EP1640676B1 - Device combining internal heat exchanger and accumulator for an air conditioning circuit - Google Patents

Device combining internal heat exchanger and accumulator for an air conditioning circuit Download PDF

Info

Publication number
EP1640676B1
EP1640676B1 EP05017463A EP05017463A EP1640676B1 EP 1640676 B1 EP1640676 B1 EP 1640676B1 EP 05017463 A EP05017463 A EP 05017463A EP 05017463 A EP05017463 A EP 05017463A EP 1640676 B1 EP1640676 B1 EP 1640676B1
Authority
EP
European Patent Office
Prior art keywords
container
refrigerating fluid
cylindrical wall
passage
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05017463A
Other languages
German (de)
French (fr)
Other versions
EP1640676A1 (en
Inventor
Stefan Karl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Publication of EP1640676A1 publication Critical patent/EP1640676A1/en
Application granted granted Critical
Publication of EP1640676B1 publication Critical patent/EP1640676B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/026Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled and formed by bent members, e.g. plates, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/103Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of more than two coaxial conduits or modules of more than two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/105Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being corrugated elements extending around the tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/051Compression system with heat exchange between particular parts of the system between the accumulator and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the invention relates to the field of air conditioning circuits, in particular for motor vehicles.
  • the refrigerant fluid usually a fluorinated compound
  • the refrigerant fluid is present in two different phases, namely a gas phase and a liquid phase.
  • the gaseous cooling fluid set in motion by a compressor is condensed in the liquid state in a condenser and then expanded in a pressure reducer. From there, he gains an evaporator where he turns into a gaseous state to win the compressor, and so on.
  • Air conditioning circuits have therefore been proposed which use such natural fluids, present in the supercritical state, which operate at much higher pressures than in the case of conventional air-conditioning circuits.
  • the refrigerant gas is sent by the compressor to a gas cooler and then in a first part of an internal heat exchanger before gaining an expander and an evaporator.
  • the coolant gains an accumulator then crosses a second part of the internal heat exchanger before returning to the compressor inlet.
  • the high-pressure refrigerant at high temperature exchanges heat with the same refrigerant at low pressure and low temperature.
  • this known device has a number of disadvantages.
  • the volume occupied by the internal heat exchanger in the accumulator is relatively high.
  • the diameter of the accumulator is determined by the minimum radius of curvature of the coaxially disposed heat exchanger.
  • the inner wall of the heat exchanger is at low temperature, which causes a large heat exchange with the surrounding environment resulting in a loss of efficiency of the system.
  • the relatively thick wall of the accumulator has no other function than to contain the coolant.
  • the thickness of the wall of the accumulator must be relatively large to withstand relatively high burst pressure levels.
  • the accumulator wall is in direct contact with the surrounding environment and placed in a high airflow zone, which increases the heat exchange with the surrounding environment and results in a loss of efficiency.
  • the connections for the coolant are placed at the four corners of the heat exchange module, which leads to complex connections.
  • the invention aims to provide a combined device for internal heat exchanger and accumulator for an air conditioning circuit traversed by a refrigerant, which overcomes the aforementioned drawbacks.
  • the invention proposes for this purpose a combined device of the type defined in the introduction, which comprises an outer cylindrical wall in which are formed a plurality of channels for the circulation of the high-pressure refrigerant at high temperature, a lower flange clean closing a lower end of the cylindrical wall, an upper flange adapted to close an upper end of the cylindrical wall, coolant access ports provided in the lower and upper flanges, a container disposed in the space defined by the cylindrical wall and the lower and upper flanges, a low-pressure, low-temperature refrigerant supply communicating with the container, and a passage for the circulation of the low-pressure, low-temperature refrigerant fluid provided between the cylindrical wall and the container and fed from the container.
  • connections for the refrigerant, for connection to the evaporator and the compressor are grouped respectively in the upper flange and in the lower flange, which simplifies the structure.
  • container here means an element which essentially delimits a phase separation zone for the cooling fluid, that is to say for separating the gaseous and liquid phases of this fluid. It is furthermore advantageous that this container also delimits a coolant storage zone in the liquid phase, thus forming a liquid reservoir.
  • the channels formed in the outer cylindrical wall are preferably parallel.
  • the lower and upper flanges are closure members for sealing the outer cylindrical wall at its lower and upper ends.
  • the lower and upper flanges are advantageously provided respectively with a lower groove arranged to receive the lower end of the outer cylindrical wall and an upper groove. arranged to receive an upper end of the outer cylindrical wall.
  • the container comprises an inner cylindrical wall spaced internally from the outer cylindrical wall to define an annular space, forming a passage for the circulation of the refrigerant fluid at low pressure and at low temperature, which communicates in part upper with the container and in the lower part with a low-pressure refrigerant discharge passage at low temperature, which passes through the lower flange.
  • the annular space may constitute a passage without obstacles, or direct passage, for the circulation of refrigerant fluid at low pressure and low temperature.
  • said annular space can accommodate a heat exchange means to form a helical channel between the outer cylindrical wall and the inner cylindrical wall.
  • This heat exchange means may be, for example, a helical member or a helical capillary tube which extends into the container.
  • the inner cylindrical wall is advantageously connected to a domed bottom which rests against the lower flange.
  • the outer cylindrical wall is advantageously formed of an extruded profile in which the channels are formed for the circulation of the refrigerant fluid at high pressure and at high temperature.
  • the device comprises an extruded profile comprising external channels which constitute the channels for the circulation of the refrigerant fluid at high pressure and high temperature and internal channels that constitute the circulation passage of the refrigerant fluid at low pressure and low temperature.
  • the refrigerant supply at low pressure and at low temperature, communicating with the container, advantageously comprises means for forming a vortex in the refrigerant fluid at low pressure and low temperature entering the container to separate the gas phase and the phase liquid refrigerant.
  • the means for forming this vortex can be constituted for example by a helical tube housed in the container, or by cyclone means.
  • the device of the invention advantageously comprises a return member to ensure the transfer of a lubricating oil conveyed by the refrigerant from the bottom of the container to the passage ensuring the circulation of the coolant at low pressure and low temperature.
  • the lower flange comprises an internal passage forming an inlet adapted to be connected to the outlet of a compressor and an outlet outlet adapted to be connected to the inlet of a gas cooler.
  • the cooling fluid is advantageously carbon dioxide.
  • the invention in another aspect, relates to a gas cooler for an air conditioning circuit traversed by a refrigerant fluid in the gas phase, this cooler being equipped with a combined device of internal heat exchanger and accumulator as defined above.
  • the gas cooler preferably comprises a manifold having an inlet adapted to be connected to the outlet a compressor, through a passage in the lower flange, and a clean outlet to be connected to an inlet of the lower flange.
  • FIG. 1 shows a combined device of internal heat exchanger and accumulator, designated as a whole by the reference 10.
  • the device 10 is part of an air conditioning circuit traversed by a fluid gaseous refrigerant, operating in the supercritical state, for example carbon dioxide (CO 2 ).
  • the circuit comprises a compressor 12, a gas cooler 14, an expander 16 and an evaporator 18.
  • the device 10 comprises an outer cylindrical wall 20, in the example of circular section, in which are formed a multiplicity of channels 22, in the example of the parallel channels, for the circulation of the refrigerant fluid at high pressure and at high temperature. from the gas cooler 14.
  • the wall 20 is bounded by an inner surface 20a and an outer surface 20b, both cylindrical.
  • the wall 20 is mounted between a lower flange 24 and an upper flange 26.
  • the lower flange 24 is provided with a lower groove 28, here of circular shape, arranged to receive the lower end of the cylindrical wall 20.
  • the upper flange 26 is provided with an upper groove 30, here of circular shape, arranged to receive the end upper part of the outer cylindrical wall 20.
  • a container 32 is disposed in the space (cylindrical volume) defined by the outer cylindrical wall 20 and the flanges 24 and 26.
  • the container 32 delimits at the same time a separation zone of the gaseous and liquid phases of the cooling fluid and a zone of storage of the coolant in the liquid phase, thereby forming a liquid reservoir for the accumulation of coolant
  • This container comprises a cylindrical wall 34 disposed coaxially and at a distance from the outer wall 20 and a convex bottom 36, which rests against an upper face 38 of the lower flange 24.
  • the latter is also bounded externally by a lower face 40.
  • the wall 34 may be described as an "inner wall” of the device insofar as it is internally spaced from the outer wall 20.
  • the wall 34 is bounded by an inner surface 34a and an outer surface 34b.
  • the domed bottom 36 and the lower flange 24 define an annular channel for the discharge of the refrigerant, as will be seen later.
  • the upper flange 26 is limited by a lower face 42 and an upper face 44.
  • the two flanges are advantageously made in the form of machined blocks.
  • the cylindrical wall 34 of the container 32 has an open end 46 which is at a small distance d from the lower face 42 of the upper flange. In this way, the interior of the container 32 can communicate with a passage 48 of annular shape between the outer wall 20 and the container, this passage being intended for the circulation of refrigerant fluid at low pressure and at low temperature.
  • the above-mentioned passage 48 coincides with the annular space delimited between the cylindrical wall 34 of the container, which constitutes an inner wall, and the outer cylindrical wall 20.
  • This annular space allows here a passage without obstacles, or direct passage, for the circulation of the coolant at low pressure and at low temperature.
  • the annular space thus formed communicates in the lower part with a discharge passage 50 for the refrigerant fluid at low pressure and at low temperature, which passes through the lower flange 24, between its faces 38 and 40, and which thus constitutes an orifice of 52.
  • the passage 50 opens in the upper part in the aforementioned annular channel, formed between the curved bottom 36 and the upper face 38 of the lower flange 24.
  • the upper flange 26 has a feed passage 54 for the refrigerant fluid at low pressure and low temperature.
  • This passage 54 is made in the form of a bore passing through the flange 26 and opening on its faces 42 and 44.
  • the passage 54 forms an inlet orifice 56 for the refrigerant fluid at low pressure and at low temperature coming from the evaporator 18.
  • This helical tube 60 constitutes means for forming a vortex in the refrigerant fluid low pressure and low temperature entering the container. This makes it possible to separate the gaseous and liquid phases of the refrigerant fluid.
  • the liquid phase thus separated accumulates in the container 32, the level of the liquid being identified by the reference N in FIG. while the gaseous phase gains the passage 48 to leave the device 10 by the evacuation passage 50.
  • the coolant conveys an oil that is necessary to ensure the lubrication of the compressor 12.
  • This lubricating oil is discharged from the container 32 by a return member 64, here made in the form of a capillary tube, the lower end 66 reaches the bottom of the container, while the upper end 68, in the form of a stick, opens in the upper part of the passage 48.
  • the upper flange 26 further comprises an outlet orifice 70 communicating with the upper groove 30 and adapted to be connected to the inlet of the expander 16.
  • the lower flange 24 comprises an orifice 72 opening into the lower groove 28 and adapted to be connected to the outlet of the gas cooler 14. Furthermore, the lower flange 24 comprises an internal passage 74 made by two bores at right angles which communicate between they and which open on the lower face 40 of the flange 24 and on a side face 76 of the flange to form an inlet port 78 to be connected to the output of the compressor 12 and an outlet port 80 to be connected at the inlet of the gas cooler 14.
  • the orifices 72 and 80 of the flange 24 are located close to each other, opening on the lateral face 76, to facilitate connection or soldering of the flange to the cooler of gas 14.
  • the circuit thus equipped with the device 10 operates in the following manner.
  • the gaseous cooling fluid coming from the compressor 12 passes through the internal passage 74 of the flange 24 to reach the gas cooler 14.
  • the coolant reaches the lower groove 28 and then flows vertically, from bottom to top, in the channels 22 of the wall 20 as shown by the arrows.
  • the refrigerant wins the throat upper 30 then passes successively through the expander and the evaporator 18 to gain the inlet orifice 56.
  • the refrigerant then enters the container 32 via the helical tube 60. Due to the vortex movement thus produced, the liquid and gaseous phases refrigerant are separated.
  • the gaseous refrigerant then gains the passage 48 to access the evacuation passage 50 and reach the inlet of the compressor 12.
  • the lubricating oil is discharged from the bottom of the container by the capillary tube 64 and is then conveyed in the refrigerant to allow lubrication of the compressor.
  • the thermal performance is increased because the heat exchange between the accumulator (i.e. the container 32) and the ambient is reduced. This also results in a reduction of possible leaks due to the reduced number of connections.
  • the outer cylindrical wall 20 is advantageously made in the form of an extruded profile, preferably made of metallic material, in which the parallel channels 22 are formed.
  • the container 32 is made in the form of a separate component, in this case a container with a convex bottom, which is received inside this wall 20.
  • other embodiments are possible.
  • FIG 2 is a detailed view of an upper part of a device 10 according to Figure 1.
  • the elements common with those of Figure 1 are designated by the same references.
  • a bore 82 is seen in the form of a blind hole which opens onto the upper face 44 of the upper flange 26. This bore is intended for fixing a counter flange (not shown) via of a screw or the like.
  • FIG. 3 which is an end view of the upper flange 26, the bore 82 and the orifices 56 and 76 are also visible.
  • FIG 4 is a detailed view of the lower part of the combined device of Figure 2.
  • the elements common with those of Figure 1 are designated by the same reference numerals.
  • the lower flange 24 also comprises a bore 84 formed in the form of a blind hole which opens on the lower face 40 of the flange 24. This bore is intended to allow the attachment of a counter flange (not shown) by the intermediate of a screw or the like.
  • FIG. 5 is a horizontal sectional view of the device of FIG. 4. It shows in detail the structure of the cylindrical wall 20, which is in the form of an extruded profile and which defines the channels 22. It is also seen that the container 32 is made in the form of a separate component which is housed coaxially inside the wall 20.
  • FIG. 6 is a perspective view showing the coaxial arrangement of the outer wall 20 and the inner wall 34 of the container 32.
  • the device comprises an extruded profile 86 which comprises, on the one hand, external channels 22 which constitute the parallel channels for the circulation of the refrigerant fluid at high pressure and at high temperature, and internal channels 88 which constitute the circulation passage of the refrigerant fluid at low pressure and at low temperature.
  • the channels 20 and 22 are arranged in a circular configuration which surrounds another circular configuration formed by the channels 88. In this way, the high temperature and high temperature refrigerant circulates countercurrently with the low pressure refrigerant and at low temperature.
  • the refrigerant circulates in a single pass, both in the channels 22 and in the passage 48 or the channels 88.
  • the outer wall 20 is divided into two parts, a portion 20A for fluid flow in one direction and a portion 20B for fluid flow in another direction.
  • the passage 48 is divided into two parts, a portion 48A in correspondence of the portion 20A and a portion 48B in correspondence of the portion 20B.
  • the fluid can flow up and down in the portion 20A and up and down in the portion 20B, from bottom to top in the portion 48A and from top to bottom in the portion 48B. This assumes of course to arrange the grooves flanges to allow each time a return of the fluid.
  • FIG. 9 shows another alternative embodiment in which the annular space between the outer wall 20 and the wall 34 of the container 32 houses a heat exchange means 90, for example a flat wire wound helically around the wall 34, for forming a helical channel 91 between the walls 20 and 34.
  • a heat exchange means 90 for example a flat wire wound helically around the wall 34, for forming a helical channel 91 between the walls 20 and 34.
  • it may be a helically wound capillary tube which extends into the container to form the tube 64 mentioned above.
  • the objective is to reduce the passage section in the annular passage 48 to cause an increase in the flow rate of the refrigerant fluid at low pressure and low temperature. This increase in speed has a positive impact on the heat exchange coefficient between the wall 20 and the refrigerant.
  • FIG. 10 shows a gas cooler 14 equipped with a combined device 10 according to the invention.
  • the gas cooler 14 comprises a beam 92 mounted between two tubular collectors 94 and 96 capable of being arranged vertically.
  • the combined device 10 is substantially vertically and coaxially implanted along the manifold 94.
  • the lower flange 24 comprises, as in Figs. 1 and 4, an inlet port 72 and an outlet port 80.
  • the outlet port 80 is adapted to be connected to an inlet port 98 of the manifold 94 for connection of the manifold to the outlet of the compressor 12 through the passage 74 formed in the lower flange.
  • the collector 94 further comprises an outlet orifice 100 adapted to be connected to the inlet orifice 72 of the lower flange which opens into the lower groove 28.
  • FIG. 10 also shows the orifices 52 and 78 of the lower flange which allow the connection with the compressor 12 as well as the orifices 70 and 56 of the upper flange which allow the connection with
  • the cylindrical wall 34 of the container 32 has an outer surface 34b of very slightly corrugated shape to create corrugations which are pressed against the inner surface 20a of the wall 20 and thus form channels 102 for the circulation of refrigerant fluid at low pressure and at low temperature. These channels 102 together form the passage 48 mentioned above.
  • the container 32 is thus in thermal contact with the profile 20 and the exchange surface in contact with the refrigerant fluid at low pressure and at low temperature is considerably increased.
  • the inner surface 34a of the wall 34 is provided with an insulating coating 104 to reduce the heat transfer from the wall 20 to the coolant in liquid form which is contained in the container 32.
  • FIGS. 13 and 14 illustrate another variant in which a cylinder 106 with a corrugated surface is inserted between the inner surface 20a of the wall 20 and the outer surface 34b of the wall 34.
  • the corrugated cylinder 106 is brazed on the wall 20, the two being made for example of an aluminum-based material.
  • the container 32 is formed of a material that does not brace easily with aluminum, for example steel, to withstand the brazing temperature.
  • the container 32 is not provided with an inner liner 104.
  • the invention is not limited to the embodiments described above as examples and extends to other variants.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Compressor (AREA)
  • Central Air Conditioning (AREA)

Abstract

The device has an outer cylindrical wall (20) with channels (22) to vertically circulate refrigerant upwards at high pressure and temperature. An annular space (48) is defined between the wall (20) and a cylindrical wall of a refrigerant container (32) to vertically circulate the refrigerant downwards at low pressure and temperature. Heat is exchanged between the refrigerants. Connections for the refrigerant, and for connection to an evaporator and a compressor, are grouped respectively in an upper flange (26) and a lower flange (24). An independent claim is also included for a gas cooler for an air-conditioning circuit circulated by a refrigerant in gaseous phase.

Description

L'invention se rapporte au domaine des circuits de climatisation, en particulier pour véhicules automobiles.The invention relates to the field of air conditioning circuits, in particular for motor vehicles.

Dans un circuit de climatisation classique, le fluide réfrigérant, habituellement un composé fluoré, est présent sous deux phases différentes, à savoir une phase gazeuse et une phase liquide. Le fluide réfrigérant gazeux mis en mouvement par un compresseur est condensé à l'état liquide dans un condenseur, puis détendu dans un détendeur. De là, il gagne un évaporateur où il se transforme à l'état gazeux pour gagner le compresseur, et ainsi de suite.In a conventional air conditioning circuit, the refrigerant fluid, usually a fluorinated compound, is present in two different phases, namely a gas phase and a liquid phase. The gaseous cooling fluid set in motion by a compressor is condensed in the liquid state in a condenser and then expanded in a pressure reducer. From there, he gains an evaporator where he turns into a gaseous state to win the compressor, and so on.

Pour éviter les inconvénients dûs à l'utilisation de composés nocifs pour l'environnement, il a été proposé de remplacer les fluides réfrigérants classiques par des fluides moins nocifs, en particulier par des composés naturels, tels que le dioxyde de carbone (CO2), le fluide réfrigérant restant la plupart du temps à l'état gazeux.To avoid the disadvantages due to the use of compounds harmful to the environment, it has been proposed to replace conventional refrigerants with less harmful fluids, in particular with natural compounds, such as carbon dioxide (CO2), the coolant remaining mostly in the gaseous state.

On a donc proposé des circuits de climatisation qui utilisent de tels fluides naturels, présents à l'état supercritique, qui fonctionnent à des pressions beaucoup plus élevées que dans le cas des circuits de climatisation classique. Dans de tels circuits, le fluide réfrigérant gazeux est envoyé par le compresseur vers un refroidisseur de gaz puis dans une première partie d'un échangeur de chaleur interne avant de gagner un détendeur puis un évaporateur. A la sortie de l'évaporateur, le fluide réfrigérant gagne un accumulateur puis traverse une seconde partie de l'échangeur de chaleur interne avant de regagner l'entrée du compresseur.Air conditioning circuits have therefore been proposed which use such natural fluids, present in the supercritical state, which operate at much higher pressures than in the case of conventional air-conditioning circuits. In such circuits, the refrigerant gas is sent by the compressor to a gas cooler and then in a first part of an internal heat exchanger before gaining an expander and an evaporator. At the exit of the evaporator, the coolant gains an accumulator then crosses a second part of the internal heat exchanger before returning to the compressor inlet.

Dans l'échangeur de chaleur interne, le fluide réfrigérant à haute pression et à haute température échange de la chaleur avec le même fluide réfrigérant à basse pression et à basse température.
Pour simplifier la construction de tels circuits de climatisation, on a déjà proposé, comme enseigné par le brevet US 6 523 365 , de réaliser un échangeur de chaleur interne intégré dans un accumulateur. Toutefois, ce dispositif connu présente un certain nombre d'inconvénients. Le volume occupé par l'échangeur de chaleur interne dans l'accumulateur est relativement élevé. Le diamètre de l'accumulateur est déterminé par le rayon de courbure minimal de l'échangeur de chaleur disposé coaxialement. La paroi interne de l'échangeur de chaleur est à faible température, ce qui provoque un échange de chaleur important avec le milieu ambiant résultant en une perte d'efficacité du système. De plus, la paroi relativement épaisse de l'accumulateur n'a pas d'autre fonction que de contenir le fluide réfrigérant.
In the internal heat exchanger, the high-pressure refrigerant at high temperature exchanges heat with the same refrigerant at low pressure and low temperature.
To simplify the construction of such air conditioning circuits, it has already been proposed, as taught by the patent US 6,523,365 , to produce an internal heat exchanger integrated in an accumulator. However, this known device has a number of disadvantages. The volume occupied by the internal heat exchanger in the accumulator is relatively high. The diameter of the accumulator is determined by the minimum radius of curvature of the coaxially disposed heat exchanger. The inner wall of the heat exchanger is at low temperature, which causes a large heat exchange with the surrounding environment resulting in a loss of efficiency of the system. In addition, the relatively thick wall of the accumulator has no other function than to contain the coolant.

On a proposé aussi, comme enseigné par le brevet US 6 539 746 , d'intégrer un accumulateur et un échangeur de chaleur interne dans le refroidisseur de gaz. Toutefois, ce dispositif connu présente un certain nombre d'inconvénients. L'accumulateur et l'échangeur de chaleur interne constituent deux composants différents montés ensemble avec le refroidisseur de gaz, ce qui accroît le nombre de pièces.It has also been proposed, as taught by US Patent 6,539,746 , to integrate an accumulator and an internal heat exchanger in the gas cooler. However, this known device has a number of disadvantages. The accumulator and the internal heat exchanger are two different components mounted together with the gas cooler, which increases the number of parts.

L'épaisseur de la paroi de l'accumulateur doit être relativement importante pour supporter des niveaux de pression d'éclatement relativement importants. La paroi d'accumulateur est en contact direct avec le milieu ambiant et placé dans une zone à circulation d'air élevée, ce qui augmente l'échange de chaleur avec le milieu ambiant et aboutit à une perte d'efficacité. Les connexions pour le fluide réfrigérant sont placées aux quatres coins du module d'échange de chaleur, ce qui conduit à des connexions complexes.The thickness of the wall of the accumulator must be relatively large to withstand relatively high burst pressure levels. The accumulator wall is in direct contact with the surrounding environment and placed in a high airflow zone, which increases the heat exchange with the surrounding environment and results in a loss of efficiency. The connections for the coolant are placed at the four corners of the heat exchange module, which leads to complex connections.

On connaît aussi, d'après le brevet US 6 189 334 , un dispositif de climatisation dans lequel un échangeur de chaleur interne est combiné à un condenseur et un collecteur.
Par ailleurs, on connaît d'après le brevet US 6 751 983 un dispositif de climatisation dans lequel l'échangeur de chaleur interne comprend des conduits agencés en spirale.
Also known, according to the US Patent 6,189,334 , an air conditioning device in which an internal heat exchanger is combined with a condenser and a collector.
Moreover, we know from the US Patent 6,751,983 an air conditioning device in which the internal heat exchanger comprises spirally arranged ducts.

L'invention vise à procurer un dispositif combiné d'échangeur de chaleur interne et d'accumulateur pour un circuit de climatisation parcouru par un fluide réfrigérant, qui permet de surmonter les inconvénients précités.The invention aims to provide a combined device for internal heat exchanger and accumulator for an air conditioning circuit traversed by a refrigerant, which overcomes the aforementioned drawbacks.

C'est encore un but de l'invention de procurer un tel dispositif combiné de ce type qui est d'une construction simple et qui permet de regrouper les connexions de fluide.It is another object of the invention to provide such a combined device of this type which is of a simple construction and which makes it possible to group the fluid connections.

L'invention propose à cet effet un dispositif combiné du type défini en introduction, lequel comprend une paroi cylindrique extérieure dans laquelle sont formés une multiplicité de canaux pour la circulation du fluide réfrigérant à haute pression et à haute température, une bride inférieure propre à fermer une extrémité inférieure de la paroi cylindrique, une bride supérieure propre à fermer une extrémité supérieure de la paroi cylindrique, des orifices d'accès de fluide réfrigérant aménagé dans les brides inférieure et supérieure, un conteneur disposé dans l'espace défini par la paroi cylindrique et les brides inférieur et supérieure, une alimentation en fluide réfrigérant à basse pression et à basse température communiquant avec le conteneur, et un passage pour la circulation du fluide réfrigérant à basse pression et à basse température, aménagé entre la paroi cylindrique et le conteneur et alimenté à partir du conteneur.The invention proposes for this purpose a combined device of the type defined in the introduction, which comprises an outer cylindrical wall in which are formed a plurality of channels for the circulation of the high-pressure refrigerant at high temperature, a lower flange clean closing a lower end of the cylindrical wall, an upper flange adapted to close an upper end of the cylindrical wall, coolant access ports provided in the lower and upper flanges, a container disposed in the space defined by the cylindrical wall and the lower and upper flanges, a low-pressure, low-temperature refrigerant supply communicating with the container, and a passage for the circulation of the low-pressure, low-temperature refrigerant fluid provided between the cylindrical wall and the container and fed from the container.

De ce fait, l'échangeur de chaleur interne présente une structure coaxiale intégrée directement dans la paroi de l'accumulateur. La paroi de l'accumulateur, qui peut être réalisée par exemple sous la forme d'un profil extrudé ou sous la forme d'une pluralité de tubes coaxiaux, présente maintenant une double fonction :

  • elle permet de réaliser un échange de chaleur entre le fluide réfrigérant à basse pression et à basse température à la sortie de l'accumulateur et le fluide réfrigérant à haute pression et à haute température à la sortie du refroidisseur de gaz ; et
  • elle permet de réaliser un conteneur sous pression pour l'accumulateur.
As a result, the internal heat exchanger has a coaxial structure integrated directly into the wall of the accumulator. The wall of the accumulator, which can be made for example in the form of an extruded profile or in the form of a plurality of coaxial tubes, now has a dual function:
  • it makes it possible to exchange heat between the refrigerant fluid at low pressure and at low temperature at the outlet of the accumulator and the refrigerant fluid at high pressure and at high temperature at the outlet of the gas cooler; and
  • it makes it possible to produce a container under pressure for the accumulator.

Les connexions pour le fluide réfrigérant, pour liaison à l'évaporateur et au compresseur, sont regroupées respectivement dans la bride supérieure et dans la bride inférieure, ce qui simplifie la structure.The connections for the refrigerant, for connection to the evaporator and the compressor, are grouped respectively in the upper flange and in the lower flange, which simplifies the structure.

Le terme "conteneur" entend désigner ici un élément qui, pour l'essentiel, délimite une zone de séparation de phases pour le fluide réfrigérant, c'est à dire pour séparer les phases gazeuse et liquide de ce fluide. Il est en outre avantageux que ce conteneur délimite aussi une zone de stockage du fluide réfrigérant en phase liquide, formant ainsi un réservoir de liquide.The term "container" here means an element which essentially delimits a phase separation zone for the cooling fluid, that is to say for separating the gaseous and liquid phases of this fluid. It is furthermore advantageous that this container also delimits a coolant storage zone in the liquid phase, thus forming a liquid reservoir.

Dans l'invention, les canaux formés dans la paroi cylindrique extérieure sont de préférence parallèles.In the invention, the channels formed in the outer cylindrical wall are preferably parallel.

Les brides inférieure et supérieure constituent des organes de fermeture pour obturer la paroi cylindrique extérieure à ses extrémités inférieure et supérieure. Les brides inférieure et supérieure sont avantageusement munies respectivement d'une gorge inférieure agencée pour recevoir l'extrémité inférieure de la paroi cylindrique extérieure et d'une gorge supérieure agencée pour recevoir une extrémité supérieure de la paroi cylindrique extérieure.The lower and upper flanges are closure members for sealing the outer cylindrical wall at its lower and upper ends. The lower and upper flanges are advantageously provided respectively with a lower groove arranged to receive the lower end of the outer cylindrical wall and an upper groove. arranged to receive an upper end of the outer cylindrical wall.

Dans une forme de réalisation de l'invention, le conteneur comprend une paroi cylindrique intérieure espacée intérieurement de la paroi cylindrique extérieure pour délimiter un espace annulaire, formant passage pour la circulation du fluide réfrigérant à basse pression et à basse température, qui communique en partie supérieure avec le conteneur et en partie inférieure avec un passage d'évacuation du fluide réfrigérant à basse pression et à basse température, qui traverse la bride inférieure.In one embodiment of the invention, the container comprises an inner cylindrical wall spaced internally from the outer cylindrical wall to define an annular space, forming a passage for the circulation of the refrigerant fluid at low pressure and at low temperature, which communicates in part upper with the container and in the lower part with a low-pressure refrigerant discharge passage at low temperature, which passes through the lower flange.

Dans cette première forme de réalisation de l'invention, l'espace annulaire peut constituer un passage sans obstacles, ou passage direct, pour la circulation du fluide réfrigérant à basse pression et à basse température. En variante, l'espace annulaire précité peut loger un moyen d'échange de chaleur pour former un canal hélicoïdal entre la paroi cylindrique extérieure et la paroi cylindrique intérieure. Ce moyen d'échange de chaleur peut être, par exemple, un organe en hélice ou un tube capilaire hélicoïdal qui se prolonge dans le conteneur.In this first embodiment of the invention, the annular space may constitute a passage without obstacles, or direct passage, for the circulation of refrigerant fluid at low pressure and low temperature. Alternatively, said annular space can accommodate a heat exchange means to form a helical channel between the outer cylindrical wall and the inner cylindrical wall. This heat exchange means may be, for example, a helical member or a helical capillary tube which extends into the container.

Dans cette première forme de réalisation, la paroi cylindrique intérieure se raccorde avantageusement à un fond bombé qui repose contre la bride inférieure.In this first embodiment, the inner cylindrical wall is advantageously connected to a domed bottom which rests against the lower flange.

La paroi cylindrique extérieure est avantageusement formée d'un profil extrudé dans lequel sont formés les canaux pour la circulation du fluide réfrigérant à haute pression et à haute température.The outer cylindrical wall is advantageously formed of an extruded profile in which the channels are formed for the circulation of the refrigerant fluid at high pressure and at high temperature.

Dans une deuxième forme de réalisation de l'invention, le dispositif comprend un profil extrudé comportant des canaux extérieurs qui constituent les canaux pour la circulation du fluide réfrigérant à haute pression et à haute température et des canaux intérieurs qui constituent le passage de circulation du fluide réfrigérant à basse pression et à basse température.In a second embodiment of the invention, the device comprises an extruded profile comprising external channels which constitute the channels for the circulation of the refrigerant fluid at high pressure and high temperature and internal channels that constitute the circulation passage of the refrigerant fluid at low pressure and low temperature.

L'alimentation en fluide réfrigérant à basse pression et à basse température, communiquant avec le conteneur, comprend avantageusement des moyens pour former un tourbillon dans le fluide réfrigérant à basse pression et à basse température entrant dans le conteneur pour séparer la phase gazeuse et la phase liquide du fluide réfrigérant.
Les moyens permettant de former ce tourbillon peuvent être constitués par exemple par un tube hélicoïdal logé dans le conteneur, ou encore par des moyens formant cyclone.
The refrigerant supply at low pressure and at low temperature, communicating with the container, advantageously comprises means for forming a vortex in the refrigerant fluid at low pressure and low temperature entering the container to separate the gas phase and the phase liquid refrigerant.
The means for forming this vortex can be constituted for example by a helical tube housed in the container, or by cyclone means.

Le dispositif de l'invention comprend avantageusement un organe de retour pour assurer le transfert d'une huile de lubrification véhiculée par le fluide réfrigérant depuis le fond du conteneur vers le passage assurant la circulation du fluide réfrigérant à basse pression et à basse température.The device of the invention advantageously comprises a return member to ensure the transfer of a lubricating oil conveyed by the refrigerant from the bottom of the container to the passage ensuring the circulation of the coolant at low pressure and low temperature.

Il est avantageux que la bride inférieure comprenne un passage interne formant un orifice d'entrée propre à être raccordé à la sortie d'un compresseur et un orifice de sortie propre à être raccordé à l'entrée d'un refroidisseur de gaz.It is advantageous that the lower flange comprises an internal passage forming an inlet adapted to be connected to the outlet of a compressor and an outlet outlet adapted to be connected to the inlet of a gas cooler.

Dans l'invention, le fluide réfrigérant est avantageusement du dioxyde de carbone.In the invention, the cooling fluid is advantageously carbon dioxide.

Sous un autre aspect, l'invention concerne un refroidisseur de gaz pour un circuit de climatisation parcouru par un fluide réfrigérant en phase gazeuse, ce refroidisseur étant équipé d'un dispositif combiné d'échangeur de chaleur interne et d'accumulateur comme défini précédemment.In another aspect, the invention relates to a gas cooler for an air conditioning circuit traversed by a refrigerant fluid in the gas phase, this cooler being equipped with a combined device of internal heat exchanger and accumulator as defined above.

Le refroidisseur de gaz comprend de préférence un collecteur ayant un orifice d'entrée propre à être raccordé à la sortie d'un compresseur, au travers d'un passage aménagé dans la bride inférieure, et un orifice de sortie propre à être raccordé à un orifice d'entrée de la bride inférieure.The gas cooler preferably comprises a manifold having an inlet adapted to be connected to the outlet a compressor, through a passage in the lower flange, and a clean outlet to be connected to an inlet of the lower flange.

Dans la description qui suit, faite seulement à titre d'exemple, on se réfère aux dessins annexés, sur lesquels :

  • la figure 1 est une vue schématique en coupe axiale d'un dispositif combiné selon une première forme de réalisation de l'invention, le dessin montrant également les éléments du circuit de climatisation auquel ce dispositif est raccordé ;
  • la figure 2 est une vue détaillée en coupe axiale de la partie supérieure d'un dispositif analogue à celui de la figure 1 ;
  • la figure 3 est une vue d'extrémité de la bride supérieure du dispositif de la figure 2 ;
  • la figure 4 est une vue en coupe axiale de la partie inférieure du dispositif de la figure 2 ;
  • la figure 5 est une vue en coupe selon la ligne V-V de la figure 4 ;
  • la figure 6 est une vue en perspective de la paroi extérieure et de la paroi intérieure du dispositif des figures 1 à 4 ;
  • la figure 7 est une vue analogue à la figure 6 dans une variante de réalisation ;
  • la figure 8 est une vue en coupe de la paroi du dispositif, dans une variante de réalisation où le fluide circule en plusieurs passes ;
  • la figure 9 est une vue en coupe axiale d'une variante de réalisation dans laquelle le fluide réfrigérant provenant de l'accumulateur circule dans un tube en hélice ;
  • la figure 10 est une vue de face d'un refroidisseur de gaz intégrant un dispositif combiné selon l'invention ;
  • la figure 11 est une vue en coupe analogue à la figure 5 dans une variante de réalisation ;
  • la figure 12 est une vue en coupe partielle, à échelle agrandie, prise suivant la ligne XII-XII de la figure 11 ;
  • la figure 13 est une vue en coupe analogue à la figure 5 dans une autre variante de réalisation ; et
  • la figure 14 est une vue en coupe partielle, à échelle agrandie, prise suivant la ligne XIV-XIV de la figure 13.
In the description which follows, made only by way of example, reference is made to the appended drawings, in which:
  • Figure 1 is a schematic axial sectional view of a combined device according to a first embodiment of the invention, the drawing also showing the elements of the air conditioning circuit to which this device is connected;
  • Figure 2 is a detailed view in axial section of the upper part of a device similar to that of Figure 1;
  • Figure 3 is an end view of the upper flange of the device of Figure 2;
  • Figure 4 is an axial sectional view of the lower part of the device of Figure 2;
  • Figure 5 is a sectional view along the line VV of Figure 4;
  • Figure 6 is a perspective view of the outer wall and the inner wall of the device of Figures 1 to 4;
  • Figure 7 is a view similar to Figure 6 in an alternative embodiment;
  • Figure 8 is a sectional view of the device wall, in an alternative embodiment wherein the fluid flows in several passes;
  • Figure 9 is an axial sectional view of an alternative embodiment in which the coolant from the accumulator flows in a helical tube;
  • Figure 10 is a front view of a gas cooler incorporating a combined device according to the invention;
  • Figure 11 is a sectional view similar to Figure 5 in an alternative embodiment;
  • Figure 12 is a partial sectional view, on an enlarged scale, taken along the line XII-XII of Figure 11;
  • Figure 13 is a sectional view similar to Figure 5 in another embodiment; and
  • FIG. 14 is a partial sectional view, on an enlarged scale, taken along line XIV-XIV of FIG. 13.

On se réfère d'abord à la figure 1 qui représente un dispositif combiné d'échangeur de chaleur interne et d'accumulateur, désigné dans son ensemble par la référence 10. Le dispositif 10 fait partie d'un circuit de climatisation parcouru par un fluide réfrigérant gazeux, fonctionnant à l'état supercritique, par exemple du dioxyde de carbone (CO2). Outre le dispositif 10, le circuit comprend un compresseur 12, un refroidisseur de gaz 14, un détendeur 16 et un évaporateur 18.Referring first to Figure 1 which shows a combined device of internal heat exchanger and accumulator, designated as a whole by the reference 10. The device 10 is part of an air conditioning circuit traversed by a fluid gaseous refrigerant, operating in the supercritical state, for example carbon dioxide (CO 2 ). In addition to the device 10, the circuit comprises a compressor 12, a gas cooler 14, an expander 16 and an evaporator 18.

Le dispositif 10 comprend une paroi cylindrique extérieure 20, dans l'exemple de section circulaire, dans laquelle sont formés une multiplicité de canaux 22, dans l'exemple des canaux parallèles, pour la circulation du fluide réfrigérant à haute pression et à haute température en provenance du refroidisseur de gaz 14. La paroi 20 est limitée par une surface intérieure 20a et une surface extérieure 20b, toutes les deux cylindriques. La paroi 20 est montée entre une bride inférieure 24 et une bride supérieure 26. La bride inférieure 24 est munie d'une gorge inférieure 28, ici de forme circulaire, agencée pour recevoir l'extrémité inférieure de la paroi cylindrique 20. De façon correspondante, la bride supérieure 26 est munie d'une gorge supérieure 30, ici de forme circulaire, agencée pour recevoir l'extrémité supérieure de la paroi cylindrique extérieure 20.The device 10 comprises an outer cylindrical wall 20, in the example of circular section, in which are formed a multiplicity of channels 22, in the example of the parallel channels, for the circulation of the refrigerant fluid at high pressure and at high temperature. from the gas cooler 14. The wall 20 is bounded by an inner surface 20a and an outer surface 20b, both cylindrical. The wall 20 is mounted between a lower flange 24 and an upper flange 26. The lower flange 24 is provided with a lower groove 28, here of circular shape, arranged to receive the lower end of the cylindrical wall 20. Correspondingly, the upper flange 26 is provided with an upper groove 30, here of circular shape, arranged to receive the end upper part of the outer cylindrical wall 20.

Un conteneur 32 est disposé dans l'espace (volume cylindrique) défini par la paroi cylindrique extérieure 20 et les brides 24 et 26. Le conteneur 32 délimite à la fois une zone de séparation des phases gazeuse et liquide du fluide réfrigérant et une zone de stockage du fluide réfrigérant en phase liquide, formant ainsi un réservoir de liquide pour l'accumulation du fluide réfrigérantA container 32 is disposed in the space (cylindrical volume) defined by the outer cylindrical wall 20 and the flanges 24 and 26. The container 32 delimits at the same time a separation zone of the gaseous and liquid phases of the cooling fluid and a zone of storage of the coolant in the liquid phase, thereby forming a liquid reservoir for the accumulation of coolant

Ce conteneur comprend une paroi cylindrique 34 disposée coaxialement et à distance de la paroi extérieure 20 et un fond bombé 36, qui vient reposer contre une face supérieure 38 de la bride inférieure 24. Cette dernière est par ailleurs limitée extérieurement par une face inférieure 40. La paroi 34 peut être qualifiée de "paroi intérieure" du dispositif dans la mesure où elle est espacée intérieurement de la paroi extérieure 20. La paroi 34 est limitée par une surface intérieure 34a et une surface extérieure 34b. Le fond bombé 36 et la bride inférieure 24 définissent un canal annulaire pour l'évacuation du fluide réfrigérant, comme on le verra plus loin.This container comprises a cylindrical wall 34 disposed coaxially and at a distance from the outer wall 20 and a convex bottom 36, which rests against an upper face 38 of the lower flange 24. The latter is also bounded externally by a lower face 40. The wall 34 may be described as an "inner wall" of the device insofar as it is internally spaced from the outer wall 20. The wall 34 is bounded by an inner surface 34a and an outer surface 34b. The domed bottom 36 and the lower flange 24 define an annular channel for the discharge of the refrigerant, as will be seen later.

La bride supérieure 26 est limitée par une face inférieure 42 et par une face supérieure 44. Les deux brides sont avantageusement réalisés sous la forme de blocs usinés.The upper flange 26 is limited by a lower face 42 and an upper face 44. The two flanges are advantageously made in the form of machined blocks.

La paroi cylindrique 34 du conteneur 32 comporte une extrémité ouverte 46 qui se situe à une faible distance d de la face inférieure 42 de la bride supérieure. De la sorte, l'intérieur du conteneur 32 peut communiquer avec un passage 48 de forme annulaire compris entre la paroi extérieure 20 et le conteneur, ce passage étant destiné à la circulation du fluide réfrigérant à basse pression et à basse température.The cylindrical wall 34 of the container 32 has an open end 46 which is at a small distance d from the lower face 42 of the upper flange. In this way, the interior of the container 32 can communicate with a passage 48 of annular shape between the outer wall 20 and the container, this passage being intended for the circulation of refrigerant fluid at low pressure and at low temperature.

Dans la forme de réalisation de la figure 1, le passage 48 précité se trouve confondu avec l'espace annulaire délimité entre la paroi cylindrique 34 du conteneur, qui constitue une paroi intérieure, et la paroi cylindrique extérieure 20. Cet espace annulaire permet ici un passage sans obstacles, ou passage direct, pour la circulation du fluide réfrigérant à basse pression et à basse température.In the embodiment of FIG. 1, the above-mentioned passage 48 coincides with the annular space delimited between the cylindrical wall 34 of the container, which constitutes an inner wall, and the outer cylindrical wall 20. This annular space allows here a passage without obstacles, or direct passage, for the circulation of the coolant at low pressure and at low temperature.

L'espace annulaire ainsi formé communique en partie inférieure avec un passage d'évacuation 50 pour le fluide réfrigérant à basse pression et à basse température, qui traverse la bride inférieure 24, entre ses faces 38 et 40, et qui constitue ainsi un orifice de sortie 52. Le passage 50 débouche en partie supérieure dans le canal annulaire précité, formé entre le fond bombé 36 et la face supérieure 38 de la bride inférieure 24.The annular space thus formed communicates in the lower part with a discharge passage 50 for the refrigerant fluid at low pressure and at low temperature, which passes through the lower flange 24, between its faces 38 and 40, and which thus constitutes an orifice of 52. The passage 50 opens in the upper part in the aforementioned annular channel, formed between the curved bottom 36 and the upper face 38 of the lower flange 24.

La bride supérieure 26 comporte un passage d'alimentation 54 pour le fluide réfrigérant à basse pression et à basse température. Ce passage 54 est réalisé sous la forme d'un alésage traversant la bride 26 et débouchant sur ses faces 42 et 44. Le passage 54 forme un orifice d'entrée 56 pour le fluide réfrigérant à basse pression et à basse température provenant de l'évaporateur 18.The upper flange 26 has a feed passage 54 for the refrigerant fluid at low pressure and low temperature. This passage 54 is made in the form of a bore passing through the flange 26 and opening on its faces 42 and 44. The passage 54 forms an inlet orifice 56 for the refrigerant fluid at low pressure and at low temperature coming from the evaporator 18.

Dans la partie inférieure du passage 54 est emmanchée une extrémité 58 d'un tube 60 disposé en hélice à l'intérieur du conteneur 32 et se terminant par une extrémité 62. Ce tube hélicoïdal 60 constitue des moyens pour former un tourbillon dans le fluide réfrigérant à basse pression et à basse température entrant dans le conteneur. Ceci permet de séparer les phases gazeuse et liquide du fluide réfrigérant. La phase liquide ainsi séparée s'accumule dans le conteneur 32, le niveau du liquide étant identifié par le repère N sur la figure 1, tandis que la phase gazeuse gagne le passage 48 pour quitter le dispositif 10 par le passage d'évacuation 50.In the lower part of the passage 54 is fitted an end 58 of a tube 60 arranged helically inside the container 32 and ending with an end 62. This helical tube 60 constitutes means for forming a vortex in the refrigerant fluid low pressure and low temperature entering the container. This makes it possible to separate the gaseous and liquid phases of the refrigerant fluid. The liquid phase thus separated accumulates in the container 32, the level of the liquid being identified by the reference N in FIG. while the gaseous phase gains the passage 48 to leave the device 10 by the evacuation passage 50.

Par ailleurs, le fluide réfrigérant véhicule une huile qui est nécessaire pour assurer la lubrification du compresseur 12. Cette huile de lubrification est évacuée du conteneur 32 par un organe de retour 64, réalisé ici sous la forme d'un tube capillaire, dont l'extrémité inférieure 66 parvient au fond du conteneur, tandis que l'extrémité supérieure 68, en forme de crosse, débouche en partie supérieure du passage 48.Moreover, the coolant conveys an oil that is necessary to ensure the lubrication of the compressor 12. This lubricating oil is discharged from the container 32 by a return member 64, here made in the form of a capillary tube, the lower end 66 reaches the bottom of the container, while the upper end 68, in the form of a stick, opens in the upper part of the passage 48.

La bride supérieure 26 comporte en outre un orifice de sortie 70 communiquant avec la gorge supérieure 30 et propre à être raccordé à l'entrée du détendeur 16.The upper flange 26 further comprises an outlet orifice 70 communicating with the upper groove 30 and adapted to be connected to the inlet of the expander 16.

La bride inférieure 24 comprend un orifice 72 débouchant dans la gorge inférieure 28 et propre à être raccordé à la sortie du refroidisseur de gaz 14. Par ailleurs, la bride inférieure 24 comprend un passage interne 74 réalisé par deux alésages à angle droit qui communiquent entre eux et qui débouchent sur la face inférieure 40 de la bride 24 et sur une face latérale 76 de la bride pour former un orifice d'entrée 78 propre à être raccordé à la sortie du compresseur 12 et un orifice de sortie 80 propre à être raccordé à l'entrée du refroidisseur de gaz 14. Les orifices 72 et 80 de la bride 24 sont situés à proximité l'un de l'autre en débouchant sur la face latérale 76, pour faciliter la connexion ou le brasage de la bride au refroidisseur de gaz 14.The lower flange 24 comprises an orifice 72 opening into the lower groove 28 and adapted to be connected to the outlet of the gas cooler 14. Furthermore, the lower flange 24 comprises an internal passage 74 made by two bores at right angles which communicate between they and which open on the lower face 40 of the flange 24 and on a side face 76 of the flange to form an inlet port 78 to be connected to the output of the compressor 12 and an outlet port 80 to be connected at the inlet of the gas cooler 14. The orifices 72 and 80 of the flange 24 are located close to each other, opening on the lateral face 76, to facilitate connection or soldering of the flange to the cooler of gas 14.

Le circuit ainsi équipé du dispositif 10 fonctionne de la façon suivante. Le fluide réfrigérant gazeux provenant du compresseur 12 traverse le passage interne 74 de la bride 24 pour gagner le refroidisseur de gaz 14. Ensuite, le fluide réfrigérant gagne la gorge inférieure 28 puis circule verticalement, de bas en haut, dans les canaux 22 de la paroi 20 comme montré par les flèches. Ensuite, le fluide réfrigérant gagne la gorge supérieure 30 puis traverse successivement le détendeur et l'évaporateur 18 pour gagner l'orifice d'entrée 56. Le fluide réfrigérant parvient ensuite dans le conteneur 32 via le tube hélicoïdal 60. Du fait du mouvement tourbillonnaire ainsi produit, les phases liquide et gazeuse du fluide réfrigérant se séparent. Le fluide réfrigérant gazeux gagne ensuite le passage 48 pour accéder au passage d'évacuation 50 et rejoindre l'entrée du compresseur 12. De son côté, l'huile de lubrification est évacuée du fond du conteneur par le tube capillaire 64 et est ensuite véhiculée dans le fluide réfrigérant pour permettre la lubrification du compresseur.The circuit thus equipped with the device 10 operates in the following manner. The gaseous cooling fluid coming from the compressor 12 passes through the internal passage 74 of the flange 24 to reach the gas cooler 14. Then, the coolant reaches the lower groove 28 and then flows vertically, from bottom to top, in the channels 22 of the wall 20 as shown by the arrows. Then, the refrigerant wins the throat upper 30 then passes successively through the expander and the evaporator 18 to gain the inlet orifice 56. The refrigerant then enters the container 32 via the helical tube 60. Due to the vortex movement thus produced, the liquid and gaseous phases refrigerant are separated. The gaseous refrigerant then gains the passage 48 to access the evacuation passage 50 and reach the inlet of the compressor 12. On its side, the lubricating oil is discharged from the bottom of the container by the capillary tube 64 and is then conveyed in the refrigerant to allow lubrication of the compressor.

Grâce à cette construction, on obtient un échange de chaleur entre le fluide réfrigérant à haute pression et à haute température qui circule verticalement de bas en haut dans les canaux 22 de la paroi 20 et le fluide réfrigérant à basse pression et à basse température qui circule verticalement de haut en bas dans l'espace annulaire 48 défini entre la paroi 20 et la paroi cylindrique 34 du conteneur. Ceci permet d'obtenir une structure intégrée de faibles encombrement et poids avec un minimum de connexions, ces dernières étant toute regroupées sur les brides 24 et 26.With this construction, a heat exchange is obtained between the refrigerant fluid at high pressure and at high temperature which flows vertically upwards in the channels 22 of the wall 20 and the low-temperature refrigerant fluid at low temperature circulating vertically from top to bottom in the annular space 48 defined between the wall 20 and the cylindrical wall 34 of the container. This provides an integrated structure of small footprint and weight with a minimum of connections, the latter being all grouped on the flanges 24 and 26.

De plus, les performances thermiques sont accrues du fait que l'échange de chaleur entre l'accumulateur (c'est-à-dire le conteneur 32) et le milieu ambiant est réduit. Il en résulte également une réduction des fuites possibles en raison du nombre réduit des connexions.In addition, the thermal performance is increased because the heat exchange between the accumulator (i.e. the container 32) and the ambient is reduced. This also results in a reduction of possible leaks due to the reduced number of connections.

Dans l'exemple de réalisation de la figure 1, la paroi cylindrique extérieure 20 est avantageusement réalisée sous la forme d'un profilé extrudé, de préférence en matière métallique, dans lequel sont formés les canaux parallèles 22. Dans cet exemple, le conteneur 32 est réalisé sous la forme d'un composant séparé, en l'espèce un conteneur à fond bombé, qui est reçu à l'intérieur de cette paroi 20. Toutefois, comme on le verra plus loin, d'autres variantes de réalisation sont envisageables.In the embodiment of FIG. 1, the outer cylindrical wall 20 is advantageously made in the form of an extruded profile, preferably made of metallic material, in which the parallel channels 22 are formed. In this example, the container 32 is made in the form of a separate component, in this case a container with a convex bottom, which is received inside this wall 20. However, as we will see later, other embodiments are possible.

La figure 2 est une vue détaillée d'une partie supérieure d'un dispositif 10 conforme à la figure 1. Les éléments communs avec ceux de la figure 1 sont désignés par les mêmes références. On aperçoit en plus un alésage 82 réalisé sous la forme d'un trou borgne qui débouche sur la face supérieure 44 de la bride supérieure 26. Cet alésage est destiné à la fixation d'une contre-bride (non représentée) par l'intermédiaire d'une vis ou analogue.Figure 2 is a detailed view of an upper part of a device 10 according to Figure 1. The elements common with those of Figure 1 are designated by the same references. In addition, a bore 82 is seen in the form of a blind hole which opens onto the upper face 44 of the upper flange 26. This bore is intended for fixing a counter flange (not shown) via of a screw or the like.

Sur la figure 3, qui est une vue d'extrémité de la bride supérieure 26, on aperçoit également l'alésage 82 et les orifices 56 et 76.In FIG. 3, which is an end view of the upper flange 26, the bore 82 and the orifices 56 and 76 are also visible.

La figure 4 est une vue détaillée de la partie inférieure du dispositif combiné de la figure 2. Les éléments communs avec ceux de la figure 1 sont désignés par les mêmes références numériques. La bride inférieure 24 comprend aussi un alésage 84 réalisé sous la forme d'un trou borgne qui débouche sur la face inférieure 40 de la bride 24. Cet alésage est destiné à permettre la fixation d'une contre-bride (non représentée) par l'intermédiaire d'une vis ou analogue.Figure 4 is a detailed view of the lower part of the combined device of Figure 2. The elements common with those of Figure 1 are designated by the same reference numerals. The lower flange 24 also comprises a bore 84 formed in the form of a blind hole which opens on the lower face 40 of the flange 24. This bore is intended to allow the attachment of a counter flange (not shown) by the intermediate of a screw or the like.

La figure 5 est une vue en coupe horizontale du dispositif de la figure 4. Elle montre de façon détaillée la structure de la paroi cylindrique 20, qui est réalisée sous la forme d'un profil extrudé et qui définit les canaux 22. On voit également que le conteneur 32 est réalisé sous la forme d'un composant distinct qui est logé coaxialement à l'intérieur de la paroi 20.FIG. 5 is a horizontal sectional view of the device of FIG. 4. It shows in detail the structure of the cylindrical wall 20, which is in the form of an extruded profile and which defines the channels 22. It is also seen that the container 32 is made in the form of a separate component which is housed coaxially inside the wall 20.

La figure 6 est une vue en perspective montrant la disposition coaxiale de la paroi extérieure 20 et de la paroi intérieure 34 du conteneur 32.FIG. 6 is a perspective view showing the coaxial arrangement of the outer wall 20 and the inner wall 34 of the container 32.

Dans la forme de réalisation de la figure 7, le dispositif comprend un profil extrudé 86 qui comporte d'une part des canaux extérieurs 22 qui constituent les canaux parallèles pour la circulation du fluide réfrigérant à haute pression et à haute température et des canaux intérieurs 88 qui constituent le passage de circulation du fluide réfrigérant à basse pression et à basse température. Les canaux 20 et 22 sont disposés selon une configuration circulaire qui entoure une autre configuration circulaire formée par les canaux 88. De la sorte, le fluide réfrigérant à haute pression et à haute température circule à contre-courant avec le fluide réfrigérant à basse pression et à basse température.In the embodiment of FIG. 7, the device comprises an extruded profile 86 which comprises, on the one hand, external channels 22 which constitute the parallel channels for the circulation of the refrigerant fluid at high pressure and at high temperature, and internal channels 88 which constitute the circulation passage of the refrigerant fluid at low pressure and at low temperature. The channels 20 and 22 are arranged in a circular configuration which surrounds another circular configuration formed by the channels 88. In this way, the high temperature and high temperature refrigerant circulates countercurrently with the low pressure refrigerant and at low temperature.

Dans les formes de réalisation précédentes, le fluide réfrigérant circule en une seule passe, aussi bien dans les canaux 22 que dans le passage 48 ou les canaux 88. Cependant, il est envisageable de faire circuler le fluide en plusieurs passes. Comme montré sur la figure 8, la paroi extérieure 20 est divisée en deux parties, une partie 20A pour la circulation du fluide dans une direction et une partie 20B pour la circulation du fluide dans une autre direction. De façon correspondante, le passage 48 est divisé en deux parties, une partie 48A en correspondance de la partie 20A et une partie 48B en correspondance de la partie 20B. Par exemple, le fluide peut circuler de haut en bas dans la partie 20A et de bas en haut dans la partie 20B, de bas en haut, dans la partie 48A et de haut en bas dans la partie 48B. Cela suppose bien entendu d'aménager les gorges des brides pour permettre à chaque fois un retour du fluide.In the preceding embodiments, the refrigerant circulates in a single pass, both in the channels 22 and in the passage 48 or the channels 88. However, it is conceivable to circulate the fluid in several passes. As shown in FIG. 8, the outer wall 20 is divided into two parts, a portion 20A for fluid flow in one direction and a portion 20B for fluid flow in another direction. Correspondingly, the passage 48 is divided into two parts, a portion 48A in correspondence of the portion 20A and a portion 48B in correspondence of the portion 20B. For example, the fluid can flow up and down in the portion 20A and up and down in the portion 20B, from bottom to top in the portion 48A and from top to bottom in the portion 48B. This assumes of course to arrange the grooves flanges to allow each time a return of the fluid.

On se réfère maintenant à la figure 9 qui représente une autre variante de réalisation dans laquelle l'espace annulaire compris entre la paroi extérieure 20 et la paroi 34 du conteneur 32 loge un moyen d'échange de chaleur 90, par exemple un fil métallique plat bobiné en hélice autour de la paroi 34, pour former un canal hélicoïdal 91 entre les parois 20 et 34. En variante, il peut s'agir d'un tube capillaire enroulé en hélice qui se prolonge dans le conteneur pour former le tube 64 mentionné plus haut. L'objectif recherché est de réduire la section de passage dans le passage annulaire 48 afin de provoquer une augmentation de la vitesse d'écoulement du fluide réfrigérant à basse pression et à basse température. Cette augmentation de vitesse a un impact positif sur le coefficient d'échange thermique entre la paroi 20 et le fluide réfrigérant.Referring now to Figure 9 which shows another alternative embodiment in which the annular space between the outer wall 20 and the wall 34 of the container 32 houses a heat exchange means 90, for example a flat wire wound helically around the wall 34, for forming a helical channel 91 between the walls 20 and 34. Alternatively, it may be a helically wound capillary tube which extends into the container to form the tube 64 mentioned above. The objective is to reduce the passage section in the annular passage 48 to cause an increase in the flow rate of the refrigerant fluid at low pressure and low temperature. This increase in speed has a positive impact on the heat exchange coefficient between the wall 20 and the refrigerant.

La figure 10 montre un refroidisseur de gaz 14 équipé d'un dispositif combiné 10 selon l'invention. Le refroidisseur de gaz 14 comprend un faisceau 92 monté entre deux collecteurs tubulaires 94 et 96 propres à être disposés verticalement. Le dispositif combiné 10 est implanté de manière sensiblement verticale et coaxial le long du collecteur 94. La bride inférieure 24 comprend, comme sur les figures 1 et 4, un orifice d'entrée 72 et un orifice de sortie 80. L'orifice de sortie 80 est propre à être raccordé à un orifice d'entrée 98 du collecteur 94 pour le raccordement du collecteur à la sortie du compresseur 12 au travers du passage 74 aménagé dans la bride inférieure. Le collecteur 94 comporte en outre un orifice de sortie 100 propre à être relié à l'orifice d'entrée 72 de la bride inférieure qui débouche dans la gorge inférieure 28. On a également représenté sur la figure 10 les orifices 52 et 78 de la bride inférieure qui permettent la liaison avec le compresseur 12 ainsi que les orifices 70 et 56 de la bride supérieure qui permettent la liaison avec le détendeur 16 et l'évaporateur 18.Figure 10 shows a gas cooler 14 equipped with a combined device 10 according to the invention. The gas cooler 14 comprises a beam 92 mounted between two tubular collectors 94 and 96 capable of being arranged vertically. The combined device 10 is substantially vertically and coaxially implanted along the manifold 94. The lower flange 24 comprises, as in Figs. 1 and 4, an inlet port 72 and an outlet port 80. The outlet port 80 is adapted to be connected to an inlet port 98 of the manifold 94 for connection of the manifold to the outlet of the compressor 12 through the passage 74 formed in the lower flange. The collector 94 further comprises an outlet orifice 100 adapted to be connected to the inlet orifice 72 of the lower flange which opens into the lower groove 28. FIG. 10 also shows the orifices 52 and 78 of the lower flange which allow the connection with the compressor 12 as well as the orifices 70 and 56 of the upper flange which allow the connection with the expander 16 and the evaporator 18.

Dans la forme de réalisation des figures 11 et 12, la paroi cylindrique 34 du conteneur 32 possède une surface extérieure 34b de forme très légèrement ondulée pour créer des ondulations qui sont pressées contre la surface intérieure 20a de la paroi 20 et former ainsi des canaux 102 pour la circulation du fluide réfrigérant à basse pression et à basse température. Ces canaux 102 forment ainsi conjointement le passage 48 mentionné précédemment. Le conteneur 32 est ainsi en contact thermique avec le profil 20 et la surface d'échange en contact avec le fluide réfrigérant à basse pression et à basse température est considérablement augmentée. En outre la surface intérieure 34a de la paroi 34 est munie d'un revêtement isolant 104 pour réduire le transfert de chaleur de la paroi 20 vers le fluide réfrigérant sous forme liquide qui est contenu dans le conteneur 32.In the embodiment of FIGS. 11 and 12, the cylindrical wall 34 of the container 32 has an outer surface 34b of very slightly corrugated shape to create corrugations which are pressed against the inner surface 20a of the wall 20 and thus form channels 102 for the circulation of refrigerant fluid at low pressure and at low temperature. These channels 102 together form the passage 48 mentioned above. The container 32 is thus in thermal contact with the profile 20 and the exchange surface in contact with the refrigerant fluid at low pressure and at low temperature is considerably increased. In addition, the inner surface 34a of the wall 34 is provided with an insulating coating 104 to reduce the heat transfer from the wall 20 to the coolant in liquid form which is contained in the container 32.

Les figures 13 et 14 illustrent une autre variante dans laquelle un cylindre 106 à surface ondulée est inséré entre la surface intérieure 20a de la paroi 20 et la surface extérieure 34b de la paroi 34. Le cylindre ondulé 106 est brasé sur la paroi 20, les deux étant réalisés par exemple en un matériau à base d'aluminium. En revanche, le conteneur 32 est formé d'un matériau qui ne se brase pas facilement avec l'aluminium, par exemple en acier, pour résister à la température de brasage. Dans cette forme de réalisation, le conteneur 32 n'est pas muni d'un revêtement intérieur 104.
L'invention n'est pas limitée aux formes de réalisation décrites précédemment à titre d'exemples et s'étend à d'autres variantes.
FIGS. 13 and 14 illustrate another variant in which a cylinder 106 with a corrugated surface is inserted between the inner surface 20a of the wall 20 and the outer surface 34b of the wall 34. The corrugated cylinder 106 is brazed on the wall 20, the two being made for example of an aluminum-based material. In contrast, the container 32 is formed of a material that does not brace easily with aluminum, for example steel, to withstand the brazing temperature. In this embodiment, the container 32 is not provided with an inner liner 104.
The invention is not limited to the embodiments described above as examples and extends to other variants.

Claims (19)

  1. Combined inside air heater and accumulator device for an air conditioning circuit that is traversed by a refrigerating fluid, characterised in that it comprises an externally cylindrical wall (20) in which are formed a multiplicity of ducts (22) for the circulation of the refrigerating fluid at high pressure and at high temperature, a lower flange (24) for sealing one lower end of the externally cylindrical wall (20), an upper flange (26) for sealing one upper end of the externally cylindrical wall (20), access orifices (52, 78, 56, 70) for the refrigerating fluid located in the upper and lower flanges, a container (32) located in the space defined by the externally cylindrical wall (20 and the upper and lower flanges, wherein a supply (54) of refrigerating fluid at low pressure and at low temperature communicates with the container (32) and a passage (48; 88, 90) for the circulation of the refrigerating fluid at low pressure and at low temperature, located between the externally cylindrical wall (20 and the container (32) and supplied from the container.
  2. Device according to claim 1, characterised in that the container (32) defines a phase separation zone for the refrigerating fluid as well as a storage zone for the refrigerating fluid in the liquid phase.
  3. Device according to either of claims 1 or 2, characterised in that the ducts (22) formed in the externally cylindrical wall (20) are parallel.
  4. Device according to any of claims 1 to 3, characterised in that the lower (24) and upper (26) flanges are respectively fitted with a lower groove (28) that is positioned to accommodate the lower end of the externally cylindrical wall (20), and an upper groove (30) that is positioned to accommodate one upper end of the externally cylindrical wall (20).
  5. Device according to any of claims 1 to 4, characterised in that the container (32) comprises an internally cylindrical wall (34), located inside the externally cylindrical wall (20) to define an annular space (48), forming a passage for the refrigerating fluid at low pressure and at low temperature, which communicates at its upper part with the container (32) and at its lower part with an evacuation passage (50) for the refrigerating fluid at low pressure and at low temperature, which crosses the lower flange (24).
  6. Device according to claim 5, characterised in that the annular space (48) forms a passage that is free from obstacles for the circulation of the refrigerating fluid at low pressure and at low temperature.
  7. Device according to claim 5, characterised in that the annular space (48) houses a means of heat exchange (90, 64) to form a helicoidal duct between the externally cylindrical wall (20) and the internally cylindrical wall (34) .
  8. Device according to claim 7, characterised in that the means of heat exchange is a helical element (90).
  9. Device according to claim 7, characterised in that the means of heat exchange is a helicoidal capillary tube (64) that extends into the container (32).
  10. Device according to any of claims 5 to 9, characterised in that the internally cylindrical wall (34) of the container is connected to a rounded base (36) which rests against the lower flange (24).
  11. Device according to any of claims 5 to 10, characterised in that the externally cylindrical wall (20) is formed by an extruded profiled section in which the ducts (22) are formed for the circulation of the refrigerating fluid at high pressure and at high temperature,.
  12. Device according to claim 1, characterised in that it comprises an extruded profiled section (86) comprising external ducts (22) which form the ducts for the circulation of the refrigerating fluid at high pressure and at high temperature and internal ducts (88) which form the passage for the circulation of the refrigerating fluid at low pressure and at low temperature.
  13. Device according to any of claims 1 to 12, characterised in that the supply (54) of refrigerating fluid at low pressure and at low temperature, which communicates with the container (32), comprises means (60) to create a whirlpool in the refrigerating fluid at low pressure and at low temperature entering into the container, to separate the gaseous phase from the liquid phase of the refrigerating fluid.
  14. Device according to claim 13, characterised in that the means for forming a whirlpool comprise a helicoidal tube (60) housed inside the container (32).
  15. Device according to any of claims 1 to 14, characterised in that it comprises a return element (64) for the transfer of the lubricating oil transported by the refrigerating fluid from the bottom of the container (32) to the passage (48) for the circulation of the refrigerating fluid at low pressure and at low temperature.
  16. Device according to any of claims 1 to 15, characterised in that the lower flange (24) comprises an internal passage (74) forming an intake orifice (78) intended to be connected to the outlet of a compressor (12) and an outlet orifice (80) capable of being connected to the intake of a gas cooler (14).
  17. Device according to any of claims 1 to 16, characterised in that the refrigerating fluid is carbon dioxide.
  18. Gas cooler for an air conditioning circuit in which flows a refrigerating fluid in gaseous phase, characterised in that it is equipped with a combined inside air heater and accumulator device (10) according to any of claims 1 to 17.
  19. Gas cooler according to claim 18, characterised in that it comprises a collector ring (94) with an inlet orifice (98) intended to be connected to the outlet of a compressor (12) via a passage (74) located in the lower flange (24) and an outlet orifice (100) intended to be connected to an inlet orifice of the lower flange (24).
EP05017463A 2004-09-24 2005-08-11 Device combining internal heat exchanger and accumulator for an air conditioning circuit Not-in-force EP1640676B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0410133A FR2875894B1 (en) 2004-09-24 2004-09-24 COMBINED INTERNAL HEAT EXCHANGER AND ACCUMULATOR DEVICE FOR AIR CONDITIONING CIRCUIT

Publications (2)

Publication Number Publication Date
EP1640676A1 EP1640676A1 (en) 2006-03-29
EP1640676B1 true EP1640676B1 (en) 2007-10-24

Family

ID=34949027

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05017463A Not-in-force EP1640676B1 (en) 2004-09-24 2005-08-11 Device combining internal heat exchanger and accumulator for an air conditioning circuit

Country Status (5)

Country Link
EP (1) EP1640676B1 (en)
AT (1) ATE376656T1 (en)
DE (1) DE602005002995T2 (en)
ES (1) ES2296024T3 (en)
FR (1) FR2875894B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3757485A4 (en) * 2018-02-24 2021-10-27 Sanhua Holding Group Co., Ltd. Gas-liquid separator and heat exchange system

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005021787A1 (en) * 2005-05-11 2006-11-16 Modine Manufacturing Co., Racine Transcritical air-conditioning refrigerant e.g. carbon-di-oxide, treating apparatus for use in e.g. automobile, has flat multi-chamber tube extruded to extend straight over length of vessel
FR2890726B1 (en) * 2005-09-13 2007-12-14 Valeo Systemes Thermiques INTEGRATED ASSEMBLY FOR AIR CONDITIONING CIRCUIT OPERATING WITH SUPERCRITICAL REFRIGERANT FLUID
FR2930018B1 (en) * 2008-04-15 2010-04-16 Valeo Systemes Thermiques COMBINED DEVICE COMPRISING AN INTERNAL HEAT EXCHANGER AND AN ACCUMULATOR.
WO2013114384A1 (en) * 2011-12-26 2013-08-08 Robert Bosch Engineering And Business Solutions Limited An accumulator for a refrigerant recovery and recharge device
EP2631566B1 (en) 2012-02-24 2018-11-21 Airbus Operations GmbH Accumulator arrangement with an integrated sub-cooler
DE102014207660A1 (en) * 2014-04-23 2015-10-29 Mahle International Gmbh Internal heat exchanger
CN106461337B (en) * 2014-06-30 2019-01-29 株式会社Ihi Condenser and cleaning device
DE102015217634A1 (en) 2015-09-15 2017-05-11 Mahle International Gmbh Device of an air conditioning system with an internal heat exchanger and an integrated collector
DE102016201395A1 (en) * 2016-01-29 2017-08-03 Mahle International Gmbh Method for producing a heat exchanger device
JP6813373B2 (en) * 2017-01-20 2021-01-13 サンデンホールディングス株式会社 Accumulator with internal heat exchanger and refrigeration cycle equipped with it
DE102017211857A1 (en) 2017-07-11 2019-01-17 Mahle International Gmbh Heat exchanger device for a refrigeration system
FR3111966A1 (en) * 2020-06-30 2021-12-31 Valeo Systemes Thermiques Separator bottle for refrigerant circuit.
EP4368932A1 (en) * 2022-11-14 2024-05-15 Danfoss A/S Tank casing for refrigerant receiver with integrated heat exchanger functionality

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19830757A1 (en) 1998-07-09 2000-01-13 Behr Gmbh & Co Air conditioning system especially for a motor vehicle
DE19903833A1 (en) * 1999-02-01 2000-08-03 Behr Gmbh & Co Integrated collector heat exchanger assembly
DE19918617C2 (en) * 1999-04-23 2002-01-17 Valeo Klimatechnik Gmbh Gas cooler for a supercritical CO¶2¶ high pressure refrigerant circuit of an automotive air conditioning system
DE19944950B4 (en) * 1999-09-20 2008-01-31 Behr Gmbh & Co. Kg Air conditioning with internal heat exchanger
JP2002048421A (en) * 2000-08-01 2002-02-15 Matsushita Electric Ind Co Ltd Refrigerating cycle system
US6523365B2 (en) 2000-12-29 2003-02-25 Visteon Global Technologies, Inc. Accumulator with internal heat exchanger
JP3903851B2 (en) * 2002-06-11 2007-04-11 株式会社デンソー Heat exchanger
JP2004190956A (en) * 2002-12-11 2004-07-08 Calsonic Kansei Corp Condenser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3757485A4 (en) * 2018-02-24 2021-10-27 Sanhua Holding Group Co., Ltd. Gas-liquid separator and heat exchange system
US11573036B2 (en) 2018-02-24 2023-02-07 Sanhua Holding Group, Co., Ltd. Gas-liquid separator and heat exchange system

Also Published As

Publication number Publication date
DE602005002995D1 (en) 2007-12-06
ATE376656T1 (en) 2007-11-15
EP1640676A1 (en) 2006-03-29
FR2875894B1 (en) 2006-12-15
ES2296024T3 (en) 2008-04-16
DE602005002995T2 (en) 2008-08-21
FR2875894A1 (en) 2006-03-31

Similar Documents

Publication Publication Date Title
EP1640676B1 (en) Device combining internal heat exchanger and accumulator for an air conditioning circuit
EP2118608B1 (en) Heat exchanger and built-in assembly including such exchanger
BE1018905A5 (en) SCREW COMPRESSOR WITHOUT OIL.
WO1997001067A1 (en) Condenser with a built-in receiver for a motor vehicle air conditioning unit
FR2754887A1 (en) REMOVABLE TANK CONDENSER FOR A REFRIGERATION CIRCUIT, PARTICULARLY A MOTOR VEHICLE
FR2802291A1 (en) AIR CONDITIONING CIRCUIT, PARTICULARLY FOR MOTOR VEHICLE
FR2789159A1 (en) MODULAR ACCUMULATOR-MEMBER UNIT AND HEAT TRANSMISSION
FR2893398A1 (en) COLD STORAGE TANK UNIT AND REFRIGERATION CYCLE DEVICE USING THE SAME
WO2004042293A1 (en) Condenser, in particular for a motor vehicle air conditioning circuit, and circuit comprising same
EP2199709B1 (en) Device comprising an internal heat exchanger and an accumulator
FR2517038A1 (en) NOISE ELIMINATOR SUPPLY TUBE FOR A REFRIGERANT FLUID CIRCUIT
FR2766914A1 (en) DISTRIBUTOR FOR FITTING INTRATUBULAR HEAT EXCHANGERS OF DIPHASIC-TYPE REFRIGERATION FLUID COOLING PLANTS
EP2260253B1 (en) Integrated air-conditioning assembly including an internal heat exchanger
FR2829833A1 (en) REFRIGERATION CYCLE SYSTEM HAVING A DISCHARGE FUNCTION OF A GAS REFRIGERANT IN A RECEIVER
FR2779809A1 (en) CONDENSER WITH INTEGRATED RECEIVER FOR REFRIGERATION CYCLE
WO2006035165A1 (en) Heat exchanger provided with at least one flange for the manifold of said exchanger and a container therefor
EP2199707A1 (en) Combined device comprising an internal heat exchanger and an accumulator participating to an AC loop.
EP1762803A1 (en) Integrated assembly for air conditioning circuit with a supercritical refrigerant.
FR2844843A1 (en) Scroll compressor for compressing gas, has second port through which oil collected within discharge chamber is discharged with compressed gas, and through which all fluids exiting discharge chamber flow
FR2894656A1 (en) Collector box for a heat exchanger in an air conditioner circuit, comprises a double-wall reservoir with inner and peripheral chambers for refrigerant fluid to be cooled and cooling fluid respectively
EP0286462B1 (en) Miniature joule-thomson expansion refrigerator, and method of manufacturing it
WO2009021823A1 (en) Heat exchanger for gas, particularly for the exhaust gases of an engine
FR2776759A1 (en) Condenser with collector box coupled to a reservoir, for an automobile air conditioning circuit
FR3059409B1 (en) DEVICE FOR HOMOGENIZING THE DISTRIBUTION OF A REFRIGERANT FLUID WITHIN HEAT EXCHANGER TUBES CONSISTING OF A REFRIGERANT FLUID CIRCUIT
WO2005012810A1 (en) Device for adapting a pressure reducing valve to the evaporator of an air-conditioning device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20060905

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602005002995

Country of ref document: DE

Date of ref document: 20071206

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2296024

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080124

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071024

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071024

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071024

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080224

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080124

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071024

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080324

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071024

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071024

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071024

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080831

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071024

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080425

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071024

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160818

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160830

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170811

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170812

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20210720

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220808

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220818

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220811

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005002995

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240301