provided with a plurality of openings 20A in which fuel injectors 24 are mounted.
- the chamber casing 12 which is formed of an inner casing 12a and an outer casing 12b, furnishes with the combustion chamber 10 annular spaces 26 into which compressed air for combustion is admitted. dilution and cooling of the chamber.
- the inner annular walls 16 and outer 18 each have a cold side 16a, 18a disposed on the side of the annular space 26 in which the compressed air circulates and a hot side 16b, 18b turned towards the inside of the combustion chamber ( figure 3 ).
- the combustion chamber 10 is divided into a so-called “primary” zone (or combustion zone) and a so-called “secondary” zone (or dilution zone) located downstream of the previous one (the downstream means with respect to a general axial direction of flow of the gases resulting from the combustion of the air / fuel mixture inside the combustion chamber and represented by the arrow D).
- the air that feeds the primary zone of the combustion chamber is introduced by a circumferential row of primary holes 28 formed in the inner annular walls 16 and outer 18 of the chamber over the entire circumference of these annular walls. These primary holes have a downstream edge aligned on the same line 28A.
- the air supplying the secondary zone of the chamber it borrows a plurality of dilution holes 30 also formed in the inner annular walls 16 and outer 18 all around the circumference of these annular walls.
- These dilution holes 30 are aligned in a circumferential row which is axially offset downstream from the rows of the primary holes 28 and may have diameters different with alternating large and small holes. In the configuration illustrated in figure 2 these dilution holes of different diameters, however, present a downstream edge aligned on the same line 30A.
- a plurality of cooling orifices 32 (illustrated in FIGS. Figures 2 and 3 ).
- These orifices 32 which provide a cooling of the walls 16, 18 by multiperforation, are distributed in a plurality of circumferential rows spaced axially from each other. These rows of multiperforation orifices cover the entire surface of the annular walls of the chamber with the exception of specific areas which are the subject of the invention and are precisely delimited and situated between the line 28A, 30A forming an upstream transition axis and a transition axis. downstream axially offset downstream relative to this upstream axis and is substantially in front of the dilution holes (for the downstream axis 28B) is substantially in front of the exit plane of the chamber (for the downstream axis 30B).
- the number and the diameter d1 of the cooling orifices 32 are identical in each of the rows.
- the pitch p1 between two orifices of the same row is constant and may be identical or not for all the rows.
- the adjacent rows of cooling orifices are arranged so that the orifices 32 are staggered as shown in FIG. figure 2 .
- the cooling orifices 32 generally have an angle of inclination ⁇ 1 with respect to a normal N to the annular wall 16, 18 through which they are pierced.
- This inclination ⁇ 1 allows the air passing through these orifices to form a film of air along the hot side 16b, 18b of the annular wall.
- the inclination ⁇ 1 of the cooling orifices 32 is directed so that the air film thus formed flows in the direction of flow of the combustion gases inside the chamber (represented by the arrow D ).
- the diameter d1 of the cooling orifices 32 may be between 0.3 and 1 mm, the pitch d1 between 1 and 10 mm and their inclination ⁇ 1 between + 30 ° and + 70 °, typically + 60 °.
- the primary holes 28 and the dilution holes 30 have a diameter of the order of 4 to 20 mm.
- each annular wall 16, 18 of the combustion chamber comprises, arranged directly downstream of the primary holes 28 and dilution holes 30 and distributed in several circumferential rows, typically at least 5 rows, from the upstream transition axis 28A, 30A and up to the downstream transition axis 28B, 30B, a plurality of additional cooling orifices 34.
- additional cooling orifices 34 are arranged directly downstream of the primary holes 28 and dilution holes 30 and distributed in several circumferential rows, typically at least 5 rows, from the upstream transition axis 28A, 30A and up to the downstream transition axis 28B, 30B, a plurality of additional cooling orifices 34.
- the air film delivered by these additional orifices flows in a perpendicular direction due to their arrangement in a plane perpendicular to this axial direction D of flue gas flow.
- This multiperforation carried out perpendicularly to the axis of the turbomachine (in the following description, it will speak of multiperforation gyratory as opposed to the axial multiperforation of the cooling orifices) allows to bring the additional orifices of the primary holes or dilution and therefore d improve the efficiency of the air / fuel mixture.
- the additional orifices 34 of the same row have the same diameter d2, preferably identical to the diameter d1 of the cooling orifices 32, are spaced by a constant pitch p2 which may or may not be identical to the pitch p1 between the cooling orifices 32 and have an inclination ⁇ 2, preferably identical to the inclination ⁇ 1 of the cooling orifices 32 but arranged in a perpendicular plane.
- these characteristics of the additional orifices 34 may, while remaining within the previously defined ranges of values, be substantially different from those of the cooling orifices 32, that is to say that the inclination ⁇ 2 of the additional orifices of a
- the same row relative to a normal N to the annular wall 16, 18 may be different from that ⁇ 1 of the cooling orifices, and the diameter d2 of the additional orifices of the same row may be different from that of the cooling orifices 32.
- the additional orifices 34 behind the row of primary holes 28 may further advantageously have different inclination, diameter, or pitch characteristics than those disposed behind the row of dilution holes. and, more particularly, within the same zone a difference of the diameter d2 and the pitch p2 can also be achieved to densify this cooling in the most thermally stressed parts, that is to say those just downstream of the holes primary and large dilution ports, when these are formed alternately of large and small orifices as illustrated in figure 2 .
- the introduction of the gyratory multiperforation allows limiting the rise of the thermal gradient to prevent the formation of cracks downstream of the primary holes 28.
- the multiperforation upstream of the holes of dilution 30 from the downstream transition axis 28B remaining axial type it is necessary to provide a transition zone made for example in two rows in which the additional cooling holes 34 are each arranged in an inclined plane one of 30 ° and the other of 60 ° with respect to the axial direction D, the other parameters, namely the diameter d2, the pitch p2 and the inclination ⁇ 2 of these additional holes in these inclined planes remaining unchanged.
- the introduction of the axial multiperforation makes it possible to fill the local level of gyration so as not to lose the TuHP efficiency of the combustion chamber.
- the average temperature profile at the chamber outlet is improved because of the more efficient mixture thus obtained.
- This transition zone may for example be made in two rows of additional cooling holes each disposed in a plane inclined at 30 ° and the other 60 ° with respect to the axial direction D, the other parameters, namely the diameter d2, the pitch p2 and the inclination ⁇ 2 of the additional holes in these inclined planes remaining unchanged.
- this area from the 30B axis may not exist or be integrated with the return elbow.
- transition zone has been described at the level of the gyratory multiperforation, however, there is no prohibition to achieve it at the level of the axial multiperforation or still riding with a row of axial multiperforation inclined at 30 ° and a row of multiperforation gyratory inclined at 60 °.
- this transition zone may comprise more than two rows, the inclination of the orifices then being evenly distributed between 0 ° (multiperforation axial) and 90 ° (multiperforation gyratory). For example, with three rows, the inclination of the orifices will be respectively 22.5 °, 45 ° and 67.5 °.
- the flow in the primary zone is not modified, the gyration does not impact the orientation of the dilution jets and overcoming the thermal barrier allows a gain in weight and therefore cost.
- the direction of drilling of the multiperforation gyratory is fixed by the orientation of the blades of the High Pressure distributor ( DHP) downstream of the combustion chamber.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
Description
La présente invention se rapporte au domaine général des chambres de combustion de turbomachine. Elle vise plus particulièrement une paroi annulaire pour chambre de combustion directe ou à flux inversé refroidie par un procédé dit de «multiperforation».The present invention relates to the general field of turbomachine combustion chambers. It is more particularly an annular wall for direct combustion chamber or reverse flow cooled by a process known as "multiperforation".
Typiquement, une chambre de combustion annulaire de turbomachine est formée d'une paroi annulaire interne (dite aussi virole interne) et d'une paroi annulaire externe (dite aussi virole externe) qui sont reliées en amont par une paroi transversale formant fond de chambre.Typically, an annular turbomachine combustion chamber is formed of an inner annular wall (also called inner shell) and an outer annular wall (also called outer shell) which are connected upstream by a transverse wall forming chamber bottom.
Les viroles interne et externe sont chacune pourvues d'une pluralité de trous et d'orifices divers permettant à de l'air circulant autour de la chambre de combustion de pénétrer à l'intérieur de celle-ci.The inner and outer shrouds are each provided with a plurality of holes and various orifices allowing air circulating around the combustion chamber to penetrate inside thereof.
Ainsi, des trous dits « primaires » et « de dilution » sont formés dans ces viroles pour acheminer de l'air à l'intérieur de la chambre de combustion. L'air empruntant les trous primaires contribue à créer un mélange air/carburant qui est brûlé dans la chambre, tandis que l'air provenant des trous de dilution est destiné à favoriser la dilution de ce même mélange air/carburant.Thus, so-called "primary" and "dilution" holes are formed in these ferrules to convey air inside the combustion chamber. The air passing through the primary holes helps to create an air / fuel mixture that is burned in the chamber, while the air from the dilution holes is intended to promote the dilution of the same air / fuel mixture.
Les viroles interne et externe sont soumises aux températures élevées des gaz provenant de la combustion du mélange air/carburant.The inner and outer shells are subjected to the high temperatures of the gases from the combustion of the air / fuel mixture.
Afin d'assurer leur refroidissement, des orifices supplémentaires dits de multiperforation sont également percés au travers de ces viroles sur toute leur surface. Ces orifices de multiperforation, inclinés en général à 60°, permettent à l'air circulant à l'extérieur de la chambre de pénétrer à l'intérieur de celle-ci en formant le long des viroles des films d'air de refroidissement.To ensure their cooling, additional holes called multiperforation holes are also drilled through these ferrules over their entire surface. These multiperforation orifices, generally inclined at 60 °, allow the air circulating outside the chamber to penetrate inside thereof by forming cooling air films along the shells.
Toutefois, en pratique, il a été constaté que la zone des viroles interne et externe qui est située directement en aval de chacun des trous primaires ou de dilution, du fait notamment de l'absence d'orifices résultant de la technologie de perçage laser utilisée, bénéficie d'un faible niveau de refroidissement avec le risque de formation de criques que cela implique.However, in practice, it has been found that the zone of the inner and outer rings which is situated directly downstream of each of the primary or dilution holes, in particular because of the absence of orifices resulting from the laser drilling technology used. , enjoys a low level of cooling with the risk of formation of cracks that implies.
Afin de résoudre ce problème, le document
La présente invention a donc pour but de pallier de tels inconvénients en proposant une paroi annulaire de chambre de combustion qui assure un refroidissement adéquat des zones situées directement en aval des trous primaires et de dilution.The present invention therefore aims to overcome such drawbacks by providing an annular combustion chamber wall which provides adequate cooling of the areas directly downstream of the primary and dilution holes.
A cet effet, il est prévu une paroi annulaire de chambre de combustion de turbomachine selon la revendication 1. La présence des orifices additionnels de refroidissement disposés de façon inclinée dans un plan perpendiculaire au sens d'écoulement des gaz de combustion, directement en aval et au plus près des trous primaires et de dilution, permet d'assurer un refroidissement efficace par rapport à la multiperforation axiale classique où le film d'air est stoppé par la présence de ces trous et cela sans modifier l'écoulement dans la zone primaire.For this purpose, there is provided an annular wall of a turbomachine combustion chamber according to claim 1. The presence of the additional cooling orifices arranged in an inclined manner in a plane perpendicular to the direction of flow of the combustion gases, directly downstream and as close as possible to the primary and dilution holes, makes it possible to ensure efficient cooling with respect to the classical axial multiperforation where the film of air is stopped by the presence of these holes and this without modifying the flow in the primary zone.
De préférence, elle comporte en outre au niveau d'une zone de transition formée en aval de ladite pluralité de rangées d'orifices additionnels, au moins deux rangées d'orifices dont les axes géométriques de chacun desdits orifices sont inclinés, par rapport à un plan perpendiculaire à ladite direction axiale D, d'une inclinaison déterminée différente pour chacune desdites deux rangées.Preferably, it further comprises, at a transition zone formed downstream of said plurality of rows of additional orifices, at least two rows of orifices whose geometric axes of each of said orifices are inclined, with respect to a plane perpendicular to said axial direction D, of a different determined inclination for each of said two rows.
Selon un mode de réalisation de l'invention avantageux, ladite inclinaison θ2 desdits orifices additionnels par rapport à la normale N à ladite paroi annulaire est identique à celle θ1 desdits orifices de refroidissement.According to an advantageous embodiment of the invention, said inclination θ2 of said additional orifices relative to the normal N to said annular wall is identical to that θ1 of said cooling orifices.
Avantageusement, un diamètre d2 desdits orifices additionnels est identique à un diamètre d1 desdits orifices de refroidissement et un pas p2 desdits orifices additionnels est identique à un pas p1 desdits orifices de refroidissement et lesdits orifices additionnels peuvent présenter une densification plus importante juste en aval des trous primaires et des trous de dilution.Advantageously, a diameter d2 of said additional orifices is identical to a diameter d1 of said cooling orifices and a pitch p2 of said additional orifices is identical to a pitch p1 of said cooling orifices and said additional orifices may have a greater densification just downstream of the holes. primary and dilution holes.
Lorsqu'elle comporte ces deux rangées d'orifices, lesdites inclinaisons sont de 30° et 60° respectivement. Lesdites deux rangées d'orifices sont alors soit deux rangées d'orifices additionnels disposées immédiatement en amont d'une rangée d'orifices de refroidissement, soit deux rangées d'orifices de refroidissement disposées immédiatement en aval d'une rangée d'orifices additionnels, ou encore une rangée d'orifices additionnels et une rangée d'orifices de refroidissement adjacente.When it comprises these two rows of orifices, said inclinations are 30 ° and 60 ° respectively. Said two rows of orifices are then either two rows of additional orifices arranged immediately upstream of a row of cooling orifices, or two rows of cooling orifices arranged immediately in downstream of a row of additional orifices, or a row of additional orifices and a row of adjacent cooling orifices.
Lorsqu'elle comporte plusieurs rangées d'orifices, lesdites inclinaisons sont réparties régulièrement entre 0° et 90°.When it comprises several rows of orifices, said inclinations are regularly distributed between 0 ° and 90 °.
Avantageusement, le sens d'inclinaison desdits orifices additionnels est contraint par le sens d'écoulement du mélange air/carburant en aval de ladite chambre de combustion.Advantageously, the direction of inclination of said additional orifices is constrained by the direction of flow of the air / fuel mixture downstream of said combustion chamber.
La présente invention a également pour objet une chambre de combustion et une turbomachine (ayant une chambre de combustion) comportant une paroi annulaire telle que définie précédemment.The present invention also relates to a combustion chamber and a turbomachine (having a combustion chamber) comprising an annular wall as defined above.
D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins annexés qui en illustrent un exemple de réalisation dépourvu de tout caractère limitatif. Sur les figures :
- la
figure 1 est une vue en coupe longitudinale d'une chambre de combustion de turbomachine dans son environnement ; - la
figure 2 est une vue partielle et en développé de l'une des parois annulaires de la chambre de combustion de lafigure 1 selon un mode de réalisation de l'invention ; et - la
figure 3 est une vue partielle et en perspective d'une partie de la paroi annulaire de lafigure 2 .
- the
figure 1 is a longitudinal sectional view of a turbomachine combustion chamber in its environment; - the
figure 2 is a partial and developed view of one of the annular walls of the combustion chamber of thefigure 1 according to one embodiment of the invention; and - the
figure 3 is a partial view in perspective of a part of the annular wall of thefigure 2 .
La
La chambre de combustion est de type annulaire. Elle est formée d'une paroi annulaire interne 16 et d'une paroi annulaire externe 18 qui sont réunies en amont par une paroi transversale 20 formant le fond de chambre. Elle peut être directe comme illustrée ou à flux inversé. Dans ce cas, un coude de retour pouvant également être refroidi par multiperçage est placé entre la chambre de combustion et le distributeur de turbine.The combustion chamber is of the annular type. It is formed of an inner
Les parois annulaires interne 16 et externe 18 s'étendent selon un axe longitudinal légèrement incliné par rapport à l'axe longitudinal 22 de la turbomachine. Le fond de chambre 20 est pourvu d'une pluralité d'ouvertures 20A dans lesquelles sont montés des injecteurs de carburant 24.The inner
Le carter de chambre 12, qui est formé d'une enveloppe interne 12a et d'une enveloppe externe 12b, ménage avec la chambre de combustion 10 des espaces annulaires 26 dans lequel est admis de l'air comprimé destiné à la combustion, à la dilution et au refroidissement de la chambre.The
Les parois annulaires interne 16 et externe 18 présentent chacune un côté froid 16a, 18a disposé du côté de l'espace annulaire 26 dans lequel circule l'air comprimé et un côté chaud 16b, 18b tourné vers l'intérieur de la chambre de combustion (
La chambre de combustion 10 se divise en une zone dite « primaire » (ou zone de combustion) et une zone dite « secondaire » (ou zone de dilution) située en aval de la précédente (l'aval s'entend par rapport à une direction générale axiale d'écoulement des gaz issus de la combustion du mélange air/carburant à l'intérieur de la chambre de combustion et matérialisée par la flèche D).The
L'air qui alimente la zone primaire de la chambre de combustion est introduit par une rangée circonférentielle de trous primaires 28 pratiqués dans les parois annulaires interne 16 et externe 18 de la chambre sur toute la circonférence de ces parois annulaires. Ces trous primaires comportent un bord aval aligné sur une même ligne 28A. Quant à l'air alimentant la zone secondaire de la chambre, il emprunte une pluralité de trous de dilution 30 également formés dans les parois annulaires interne 16 et externe 18 sur toute la circonférence de ces parois annulaires. Ces trous de dilution 30 sont alignés selon une rangée circonférentielle qui est décalée axialement vers l'aval par rapport aux rangées des trous primaires 28 et ils peuvent avoir des diamètres différents avec notamment une alternance de gros et petits trous. Dans la configuration illustrée à la
Afin de refroidir les parois annulaires interne 16 et externe 18 de la chambre de combustion qui sont soumises aux températures élevées des gaz de combustion, il est prévu une pluralité d'orifices de refroidissement 32 (illustrés sur les
Ces orifices 32, qui assurent un refroidissement des parois 16, 18 par multiperforation, sont répartis selon une pluralité de rangées circonférentielles espacées axialement les unes des autres. Ces rangées d'orifices de multiperforation couvrent toute la surface des parois annulaires de la chambre à l'exception de zones particulières objets de l'invention précisément délimitées et comprises entre la ligne 28A, 30A formant un axe de transition amont et un axe de transition aval décalé axialement vers l'aval par rapport à cet axe amont et soit sensiblement en avant des trous de dilution (pour l'axe aval 28B) soit sensiblement en avant du plan de sortie de la chambre (pour l'axe aval 30B).These
Le nombre et le diamètre d1 des orifices de refroidissement 32 sont identiques dans chacune des rangées. Le pas p1 entre deux orifices d'une même rangée est constant et peut être identique ou non pour toutes les rangées. Par ailleurs, les rangées adjacentes d'orifices de refroidissement sont arrangées de façon à ce que les orifices 32 soient disposés en quinconce comme représenté sur la
Comme illustré sur la
A titre d'exemple, pour une paroi annulaire 16, 18 réalisée en matériau métallique ou céramique et ayant une épaisseur comprise entre 0,6 et 3,5mm, le diamètre d1 des orifices de refroidissement 32 peut être compris entre 0,3 et 1 mm, le pas d1 compris entre 1 et 10 mm et leur inclinaison θ1 comprise entre +30° et +70°, typiquement +60°. A titre de comparaison, pour une paroi annulaire ayant les mêmes caractéristiques, les trous primaires 28 et les trous de dilution 30 possèdent un diamètre de l'ordre de 4 à 20 mm.By way of example, for an
Selon l'invention, chaque paroi annulaire 16, 18 de la chambre de combustion comporte, disposés directement en aval des trous primaires 28 et de dilution 30 et répartis selon plusieurs rangées circonférentielles, typiquement au moins 5 rangées, depuis l'axe de transition amont 28A, 30A et jusqu'à l'axe de transition aval 28B, 30B, une pluralité d'orifices additionnels de refroidissement 34. Toutefois, au contraire des orifices de refroidissement précédents qui délivrent un film d'air s'écoulant dans la direction axiale D, le film d'air délivré par ces orifices additionnels s'écoule dans une direction perpendiculaire du fait de leur disposition dans un plan perpendiculaire à cette direction axiale D d'écoulement des gaz de combustion. Cette multiperforation réalisée perpendiculairement à l'axe de la turbomachine (dans la suite de la description, on parlera de multiperforation giratoire par opposition à la multiperforation axiale des orifices de refroidissement) permet de rapprocher les orifices additionnels des trous primaires ou de dilution et donc d'améliorer l'efficacité du mélange air/carburant.According to the invention, each
Les orifices additionnels 34 d'une même rangée présentent un même diamètre d2, de préférence identique au diamètre d1 des orifices de refroidissement 32, sont espacés d'un pas p2 constant qui peut être identique ou non au pas p1 entre les orifices de refroidissement 32 et présentent une inclinaison θ2, de préférence identique à l'inclinaison θ1 des orifices de refroidissement 32 mais disposée dans un plan perpendiculaire. Toutefois, ces caractéristiques des orifices additionnels 34 peuvent, tout en restant dans les plages de valeurs définies précédemment, être sensiblement différentes de celles des orifices de refroidissement 32, c'est-à-dire que l'inclinaison θ2 des orifices additionnels d'une même rangée par rapport à une normale N à la paroi annulaire 16, 18 peut être différente de celle θ1 des orifices de refroidissement, et le diamètre d2 des orifices additionnels d'une même rangée peut être différent de celui d1 des orifices de refroidissement 32.The
Toutefois, selon le besoin de refroidissement souhaité, les orifices additionnels 34 derrière la rangée des trous primaires 28 peuvent en outre présenter avantageusement des caractéristiques en matière d'inclinaison, de diamètre ou de pas différentes de ceux disposés derrière la rangée des trous de dilution 30 et, plus particulièrement, au sein d'une même zone une différence du diamètre d2 et du pas p2 peut aussi être réalisée pour densifier ce refroidissement dans les parties les plus contraintes thermiquement, c'est-à-dire celles justes en aval des trous primaires et des gros orifices de dilution, lorsque ces derniers sont formés d'une alternance de gros et de petits orifices comme illustré à la
Entre la rangée des trous primaires et celle des trous de dilution, l'introduction de la multiperforation giratoire permet en limitant l'élévation du gradient thermique d'éviter la formation de criques en aval des trous primaires 28. La multiperforation en amont des trous de dilution 30 depuis l'axe de transition aval 28B restant de type axial, il est nécessaire de prévoir une zone de transition réalisée par exemple sur deux rangées dans laquelle les trous additionnels de refroidissement 34 sont chacun disposés dans un plan incliné l'un de 30° et l'autre de 60° par rapport à la direction axiale D, les autres paramètres, à savoir le diamètre d2, le pas p2 et l'inclinaison θ2 de ces trous additionnels dans ces plans inclinés restant inchangés.Between the row of the primary holes and that of the dilution holes, the introduction of the gyratory multiperforation allows limiting the rise of the thermal gradient to prevent the formation of cracks downstream of the primary holes 28. The multiperforation upstream of the holes of
De même, en sortie de chambre, plus précisément à partir de l'axe de transition aval 30B (
On notera que si la zone de transition a été décrite au niveau de la multiperforation giratoire, rien n'interdit toutefois de la réaliser au niveau de la multiperforation axiale ou encore à cheval avec une rangée de multiperforation axiale inclinée à 30° et une rangée de multiperforation giratoire inclinée à 60°. De même, cette zone de transition peut comporter plus de deux rangées, l'inclinaison des orifices étant alors répartie régulièrement entre 0° (multiperforation axiale) et 90° (multiperforation giratoire). Par exemple, avec trois rangées, l'inclinaison des orifices sera respectivement de 22,5°, 45° et 67,5°.Note that if the transition zone has been described at the level of the gyratory multiperforation, however, there is no prohibition to achieve it at the level of the axial multiperforation or still riding with a row of axial multiperforation inclined at 30 ° and a row of multiperforation gyratory inclined at 60 °. Similarly, this transition zone may comprise more than two rows, the inclination of the orifices then being evenly distributed between 0 ° (multiperforation axial) and 90 ° (multiperforation gyratory). For example, with three rows, the inclination of the orifices will be respectively 22.5 °, 45 ° and 67.5 °.
Avec l'invention, l'écoulement dans la zone primaire n'est pas modifié, la giration n'impactant pas l'orientation des jets de dilution et en s'affranchissement de la barrière thermique permet un gain de masse et donc de coût. On notera également que pour respecter le sens des écoulements dans le DHP et éviter les décollements aérodynamiques et ainsi conserver le rendement de la turbine haute pression, le sens du perçage de la multiperforation giratoire est figé par l'orientation des aubages du distributeur Haute Pression (DHP) en aval de la chambre de combustion.With the invention, the flow in the primary zone is not modified, the gyration does not impact the orientation of the dilution jets and overcoming the thermal barrier allows a gain in weight and therefore cost. Note also that to respect the flow direction in the DHP and avoid aerodynamic detachments and thus maintain the efficiency of the high pressure turbine, the direction of drilling of the multiperforation gyratory is fixed by the orientation of the blades of the High Pressure distributor ( DHP) downstream of the combustion chamber.
Claims (11)
- An annular wall (16, 18) of a turbine engine combustion chamber (10), comprising a cold side (16a, 18a) and a hot side (16b, 18b), said annular wall comprising:. a plurality of primary holes (28) distributed according to a circumferential row to allow circulating air of the cold side (16a, 18a) of said annular wall to enter the hot side (16b, 18b) to create an air/fuel mixture;. a plurality of dilution holes (30) distributed according to a circumferential row to allow circulating air of the cold side (16a, 18a) of said annular wall to enter the hot side (16b, 18b) to ensure dilution of the air/fuel mixture; and. a plurality of cooling orifices (32) to allow the circulating air of the cold side (16a, 18a) of said annular wall to enter the hot side (16b, 18b) to form a film of cooling air along said annular wall, said cooling orifices being distributed according to a plurality of circumferential rows spaced axially from one another and the geometric axes of each of said cooling orifices being inclined, in an axial direction D of flow of combustion gases, by an angle of inclination θ1 relative to a normal N to said annular wall; and. a plurality of additional cooling orifices (34) arranged on the one hand directly downstream of said primary holes and on the other hand directly downstream of said dilution holes and distributed according to a plurality of circumferential rows spaced axially from one another,characterised in that the geometric axes of each of said additional cooling orifices (34) are arranged in a plane perpendicular to said axial direction D and inclined by an angle of inclination θ2 relative to a normal N to said annular wall.
- The wall as claimed in Claim 1, characterised in that said inclination θ2 of said additional orifices (34) relative to the normal N to said annular wall is identical to that θ1 of said cooling orifices.
- The wall as claimed in Claim 1 or Claim 2, characterised in that a diameter d2 of said additional orifices (34) is identical to a diameter d1 of said cooling orifices (32) and a pitch p2 of said additional orifices is identical to a pitch p1 of said cooling orifices.
- The wall as claimed in Claim 1, characterised in that said additional orifices (34) exhibit greater densification just downstream of the primary holes and the dilution holes.
- The wall as claimed in any one of Claims 1 to 4, characterised in that it further comprises at the level of a transition zone (28B, 30B), formed downstream of said plurality of rows of additional orifices, at least two rows of orifices whereof the geometric axes of each of said orifices are inclined, relative to a plane perpendicular to said axial direction D, by an inclination determined as different for each of said two rows.
- The wall as claimed in Claim 5, characterised in that it comprises two rows of orifices and said inclinations are 30° and 60° respectively.
- The wall as claimed in Claim 6, characterised in that said two rows of orifices are two rows of additional orifices arranged immediately upstream of a row of cooling orifices, two rows of cooling orifices arranged immediately downstream of a row of additional orifices, or even a row of additional orifices and an adjacent row of cooling orifices.
- The wall as claimed in Claim 5, characterised in that it comprises several rows of orifices and said inclinations are distributed evenly between 0° and 90°.
- The wall as claimed in any one of Claims 1 to 8, characterised in that the direction of inclination of said additional orifices is restricted by the direction of flow of the air/fuel mixture downstream of said combustion chamber.
- A combustion chamber (10) of a turbine engine, comprising at least one annular wall (16, 18) as claimed in any one of Claims 1 to 9.
- A turbine engine comprising a combustion chamber (10) having at least one annular wall (16, 18) as claimed in any one of Claims 1 to 9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17175880.8A EP3267111B1 (en) | 2011-10-26 | 2012-10-25 | Annular wall of a combustion chamber with improved cooling at the primary and/or dilution holes |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1159704A FR2982008B1 (en) | 2011-10-26 | 2011-10-26 | ANNULAR ROOM OF COMBUSTION CHAMBER WITH IMPROVED COOLING AT THE PRIMARY HOLES AND DILUTION HOLES |
PCT/FR2012/052446 WO2013060987A2 (en) | 2011-10-26 | 2012-10-25 | Annular wall of a combustion chamber with improved cooling at the primary and/or dilution holes |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17175880.8A Division EP3267111B1 (en) | 2011-10-26 | 2012-10-25 | Annular wall of a combustion chamber with improved cooling at the primary and/or dilution holes |
EP17175880.8A Division-Into EP3267111B1 (en) | 2011-10-26 | 2012-10-25 | Annular wall of a combustion chamber with improved cooling at the primary and/or dilution holes |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2771618A2 EP2771618A2 (en) | 2014-09-03 |
EP2771618B1 true EP2771618B1 (en) | 2017-06-14 |
EP2771618B8 EP2771618B8 (en) | 2017-08-16 |
Family
ID=47221481
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17175880.8A Active EP3267111B1 (en) | 2011-10-26 | 2012-10-25 | Annular wall of a combustion chamber with improved cooling at the primary and/or dilution holes |
EP12790620.4A Active EP2771618B8 (en) | 2011-10-26 | 2012-10-25 | Annular wall of a combustion chamber with improved cooling at the primary and/or dilution holes |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17175880.8A Active EP3267111B1 (en) | 2011-10-26 | 2012-10-25 | Annular wall of a combustion chamber with improved cooling at the primary and/or dilution holes |
Country Status (9)
Country | Link |
---|---|
US (1) | US10551064B2 (en) |
EP (2) | EP3267111B1 (en) |
JP (1) | JP6177785B2 (en) |
CN (2) | CN103958970B (en) |
BR (1) | BR112014010215A8 (en) |
CA (1) | CA2852393C (en) |
FR (1) | FR2982008B1 (en) |
IN (1) | IN2014DN03138A (en) |
WO (1) | WO2013060987A2 (en) |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2982008B1 (en) * | 2011-10-26 | 2013-12-13 | Snecma | ANNULAR ROOM OF COMBUSTION CHAMBER WITH IMPROVED COOLING AT THE PRIMARY HOLES AND DILUTION HOLES |
FR3019270B1 (en) * | 2014-03-31 | 2016-04-15 | Snecma | ANNULAR ROOM OF COMBUSTION CHAMBER HAVING IMPROVED COOLING BODIES AT FLANGE JOINT LEVELS |
CN104791848A (en) * | 2014-11-25 | 2015-07-22 | 西北工业大学 | Combustion chamber flame cylinder wall face with blade grid channel multi-inclined-hole cooling manner adopted |
US20160258623A1 (en) * | 2015-03-05 | 2016-09-08 | United Technologies Corporation | Combustor and heat shield configurations for a gas turbine engine |
FR3037107B1 (en) * | 2015-06-03 | 2019-11-15 | Safran Aircraft Engines | ANNULAR ROOM OF COMBUSTION CHAMBER WITH OPTIMIZED COOLING |
US10520193B2 (en) | 2015-10-28 | 2019-12-31 | General Electric Company | Cooling patch for hot gas path components |
US10041677B2 (en) * | 2015-12-17 | 2018-08-07 | General Electric Company | Combustion liner for use in a combustor assembly and method of manufacturing |
JP6026028B1 (en) * | 2016-03-10 | 2016-11-16 | 三菱日立パワーシステムズ株式会社 | Combustor panel, combustor, combustion apparatus, gas turbine, and method for cooling combustor panel |
US10584880B2 (en) | 2016-03-25 | 2020-03-10 | General Electric Company | Mounting of integrated combustor nozzles in a segmented annular combustion system |
US10605459B2 (en) | 2016-03-25 | 2020-03-31 | General Electric Company | Integrated combustor nozzle for a segmented annular combustion system |
US10641491B2 (en) | 2016-03-25 | 2020-05-05 | General Electric Company | Cooling of integrated combustor nozzle of segmented annular combustion system |
US10520194B2 (en) | 2016-03-25 | 2019-12-31 | General Electric Company | Radially stacked fuel injection module for a segmented annular combustion system |
US11428413B2 (en) | 2016-03-25 | 2022-08-30 | General Electric Company | Fuel injection module for segmented annular combustion system |
US10830442B2 (en) | 2016-03-25 | 2020-11-10 | General Electric Company | Segmented annular combustion system with dual fuel capability |
US10584876B2 (en) | 2016-03-25 | 2020-03-10 | General Electric Company | Micro-channel cooling of integrated combustor nozzle of a segmented annular combustion system |
US10641176B2 (en) | 2016-03-25 | 2020-05-05 | General Electric Company | Combustion system with panel fuel injector |
US10563869B2 (en) | 2016-03-25 | 2020-02-18 | General Electric Company | Operation and turndown of a segmented annular combustion system |
US10337738B2 (en) * | 2016-06-22 | 2019-07-02 | General Electric Company | Combustor assembly for a turbine engine |
CN106247402B (en) * | 2016-08-12 | 2019-04-23 | 中国航空工业集团公司沈阳发动机设计研究所 | A kind of burner inner liner |
US11156362B2 (en) | 2016-11-28 | 2021-10-26 | General Electric Company | Combustor with axially staged fuel injection |
US10690350B2 (en) | 2016-11-28 | 2020-06-23 | General Electric Company | Combustor with axially staged fuel injection |
US10753283B2 (en) * | 2017-03-20 | 2020-08-25 | Pratt & Whitney Canada Corp. | Combustor heat shield cooling hole arrangement |
US10816202B2 (en) * | 2017-11-28 | 2020-10-27 | General Electric Company | Combustor liner for a gas turbine engine and an associated method thereof |
US10890327B2 (en) | 2018-02-14 | 2021-01-12 | General Electric Company | Liner of a gas turbine engine combustor including dilution holes with airflow features |
US11255543B2 (en) | 2018-08-07 | 2022-02-22 | General Electric Company | Dilution structure for gas turbine engine combustor |
US11029027B2 (en) | 2018-10-03 | 2021-06-08 | Raytheon Technologies Corporation | Dilution/effusion hole pattern for thick combustor panels |
FR3090746B1 (en) * | 2018-12-20 | 2021-06-11 | Safran Aircraft Engines | POST-COMBUSTION TUBE WITH A SHIRT WITH OBLIQUE PERFORATION |
FR3098569B1 (en) | 2019-07-10 | 2021-07-16 | Safran Aircraft Engines | TURBOMACHINE COMBUSTION CHAMBER ANNULAR WALL INCLUDING PRIMARY HOLES, DILUTION HOLES AND INCLINED COOLING PORTS |
US20210222879A1 (en) * | 2020-01-17 | 2021-07-22 | United Technologies Corporation | Convection cooling at low effusion density region of combustor panel |
US11994292B2 (en) | 2020-08-31 | 2024-05-28 | General Electric Company | Impingement cooling apparatus for turbomachine |
US11994293B2 (en) | 2020-08-31 | 2024-05-28 | General Electric Company | Impingement cooling apparatus support structure and method of manufacture |
US11371702B2 (en) | 2020-08-31 | 2022-06-28 | General Electric Company | Impingement panel for a turbomachine |
US11460191B2 (en) | 2020-08-31 | 2022-10-04 | General Electric Company | Cooling insert for a turbomachine |
US11614233B2 (en) | 2020-08-31 | 2023-03-28 | General Electric Company | Impingement panel support structure and method of manufacture |
US11255545B1 (en) | 2020-10-26 | 2022-02-22 | General Electric Company | Integrated combustion nozzle having a unified head end |
CN112607040A (en) * | 2020-12-31 | 2021-04-06 | 西北工业大学 | Wall surface staggered inclined hole jet cooling technology for high-temperature part of aircraft |
US11774100B2 (en) * | 2022-01-14 | 2023-10-03 | General Electric Company | Combustor fuel nozzle assembly |
US11767766B1 (en) | 2022-07-29 | 2023-09-26 | General Electric Company | Turbomachine airfoil having impingement cooling passages |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4923371A (en) * | 1988-04-01 | 1990-05-08 | General Electric Company | Wall having cooling passage |
GB2221979B (en) * | 1988-08-17 | 1992-03-25 | Rolls Royce Plc | A combustion chamber for a gas turbine engine |
US5241827A (en) * | 1991-05-03 | 1993-09-07 | General Electric Company | Multi-hole film cooled combuster linear with differential cooling |
US5261223A (en) * | 1992-10-07 | 1993-11-16 | General Electric Company | Multi-hole film cooled combustor liner with rectangular film restarting holes |
US5289686A (en) * | 1992-11-12 | 1994-03-01 | General Motors Corporation | Low nox gas turbine combustor liner with elliptical apertures for air swirling |
US6145319A (en) * | 1998-07-16 | 2000-11-14 | General Electric Company | Transitional multihole combustion liner |
US6205789B1 (en) * | 1998-11-13 | 2001-03-27 | General Electric Company | Multi-hole film cooled combuster liner |
US6408629B1 (en) * | 2000-10-03 | 2002-06-25 | General Electric Company | Combustor liner having preferentially angled cooling holes |
US6513331B1 (en) * | 2001-08-21 | 2003-02-04 | General Electric Company | Preferential multihole combustor liner |
US6568187B1 (en) * | 2001-12-10 | 2003-05-27 | Power Systems Mfg, Llc | Effusion cooled transition duct |
JP2004257335A (en) * | 2003-02-27 | 2004-09-16 | Kawasaki Heavy Ind Ltd | Gas turbine parts using porous metal, and its manufacturing method |
US7216485B2 (en) * | 2004-09-03 | 2007-05-15 | General Electric Company | Adjusting airflow in turbine component by depositing overlay metallic coating |
US7614235B2 (en) * | 2005-03-01 | 2009-11-10 | United Technologies Corporation | Combustor cooling hole pattern |
FR2892180B1 (en) * | 2005-10-18 | 2008-02-01 | Snecma Sa | IMPROVING THE PERFOMANCE OF A COMBUSTION CHAMBER BY MULTIPERFORATING THE WALLS |
US7546737B2 (en) * | 2006-01-24 | 2009-06-16 | Honeywell International Inc. | Segmented effusion cooled gas turbine engine combustor |
US7669422B2 (en) * | 2006-07-26 | 2010-03-02 | General Electric Company | Combustor liner and method of fabricating same |
US8522557B2 (en) * | 2006-12-21 | 2013-09-03 | Siemens Aktiengesellschaft | Cooling channel for cooling a hot gas guiding component |
US7905094B2 (en) * | 2007-09-28 | 2011-03-15 | Honeywell International Inc. | Combustor systems with liners having improved cooling hole patterns |
US8104288B2 (en) * | 2008-09-25 | 2012-01-31 | Honeywell International Inc. | Effusion cooling techniques for combustors in engine assemblies |
US9897320B2 (en) * | 2009-07-30 | 2018-02-20 | Honeywell International Inc. | Effusion cooled dual wall gas turbine combustors |
FR2982008B1 (en) * | 2011-10-26 | 2013-12-13 | Snecma | ANNULAR ROOM OF COMBUSTION CHAMBER WITH IMPROVED COOLING AT THE PRIMARY HOLES AND DILUTION HOLES |
-
2011
- 2011-10-26 FR FR1159704A patent/FR2982008B1/en active Active
-
2012
- 2012-10-25 CA CA2852393A patent/CA2852393C/en not_active Expired - Fee Related
- 2012-10-25 US US14/352,946 patent/US10551064B2/en active Active
- 2012-10-25 BR BR112014010215A patent/BR112014010215A8/en not_active Application Discontinuation
- 2012-10-25 WO PCT/FR2012/052446 patent/WO2013060987A2/en active Application Filing
- 2012-10-25 CN CN201280052210.4A patent/CN103958970B/en active Active
- 2012-10-25 EP EP17175880.8A patent/EP3267111B1/en active Active
- 2012-10-25 CN CN2012205521196U patent/CN203147824U/en not_active Withdrawn - After Issue
- 2012-10-25 EP EP12790620.4A patent/EP2771618B8/en active Active
- 2012-10-25 IN IN3138DEN2014 patent/IN2014DN03138A/en unknown
- 2012-10-25 JP JP2014537695A patent/JP6177785B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
FR2982008A1 (en) | 2013-05-03 |
JP2014531015A (en) | 2014-11-20 |
EP3267111B1 (en) | 2022-02-16 |
US10551064B2 (en) | 2020-02-04 |
WO2013060987A2 (en) | 2013-05-02 |
CN103958970A (en) | 2014-07-30 |
RU2014121037A (en) | 2015-12-10 |
EP2771618B8 (en) | 2017-08-16 |
EP2771618A2 (en) | 2014-09-03 |
CA2852393C (en) | 2020-08-04 |
EP3267111A3 (en) | 2018-02-28 |
BR112014010215A2 (en) | 2017-06-13 |
BR112014010215A8 (en) | 2017-06-20 |
CN103958970B (en) | 2016-08-24 |
EP3267111A2 (en) | 2018-01-10 |
CN203147824U (en) | 2013-08-21 |
WO2013060987A3 (en) | 2014-02-20 |
IN2014DN03138A (en) | 2015-05-22 |
FR2982008B1 (en) | 2013-12-13 |
US20140260257A1 (en) | 2014-09-18 |
JP6177785B2 (en) | 2017-08-09 |
CA2852393A1 (en) | 2013-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2771618B1 (en) | Annular wall of a combustion chamber with improved cooling at the primary and/or dilution holes | |
EP3303774B1 (en) | Annular wall of a combustion chamber with optimised cooling | |
EP1777458B1 (en) | Improvement of the performances of a combustion chamber by multiperforating the walls | |
CA2782661C (en) | Turbine engine combustion chamber | |
CA2639980C (en) | Turbomachine combustion chamber | |
FR2599821A1 (en) | COMBUSTION CHAMBER FOR TURBOMACHINES WITH MIXING ORIFICES ENSURING THE POSITIONING OF THE HOT WALL ON THE COLD WALL | |
FR2975465A1 (en) | WALL FOR TURBOMACHINE COMBUSTION CHAMBER COMPRISING AN OPTIMIZED AIR INLET ORIFICE ARRANGEMENT | |
EP1634021B1 (en) | Annular combustion chamber for a turbomachine | |
FR3021351B1 (en) | TURBOMACHINE WALL HAVING AT LEAST ONE PORTION OF COOLING ORIFICES OBSTRUCTIONS | |
FR2982009A1 (en) | Annular wall for combustion chamber of turboshaft engine, has dilution holes whose rectangular sections exhibit equal axial length and width in direction transverse to axial direction of flow of combustion gases | |
FR3019270A1 (en) | ANNULAR ROOM OF COMBUSTION CHAMBER HAVING IMPROVED COOLING BODIES AT FLANGE JOINT LEVELS | |
FR3072448B1 (en) | TURBOMACHINE COMBUSTION CHAMBER | |
FR3015010A1 (en) | ANNULAR ROOF FOR TURBOMACHINE COMBUSTION CHAMBER COMPRISING COOLING ORIFICES WITH CONTRA-ROTATING EFFECT | |
FR3027741A1 (en) | IGNITION ASSEMBLY | |
EP2799666B1 (en) | Volute casing with two volumes for gas turbine | |
WO2013045802A1 (en) | Turbine engine combustion chamber | |
EP4179256B1 (en) | Annular combustion chamber for an aircraft turbomachine | |
FR3061948A1 (en) | TURBOMACHINE COMBUSTION CHAMBER WITH HIGH PERMEABILITY | |
FR2999277A1 (en) | Annular internal or external wall for e.g. direct flow combustion chamber, of turboshaft engine, has cooling holes whose drilling axes are directed according to direction of air flow so as to maintain supply of air axially across holes | |
EP3262348B1 (en) | Combustion chamber of a turbine engine comprising a through-part with an opening | |
FR3098569A1 (en) | ANNULAR WALL FOR TURBOMACHINE COMBUSTION CHAMBER INCLUDING PRIMARY HOLES, DILUTION HOLES AND INCLINED COOLING PORTS | |
FR3101915A1 (en) | Turbomachine turbine ring comprising internal cooling pipes | |
FR3121473A1 (en) | Fixing shells in a turbomachine | |
FR3090746A1 (en) | POST-COMBUSTION NOZZLE COMPRISING AN OBLIQUE PERFORATION SHIRT | |
FR3040439A1 (en) | DOUBLE FLOW TURBOREACTOR WITH CONFLUENCE WALL |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140327 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SNECMA Owner name: SAFRAN HELICOPTER ENGINES |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20170216 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 901351 Country of ref document: AT Kind code of ref document: T Effective date: 20170615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: SAFRAN AIRCRAFT ENGINES Owner name: SAFRAN HELICOPTER ENGINES |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012033476 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170614 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170915 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170914 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 901351 Country of ref document: AT Kind code of ref document: T Effective date: 20170614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170914 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171014 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012033476 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 |
|
26N | No opposition filed |
Effective date: 20180315 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171031 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171025 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171031 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20171031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171031 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20121025 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170614 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20210922 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20210921 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221025 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230920 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240919 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240919 Year of fee payment: 13 |