JP6813373B2 - Accumulator with internal heat exchanger and refrigeration cycle equipped with it - Google Patents

Accumulator with internal heat exchanger and refrigeration cycle equipped with it Download PDF

Info

Publication number
JP6813373B2
JP6813373B2 JP2017008639A JP2017008639A JP6813373B2 JP 6813373 B2 JP6813373 B2 JP 6813373B2 JP 2017008639 A JP2017008639 A JP 2017008639A JP 2017008639 A JP2017008639 A JP 2017008639A JP 6813373 B2 JP6813373 B2 JP 6813373B2
Authority
JP
Japan
Prior art keywords
gas
pipe
phase refrigerant
refrigerant
accumulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017008639A
Other languages
Japanese (ja)
Other versions
JP2018115839A (en
Inventor
金子 智
智 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Holdings Corp
Original Assignee
Sanden Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Holdings Corp filed Critical Sanden Holdings Corp
Priority to JP2017008639A priority Critical patent/JP6813373B2/en
Priority to PCT/JP2018/000582 priority patent/WO2018135385A1/en
Priority to DE112018000460.0T priority patent/DE112018000460T5/en
Publication of JP2018115839A publication Critical patent/JP2018115839A/en
Application granted granted Critical
Publication of JP6813373B2 publication Critical patent/JP6813373B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/051Compression system with heat exchange between particular parts of the system between the accumulator and another part of the cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、熱交換機能を有する内部熱交換器付きアキュムレータ及びこれを備えた冷凍サイクルに関する。 The present invention relates to an accumulator with an internal heat exchanger having a heat exchange function and a refrigeration cycle including the accumulator.

この種の内部熱交換器付きアキュムレータとして、例えば特許文献1に記載された空調システム用の内部熱交換器を備えるアキュムレータが提案されている。
この特許文献1に記載されたアキュムレータは、筒状のハウジングと、このハウジング内に収容された内部熱交換器とを備えている。内部熱交換器は、ハウジングの内径より小径で外側に高圧ラインを形成し、内側に低圧ラインを形成した筒状の構造体を備え、この筒状の構造体の内部に、より小径の液体容器が配置されている。
As an accumulator with an internal heat exchanger of this type, for example, an accumulator including an internal heat exchanger for an air conditioning system described in Patent Document 1 has been proposed.
The accumulator described in Patent Document 1 includes a tubular housing and an internal heat exchanger housed in the housing. The internal heat exchanger includes a tubular structure having a high-pressure line formed on the outside and a low-pressure line formed on the inside, which is smaller than the inner diameter of the housing, and a liquid container having a smaller diameter inside the tubular structure. Is placed.

液体容器に筒状要素を介して気液二相冷媒が供給されて気相冷媒と液相冷媒とに分離され、分離された気相冷媒が筒状の構造体に形成された低圧ラインを下方に通って排出される。筒状の構造体の高圧ラインには、高圧冷媒が下端側から上端に向けて流れることにより、筒状の構造体で高圧冷媒と低圧冷媒とが内部熱交換を行う。 A gas-liquid two-phase refrigerant is supplied to the liquid container via a tubular element and separated into a gas-phase refrigerant and a liquid-phase refrigerant, and the separated vapor-phase refrigerant goes down a low-pressure line formed in a tubular structure. It is discharged through. The high-pressure refrigerant flows from the lower end side to the upper end in the high-pressure line of the tubular structure, so that the high-pressure refrigerant and the low-pressure refrigerant exchange internal heat in the tubular structure.

特許第5350578号公報Japanese Patent No. 5350578

ところで、特許文献1に記載のアキュムレータでは、ハウジングの内部に液体容器と、内部熱交換器とを配置して、低圧冷媒を高圧冷媒と内部熱交換を行うようにしている。このため、ハウジングの内部構造が複雑となるとともに、高圧ラインがハウジングの内部に配置されているので、高圧冷媒の内部漏れが発生した場合に発見することが困難であり、製造時の内部漏れ不良も発見することができないという課題がある。
そこで、本発明は、上述した特許文献1に記載された従来例の課題に着目してなされたものであり、簡易な構成で高圧冷媒の漏れを容易に発見することができる内部熱交換器付きアキュムレータ及びこれを備えた冷凍サイクルを提供することを目的としている。
By the way, in the accumulator described in Patent Document 1, a liquid container and an internal heat exchanger are arranged inside the housing so that the low-pressure refrigerant exchanges internal heat with the high-pressure refrigerant. For this reason, the internal structure of the housing becomes complicated, and the high-pressure line is arranged inside the housing, so that it is difficult to detect when an internal leakage of the high-pressure refrigerant occurs, and an internal leakage defect during manufacturing There is a problem that it cannot be found.
Therefore, the present invention has been made by paying attention to the problems of the conventional example described in the above-mentioned Patent Document 1, and includes an internal heat exchanger that can easily detect a leak of a high-pressure refrigerant with a simple configuration. It is an object of the present invention to provide an accumulator and a refrigeration cycle equipped with the accumulator.

上記課題を解決するために、本発明に係る内部熱交換器付きアキュムレータの一態様は、冷凍サイクルにおける冷媒を循環させる循環路に設けられた圧縮機の上流側に配置されて気液二相冷媒を気液分離するアキュムレータであって、気液二相冷媒が導入される二重管構造を有する気液分離部と、この気液分離部の外周に巻き付けられた高圧冷媒が通過する偏平管とを備え、気液分離部と偏平管との間で内部熱交換を行なう。 In order to solve the above problems, one aspect of the accumulator with an internal heat exchanger according to the present invention is arranged on the upstream side of the compressor provided in the circulation path for circulating the refrigerant in the refrigeration cycle, and is a gas-liquid two-phase refrigerant. An accumulator that separates gas and liquid, and has a gas-liquid separation part having a double-tube structure into which a gas-liquid two-phase refrigerant is introduced, and a flat pipe through which a high-pressure refrigerant wound around the outer circumference of the gas-liquid separation part passes. The internal heat exchange is performed between the gas-liquid separation part and the flat pipe.

また、本発明に係る冷凍サイクルの一態様は、冷媒を吸入圧縮する圧縮機と、この圧縮機により圧縮された冷媒を冷却する放熱器と、この放熱器により冷却された冷媒を減圧する減圧器と、この減圧器によって減圧された冷媒を蒸発させる蒸発器と、この蒸発器から流出される気液二相冷媒を気相冷媒と液相冷媒とに分離し、分離した気相冷媒を圧縮機に供給する上述した内部熱交換器付きアキュムレータとを備え、気液二相冷媒を前記内部熱交換器付きアキュムレータの気液分離部に供給して分離した気相冷媒を圧縮機に供給し、放熱器から流出する高圧冷媒を偏平管に供給し、この偏平管から排出される高圧冷媒を減圧器に供給する。 Further, one aspect of the refrigeration cycle according to the present invention is a compressor that sucks and compresses the refrigerant, a radiator that cools the refrigerant compressed by the compressor, and a decompressor that decompresses the refrigerant cooled by the radiator. The evaporator that evaporates the refrigerant decompressed by this decompressor and the gas-liquid two-phase refrigerant that flows out from this evaporator are separated into a gas-phase refrigerant and a liquid-phase refrigerant, and the separated vapor-phase refrigerant is used as a compressor. The above-mentioned accumulator with an internal heat exchanger is provided, and the gas-liquid two-phase refrigerant is supplied to the gas-liquid separation section of the accumulator with an internal heat exchanger, and the separated vapor-phase refrigerant is supplied to the compressor to dissipate heat. The high-pressure refrigerant flowing out of the vessel is supplied to the flat tube, and the high-pressure refrigerant discharged from the flat tube is supplied to the decompressor.

本発明の一態様によれば、気液分離部の外側に高圧冷媒を通流する偏平管を配置したので、簡易な構成で、高圧冷媒の漏れを容易に発見することができる内部熱交換器付きアキュムレータ及びこれを備えた冷凍サイクルを提供することができる。 According to one aspect of the present invention, since the flat pipe through which the high-pressure refrigerant flows is arranged outside the gas-liquid separation portion, an internal heat exchanger that can easily detect the leakage of the high-pressure refrigerant with a simple configuration. An accumulator with an accumulator and a refrigeration cycle equipped with the accumulator can be provided.

本発明に係る冷凍サイクルの一実施形態を示す全体構成図である。It is an overall block diagram which shows one Embodiment of the refrigeration cycle which concerns on this invention. 本発明に係る内部熱交換器付きアキュムレータの第1の実施形態を示す斜視図である。It is a perspective view which shows the 1st Embodiment of the accumulator with an internal heat exchanger which concerns on this invention. 本発明に係る内部熱交換器付きアキュムレータの平面図である。It is a top view of the accumulator with an internal heat exchanger which concerns on this invention. 図3のIV−IV線上の断面図である。It is sectional drawing on the IV-IV line of FIG. 本発明に係る内部熱交換器付きアキュムレータの正面図である。It is a front view of the accumulator with an internal heat exchanger which concerns on this invention. 図5のVI−VI線上の断面図である。It is sectional drawing on the VI-VI line of FIG. 二重管を示す斜視図である。It is a perspective view which shows the double tube. 二重管の平面図である。It is a top view of a double pipe. 本発明に係る内部熱交換器付きアキュムレータの第2の実施形態を示す斜視図である。It is a perspective view which shows the 2nd Embodiment of the accumulator with an internal heat exchanger which concerns on this invention. 第2の実施形態の平面図である。It is a top view of the 2nd Embodiment. 図10のXI−XI線上の断面図である。It is sectional drawing on the XI-XI line of FIG. 図10のXII-XII線上の断面図である。It is sectional drawing on the XII-XII line of FIG. 第2の実施形態の正面図である。It is a front view of the 2nd Embodiment. 図13のXIV−XIV線上の断面図である。It is sectional drawing on the XIV-XIV line of FIG.

次に、図面を参照して、本発明の一実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。 Next, an embodiment of the present invention will be described with reference to the drawings. In the description of the drawings below, the same or similar parts are designated by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the plane dimension, the ratio of the thickness of each layer, etc. are different from the actual ones. Therefore, the specific thickness and dimensions should be determined in consideration of the following explanation. In addition, it goes without saying that the drawings include parts having different dimensional relationships and ratios from each other.

また、以下に示す実施の形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。 In addition, the embodiments shown below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention describes the material, shape, structure, and the like of the components. The arrangement etc. is not specified as the following. The technical idea of the present invention may be modified in various ways within the technical scope specified by the claims stated in the claims.

〔第1の実施形態〕
まず、本発明の一の態様を表す冷凍サイクルについて図1を伴って説明する。
本発明に係る冷凍サイクルは、図1に示すように、例えば車両用空調装置を構成している。冷凍サイクル1は、自然系冷媒であるCO冷媒(以下、単に冷媒と称す)を循環させて車室内の空調を行う。この冷凍サイクル1は、エンジン2を備えたエンジンルーム3から車室4に亘って設置されている。
[First Embodiment]
First, a refrigeration cycle representing one aspect of the present invention will be described with reference to FIG.
As shown in FIG. 1, the refrigeration cycle according to the present invention constitutes, for example, a vehicle air conditioner. The refrigeration cycle 1 circulates a CO 2 refrigerant (hereinafter, simply referred to as a refrigerant), which is a natural refrigerant, to air-condition the interior of the vehicle. The refrigeration cycle 1 is installed from the engine room 3 provided with the engine 2 to the vehicle interior 4.

具体的には、冷凍サイクル1は、エンジン2によって駆動される圧縮機11と、放熱器12と、内部熱交換器付きアキュムレータ13と、膨張弁14と、蒸発器15とを備えている。
圧縮機11は、気相冷媒を吸入圧縮して昇温・昇圧するものであり、レシプロ圧縮機、ロータリー圧縮機、スクロール圧縮機等の圧縮機から選択することができる。圧縮機11で圧縮された冷媒は、冷媒配管RP1を通って放熱器12に供給される。
Specifically, the refrigeration cycle 1 includes a compressor 11 driven by an engine 2, a radiator 12, an accumulator 13 with an internal heat exchanger, an expansion valve 14, and an evaporator 15.
The compressor 11 sucks and compresses the vapor phase refrigerant to raise the temperature and raise the pressure, and can be selected from compressors such as a reciprocating compressor, a rotary compressor, and a scroll compressor. The refrigerant compressed by the compressor 11 is supplied to the radiator 12 through the refrigerant pipe RP1.

放熱器12は、圧縮機11で圧縮された冷媒を外気との熱交換により冷却する。放熱器12で冷却された高圧冷媒は、冷媒配管RP2を介して内部熱交換器付きアキュムレータ13に備えられた後述する偏平管31に供給される。内部熱交換器付きアキュムレータ13から流出する高圧冷媒は、冷媒配管RP3に配置された減圧器としての膨張弁14で減圧されて低圧冷媒として蒸発器15に供給される。 The radiator 12 cools the refrigerant compressed by the compressor 11 by exchanging heat with the outside air. The high-pressure refrigerant cooled by the radiator 12 is supplied to the flat pipe 31 described later provided in the accumulator 13 with an internal heat exchanger via the refrigerant pipe RP2. The high-pressure refrigerant flowing out of the accumulator 13 with an internal heat exchanger is decompressed by the expansion valve 14 as a decompressor arranged in the refrigerant pipe RP3 and supplied to the evaporator 15 as a low-pressure refrigerant.

蒸発器15は、膨張弁14で減圧された冷媒を車室内空気と熱交換させることにより、車室内空気を冷却する。この蒸発器15から流出する気液二相冷媒は、冷媒配管RP4を介して内部熱交換器付きアキュムレータ13に供給されて液相冷媒と気相冷媒とに分離され、気相冷媒が冷媒配管RP5を介して圧縮機11に供給される。
内部熱交換器付きアキュムレータ13は、気液分離された温度が低く低圧の気相冷媒を放熱器12から供給される高圧冷媒と内部熱交換してから圧縮機11に供給する。
The evaporator 15 cools the vehicle interior air by exchanging heat with the vehicle interior air of the refrigerant decompressed by the expansion valve 14. The gas-liquid two-phase refrigerant flowing out of the evaporator 15 is supplied to the accumulator 13 with an internal heat exchanger via the refrigerant pipe RP4 and separated into the liquid-phase refrigerant and the gas-phase refrigerant, and the vapor-phase refrigerant is separated into the refrigerant pipe RP5. It is supplied to the compressor 11 via.
The accumulator 13 with an internal heat exchanger exchanges internal heat with the high-pressure refrigerant supplied from the radiator 12 for the low-pressure gas-phase refrigerant having a low gas-liquid separation temperature, and then supplies the compressor 11 to the compressor 11.

内部熱交換器付きアキュムレータ13の具体的構成は、図2、図3及び図4に示すように、気液分離部21とこの気液分離部21の外周面に巻き付けられて内部熱交換器を構成する偏平管31とで構成されている。
気液分離部21は、図4に示すように、両端を開放した例えば円筒状の二重管22と、この二重管22の上端部に装着された第1キャップ23と、二重管22の下端部に装着された第2キャップ24とを備えている。
As shown in FIGS. 2, 3 and 4, the specific configuration of the accumulator 13 with an internal heat exchanger is such that the gas-liquid separation unit 21 and the internal heat exchanger are wound around the outer peripheral surface of the gas-liquid separation unit 21. It is composed of a flat tube 31 to be formed.
As shown in FIG. 4, the gas-liquid separation unit 21 includes, for example, a cylindrical double pipe 22 having both ends open, a first cap 23 attached to the upper end of the double pipe 22, and a double pipe 22. It is provided with a second cap 24 attached to the lower end portion of the.

二重管22は、図4、図6、図7及び図8に示すように、例えば熱伝導率の高いアルミニウムやアルミニウム合金等の金属材料を押出成形した押出成形品で構成され、肉厚の厚い外筒22aと、この外筒22aより小径で肉厚の薄い内筒22bとを備えている。
外筒22a及び内筒22bは、図4に示すように、上端は面一とされ、下端は内筒22bが外筒22aより下方に突出するように長く形成されている。また、外筒22aと内筒22bとは、図4、図7及び図8に示すように、円周方向に所定間隔を保って形成された軸方向に延長する隔壁22cで連結されている。外筒22aの内周面、内筒22bの外周面及び隣接する2つの隔壁22cで囲まれる空間が気相冷媒を通す気相冷媒通路22dとされている。したがって、外筒22a及び内筒22b間に円周方向に複数(例えば18本)の気相冷媒通路22dが形成されている。
As shown in FIGS. 4, 6, 7, and 8, the double pipe 22 is made of an extruded product obtained by extruding a metal material such as aluminum or an aluminum alloy having high thermal conductivity, and has a thick wall thickness. It includes a thick outer cylinder 22a and an inner cylinder 22b having a smaller diameter and a thinner wall than the outer cylinder 22a.
As shown in FIG. 4, the outer cylinder 22a and the inner cylinder 22b are formed so that the upper end is flush with each other and the lower end is long so that the inner cylinder 22b projects downward from the outer cylinder 22a. Further, as shown in FIGS. 4, 7 and 8, the outer cylinder 22a and the inner cylinder 22b are connected by a partition wall 22c extending in the axial direction formed at a predetermined interval in the circumferential direction. The space surrounded by the inner peripheral surface of the outer cylinder 22a, the outer peripheral surface of the inner cylinder 22b, and the two adjacent partition walls 22c is a gas phase refrigerant passage 22d through which the vapor phase refrigerant passes. Therefore, a plurality of (for example, 18) gas phase refrigerant passages 22d are formed between the outer cylinder 22a and the inner cylinder 22b in the circumferential direction.

また、内筒22bの上端には、内筒22bの内面と各気相冷媒通路22dとを連通する連通溝22eが形成されている。
第1キャップ23は、例えば二重管22と同一の金属材料で形成され、図2〜図4に示すように、二重管22の上端を閉塞する円板部23aと、この円板部23aの外周面から下方に延長して二重管22の外筒22aの外周面に嵌合するリング状のフランジ部23bとを備えている。円板部23aの中心部には、蒸発器15から供給される気液二相冷媒を二重管22の内筒22b内に流入させる流入管23cが貫通形成されている。
Further, at the upper end of the inner cylinder 22b, a communication groove 22e that communicates the inner surface of the inner cylinder 22b and each gas phase refrigerant passage 22d is formed.
The first cap 23 is formed of, for example, the same metal material as the double pipe 22, and as shown in FIGS. 2 to 4, a disc portion 23a that closes the upper end of the double pipe 22 and the disc portion 23a. A ring-shaped flange portion 23b that extends downward from the outer peripheral surface of the double pipe 22 and fits on the outer peripheral surface of the outer cylinder 22a of the double pipe 22 is provided. An inflow pipe 23c for flowing the gas-liquid two-phase refrigerant supplied from the evaporator 15 into the inner cylinder 22b of the double pipe 22 is formed through the central portion of the disk portion 23a.

第2キャップ24は、例えば二重管22と同一の金属材料で形成され、図2及び図4に示すように、二重管22の内筒22bの下端を閉塞する円板部24aと、この円板部24aの外周面から上方に延長して二重管22の外筒22aの外周面に嵌合するリング状のフランジ部24bとを備えている。
この第2キャップ24は、円板部24aが二重管22の内筒22bの下端を閉塞することにより、内筒22bの下端側に分離された液相冷媒及び潤滑オイルを溜める液溜め部26を形成し、内筒22bの外周面と円板部24a及びフランジ部24bとで気相冷媒通路22dから流出する気相冷媒を一時溜める気相冷媒溜め部24cを形成している。
The second cap 24 is formed of, for example, the same metal material as the double pipe 22, and as shown in FIGS. 2 and 4, a disc portion 24a that closes the lower end of the inner cylinder 22b of the double pipe 22 and the disc portion 24a thereof. It is provided with a ring-shaped flange portion 24b that extends upward from the outer peripheral surface of the disk portion 24a and fits onto the outer peripheral surface of the outer cylinder 22a of the double pipe 22.
The second cap 24 has a liquid reservoir 26 for storing the liquid phase refrigerant and lubricating oil separated on the lower end side of the inner cylinder 22b by the disc portion 24a closing the lower end of the inner cylinder 22b of the double pipe 22. The outer peripheral surface of the inner cylinder 22b, the disk portion 24a, and the flange portion 24b form a vapor-phase refrigerant reservoir 24c that temporarily stores the vapor-phase refrigerant flowing out of the vapor-phase refrigerant passage 22d.

そして、円板部24aの二重管22の内筒22bの外周面とフランジ部24bとの間に気相冷媒溜め部24cに一時溜められた気相冷媒を圧縮機11に供給する排出管24dが貫通形成されている。ここで、排出管24dの気相冷媒溜め部24cへの開口面は、気相冷媒溜め部24cの高さの半分程度の位置に開口するように、排出管24dの気相冷媒溜め部24cへの突出高さが設定されている。 Then, the discharge pipe 24d that supplies the vapor phase refrigerant temporarily stored in the vapor phase refrigerant reservoir 24c between the outer peripheral surface of the inner cylinder 22b of the double pipe 22 of the disk portion 24a and the flange portion 24b to the compressor 11. Is formed through. Here, the opening surface of the discharge pipe 24d to the gas phase refrigerant reservoir 24c opens to the gas phase refrigerant reservoir 24c of the discharge pipe 24d so as to open at a position about half the height of the vapor phase refrigerant reservoir 24c. The protrusion height of is set.

また、二重管22の内筒22bの下端面における排出管24d側とは反対側の位置には液溜め部26に溜められたオイルを隣接する気相冷媒溜め部24cに戻すオイル戻し溝27が形成されている。
二重管22と第1キャップ23及び第2キャップ24との接合は、嵌合状態で溶接やロウ付けによって接合するようにしてもよく、外筒22aの両端に形成した雄ねじ部に第1キャップ23及び第2キャップ24に形成した雌ねじ部を螺合させるようにしてもよい。
Further, an oil return groove 27 that returns the oil stored in the liquid reservoir 26 to the adjacent vapor-phase refrigerant reservoir 24c at a position on the lower end surface of the inner cylinder 22b of the double pipe 22 opposite to the discharge pipe 24d side. Is formed.
The double pipe 22 and the first cap 23 and the second cap 24 may be joined by welding or brazing in the fitted state, and the first cap is formed on the male threaded portions formed at both ends of the outer cylinder 22a. The female threaded portion formed on the 23 and the second cap 24 may be screwed.

偏平管31は、図2〜図6に示すように、二重管22の第1キャップ23及び第2キャップ24から露出する外周面を覆うように巻き付けられている。この偏平管31は、二重管22等と同様に熱伝導率の高いアルミニウムやアルミニウム合金等の金属材料で押出成形による押出成形品で構成されている。また、偏平管31内には、図4に示すように、二重管22の軸方向に所定間隔を保って高圧冷媒を通過させる複数の高圧冷媒通路31aが形成されている。さらに、偏平管31は、内周長さが外筒22aの外周長さより短く設定されており、図2及び図3に示すように、偏平管31の円周方向の両端部が外筒22aの外周面に軸方向に沿わせて配置した第1連結管32及び第2連結管33に連結されている。 As shown in FIGS. 2 to 6, the flat pipe 31 is wound so as to cover the outer peripheral surface of the double pipe 22 exposed from the first cap 23 and the second cap 24. The flat pipe 31 is made of a metal material such as aluminum or an aluminum alloy having high thermal conductivity like the double pipe 22 and is made of an extruded product by extrusion molding. Further, as shown in FIG. 4, a plurality of high-pressure refrigerant passages 31a through which the high-pressure refrigerant passes at predetermined intervals in the axial direction of the double pipe 22 are formed in the flat pipe 31. Further, the flat pipe 31 has an inner peripheral length set shorter than the outer peripheral length of the outer cylinder 22a, and as shown in FIGS. 2 and 3, both ends of the flat pipe 31 in the circumferential direction of the outer cylinder 22a. It is connected to the first connecting pipe 32 and the second connecting pipe 33 arranged along the outer peripheral surface in the axial direction.

第1連結管32は、図6に示すように、上下両端を閉塞した円筒体で構成され、図5に示すように、下端側に高圧冷媒を流入させる流入口32aが形成され、図6で見て左側面に偏平管31の一端を嵌合させる嵌合孔32bが軸方向に延長して形成されている。そして、第1連結管32の嵌合孔32bに偏平管31の一端が嵌合されて連結され、第1連結管32内と偏平管31の各高圧冷媒通路31aとが連通されている。 As shown in FIG. 6, the first connecting pipe 32 is formed of a cylindrical body having both upper and lower ends closed, and as shown in FIG. 5, an inflow port 32a for flowing a high-pressure refrigerant is formed on the lower end side, and in FIG. A fitting hole 32b for fitting one end of the flat tube 31 is formed on the left side surface extending in the axial direction. Then, one end of the flat pipe 31 is fitted and connected to the fitting hole 32b of the first connecting pipe 32, and the inside of the first connecting pipe 32 and each high-pressure refrigerant passage 31a of the flat pipe 31 are communicated with each other.

第2連結管33は、図6に示すように、第1連結管32と同様に上下両端を閉塞した円筒体で構成され、図5に示すように、上端に高圧冷媒を排出する排出口33aが形成され、図6で見て右側面に偏平管31の他端を嵌合させる嵌合孔33bが軸方向に延長して形成されている。そして、第2連結管33の嵌合孔33bに偏平管31の他端が嵌合されて連結され、第2連結管33内と偏平管31の各高圧冷媒通路31aとが連通されている。 As shown in FIG. 6, the second connecting pipe 33 is formed of a cylindrical body having both upper and lower ends closed like the first connecting pipe 32, and as shown in FIG. 5, the discharge port 33a for discharging the high-pressure refrigerant to the upper end. Is formed, and a fitting hole 33b for fitting the other end of the flat tube 31 is formed so as to extend in the axial direction on the right side surface as seen in FIG. Then, the other end of the flat pipe 31 is fitted and connected to the fitting hole 33b of the second connecting pipe 33, and the inside of the second connecting pipe 33 and each high-pressure refrigerant passage 31a of the flat pipe 31 are communicated with each other.

そして、内部熱交換器付きアキュムレータ13の第1連結管32の流入口32aが冷媒配管RP2に接続され、第2連結管33の排出口33aが冷媒配管RP3を介して膨張弁14に接続されている。また、内部熱交換器付きアキュムレータ13の第1キャップ23の流入管23cが冷媒配管RP4を介して蒸発器15の冷媒排出口に接続され、第2キャップ24の排出管24dが冷媒配管RP5を介して圧縮機11に接続されている。 Then, the inflow port 32a of the first connecting pipe 32 of the accumulator 13 with an internal heat exchanger is connected to the refrigerant pipe RP2, and the discharge port 33a of the second connecting pipe 33 is connected to the expansion valve 14 via the refrigerant pipe RP3. There is. Further, the inflow pipe 23c of the first cap 23 of the accumulator 13 with an internal heat exchanger is connected to the refrigerant discharge port of the evaporator 15 via the refrigerant pipe RP4, and the discharge pipe 24d of the second cap 24 is connected via the refrigerant pipe RP5. Is connected to the compressor 11.

次に、上記第1実施形態の動作を説明する。
冷凍サイクル1では、気相冷媒が圧縮機11で圧縮されて高圧冷媒として放熱器12に供給される。この高圧冷媒は、放熱器12による外気との熱交換により冷却される。この冷却工程では、高圧冷媒がほぼ等圧変化しながら温度が低下する。
この冷却された高圧冷媒は、内部熱交換器付きアキュムレータ13の第1連結管32の流入口32aに供給され、この第1連結管32で偏平管31の各高圧冷媒通路31aに分配されて流入し、高圧冷媒通路31aの他端側から排出される高圧冷媒は、第2連結管33で集められて排出口33aから膨張弁14に供給される。
Next, the operation of the first embodiment will be described.
In the refrigeration cycle 1, the vapor phase refrigerant is compressed by the compressor 11 and supplied to the radiator 12 as a high-pressure refrigerant. This high-pressure refrigerant is cooled by heat exchange with the outside air by the radiator 12. In this cooling step, the temperature of the high-pressure refrigerant changes while being substantially isobaric.
The cooled high-pressure refrigerant is supplied to the inflow port 32a of the first connecting pipe 32 of the accumulator 13 with an internal heat exchanger, and is distributed and flows into each high-pressure refrigerant passage 31a of the flat pipe 31 by the first connecting pipe 32. The high-pressure refrigerant discharged from the other end side of the high-pressure refrigerant passage 31a is collected by the second connecting pipe 33 and supplied to the expansion valve 14 from the discharge port 33a.

膨張弁14で減圧されて膨張された冷媒は、蒸発器15に供給され、車室内空気と熱交換され、気液二相冷媒として内部熱交換器付きアキュムレータ13の第1キャップ23の流入管23cに供給される。
内部熱交換器付きアキュムレータ13では、第1キャップ23の流入管23cから流入される気液二相冷媒は、二重管22の内筒22b内に流入されて気液分離され、比重が一番大きいオイルが内筒22bの下端側に形成された液溜め部26内の最下層に溜められ、その上にオイルに対して比重が小さい分離された液相冷媒が溜められる。
The refrigerant decompressed and expanded by the expansion valve 14 is supplied to the evaporator 15 and exchanges heat with the vehicle interior air, and is used as a gas-liquid two-phase refrigerant as an inflow pipe 23c of the first cap 23 of the accumulator 13 with an internal heat exchanger. Is supplied to.
In the accumulator 13 with an internal heat exchanger, the gas-liquid two-phase refrigerant flowing from the inflow pipe 23c of the first cap 23 flows into the inner cylinder 22b of the double pipe 22 and is separated into gas and liquid, and has the highest specific gravity. A large amount of oil is stored in the lowermost layer in the liquid storage portion 26 formed on the lower end side of the inner cylinder 22b, and a separated liquid phase refrigerant having a small specific gravity with respect to the oil is stored on the lowermost layer.

また、分離された気相冷媒は、内筒22bの上端に形成された連通溝22eを通じ、さらに外筒22a及び内筒22b間に形成された気相冷媒通路22dを通じて第2キャップ24側に移動する。このとき、気相冷媒通路22dの外側に偏平管31が巻き付けられ、この偏平管31の高圧冷媒通路31aに放熱器12からの高い温度の高圧冷媒が通流されているので、この高い温度の高圧冷媒と低い温度で低圧の気相冷媒とが内部熱交換される。このため、高い温度の高圧冷媒は冷却され、低い温度の気相冷媒は昇温される。そして、内部熱交換によって温度が上昇した気相冷媒は、気相状態を維持したまま第2キャップ24の気相冷媒溜め部24cから排出管24dを通じて圧縮機11に戻る。 Further, the separated vapor-phase refrigerant moves to the second cap 24 side through the communication groove 22e formed at the upper end of the inner cylinder 22b and further through the gas-phase refrigerant passage 22d formed between the outer cylinder 22a and the inner cylinder 22b. To do. At this time, the flat pipe 31 is wound around the outside of the vapor phase refrigerant passage 22d, and the high-temperature high-pressure refrigerant from the radiator 12 is passed through the high-pressure refrigerant passage 31a of the flat pipe 31. Internal heat exchange is performed between the high-pressure refrigerant and the low-pressure vapor-phase refrigerant at a low temperature. Therefore, the high-temperature high-pressure refrigerant is cooled, and the low-temperature gas-phase refrigerant is heated. Then, the vapor-phase refrigerant whose temperature has risen due to internal heat exchange returns to the compressor 11 from the vapor-phase refrigerant reservoir 24c of the second cap 24 through the discharge pipe 24d while maintaining the vapor phase state.

また、内部熱交換器付きアキュムレータ13の液溜め部26に溜められたオイルは、内筒22bの下端に形成されたオイル戻し溝27を通じて気相冷媒溜め部24cに戻され、オイルの上面が排出管24dの上面を越えたときに気相冷媒とともに圧縮機11に返油される。
このように、上記第1の実施形態によると、内部熱交換器付きアキュムレータ13を構成する気液分離部21の外周側に高圧冷媒が通流される偏平管31を巻き付けて内部熱交換器を構成したので、十分な液溜め容積を確保するためには、気液分離部21を構成する二重管22の外形を大きくして外筒22a及び内筒22bの内径を大きくするだけでよい。
Further, the oil stored in the liquid reservoir 26 of the accumulator 13 with an internal heat exchanger is returned to the gas phase refrigerant reservoir 24c through the oil return groove 27 formed at the lower end of the inner cylinder 22b, and the upper surface of the oil is discharged. When it exceeds the upper surface of the pipe 24d, it is returned to the compressor 11 together with the vapor phase refrigerant.
As described above, according to the first embodiment, the flat tube 31 through which the high-pressure refrigerant flows is wound around the outer peripheral side of the gas-liquid separation unit 21 constituting the accumulator 13 with an internal heat exchanger to form the internal heat exchanger. Therefore, in order to secure a sufficient liquid storage volume, it is only necessary to increase the outer diameter of the double pipe 22 constituting the gas-liquid separation portion 21 and increase the inner diameters of the outer cylinder 22a and the inner cylinder 22b.

また、高圧冷媒が通流される偏平管31が気液分離部21の外周側に巻き付けられているので、偏平管31から高圧冷媒が漏れた場合には、COセンサを使用して容易に検出することができる。さらに、COセンサが利用できない場合には、内部熱交換器付きアキュムレータ13を液体内に付けて気泡の有無を視認することにより、高圧冷媒の漏れを容易に発見することができる。また、内部熱交換器付きアキュムレータ13の製造完了時の高圧冷媒の漏れも同様に検出することができる。 Further, since the flat pipe 31 through which the high-pressure refrigerant flows is wound around the outer peripheral side of the gas-liquid separation portion 21, if the high-pressure refrigerant leaks from the flat pipe 31, it can be easily detected by using the CO 2 sensor. can do. Further, when the CO 2 sensor cannot be used, the leakage of the high-pressure refrigerant can be easily detected by attaching the accumulator 13 with an internal heat exchanger in the liquid and visually recognizing the presence or absence of air bubbles. Further, the leakage of the high-pressure refrigerant at the completion of the production of the accumulator 13 with the internal heat exchanger can be detected in the same manner.

また、上記第1の実施形態では、内部熱交換器付きアキュムレータ13の気液分離部21を、二重管22と、この二重管の両端を個別に閉塞する第1キャップ23及び第2キャップ24とを設けるだけの簡易な構成とすることができ、少ない部品点数で容易に構成することができる。しかも、二重管22は熱伝導率の高い金属材料を押出成形した押出成形品で構成できるので、製造を容易に行うことができる。 Further, in the first embodiment, the gas-liquid separation portion 21 of the accumulator 13 with an internal heat exchanger is closed to the double pipe 22 and both ends of the double pipe individually with the first cap 23 and the second cap. The configuration can be as simple as providing 24, and can be easily configured with a small number of parts. Moreover, since the double tube 22 can be made of an extruded product obtained by extruding a metal material having a high thermal conductivity, it can be easily manufactured.

さらに、第2キャップ24に形成した排出管24dの開口位置が気相冷媒溜め部24cの底面より高い位置とされているので、内筒22bの下端に形成したオイル戻し溝27から液相冷媒が気相冷媒溜め部24cに漏れ出た場合に、漏れた液相冷媒を排出管24dの開口位置までは溜めることができ、液相冷媒が排出管24dから圧縮機11へ排出されることを防止することができる。 Further, since the opening position of the discharge pipe 24d formed in the second cap 24 is higher than the bottom surface of the gas phase refrigerant reservoir 24c, the liquid phase refrigerant can be discharged from the oil return groove 27 formed at the lower end of the inner cylinder 22b. When the gas-phase refrigerant reservoir 24c leaks, the leaked liquid-phase refrigerant can be accumulated up to the opening position of the discharge pipe 24d, preventing the liquid-phase refrigerant from being discharged from the discharge pipe 24d to the compressor 11. can do.

さらに、偏平管31は、内部に軸方向に間隔を開けた複数の高圧冷媒通路31aが形成されており、各高圧冷媒通路31aに第1連結管32から高圧冷媒を分配して供給し、各高圧冷媒通路31aの高圧冷媒を第2連結管33で回収するので、高圧冷媒の通流を均一に行うことができ、内部熱交換を効率よく行うことができる。
なお、上記第1の実施形態では、偏平管31を二重管22の露出部を覆う幅広に形成した場合について説明したが、これに限定されるものではなく、偏平管31を軸方向に複数に分割し、分割した各偏平管を第1連結管32及び第2連結管33に並列に接続するようにしてもよい。
Further, the flat pipe 31 is internally formed with a plurality of high-pressure refrigerant passages 31a spaced apart in the axial direction, and the high-pressure refrigerant is distributed and supplied from the first connecting pipe 32 to each high-pressure refrigerant passage 31a. Since the high-pressure refrigerant in the high-pressure refrigerant passage 31a is recovered by the second connecting pipe 33, the high-pressure refrigerant can be uniformly flowed, and the internal heat exchange can be efficiently performed.
In the first embodiment, the case where the flat pipe 31 is formed to be wide covering the exposed portion of the double pipe 22 has been described, but the present invention is not limited to this, and a plurality of flat pipes 31 are provided in the axial direction. The divided flat pipes may be connected in parallel to the first connecting pipe 32 and the second connecting pipe 33.

次に、本発明の第2の実施形態について図9〜図14を伴って説明する。
この第2の実施形態では、二重管の外周に複数列の偏平管を巻き付け、偏平管の一列毎に高圧冷媒の流通方向を逆方向とするようにしたものである。
すなわち、第2の実施形態では、内部熱交換器付きアキュムレータ13が、図9及び図13に示すように、二重管22の第1キャップ23及び第2キャップ24から露出する外周面に複数例えば4列の偏平管41A、41B、41C及び41Dを二重管の軸方向に所定間隔を開けて巻き付けて構成されている。これら偏平管41A〜41Dの夫々には、図11及び図12に示すように、内部に二重管22の軸方向となる幅方向に複数例えば7個の高圧冷媒通路41a〜41dが平行に形成されている。
Next, a second embodiment of the present invention will be described with reference to FIGS. 9 to 14.
In this second embodiment, a plurality of rows of flat pipes are wound around the outer circumference of the double pipes, and the flow direction of the high-pressure refrigerant is reversed for each row of the flat pipes.
That is, in the second embodiment, as shown in FIGS. 9 and 13, a plurality of accumulators 13 with an internal heat exchanger are provided on the outer peripheral surface of the double pipe 22 exposed from the first cap 23 and the second cap 24, for example. It is configured by winding four rows of flat tubes 41A, 41B, 41C and 41D in the axial direction of a double tube at predetermined intervals. As shown in FIGS. 11 and 12, a plurality of, for example, seven high-pressure refrigerant passages 41a to 41d are formed in parallel in each of the flat pipes 41A to 41D in the width direction which is the axial direction of the double pipe 22. Has been done.

そして、各偏平管41A〜41Dの一端が第1連結管42に連結され、他端が第2連結管43に連結されている。
第1連結管42は、図11に示すように、両端を閉塞した円筒体で構成され、内部空間には、偏平管41A及び41B間に対応する位置に仕切り板44aが設けられているとともに、偏平管41C及び41D間に対応する位置に仕切り板44bが設けられて、3つの連通空間45a、45b及び45cが形成されている。連通空間45aの下端側に温度の高い高圧冷媒の流入口46aが形成され、連通空間45cの上端側に高圧冷媒の排出口46bが形成されている。
Then, one end of each of the flat pipes 41A to 41D is connected to the first connecting pipe 42, and the other end is connected to the second connecting pipe 43.
As shown in FIG. 11, the first connecting pipe 42 is formed of a cylindrical body having both ends closed, and a partition plate 44a is provided at a position corresponding to between the flat pipes 41A and 41B in the internal space. A partition plate 44b is provided at a position corresponding to the flat pipes 41C and 41D, and three communication spaces 45a, 45b and 45c are formed. A high-temperature high-pressure refrigerant inflow port 46a is formed on the lower end side of the communication space 45a, and a high-pressure refrigerant discharge port 46b is formed on the upper end side of the communication space 45c.

第2連結管43は、図12に示すように、第1連結管42と同様に、両端を閉塞した円筒体で構成され、内部空間には、偏平管41B及び41C間に対応する位置に仕切り板44cが設けられて、2つの連通空間47a及び47bが形成されている。
このため、流入口46aに放熱器12から供給される温度の高い高圧冷媒は、第1連結管42の連通空間45a内で、偏平管41Aの各高圧冷媒通路41aに均等に分配されて各高圧冷媒通路41a内を図13の実線矢印で示すように第2連結管43の連通空間47aに向かって流れる。
As shown in FIG. 12, the second connecting pipe 43 is composed of a cylindrical body having both ends closed, like the first connecting pipe 42, and the internal space is partitioned between the flat pipes 41B and 41C at positions corresponding to each other. A plate 44c is provided to form two communication spaces 47a and 47b.
Therefore, the high-temperature high-pressure refrigerant supplied from the radiator 12 to the inflow port 46a is evenly distributed to each high-pressure refrigerant passage 41a of the flat pipe 41A in the communication space 45a of the first connected pipe 42, and each high pressure is supplied. It flows through the refrigerant passage 41a toward the communication space 47a of the second connecting pipe 43 as shown by the solid line arrow in FIG.

この偏平管41Aの各高圧冷媒通路41aを通過した高圧冷媒は、第2連結管43の連通空間47aの下方側で合流して連通空間47aの上方側から偏平管41Bの各高圧冷媒通路41bに均等に分配されて各高圧冷媒通路41a内を図13の実線矢印で示すように偏平管41A内の流れと逆方向に流れて第1連結管42の連通空間45bに向かう。
この偏平管41Bの各高圧冷媒通路41bを通過した高圧冷媒は、第1連結管42の連通空間45bの下方側で合流し、連通空間45bの上方側から偏平管41Cの各高圧冷媒通路41cに均等に分配されて各高圧冷媒通路41aを図13の実線矢印で示すように偏平管41B内の流れと逆方向に流れて第2連結管43の連通空間47bに向かう。
The high-pressure refrigerant that has passed through the high-pressure refrigerant passages 41a of the flat pipe 41A merges on the lower side of the communication space 47a of the second connecting pipe 43 and enters each high-pressure refrigerant passage 41b of the flat pipe 41B from the upper side of the communication space 47a. It is evenly distributed and flows in each high-pressure refrigerant passage 41a in the direction opposite to the flow in the flat pipe 41A as shown by the solid line arrow in FIG. 13 toward the communication space 45b of the first connected pipe 42.
The high-pressure refrigerant that has passed through each of the high-pressure refrigerant passages 41b of the flat pipe 41B merges on the lower side of the communication space 45b of the first connected pipe 42, and enters each high-pressure refrigerant passage 41c of the flat pipe 41C from the upper side of the communication space 45b. It is evenly distributed and flows through each high-pressure refrigerant passage 41a in the direction opposite to the flow in the flat pipe 41B as shown by the solid line arrow in FIG. 13 toward the communication space 47b of the second connected pipe 43.

この偏平管31Cの各高圧冷媒通路31cを通過した高圧冷媒は、第2連結管43の連通空間47bの下方側で合流し、連通空間47bの上方側から偏平管31Dの各高圧冷媒通路41dに均等に分配されて各高圧冷媒通路41dを図13の実線矢印で示すように偏平管41C内の流れと逆方向に流れて第1連結管32の連通空間45cに向かう。
この偏平管41Dの高圧冷媒通路41aを通過した高圧冷媒は、第1連結管42の連通空間45cで合流して上方側の排出口46bから膨張弁14に排出される。
The high-pressure refrigerant that has passed through each high-pressure refrigerant passage 31c of the flat pipe 31C merges on the lower side of the communication space 47b of the second connected pipe 43, and enters each high-pressure refrigerant passage 41d of the flat pipe 31D from the upper side of the communication space 47b. It is evenly distributed and flows through each high-pressure refrigerant passage 41d in the direction opposite to the flow in the flat pipe 41C as shown by the solid line arrow in FIG. 13 toward the communication space 45c of the first connected pipe 32.
The high-pressure refrigerant that has passed through the high-pressure refrigerant passage 41a of the flat pipe 41D merges in the communication space 45c of the first connecting pipe 42 and is discharged to the expansion valve 14 from the discharge port 46b on the upper side.

その他の構成については前述した第1の実施形態と同様の構成を有し、第1の実施形態との対応部分には同一符号を付し、その詳細説明はこれを省略する。
次に、上記第2の実施形態の動作を説明する。
気液分離部21の構成については前述した第1の実施形態と同様の構成を有するので、第1キャップ23の流入管23cから流入される低圧の気液二相冷媒が二重管22の内筒22b内に導入されて比重差により液溜め部26の下層にオイル層が形成され、上層に液相冷媒層が形成される。また、分離された気相冷媒は、外筒22a及び内筒22b間の気相冷媒通路22dを通って流下し、第2キャップ24の排出管24dから圧縮機11に排出される。この気相冷媒には液溜め部26の下層に溜まったオイル層のオイルがオイル戻し溝27を通じて合流されて圧縮機11に返油される。
Other configurations have the same configurations as those of the first embodiment described above, and the parts corresponding to the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted.
Next, the operation of the second embodiment will be described.
Since the gas-liquid separation unit 21 has the same configuration as that of the first embodiment described above, the low-pressure gas-liquid two-phase refrigerant flowing from the inflow pipe 23c of the first cap 23 is contained in the double pipe 22. An oil layer is formed in the lower layer of the liquid reservoir 26 due to the difference in specific gravity introduced into the cylinder 22b, and a liquid phase refrigerant layer is formed in the upper layer. Further, the separated vapor-phase refrigerant flows down through the gas-phase refrigerant passage 22d between the outer cylinder 22a and the inner cylinder 22b, and is discharged to the compressor 11 from the discharge pipe 24d of the second cap 24. The oil in the oil layer accumulated in the lower layer of the liquid reservoir 26 is merged with the vapor phase refrigerant through the oil return groove 27 and returned to the compressor 11.

このとき、外筒22a及び内筒22b間の気相冷媒通路22dを通って流下する温度が低く低圧の気相冷媒は、二重管22の外周に巻き付けられた偏平管41A〜41Dを通る温度が高い高圧冷媒と内部熱交換されて温度が上昇される。
偏平管41A〜41Dでは、最下段の偏平管41Aの高圧冷媒通路41aに第1連結管32の流入口46aから流入される高圧冷媒が第2連結管43に向かって通流し、反対側で高圧冷媒が第2連結管43の連通空間47aによって合流してから偏平管41Bの高圧冷媒通路41bに均等に分配されて偏平管41A内の流れと逆方向に流れる。
At this time, the low-temperature low-pressure vapor-phase refrigerant flowing down through the gas-phase refrigerant passage 22d between the outer cylinder 22a and the inner cylinder 22b passes through the flat pipes 41A to 41D wound around the outer periphery of the double pipe 22. The temperature rises due to internal heat exchange with the high-pressure refrigerant.
In the flat pipes 41A to 41D, the high-pressure refrigerant flowing from the inflow port 46a of the first connecting pipe 32 flows into the high-pressure refrigerant passage 41a of the lowermost flat pipe 41A toward the second connecting pipe 43, and the pressure is high on the opposite side. After the refrigerant merges through the communication space 47a of the second connecting pipe 43, it is evenly distributed to the high-pressure refrigerant passage 41b of the flat pipe 41B and flows in the direction opposite to the flow in the flat pipe 41A.

その後、高圧冷媒は順次第1連結管42の連通空間45b、偏平管41Cの高圧冷媒通路41c、第2連結管43の連通空間47b及び偏平管41Dの高圧冷媒通路41dを通じて第1連結管42の連通空間45cに達し、この連通空間45cの排出口46bから膨張弁14に排出される。
このように、第2の実施形態によると、気液分離部21については、前述した第1の実施形態と同様の構成を有するので、第1の実施形態と同様の作用効果を得ることができる。
After that, the high-pressure refrigerant sequentially passes through the communication space 45b of the first connecting pipe 42, the high-pressure refrigerant passage 41c of the flat pipe 41C, the communication space 47b of the second connecting pipe 43, and the high-pressure refrigerant passage 41d of the flat pipe 41D of the first connecting pipe 42. It reaches the communication space 45c and is discharged to the expansion valve 14 from the discharge port 46b of the communication space 45c.
As described above, according to the second embodiment, since the gas-liquid separation unit 21 has the same configuration as that of the first embodiment described above, the same action and effect as that of the first embodiment can be obtained. ..

また、内部熱交換機能については、複数の偏平管41A〜41Dと第1連結管42及び第2連結管43とにより、高圧冷媒が最下段の偏平管41Aから最上段の偏平管41Dまで達する連続的な高圧冷媒通路が形成される。このため、各偏平管41A〜41Dの円周方向長さを利用することで高圧冷媒流路の合計長さを前述した第1実施形態に比較して格段に長くすることができ、効率の良い内部熱交換を行なうことができる。 Regarding the internal heat exchange function, the high-pressure refrigerant continuously reaches from the lowest flat pipe 41A to the uppermost flat pipe 41D by the plurality of flat pipes 41A to 41D, the first connecting pipe 42, and the second connecting pipe 43. High-pressure refrigerant passage is formed. Therefore, by utilizing the circumferential lengths of the flat tubes 41A to 41D, the total length of the high-pressure refrigerant flow paths can be significantly lengthened as compared with the first embodiment described above, which is efficient. Internal heat exchange can be performed.

ここで、最下段の偏平管41Aから流入された高圧冷媒は、第1連結管42及び第2連結管43で分配及び合流を繰り返しながら、最上段の偏平管41Dまで達する。このため、高圧冷媒の温度ムラを解消することができ、均一な熱交換が可能となるので、より効率の良い内部熱交換を行なうことができる。さらに、高圧冷媒が偏平管41A〜41D内の複数の高圧冷媒通路41a〜41dを通ることにより、流速が増加して第1連結管42及び第2連結管43での高圧冷媒の攪拌が促進される。 Here, the high-pressure refrigerant flowing in from the lowermost flat pipe 41A reaches the uppermost flat pipe 41D while repeating distribution and merging in the first connecting pipe 42 and the second connecting pipe 43. Therefore, the temperature unevenness of the high-pressure refrigerant can be eliminated, and uniform heat exchange becomes possible, so that more efficient internal heat exchange can be performed. Further, the high-pressure refrigerant passes through the plurality of high-pressure refrigerant passages 41a to 41d in the flat pipes 41A to 41D, so that the flow velocity increases and the stirring of the high-pressure refrigerant in the first connecting pipe 42 and the second connecting pipe 43 is promoted. To.

また、連続した高圧冷媒通路を、複数の偏平管41A〜41Dを平行に巻き付け、その両端部を第1連結管42及び第2連結管43に個別に連結するだけで、形成することができるので、偏平管41A〜41Dに複雑な加工を施すことがないとともに、偏平管41A〜41D、第1連結管42及び第2連結管43を気液分離部21の外周面に容易に装着することができる。 Further, a continuous high-pressure refrigerant passage can be formed only by winding a plurality of flat pipes 41A to 41D in parallel and individually connecting both ends thereof to the first connecting pipe 42 and the second connecting pipe 43. The flat pipes 41A to 41D are not complicatedly processed, and the flat pipes 41A to 41D, the first connecting pipe 42 and the second connecting pipe 43 can be easily attached to the outer peripheral surface of the gas-liquid separation portion 21. it can.

しかも、高圧冷媒は気液分離部21の外側で偏平管41A〜41Dを下方から上方へ順に通流し、一方気液分離部21で分離された気相冷媒は内筒22bの上端から連通溝22eを通じて、さらに外筒22a及び内筒22b間に形成された気相冷媒通路22dを通じて第2キャップ24側に流下する。このため、気相冷媒と高圧冷媒とがカウンターフロー(対向流)となって熱交換効率をより向上させることができる。 Moreover, the high-pressure refrigerant flows through the flat tubes 41A to 41D in order from the bottom to the top outside the gas-liquid separation section 21, while the gas-phase refrigerant separated by the gas-liquid separation section 21 flows from the upper end of the inner cylinder 22b to the communication groove 22e. Further, it flows down to the second cap 24 side through the gas-phase refrigerant passage 22d formed between the outer cylinder 22a and the inner cylinder 22b. Therefore, the gas phase refrigerant and the high pressure refrigerant form a counter flow (countercurrent), and the heat exchange efficiency can be further improved.

なお、上記第2の実施形態では、第1連結管42に流入口46aを形成した場合について説明したが、これに限定されるものではなく、第1連結管42と第2連結管43とを左右入れ替えるようにしてもよい。
また、上記第2の実施形態では、4つの偏平管41A〜41Dを使用した場合について説明したが、これに限定されるものではなく、2つ又は3つ、さらには5つ以上の偏平管を巻き付けるようにしてもよい。この場合、偏平管を奇数設ける場合には、第1連結管42に流入口46a(又は排出口46b)を形成し、第2連結管43に排出口46b(又は流入口46a)を形成することになり、仕切り板の位置も上下が逆となるだけであるので、第1連結管42と第2連結管43とを共通部品とすることができ、第1連結管42及び第2連結管43を別々に製作する場合に比較して生産コストを低減できる。
In the second embodiment, the case where the inflow port 46a is formed in the first connecting pipe 42 has been described, but the present invention is not limited to this, and the first connecting pipe 42 and the second connecting pipe 43 are used. The left and right may be swapped.
Further, in the second embodiment described above, the case where four flat tubes 41A to 41D are used has been described, but the present invention is not limited to this, and two or three flat tubes, further five or more flat tubes are used. You may wrap it around. In this case, when an odd number of flat pipes are provided, the inflow port 46a (or the discharge port 46b) is formed in the first connecting pipe 42, and the discharge port 46b (or the inflow port 46a) is formed in the second connecting pipe 43. Since the position of the partition plate is only upside down, the first connecting pipe 42 and the second connecting pipe 43 can be made common parts, and the first connecting pipe 42 and the second connecting pipe 43 can be used as common parts. The production cost can be reduced as compared with the case where the products are manufactured separately.

さらに、第1連結管42及び第2連結管43は、別々に構成する場合に代えて1つの円筒体を軸方向に間仕切りすることにより、第1連結管42及び第2連結管43を形成することもできる。この場合には、第1連結管42及び第2連結管43を一つの部品で製作することができ、部品点数を減少させて生産コストを低減できる。
また、上記第2の実施形態では、第1連結管42及び第2連結管43の連通空間を仕切り板44a〜44cで仕切る場合について説明したが、これに限定されるものではなく、第1連結管42については連通空間45a〜45cを有する3つの円筒体を連結し、第2連結管43については連通空間47a及び47bを有する2つの円筒体を連結するにしてもよい。
Further, the first connecting pipe 42 and the second connecting pipe 43 form the first connecting pipe 42 and the second connecting pipe 43 by partitioning one cylindrical body in the axial direction instead of forming them separately. You can also do it. In this case, the first connecting pipe 42 and the second connecting pipe 43 can be manufactured with one part, and the number of parts can be reduced to reduce the production cost.
Further, in the second embodiment, the case where the communication space between the first connecting pipe 42 and the second connecting pipe 43 is partitioned by the partition plates 44a to 44c has been described, but the present invention is not limited to this, and the first connection is not limited to this. For the pipe 42, three cylinders having communication spaces 45a to 45c may be connected, and for the second connecting pipe 43, two cylinders having communication spaces 47a and 47b may be connected.

また、上記第1及び第2の実施形態では、二重管22の内筒22bの底面を第2キャップ24で閉塞して液溜め部26を形成した場合について説明したが、これに限定されるものではなく、内筒22bの底面を第2キャップ24とは別部材の底板で閉塞するようにしてもよい。この場合には、内筒22bを外筒22aより突出させる必要はなく、内筒22bの底面を外筒22aの底面と面一とすることができる。 Further, in the first and second embodiments, the case where the bottom surface of the inner cylinder 22b of the double pipe 22 is closed by the second cap 24 to form the liquid reservoir 26 has been described, but the present invention is limited to this. Instead, the bottom surface of the inner cylinder 22b may be closed by a bottom plate of a member different from the second cap 24. In this case, it is not necessary for the inner cylinder 22b to protrude from the outer cylinder 22a, and the bottom surface of the inner cylinder 22b can be flush with the bottom surface of the outer cylinder 22a.

また、上記第1及び第2の実施形態では、外筒22a及び内筒22b間に複数の気相冷媒通路を形成した場合について説明したが、気相冷媒通路は1以上の任意数に設定することができる。この場合、隔壁22cを省略することができるが、二重管22を押出成型品とするためには、1つ以上の隔壁22cを形成する必要がある。さらに、外筒22a及び内筒22bを別体として溶接、ロウ付け等の接合手段によって接合して二重管22を構成するようにしてもよい。 Further, in the first and second embodiments, the case where a plurality of gas phase refrigerant passages are formed between the outer cylinder 22a and the inner cylinder 22b has been described, but the gas phase refrigerant passages are set to an arbitrary number of 1 or more. be able to. In this case, the partition wall 22c can be omitted, but in order to make the double pipe 22 an extruded product, it is necessary to form one or more partition walls 22c. Further, the outer cylinder 22a and the inner cylinder 22b may be separated and joined by a joining means such as welding or brazing to form the double pipe 22.

また、上記第1及び第2の実施形態では、内部熱交換器付きアキュムレータ13を独立して構成する場合について説明したが、これに限定されるものではなく、圧縮機11、放熱器12及び蒸発器15の何れかと一体に構成することもできる。要は内部熱交換器付きアキュムレータ13から圧縮機11の気相媒体吸込部に気相媒体を供給できればよい。
また、上記第1及び第2の実施形態では、自動車用空調装置に適用する冷凍サイクル1について説明したが、これに限定されるものではなく、冷凍ショーケース、自動販売機等に使用する冷凍サイクルにも本発明を適用することができる。
Further, in the first and second embodiments, the case where the accumulator 13 with an internal heat exchanger is independently configured has been described, but the present invention is not limited to this, and the compressor 11, the radiator 12 and the evaporation are not limited thereto. It can also be integrally configured with any of the vessels 15. In short, it suffices if the accumulator 13 with an internal heat exchanger can supply the gas phase medium to the gas phase medium suction portion of the compressor 11.
Further, in the first and second embodiments, the refrigeration cycle 1 applied to the air conditioner for automobiles has been described, but the present invention is not limited to this, and the refrigeration cycle used for refrigeration showcases, vending machines, etc. The present invention can also be applied to.

11…圧縮機、12…放熱器、13…内部熱交換器付きアキュムレータ、14…膨張弁、15…蒸発器、21…気液分離部、22…二重管、22a…外筒、22b…内筒、22c…隔壁、22d…気相冷媒通路、22e…連通溝、23…第1キャップ、23c……流入管、24…第2キャップ、24c…気相冷媒溜め部、24d…排出管、26…液溜め部、27…オイル戻し溝、31…偏平管、31a…高圧冷媒通路、32…第1連結管、32a…流入口、33…第2連結管、33a…排出口、41A〜41D…偏平管、41a〜41d…高圧冷媒通路、42…第1連結管、43…第2連結管、44a〜44c…仕切り板、45a〜45c…連通空間、46a…流入口、46b…排出口、47a,47b…連通空間 11 ... Compressor, 12 ... Dissipator, 13 ... Accumulator with internal heat exchanger, 14 ... Expansion valve, 15 ... Evaporator, 21 ... Gas-liquid separator, 22 ... Double pipe, 22a ... Outer cylinder, 22b ... Inner Cylinder, 22c ... partition wall, 22d ... gas phase refrigerant passage, 22e ... communication groove, 23 ... first cap, 23c ... inflow pipe, 24 ... second cap, 24c ... vapor phase refrigerant reservoir, 24d ... discharge pipe, 26 ... Liquid reservoir, 27 ... Oil return groove, 31 ... Flat pipe, 31a ... High-pressure refrigerant passage, 32 ... First connecting pipe, 32a ... Inflow port, 33 ... Second connecting pipe, 33a ... Discharge port, 41A to 41D ... Flat pipes, 41a to 41d ... high pressure refrigerant passages, 42 ... first connecting pipes, 43 ... second connecting pipes, 44a to 44c ... partition plates, 45a to 45c ... communication spaces, 46a ... inflow ports, 46b ... discharge ports, 47a , 47b ... Communication space

Claims (7)

冷凍サイクルにおける冷媒を循環させる循環路に設けられた圧縮機の上流側に配置されて気液二相冷媒を気液分離するアキュムレータであって、
前記気液二相冷媒が導入される二重管構造を有する気液分離部と、
該気液分離部の外周に巻き付けられて高圧冷媒が通過する偏平管とを備え、
前記気液分離部と前記偏平管との間で内部熱交換を行なうものであり、
前記気液分離部は、前記気液二相冷媒を気液分離する内筒及び分離された気相冷媒を通過させる気相冷媒通路を形成する外筒を備えた二重管と、該二重管の上端に装着して前記内筒内に前記気液二相冷媒を案内する第1キャップと、前記二重管の下端に装着して前記気相冷媒通路の気相冷媒を外部に排出する第2キャップとを備え、
前記第2キャップは、前記内筒の下端を閉塞する円板部と、該円板部の外周面から上方に延出して前記外筒の外周面に嵌合するフランジ部とを備え、前記円板部が前記内筒の下端を閉塞することにより、前記内筒の下端側に分離された液相冷媒及び潤滑オイルを溜める液溜め部を形成するとともに、前記内筒の外周面と前記円板部及び前記フランジ部とで前記気相冷媒通路から流出する気相冷媒を一時溜める気相冷媒溜め部を形成し、
前記気相冷媒溜め部に一時溜められた気相冷媒を排出する排出管を前記円板部に形成するとともに、
前記液溜め部に溜められた潤滑オイルを前記気相冷媒溜め部に戻すオイル戻し溝を前記内筒に形成し、
前記排出管の前記気相冷媒溜め部への開口位置を前記気相冷媒溜め部の底面より高い位置とすることを特徴とする内部熱交換器付きアキュムレータ。
An accumulator that is located on the upstream side of a compressor provided in a circulation path that circulates a refrigerant in a refrigeration cycle and separates gas-liquid two-phase refrigerant.
A gas-liquid separation unit having a double-tube structure into which the gas-liquid two-phase refrigerant is introduced,
A flat pipe that is wound around the outer circumference of the gas-liquid separation portion and through which a high-pressure refrigerant passes is provided.
Internal heat exchange is performed between the gas-liquid separation unit and the flat pipe .
The gas-liquid separation unit includes a double pipe provided with an inner cylinder for gas-liquid separation of the gas-liquid two-phase refrigerant and an outer cylinder for forming a gas-phase refrigerant passage through which the separated gas-phase refrigerant passes, and the double. A first cap attached to the upper end of the pipe to guide the gas-liquid two-phase refrigerant into the inner cylinder and a first cap attached to the lower end of the double pipe to discharge the gas-phase refrigerant in the vapor-phase refrigerant passage to the outside. With a second cap
The second cap includes a disk portion that closes the lower end of the inner cylinder, and a flange portion that extends upward from the outer peripheral surface of the disk portion and fits into the outer peripheral surface of the outer cylinder. By closing the lower end of the inner cylinder with the plate portion, a liquid reservoir portion for storing the separated liquid phase refrigerant and lubricating oil is formed on the lower end side of the inner cylinder, and the outer peripheral surface of the inner cylinder and the disk are formed. A gas phase refrigerant reservoir portion for temporarily storing the vapor phase refrigerant flowing out from the vapor phase refrigerant passage is formed by the portion and the flange portion.
A discharge pipe for discharging the gas phase refrigerant temporarily stored in the gas phase refrigerant reservoir is formed in the disk portion, and at the same time.
An oil return groove is formed in the inner cylinder to return the lubricating oil stored in the liquid reservoir to the gas phase refrigerant reservoir.
An accumulator with an internal heat exchanger, wherein the opening position of the discharge pipe to the gas phase refrigerant reservoir is set higher than the bottom surface of the vapor phase refrigerant reservoir .
記二重管は、前記外筒及び前記内筒間に円周方向に間隔を保って形成された複数の隔壁によって複数の前記気相冷媒通路が形成され、前記内筒及び前記第1キャップ間に前記内筒の内面と前記気相冷媒通路とを連通する連通孔が形成されていることを特徴とする請求項1に記載の内部熱交換器付きアキュムレータ。 Before SL double tube, the plurality of the gas-phase refrigerant passage by a plurality of barrier ribs formed at a distance in the circumferential direction between the outer cylinder and the inner cylinder is formed, the inner cylinder and the first cap The accumulator with an internal heat exchanger according to claim 1, wherein a communication hole for communicating the inner surface of the inner cylinder and the gas-phase refrigerant passage is formed between them. 前記偏平管は、巻き付け方向の両端に開放し、前記二重管の軸方向に間隔を保って複数の高圧冷媒通路が平行に形成され、前記偏平管の巻き付け方向の一端に前記複数の高圧冷媒通路と連通して高圧冷媒流路を形成する第1連結管が連結され、前記偏平管の巻き付け方向の他端に前記複数の高圧冷媒通路と連通して高圧冷媒流路を形成する第2連結管が連結されていることを特徴とする請求項2に記載の内部熱交換器付きアキュムレータ。 The flat pipe is opened at both ends in the winding direction, and a plurality of high-pressure refrigerant passages are formed in parallel at intervals in the axial direction of the double pipe, and the plurality of high-pressure refrigerants are formed at one end in the winding direction of the flat pipe. A first connecting pipe that communicates with the passage to form a high-pressure refrigerant flow path is connected, and a second connection that communicates with the plurality of high-pressure refrigerant passages at the other end of the flat pipe in the winding direction to form a high-pressure refrigerant flow path. The accumulator with an internal heat exchanger according to claim 2, wherein the tubes are connected. 前記偏平管は、前記二重管に複数列巻き付けられ、複数の偏平管が前記第1連結管及び前記第2連結管を介して前記高圧冷媒が一列毎に逆方向に流れる連続した冷媒通路を形成していることを特徴とする請求項3に記載の内部熱交換器付きアキュムレータ。 The flat pipe is wound in a plurality of rows around the double pipe, and the plurality of flat pipes pass through a continuous refrigerant passage in which the high-pressure refrigerant flows in the opposite direction for each row through the first connecting pipe and the second connecting pipe. The accumulator with an internal heat exchanger according to claim 3, wherein the accumulator is formed. 前記第1連結管及び前記第2連結管は、前記偏平管を介して前記第2キャップ側から供給された前記高圧冷媒を前記第1キャップ側から排出するように接続されていることを特徴とする請求項3又は4に記載の内部熱交換器付きアキュムレータ。 The first connecting pipe and the second connecting pipe are connected so as to discharge the high-pressure refrigerant supplied from the second cap side from the first cap side via the flat pipe. The accumulator with an internal heat exchanger according to claim 3 or 4. 前記第1キャップは、前記二重管の内筒内に低圧冷媒を供給する流入管を備え、前記第2キャップは、前記二重管の気相冷媒通路を通る気相冷媒を外部に排出する排出管を備えていることを特徴とする請求項2から5の何れか一項に記載の内部熱交換器付きアキュムレータ。 The first cap includes an inflow pipe for supplying a low-pressure refrigerant into the inner cylinder of the double pipe, and the second cap discharges the gas phase refrigerant passing through the gas phase refrigerant passage of the double pipe to the outside. The accumulator with an internal heat exchanger according to any one of claims 2 to 5, further comprising a discharge pipe. 冷媒を吸入圧縮する圧縮機と、該圧縮機により圧縮された冷媒を冷却する放熱器と、該放熱器により冷却された冷媒を減圧する減圧器と、該減圧器によって減圧された冷媒を蒸発させる蒸発器と、該蒸発器から流出される気液二相冷媒を気相冷媒と液相冷媒とに分離し、分離した気相冷媒を前記圧縮機に供給する請求項1から請求項6の何れか一項に記載の内部熱交換器付きアキュムレータとを備え、
前記気液二相冷媒を前記内部熱交換器付きアキュムレータの前記気液分離部に供給して分離した気相冷媒を前記圧縮機に供給し、前記放熱器から流出する高圧冷媒を前記偏平管に供給し、該偏平管から排出される高圧冷媒を前記減圧器に供給することを特徴とする冷凍サイクル。
A compressor that sucks and compresses the refrigerant, a radiator that cools the refrigerant compressed by the compressor, a decompressor that decompresses the refrigerant cooled by the radiator, and a decompressor that evaporates the refrigerant decompressed by the decompressor. Any of claims 1 to 6 in which the evaporator and the gas-liquid two-phase refrigerant flowing out of the evaporator are separated into a gas-phase refrigerant and a liquid-phase refrigerant, and the separated vapor-phase refrigerant is supplied to the compressor. Equipped with an accumulator with an internal heat exchanger as described in item 1.
The gas-liquid two-phase refrigerant is supplied to the gas-liquid separation portion of the accumulator with an internal heat exchanger, the separated vapor-phase refrigerant is supplied to the compressor, and the high-pressure refrigerant flowing out of the radiator is supplied to the flat pipe. A refrigeration cycle characterized in that a high-pressure refrigerant that is supplied and discharged from the flat pipe is supplied to the decompressor.
JP2017008639A 2017-01-20 2017-01-20 Accumulator with internal heat exchanger and refrigeration cycle equipped with it Active JP6813373B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017008639A JP6813373B2 (en) 2017-01-20 2017-01-20 Accumulator with internal heat exchanger and refrigeration cycle equipped with it
PCT/JP2018/000582 WO2018135385A1 (en) 2017-01-20 2018-01-12 Accumulator with internal heat exchanger, and refrigeration cycle device equipped with same
DE112018000460.0T DE112018000460T5 (en) 2017-01-20 2018-01-12 ACCUMULATOR WITH INTERNAL HEAT EXCHANGER AND ACCORDING REFRIGERANT CIRCUIT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017008639A JP6813373B2 (en) 2017-01-20 2017-01-20 Accumulator with internal heat exchanger and refrigeration cycle equipped with it

Publications (2)

Publication Number Publication Date
JP2018115839A JP2018115839A (en) 2018-07-26
JP6813373B2 true JP6813373B2 (en) 2021-01-13

Family

ID=62908256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017008639A Active JP6813373B2 (en) 2017-01-20 2017-01-20 Accumulator with internal heat exchanger and refrigeration cycle equipped with it

Country Status (3)

Country Link
JP (1) JP6813373B2 (en)
DE (1) DE112018000460T5 (en)
WO (1) WO2018135385A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111023362B (en) * 2019-12-16 2021-12-14 宁波奥克斯电气股份有限公司 Refrigerant circulation system and air conditioner under heating mode
CN113405285A (en) * 2020-03-16 2021-09-17 上海海立电器有限公司 Double-layer-structure noise reduction liquid storage device and compressor
DE102022201431A1 (en) 2022-02-11 2023-08-17 Mahle International Gmbh Collector for a refrigerant circuit
DE102022118622A1 (en) 2022-07-26 2024-02-01 Audi Aktiengesellschaft Refrigeration system for supercritical refrigerant with additional refrigerant storage and integrated heat exchanger for a motor vehicle, motor vehicle with such a refrigeration system
CZ2022350A3 (en) * 2022-08-24 2023-10-11 Pavel ÄŚinÄŤura A reversible heat engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146986A (en) * 2003-11-14 2005-06-09 Sanyo Electric Co Ltd Heat exchanger integral type compressor with built-in accumulator
FR2875894B1 (en) * 2004-09-24 2006-12-15 Valeo Climatisation Sa COMBINED INTERNAL HEAT EXCHANGER AND ACCUMULATOR DEVICE FOR AIR CONDITIONING CIRCUIT
DE102004050409A1 (en) 2004-10-15 2006-04-27 Valeo Klimasysteme Gmbh Accumulator with internal heat exchanger for air conditioning
DE102006051687A1 (en) * 2006-10-30 2008-05-08 Visteon Global Technologies Inc., Van Buren Mechanical connection of a heat exchanger tube

Also Published As

Publication number Publication date
WO2018135385A1 (en) 2018-07-26
JP2018115839A (en) 2018-07-26
DE112018000460T5 (en) 2019-10-24

Similar Documents

Publication Publication Date Title
JP6813373B2 (en) Accumulator with internal heat exchanger and refrigeration cycle equipped with it
US9109821B2 (en) Condenser for vehicle
JP6039946B2 (en) Capacitor
US20140102682A1 (en) Condenser for vehicle
US8959948B2 (en) Receiver dryer
JP6497262B2 (en) Laminate heat exchanger
JP6785144B2 (en) Receiver and condenser using this
JP6540190B2 (en) Cold storage heat exchanger
JP6905895B2 (en) Capacitor
US10337808B2 (en) Condenser
JP5412195B2 (en) Heat exchanger
JP6572040B2 (en) Capacitor
JP2014224670A (en) Double-pipe heat exchanger
JP2014173831A (en) Condenser
JP4109764B2 (en) Subcool system capacitor
CN108981418A (en) Cold-storage heat-exchanger
KR20170047050A (en) A condenser
JP5622411B2 (en) Capacitor
JP3764904B2 (en) Refrigerating cycle and method for determining receiver volume of refrigeration cycle
KR20190143091A (en) Condenser
CN203893509U (en) Condenser
JP2018036041A (en) Condenser
CN202403462U (en) Condenser
JP2019027685A (en) Condenser
JP4909625B2 (en) Liquid receiver for refrigeration cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201217

R150 Certificate of patent or registration of utility model

Ref document number: 6813373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350