EP1637824B1 - Granular material cooler - Google Patents

Granular material cooler Download PDF

Info

Publication number
EP1637824B1
EP1637824B1 EP05016930A EP05016930A EP1637824B1 EP 1637824 B1 EP1637824 B1 EP 1637824B1 EP 05016930 A EP05016930 A EP 05016930A EP 05016930 A EP05016930 A EP 05016930A EP 1637824 B1 EP1637824 B1 EP 1637824B1
Authority
EP
European Patent Office
Prior art keywords
bulk material
section
discharge
overflow pipe
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05016930A
Other languages
German (de)
French (fr)
Other versions
EP1637824A2 (en
EP1637824A3 (en
Inventor
Bernhard Dr. Stark
Klaus-Peter Lang
Michael Duerr
Thomas Gartmann
Guenter Dehm
Christoff Fedder
Olaf Hustert
Marcus Jokisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coperion GmbH
Original Assignee
Coperion GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coperion GmbH filed Critical Coperion GmbH
Publication of EP1637824A2 publication Critical patent/EP1637824A2/en
Publication of EP1637824A3 publication Critical patent/EP1637824A3/en
Application granted granted Critical
Publication of EP1637824B1 publication Critical patent/EP1637824B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D13/00Heat-exchange apparatus using a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1607Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0045Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for granular materials

Definitions

  • bulk material heat exchanger devices occur in the level control problems. These problems, which are due to numerous causes, mean that different bulk material temperatures can occur at the outlet of the bulk material heat exchanger. Furthermore, an interruption is necessary when carrying out cleaning work. Finally, in case of blockages or partial blockages of the bulk material heat exchanger considerable disturbances may occur.
  • a bulk material heat exchanger is known which is designed for cooling of crystalline carboxylic acids.
  • the bulk material is fed to the heat exchanger in the lower region and fluidized there.
  • the coarser particles flow down from below.
  • the finer particles are transported in a fluidized bed through a cooling zone and discharged from the heat exchanger above the cooling zone.
  • the conveying air is drawn upwards and can be used for downstream transport to a silo.
  • the invention is therefore based on the object, a device of the general type in such a way that a trouble-free operation is possible.
  • the essence of the invention is that when exceeding a predetermined by the location of the inlet opening of the overflow pipe in the buffer section bulk material level in the buffer section, the bulk material flows through the overflow pipe and only after the bulk material heat exchanger again is merged with the bulk material flow, which adjusts a mixing temperature in the bulk material. In case of a temporary decommissioning by a malfunction, z. As a blockage, the bulk material heat exchanger, the entire flow of bulk material can flow through the overflow pipe. As a rule, the discharge sluice is operated in such a way that a considerable proportion, as a rule at least 80 percent of the normally occurring quantity of bulk material, is passed through the bulk material heat exchanger.
  • going quantities are then passed through the overflow pipe as it were in the bypass on the bulk material heat exchanger.
  • the overflow pipe has a large nominal diameter, which is usually larger than that of a upstream pneumatic conveying line, is supplied via the bulk material. With a large nominal size, the bulk material can flow through the overflow pipe without causing excessive pressure loss.
  • the bulk material heat exchanger is integrated with the overflow pipe in a pneumatic conveying line, wherein the supplied with an incoming feed line bulk material at least predominantly in the bulk material heat exchanger is tempered and wherein the conveying air is passed through the overflow pipe at the bulk material heat exchanger and is merged behind this again with the bulk material flow.
  • the overflow pipe has a large nominal diameter.
  • the bulk material heat exchanger downstream as discharge organ rotary valve then there is no differential pressure at this. Such a differential pressure would namely lead to leakage air, which would flow counter to the bulk material in the bulk material heat exchanger and would lead to disturbances of the bulk material flow. Such a negative effect would occur especially in fine-grained or powdery bulk materials.
  • the tempered in the bulk material heat exchanger bulk material can also be introduced into a downstream delivery line, including the development according to claim 5 indicates a solution.
  • Claim 9 finally shows that a closed conveying gas circuit can also be provided, which may be expedient in particular when nitrogen is used as conveying gas instead of conveying air.
  • the bulk material heat exchanger can be designed in the usual way.
  • the product can by parallel arranged plates or transversely to the flow direction of the bulk material pipes of various different Cross-sectional shape in which the heat transfer fluid flows flows; but is particularly advantageous embodiment according to claim 10.
  • Claim 11 specifies a concretization of the cross-sectional conditions of the pneumatic delivery line and the overflow pipeline, wherein it is ensured by these cross-sectional relationships that a regulation of the bulk material level in the buffer section is not required.
  • FIG. 1 illustrated device for controlling the temperature of bulk material has an upper buffer section 1, a central heat exchange section 2 and a lower discharge section 3.
  • the sections 1, 2, 3 each have circular cross sections.
  • the housing-like, substantially enclosed buffer section 1 is provided with an upper inlet nozzle 4 for supplying a bulk material to be tempered.
  • the inlet nozzle 4 is preferably introduced tangentially into the buffer section 1 in order to effect a good separation of the bulk material along the inner wall of the buffer section 1.
  • This device is also referred to below as a bulk material heat exchanger.
  • the heat exchange section 2 has a housing 5, in whose interior space 6 heat exchanger tubes 7 are arranged parallel to each other at a distance from each other.
  • the interior 6 is therefore a heat exchange space.
  • Adjacent to the discharge section 3 opens into the interior 6 of the housing 5 of the heat exchange section 2, a supply nozzle 8 for heat transfer fluid.
  • Adjacent to the buffer section 1 opens a discharge nozzle 9 from the interior 6 of the housing 5.
  • deflecting plates 10 are each transversely to the longitudinal direction of the tubes 7 at a distance from each other mounted such that a supplied via the supply nozzle 8 heat transfer fluid according to the flow directional arrow 11 meandering through the interior 6 each transverse to the longitudinal direction of the tubes gradually upward to the discharge nozzle 9 flows.
  • the heat exchange section 2 is therefore for a cross-countercurrent designed the heat transfer fluid.
  • the interior 6 can be filled with a tube 7 enveloping bed 12 of glass beads, steel balls and plastic granules, which contributes to the improvement of the heat transfer between the heat transfer fluid and the tubes 7.
  • removable retaining sieves 13 are arranged in the socket 8, 9.
  • the size of the particles of the bed 12 should be such that they can be introduced into them after the heat exchange section 2 has been manufactured.
  • the particles of the bed 12 must therefore in any case be smaller than the pitch of the tubes 7.
  • the particles of the bed 12 are preferably spherical, lens or cylindrical shape.
  • the tubes 7 are connected at the top in an inlet tube plate 14 fixedly connected to the housing 5 and at the bottom with an outlet tube plate 15 in such a way that they are open towards the buffer section 1 and the discharge section 3. Between the buffer section 1 and the heat exchange section 2 on the one hand and the heat exchange section 2 and the discharge section 3 are flange connections 16 and 17. As the drawing is removed, the inlet tube plate 14 is configured in that each tube 7 has an inlet funnel 18 which widens toward the buffer section 1 and thus narrows towards the respective tube 7, with adjacent funnels 18 in turn being dimensioned so that they meet at the top in a relatively sharp edge 19.
  • the inlet funnels 18 have an opening angle ⁇ which is at least 30 ° and at most 120 °, but is preferably in the range from 40 ° to 100 °. This avoids that in the inlet tube plate 14 between adjacent tubes 7 dead spaces or dead surfaces arise on which bulk material 20 remains, which is not supplied to a pipe 7 by gravity, especially when emptying the heat exchange section 2 and therefore remains on the inlet tube sheet 14.
  • the discharge section 3 is in the form of a downwardly tapered cone-shaped funnel. Such a shape causes the bulk material 20 flows in the discharge section 3 at all points of an arbitrarily selected cross section with almost the same speed, in this consideration, the immediate wall area is not taken into account, since there is always a delay due to wall friction.
  • a cellular wheel lock 22 is provided, the housing 23 is connected via a downpipe 24 with the discharge section 3.
  • a cellular wheel 25 is arranged, which is rotatably driven by a motor 26.
  • cellular wheel locks are of course other discharge facilities into consideration, such. B. discharge screws, vibrating troughs or metering slides.
  • the buffer section 1 From the buffer section 1 opens an overflow pipe 27.
  • This overflow pipe 27 leads past the heat exchange section 2 and at the discharge section 3 and opens below the feeder lock 22 serving as a sluice in a discharge pipe 28.
  • the inlet opening 29 of the overflow pipe 27th is about halfway up the buffer section 1.
  • the bulk material level 30 in the buffer section 1 is approximately such that at a the inlet opening 29 of the overflow pipe 27 reaching or exceeding bulk material level 30, the excess bulk material 20 through the overflow pipe 27th flows. Due to the tangential feeding of the bulk material through the inlet nozzle 4 in the buffer section 1, a uniform, ie approximately level equal filling of the buffer section 1 is achieved.
  • Fig. 2 shows a bulk material heat exchanger on a silo 31.
  • the buffer section 4 is fed via a pneumatic conveying line 32 in the conveying direction 33 bulk material 20, which enters through the inlet nozzle 4 in the buffer section 1.
  • the promotion of most of the bulk material 20 takes place through the heat exchange section 2 and the discharge lock 22 and the discharge pipe 28 in an inlet 34 of the silo 31.
  • the through the feed line 32 with the bulk material 20 in the buffer Section 1 funded conveying air is completely conveyed through the overflow pipe 27 into the silo 31 and exits there through an exhaust port 35.
  • a filter 36 is regularly arranged.
  • This configuration and arrangement is particularly suitable when using very large silos 31 with large diameter, namely where the inlet 34 and the exhaust air nozzle 35 have the greatest possible distance, for example, 10 m from each other, so that a sufficient calming of the entering into the silo 31 conveying air takes place.
  • Fig. 3 In the arrangement according to Fig. 3 is a bulk material heat exchanger integrated into a pneumatic conveying line 37 and thus stands during operation under positive or negative pressure, since in the pneumatic conveying line 37 basically a suction or a pressure promotion can take place.
  • the delivery line 37 occurs - as already in Fig. 2 described - via the inlet nozzle 4 in the buffer section 1 a.
  • the overflow pipe 27 is thus part of the air conveyor system, wherein only in the region of the heat exchange section 2, the conveying air and the bulk material 20 are at least largely separated from each other. Behind the discharge lock 22 of the bulk material flow and the conveying air are brought together again.
  • a switch 39, 40 are provided in each case, which are connected to one another via a bypass line 41.
  • the bulk material 20 can then be conveyed past the device.
  • a radiator 27 a is integrated into the overflow pipe 27, so that the conveying air is cooled.
  • Such a cooler 27a may be, for example, a double-pipe or shell-and-tube heat exchanger.
  • the bulk material 20 is fed to the buffer section 1 by gravity.
  • it is in the bulk material 20 to plastic granules, which is supplied from an extruder 42 with subordinate underwater granulation 43 a dryer 44. From there, it passes through a classifying sieve 45 by gravity via the inlet nozzle 4 into the buffer section 1.
  • the discharge gate 22 is hereby followed by a so-called closed pre-container 46, into which the discharge pipe 28 discharges.
  • the overflow pipeline 27 also opens into this pre-container 46, from which a motor-driven cellular wheel lock 47 serving as a feed lock enters the bulk material 20 into a pneumatic delivery line 48.
  • the conveying air is generated by means of a blower 49.
  • the promotion takes place in the conveying direction 33.
  • the leaking from the cellular wheel lock 47 in the pre-tank 46 leakage air is discharged via the overflow pipe 27 into the buffer section 1, from which it exits through an exhaust port 50.
  • the delivery through the delivery line 48 takes place to silos 51, 52.
  • the design after Fig. 5 is different from the after Fig. 4 only in that the supply of the bulk material 20 already takes place via a pneumatic conveying line 32, as in the arrangement according to Fig. 2 the case is.
  • the entire conveying air is blown off from the pneumatic conveying line 32 via the exhaust air nozzle 50.
  • the arrangement after Fig. 6 is different from the after Fig. 5 in that a cycle of the delivery gases is provided; This is for example of interest if, instead of conveying air nitrogen is used as a conveying gas.
  • the first feed line 32 bulk material 20 is input via the inlet nozzle 4 in the buffer section 1.
  • the exhaust pipe 50 is connected via a connecting line 53 with a radiator 54 and a safety filter 55 to the blower 49.

Abstract

The machine for tempering of bulk materials has a through flow passage (2) for the material under gravity. The though flow passage extends between input (1) and discharge (3) headers and has a heat exchange function. There is a bypass pipe (27) for the heat exchange section, which extends between the input header and the outlet side of the discharge header funnel.

Description

Bei derartigen, nachfolgend als Schüttgut-Wärmetauscher bezeichneten Vorrichtungen treten bei der Füllstands-Regelung Probleme auf. Diese auf zahlreiche Ursachen zurückgehenden Probleme führen dazu, dass am Austritt des Schüttgut-Wärmetauschers unterschiedliche Schüttgut-Temperaturen auftreten können. Des Weiteren ist bei Durchführung von Reinigungsarbeiten eine Unterbrechung notwendig. Schließlich können bei Verstopfungen oder Teilverstopfungen des Schüttgut-Wärmetauschers erhebliche Störungen auftreten.In such, hereinafter referred to as bulk material heat exchanger devices occur in the level control problems. These problems, which are due to numerous causes, mean that different bulk material temperatures can occur at the outlet of the bulk material heat exchanger. Furthermore, an interruption is necessary when carrying out cleaning work. Finally, in case of blockages or partial blockages of the bulk material heat exchanger considerable disturbances may occur.

Aus der EP 0 973 716 B 1 ist ein Schüttgut-Wärmetauscher bekannt, der zur Kühlung von kristallinen Carbonsäuren ausgelegt ist. Dem Wärmetauscher wird in dessen unterem Bereich das Schüttgut zugeführt und dort fluidisiert. Die gröberen Partikel strömen unten ab. Die feineren Partikel werden in einer Wirbelschicht durch eine Kühlzone transportiert und oberhalb der Kühlzone aus dem Wärmetauscher ausgetragen. Die Förderluft wird nach oben abgezogen und kann zum nachgeordneten Transport zu einem Silo eingesetzt werden.From the EP 0 973 716 B 1 is a bulk material heat exchanger is known which is designed for cooling of crystalline carboxylic acids. The bulk material is fed to the heat exchanger in the lower region and fluidized there. The coarser particles flow down from below. The finer particles are transported in a fluidized bed through a cooling zone and discharged from the heat exchanger above the cooling zone. The conveying air is drawn upwards and can be used for downstream transport to a silo.

Der Erfindung liegt daher die Aufgabe zugrunde, eine Vorrichtung der allgemeinen Gattung so auszugestalten, dass ein störungsfreier Betrieb möglich ist.The invention is therefore based on the object, a device of the general type in such a way that a trouble-free operation is possible.

Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruches 1 gelöst.This object is achieved by the features of claim 1.

Der Kern der Erfindung liegt darin, dass bei Überschreiten eines durch die Lage der Eintritts-Öffnung der Überlauf-Rohrleitung im Puffer-Abschnitt vorgegebenen Schüttgut-Spiegels im Puffer-Abschnitt das Schüttgut durch die Überlauf-Rohrleitung abfließt und erst hinter dem Schüttgut-Wärmetauscher wieder mit dem Schüttgutstrom zusammengeführt wird, wodurch sich eine Mischtemperatur im Schüttgut einstellt. Bei einer vorübergehenden Außerbetriebsetzung durch eine Betriebsstörung, z. B. eine Verstopfung, des Schüttgut-Wärmetauschers, kann der gesamte Schüttgutstrom durch die Überlauf-Rohrleitung fließen. In der Regel wird die Austrags-Schleuse so betrieben, dass ein erheblicher Anteil, in der Regel mindestens 80 Prozent der normalerweise anfallenden Schüttgut-Menge durch den Schüttgut-Wärmetauscher geführt werden. Darüber hinaus gehende Mengen werden dann durch die Überlauf-Rohrleitung gleichsam im Bypass am Schüttgut-Wärmetauscher vorbeigeführt. Die Überlauf-Rohrleitung weist eine große Nennweite auf, die in der Regel größer ist als die einer vorgeordneten pneumatischen Förderleitung, über die Schüttgut zugeführt wird. Bei einer großen Nennweite kann das Schüttgut durch die Überlauf-Rohrleitung abfließen, ohne dass ein zu großer Druckverlust entsteht.The essence of the invention is that when exceeding a predetermined by the location of the inlet opening of the overflow pipe in the buffer section bulk material level in the buffer section, the bulk material flows through the overflow pipe and only after the bulk material heat exchanger again is merged with the bulk material flow, which adjusts a mixing temperature in the bulk material. In case of a temporary decommissioning by a malfunction, z. As a blockage, the bulk material heat exchanger, the entire flow of bulk material can flow through the overflow pipe. As a rule, the discharge sluice is operated in such a way that a considerable proportion, as a rule at least 80 percent of the normally occurring quantity of bulk material, is passed through the bulk material heat exchanger. In addition, going quantities are then passed through the overflow pipe as it were in the bypass on the bulk material heat exchanger. The overflow pipe has a large nominal diameter, which is usually larger than that of a upstream pneumatic conveying line, is supplied via the bulk material. With a large nominal size, the bulk material can flow through the overflow pipe without causing excessive pressure loss.

Bei der weiteren Ausgestaltung nach Anspruch 2 wird auch die in den Puffer-Abschnitt eintretende Förderluft durch die Überlauf-Rohrleitung abgeführt. Diese Ausgestaltung bietet u. a. sich bei einer Weiterbildung nach Anspruch 3 an, wobei dann die Gesamtentlüftung erst in einem nachgeordneten Silo erfolgt.In the further embodiment according to claim 2 and the entering into the buffer section conveying air is discharged through the overflow pipe. This embodiment offers u. a. in a further development according to claim 3, in which case the total venting takes place only in a downstream silo.

Gemäß einer weiteren Weiterbildung gemäß Anspruch 4 wird der Schüttgut-Wärmetauscher mit der Überlauf-Rohrleitung in eine pneumatische Förderleitung integriert, wobei das mit einer ankommenden Förderleitung zugeführte Schüttgut zumindestens ganz überwiegend im Schüttgut-Wärmetauscher temperiert wird und wobei die Förderluft durch die Überlauf-Rohrleitung am Schüttgut-Wärmetauscher vorbeigeführt wird und hinter diesem mit dem Schüttgutstrom wieder zusammengeführt wird. Dadurch erfolgt dann eine Weiterförderung in einer weiterführenden Förderleitung. Gerade bei dieser Ausgestaltung ist es von Vorteil, dass die Überlauf-Rohrleitung eine große Nennweite aufweist. Bei einer dem Schüttgut-Wärmetauscher als Austragsorgan nachgeordneten Zellenrad-Schleuse liegt dann kein Differenzdruck an dieser an. Ein solcher Differenzdruck würde nämlich zu Leckluft führen, die dem Schüttgut im Schüttgut-Wärmetauscher entgegenströmen und zu Störungen des Schüttgutflusses führen würde. Ein solcher negativer Effekt würde insbesondere bei feinkörnigen oder pulvrigen Schüttgütern auftreten.According to a further embodiment according to claim 4, the bulk material heat exchanger is integrated with the overflow pipe in a pneumatic conveying line, wherein the supplied with an incoming feed line bulk material at least predominantly in the bulk material heat exchanger is tempered and wherein the conveying air is passed through the overflow pipe at the bulk material heat exchanger and is merged behind this again with the bulk material flow. As a result, a further promotion then takes place in a continuing delivery line. Especially in this embodiment, it is advantageous that the overflow pipe has a large nominal diameter. In a the bulk material heat exchanger downstream as discharge organ rotary valve then there is no differential pressure at this. Such a differential pressure would namely lead to leakage air, which would flow counter to the bulk material in the bulk material heat exchanger and would lead to disturbances of the bulk material flow. Such a negative effect would occur especially in fine-grained or powdery bulk materials.

Alternativ kann das im Schüttgut-Wärmetauscher temperierte Schüttgut auch in eine nachgeordnete Förderleitung eingeschleust werden, wozu die Weiterbildung nach Anspruch 5 eine Lösung angibt.Alternatively, the tempered in the bulk material heat exchanger bulk material can also be introduced into a downstream delivery line, including the development according to claim 5 indicates a solution.

Durch die Weiterbildungen nach den Ansprüchen 6, 7 und 8 wird erreicht, dass die Entlüftung der dem Schüttgut-Wärmetauscher nachgeordneten Einrichtungen über die Überlauf-Rohrleitung erfolgt. Dies gilt insbesondere für die Leckluft, die aus der Zuführ-Schleuse austritt.Through the developments according to claims 6, 7 and 8 it is achieved that the venting of the bulk material heat exchanger downstream devices via the overflow pipe. This is especially true for the leakage air exiting the feed gate.

Anspruch 9 gibt schließlich wieder, dass auch ein geschlossener Fördergas-Kreislauf vorgesehen sein kann, was insbesondere bei Einsatz von Stickstoff als Fördergas anstelle von Förderluft zweckmäßig sein kann.Claim 9 finally shows that a closed conveying gas circuit can also be provided, which may be expedient in particular when nitrogen is used as conveying gas instead of conveying air.

Grundsätzlich kann der Schüttgut-Wärmetauscher in üblicher Weise ausgestaltet sein. So kann das Produkt durch parallel angeordnete Platten oder um quer zur Fließrichtung des Schüttguts eingebaute Rohre unterschiedlichster Querschnittsform, in denen das Wärmeträger-Fluid strömt, fließt; besonders vorteilhaft ist aber eine Ausgestaltung nach Anspruch 10.In principle, the bulk material heat exchanger can be designed in the usual way. Thus, the product can by parallel arranged plates or transversely to the flow direction of the bulk material pipes of various different Cross-sectional shape in which the heat transfer fluid flows flows; but is particularly advantageous embodiment according to claim 10.

Anspruch 11 gibt eine Konkretisierung der Querschnittsverhältnisse von pneumatischer Förderleitung und Überlauf-Rohrleitung an, wobei durch diese Querschnittsverhältnisse sichergestellt wird, dass eine Regelung des Schüttgut-Füllstands im Puffer-Abschnitt nicht erforderlich ist.Claim 11 specifies a concretization of the cross-sectional conditions of the pneumatic delivery line and the overflow pipeline, wherein it is ensured by these cross-sectional relationships that a regulation of the bulk material level in the buffer section is not required.

Weitere Merkmale, Vorteile und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen anhand der Zeichnung. Es zeigt

Fig. 1
eine Vorrichtung nach der Erfindung in vertikalem Längsschnitt in schematischer Darstellung,
Fig. 2
eine Anordnung einer Vorrichtung nach der Erfindung auf einem Silo,
Fig. 3
eine Anordnung einer Vorrichtung nach der Erfindung in einer pneumatischen Förderung,
Fig. 4
eine Vorrichtung nach der Erfindung mit vorgeordne-ter Schwerkraft-Zuführung von Schüttgut und nachgeordneter pneumatischer Förderung,
Fig. 5
eine Fig. 4 entsprechende Anordnung jedoch mit pneumatischer Zuführung des Schüttguts zur Vorrichtung und
Fig. 6
eine Anordnung einer Vorrichtung nach der Erfindung mit einer Kreislaufführung des Fördergases.
Further features, advantages and details of the invention will become apparent from the following description of exemplary embodiments with reference to the drawing. It shows
Fig. 1
a device according to the invention in vertical longitudinal section in a schematic representation,
Fig. 2
an arrangement of a device according to the invention on a silo,
Fig. 3
an arrangement of a device according to the invention in a pneumatic conveying,
Fig. 4
a device according to the invention with pre-ordered gravitational feed of bulk material and downstream pneumatic conveying,
Fig. 5
a Fig. 4 corresponding arrangement, however, with pneumatic feed of the bulk material to the device and
Fig. 6
an arrangement of a device according to the invention with a circulation of the conveying gas.

Die in Figur 1 dargestellte Vorrichtung zum Temperieren von Schüttgut weist einen oberen Puffer-Abschnitt 1, einen mittleren Wärme-Austausch-Abschnitt 2 und einen unteren Austrags-Abschnitt 3 auf. Die Abschnitte 1, 2, 3 weisen jeweils Kreisquerschnitte auf. Der gehäuseartige, im Wesentlichen umschlossene Puffer-Abschnitt 1 ist mit einem oberen Zulauf-Stutzen 4 zur Zuführung eines zu temperierenden Schüttguts versehen. Der Zulauf-Stutzen 4 wird bevorzugt tangential in den Puffer-Abschnitt 1 eingeführt, um eine gute Abscheidung des Schüttguts entlang der Innenwand des Puffer-Abschnitts 1 zu bewirken. Diese Vorrichtung wird nachfolgend auch als Schüttgut-Wärmetauscher bezeichnet.In the FIG. 1 illustrated device for controlling the temperature of bulk material has an upper buffer section 1, a central heat exchange section 2 and a lower discharge section 3. The sections 1, 2, 3 each have circular cross sections. The housing-like, substantially enclosed buffer section 1 is provided with an upper inlet nozzle 4 for supplying a bulk material to be tempered. The inlet nozzle 4 is preferably introduced tangentially into the buffer section 1 in order to effect a good separation of the bulk material along the inner wall of the buffer section 1. This device is also referred to below as a bulk material heat exchanger.

Der Wärme-Austausch-Abschnitt 2 weist ein Gehäuse 5 auf, in dessen Innenraum 6 parallel zueinander Wärmetauscher-Rohre 7 jeweils mit Abstand voneinander angeordnet sind. Der Innenraum 6 ist also ein Wärmetausch-Raum.The heat exchange section 2 has a housing 5, in whose interior space 6 heat exchanger tubes 7 are arranged parallel to each other at a distance from each other. The interior 6 is therefore a heat exchange space.

Benachbart zum Austrags-Abschnitt 3 mündet in den Innenraum 6 des Gehäuses 5 des Wärmeaustausch-Abschnitts 2 ein Zuführ-Stutzen 8 für Wärmeträger-Fluid ein. Benachbart zum Puffer-Abschnitt 1 mündet ein Abführ-Stutzen 9 aus dem Innenraum 6 des Gehäuses 5 aus. Im Innenraum 6 sind Umlenk-Platten 10 jeweils quer zur Längsrichtung der Rohre 7 im Abstand voneinander derart angebracht, dass ein über den Zuführ-Stutzen 8 zugeführtes Wärmeträger-Fluid entsprechend dem Strömungs-RichtungsPfeil 11 mäanderförmig durch den Innenraum 6 jeweils quer zur Längsrichtung der Rohre schrittweise nach oben zum Abführ-Stutzen 9 strömt. Der Wärme-Austausch-Abschnitt 2 ist also für einen Kreuz-Gegen-Strom des Wärmeträger-Fluids ausgelegt. Der Innenraum 6 kann mit einer die Rohre 7 umhüllenden Schüttung 12 aus Glaskugeln, Stahlkugeln und Kunststoffgranulat gefüllt sein, die zur Verbesserung des Wärmeübergangs zwischen dem Wärmeträger-Fluid und den Rohren 7 beiträgt. Die Einfüllung dieser Schüttung in den Innenraum 6 erfolgt über den Abführ-Stutzen 9; eine eventuelle Entnahme erfolgt über den Zufuhr-Stutzen 8. Zur Sicherung der Schüttung im Innenraum 6 sind in den Stutzen 8, 9 herausnehmbare Rückhalte-Siebe 13 angeordnet. Die Größe der Partikel der Schüttung 12 sollte so sein, dass sie nach der Herstellung des Wärme-Austausch-Abschnitts 2 in diesen eingebracht werden können. Die Partikel der Schüttung 12 müssen auf jeden Fall also kleiner sein als der Teilungsabstand der Rohre 7. Die Partikel der Schüttung 12 haben bevorzugt Kugel-, Linsen-oder Zylinderform.Adjacent to the discharge section 3 opens into the interior 6 of the housing 5 of the heat exchange section 2, a supply nozzle 8 for heat transfer fluid. Adjacent to the buffer section 1 opens a discharge nozzle 9 from the interior 6 of the housing 5. In the interior 6 deflecting plates 10 are each transversely to the longitudinal direction of the tubes 7 at a distance from each other mounted such that a supplied via the supply nozzle 8 heat transfer fluid according to the flow directional arrow 11 meandering through the interior 6 each transverse to the longitudinal direction of the tubes gradually upward to the discharge nozzle 9 flows. The heat exchange section 2 is therefore for a cross-countercurrent designed the heat transfer fluid. The interior 6 can be filled with a tube 7 enveloping bed 12 of glass beads, steel balls and plastic granules, which contributes to the improvement of the heat transfer between the heat transfer fluid and the tubes 7. The filling of this bed in the interior 6 via the discharge nozzle 9; a possible removal takes place via the supply nozzle 8. To secure the bed in the interior 6 removable retaining sieves 13 are arranged in the socket 8, 9. The size of the particles of the bed 12 should be such that they can be introduced into them after the heat exchange section 2 has been manufactured. The particles of the bed 12 must therefore in any case be smaller than the pitch of the tubes 7. The particles of the bed 12 are preferably spherical, lens or cylindrical shape.

Die Rohre 7 sind oben in einem fest mit dem Gehäuse 5 verbundenen Einlauf-Rohrboden 14 und unten mit einem Auslauf-Rohrboden 15 derart verbunden, dass sie zum Puffer-Abschnitt 1 und zum Austrags-Abschnitt 3 hin offen sind. Zwischen dem Puffer-Abschnitt 1 und dem Wärme-Austausch-Abschnitt 2 einerseits und dem Wärme-Austausch-Abschnitt 2 und dem Austrags-Abschnitt 3 bestehen Flanschverbindungen 16 bzw. 17. Wie der Zeichnung entnehmbar ist, ist der Einlauf-Rohrboden 14 so ausgestaltet, dass jedes Rohr 7 einen sich zum Puffer-Abschnitt 1 hin erweiternden, zum jeweiligen Rohr 7 hin also verengenden Zulauf-Trichter 18 aufweist, wobei benachbarte Trichter 18 wiederum so dimensioniert sind, dass sie sich oben in einer verhältnismäßig scharfen Kante 19 treffen. Die Zulauf-Trichter 18 weisen einen Öffnungswinkel α auf, der mindestens 30° und maximal 120° ist, vorzugsweise aber im Bereich von 40° bis 100° liegt. Hierdurch wird vermieden, dass im Einlauf-Rohrboden 14 zwischen benachbarten Rohren 7 Toträume bzw. Totflächen entstehen, auf denen Schüttgut 20 liegen bleibt, das insbesondere bei der Entleerung des Wärme-Austausch-Abschnittes 2 nicht einem Rohr 7 durch Schwerkraft zugeführt wird und daher auf dem Einlauf-Rohrboden 14 liegen bleibt.The tubes 7 are connected at the top in an inlet tube plate 14 fixedly connected to the housing 5 and at the bottom with an outlet tube plate 15 in such a way that they are open towards the buffer section 1 and the discharge section 3. Between the buffer section 1 and the heat exchange section 2 on the one hand and the heat exchange section 2 and the discharge section 3 are flange connections 16 and 17. As the drawing is removed, the inlet tube plate 14 is configured in that each tube 7 has an inlet funnel 18 which widens toward the buffer section 1 and thus narrows towards the respective tube 7, with adjacent funnels 18 in turn being dimensioned so that they meet at the top in a relatively sharp edge 19. The inlet funnels 18 have an opening angle α which is at least 30 ° and at most 120 °, but is preferably in the range from 40 ° to 100 °. This avoids that in the inlet tube plate 14 between adjacent tubes 7 dead spaces or dead surfaces arise on which bulk material 20 remains, which is not supplied to a pipe 7 by gravity, especially when emptying the heat exchange section 2 and therefore remains on the inlet tube sheet 14.

An der Außenseite des Gehäuses 5 sind Vibratoren 21 angebracht, mittels derer der gesamte Wärme-Austausch-Abschnitt 2 und damit die Rohre 7 in Vibrationen versetzt werden, wodurch ein Wärmeübergang auf der Innenseite der Rohre 7, also zwischen diesen und dem Schüttgut 20 verbessert wird.On the outside of the housing 5 vibrators 21 are mounted, by means of which the entire heat exchange section 2 and thus the tubes 7 are vibrated, whereby a heat transfer on the inside of the tubes 7, ie between them and the bulk material 20 is improved ,

Der Austrags-Abschnitt 3 ist in Form eines sich nach unten verjüngenden kegelförmigen Trichters ausgebildet. Eine solche Form bewirkt, dass das Schüttgut 20 im Austrags-Abschnitt 3 an allen Stellen eines beliebig ausgewählten Querschnitts mit nahezu der gleichen Geschwindigkeit fließt, wobei bei dieser Betrachtung der unmittelbare Wandbereich nicht berücksichtigt wird, da hier immer eine Verzögerung durch Wandreibung eintritt. Als Austrags-Einrichtung ist eine Zellenrad-Schleuse 22 vorgesehen, deren Gehäuse 23 über ein Fallrohr 24 mit dem Austrags-Abschnitt 3 verbunden ist. Im Gehäuse 23 ist ein Zellenrad 25 angeordnet, das von einem Motor 26 drehantreibbar ist. Außer Zellenrad-Schleusen kommen selbstverständlich auch andere Austrags-Einrichtungen in Betracht, wie z. B. Austragsschnecken, Vibrationsrinnen oder Dosierschieber.The discharge section 3 is in the form of a downwardly tapered cone-shaped funnel. Such a shape causes the bulk material 20 flows in the discharge section 3 at all points of an arbitrarily selected cross section with almost the same speed, in this consideration, the immediate wall area is not taken into account, since there is always a delay due to wall friction. As a discharge device a cellular wheel lock 22 is provided, the housing 23 is connected via a downpipe 24 with the discharge section 3. In the housing 23, a cellular wheel 25 is arranged, which is rotatably driven by a motor 26. Except cellular wheel locks are of course other discharge facilities into consideration, such. B. discharge screws, vibrating troughs or metering slides.

Aus dem Puffer-Abschnitt 1 mündet eine Überlauf-Rohrleitung 27 aus. Diese Überlauf-Rohrleitung 27 führt am Wärme-Austausch-Abschnitt 2 und am Austrags-Abschnitt 3 vorbei und mündet unterhalb der als Austrags-Schleuse dienenden Zellenrad-Schleuse 22 in ein Abführ-Rohr 28. Die Eintritts-Öffnung 29 der Überlauf-Rohrleitung 27 befindet sich etwa auf halber Höhe des Puffer-Abschnitts 1. Wie Fig. 1 entnehmbar ist, stellt sich der Schüttgut-Spiegel 30 im Puffer-Abschnitt 1 etwa so ein, dass bei einem die Eintritts-Öffnung 29 der Überlauf-Rohrleitung 27 erreichenden bzw. überschreitenden Schüttgut-Spiegel 30 das überschießende Schüttgut 20 durch die Überlauf-Rohrleitung 27 abfließt. Durch die tangentiale Zuführung des Schüttguts durch den Zulauf-Stutzen 4 in den Puffer-Abschnitt 1 wird eine gleichmäßige, d. h. etwa niveaugleiche Füllung des Puffer-Abschnitts 1 erreicht. Hierdurch wird erreicht, dass nicht zu viel Schüttgut mit der Förderluft in die Überlauf-Rohrleitung 27 mitgerissen wird. Sobald der Schüttgut-Spiegel 30 bis auf das Niveau der Eintritts-Öffnung 29 absinkt oder darunter liegt, geht der Abfluss von Schüttgut 20 durch die Überlauf-Rohrleitung 27 gegebenenfalls auf Null. Hierdurch können Schwankungen in der Schüttgut-Zufuhr über den Zulauf-Stutzen 4 ausgeglichen werden. Des Weiteren können Störungen im Schüttgut-Transport durch den Wärme-Austausch-Abschnitt 2 und im Bereich der Zellenrad-Schleuse 22 ausgeglichen werden.From the buffer section 1 opens an overflow pipe 27. This overflow pipe 27 leads past the heat exchange section 2 and at the discharge section 3 and opens below the feeder lock 22 serving as a sluice in a discharge pipe 28. The inlet opening 29 of the overflow pipe 27th is about halfway up the buffer section 1. Like Fig. 1 can be removed, the bulk material level 30 in the buffer section 1 is approximately such that at a the inlet opening 29 of the overflow pipe 27 reaching or exceeding bulk material level 30, the excess bulk material 20 through the overflow pipe 27th flows. Due to the tangential feeding of the bulk material through the inlet nozzle 4 in the buffer section 1, a uniform, ie approximately level equal filling of the buffer section 1 is achieved. This ensures that not too much bulk material is entrained with the conveying air in the overflow pipe 27. As soon as the bulk material level 30 drops to or below the level of the inlet opening 29, the outflow of bulk material 20 through the overflow pipeline 27 may be zero. As a result, fluctuations in the bulk material supply via the inlet nozzle 4 can be compensated. Furthermore, disturbances in the bulk material transport through the heat exchange section 2 and in the area of the cellular wheel lock 22 can be compensated.

Fig. 2 zeigt einen Schüttgut-Wärmetauscher auf einem Silo 31. Dem Puffer-Abschnitt 4 wird über eine pneumatische Förderleitung 32 in Förderrichtung 33 Schüttgut 20 zugeführt, das durch den Zulauf-Stutzen 4 in den Puffer-Abschnitt 1 eintritt. Die Förderung des größten Teils des Schüttgutes 20 erfolgt durch den Wärme-Austausch-Abschnitt 2 und die Austrags-Schleuse 22 und das Abführ-Rohr 28 in einen Einlass 34 des Silo 31. Die durch die Förderleitung 32 mit dem Schüttgut 20 in den Puffer-Abschnitt 1 geförderte Förderluft wird vollständig über die Überlauf-Rohrleitung 27 in den Silo 31 gefördert und tritt dort durch einen Abluft-Stutzen 35 aus. In letzterem ist regelmäßig ein Filter 36 angeordnet. Diese Ausgestaltung und Anordnung ist insbesondere bei Einsatz besonders großer Silos 31 mit großem Durchmesser geeignet, wo nämlich der Einlass 34 und der Abluft-Stutzen 35 einen möglichst großen Abstand von beispielsweise 10 m voneinander aufweisen, so dass eine ausreichende Beruhigung der in den Silo 31 eintretenden Förderluft stattfindet. Fig. 2 shows a bulk material heat exchanger on a silo 31. The buffer section 4 is fed via a pneumatic conveying line 32 in the conveying direction 33 bulk material 20, which enters through the inlet nozzle 4 in the buffer section 1. The promotion of most of the bulk material 20 takes place through the heat exchange section 2 and the discharge lock 22 and the discharge pipe 28 in an inlet 34 of the silo 31. The through the feed line 32 with the bulk material 20 in the buffer Section 1 funded conveying air is completely conveyed through the overflow pipe 27 into the silo 31 and exits there through an exhaust port 35. In the latter, a filter 36 is regularly arranged. This configuration and arrangement is particularly suitable when using very large silos 31 with large diameter, namely where the inlet 34 and the exhaust air nozzle 35 have the greatest possible distance, for example, 10 m from each other, so that a sufficient calming of the entering into the silo 31 conveying air takes place.

Bei der Anordnung nach Fig. 3 ist ein Schüttgut-Wärmetauscher in eine pneumatische Förderleitung 37 integriert und steht somit während des Betriebes unter Über- oder Unterdruck, da in der pneumatischen Förderleitung 37 grundsätzlich eine Saug- oder eine Druckförderung stattfinden kann. Die Förderleitung 37 tritt - wie bereits in Fig. 2 geschildert - über den Zulauf-Stutzen 4 in den Puffer-Abschnitt 1 ein. Das Abführ-Rohr 28, in das die Überlauf-Rohrleitung 27 einmündet, geht wiederum in die weiterführende Förderleitung 38 über. Die Überlauf-Rohrleitung 27 ist also Teil des Luft-Fördersystems, wobei lediglich im Bereich des Wärme-Austausch-Abschnitts 2 die Förderluft und das Schüttgut 20 zumindest weitgehend voneinander getrennt werden. Hinter der Austrags-Schleuse 22 werden der Schüttgutstrom und die Förderluft wieder zusammengeführt. In der ankommenden Förderleitung 37 und der weiterführenden Förderleitung 38 sind jeweils eine Weiche 39, 40 vorgesehen, die über eine Bypass-Leitung 41 miteinander verbunden sind. Bei schweren Störungen in der Vorrichtung zum Temperieren von Schüttgut 20 oder bei einer Reinigung dieser Vorrichtung kann das Schüttgut 20 dann an der Vorrichtung vorbei gefördert werden. Gerade bei dieser Ausführungsform kann es zweckmäßig sein, wenn in die Überlauf-Rohrleitung 27 ein Kühler 27a integriert ist, damit die Förderluft gekühlt wird. Bei einem solchen Kühler 27a kann es sich beispielsweise um einen Doppelrohr- oder Rohrbündel-Wärmetauscher handeln.In the arrangement according to Fig. 3 is a bulk material heat exchanger integrated into a pneumatic conveying line 37 and thus stands during operation under positive or negative pressure, since in the pneumatic conveying line 37 basically a suction or a pressure promotion can take place. The delivery line 37 occurs - as already in Fig. 2 described - via the inlet nozzle 4 in the buffer section 1 a. The discharge pipe 28, in which the overflow pipe 27 opens, in turn passes into the further conveying line 38. The overflow pipe 27 is thus part of the air conveyor system, wherein only in the region of the heat exchange section 2, the conveying air and the bulk material 20 are at least largely separated from each other. Behind the discharge lock 22 of the bulk material flow and the conveying air are brought together again. In the incoming delivery line 37 and the continuing delivery line 38, a switch 39, 40 are provided in each case, which are connected to one another via a bypass line 41. In the case of severe faults in the device for controlling the temperature of bulk material 20 or during cleaning of this device, the bulk material 20 can then be conveyed past the device. Especially in this embodiment, it may be appropriate if a radiator 27 a is integrated into the overflow pipe 27, so that the conveying air is cooled. Such a cooler 27a may be, for example, a double-pipe or shell-and-tube heat exchanger.

Bei der Anordnung nach Fig. 4 wird das Schüttgut 20 dem Puffer-Abschnitt 1 durch Schwerkraft zugeführt. Beispielsweise handelt es sich bei dem Schüttgut 20 um Kunststoffgranulat, das von einem Extruder 42 mit nachgeordneter Unterwasser-Granulierung 43 einem Trockner 44 zugeführt wird. Von dort gelangt es über ein Klassier-Sieb 45 durch Schwerkraft über den Zulauf-Stutzen 4 in den Puffer-Abschnitt 1. Der Austrags-Schleuse 22 ist hierbei ein sogenannter geschlossener Vor-Behälter 46 nachgeordnet, in den das Abführ-Rohr 28 mündet. Die Überlauf-Rohrleitung 27 mündet ebenfalls in diesen Vor-Behälter 46, aus dem eine als Zuführ-Schleuse dienende motorisch angetriebene Zellenrad-Schleuse 47 das Schüttgut 20 in eine pneumatische Förderleitung 48 eingibt. Die Förderluft wird mittels eines Gebläses 49 erzeugt. Die Förderung erfolgt in Förderrichtung 33. Die aus der Zellenrad-Schleuse 47 in den Vor-Behälter 46 eintretende Leckluft wird über die Überlauf-Rohrleitung 27 in den Puffer-Abschnitt 1 abgeführt, aus dem sie durch einen Abluft-Stutzen 50 austritt. Die Förderung durch die Förderleitung 48 erfolgt zu Silos 51, 52.In the arrangement according to Fig. 4 the bulk material 20 is fed to the buffer section 1 by gravity. For example, it is in the bulk material 20 to plastic granules, which is supplied from an extruder 42 with subordinate underwater granulation 43 a dryer 44. From there, it passes through a classifying sieve 45 by gravity via the inlet nozzle 4 into the buffer section 1. The discharge gate 22 is hereby followed by a so-called closed pre-container 46, into which the discharge pipe 28 discharges. The overflow pipeline 27 also opens into this pre-container 46, from which a motor-driven cellular wheel lock 47 serving as a feed lock enters the bulk material 20 into a pneumatic delivery line 48. The conveying air is generated by means of a blower 49. The promotion takes place in the conveying direction 33. The leaking from the cellular wheel lock 47 in the pre-tank 46 leakage air is discharged via the overflow pipe 27 into the buffer section 1, from which it exits through an exhaust port 50. The delivery through the delivery line 48 takes place to silos 51, 52.

Die Ausgestaltung nach Fig. 5 unterscheidet sich von der nach Fig. 4 nur dadurch, dass die Zufuhr des Schüttgutes 20 bereits über eine pneumatische Förderleitung 32 erfolgt, wie es auch bei der Anordnung nach Fig. 2 der Fall ist. Außer der Leckluft aus dem Vor-Behälter 46 wird die gesamte Förderluft aus der pneumatischen Förderleitung 32 über den Abluft-Stutzen 50 abgeblasen.The design after Fig. 5 is different from the after Fig. 4 only in that the supply of the bulk material 20 already takes place via a pneumatic conveying line 32, as in the arrangement according to Fig. 2 the case is. In addition to the leakage air from the pre-tank 46, the entire conveying air is blown off from the pneumatic conveying line 32 via the exhaust air nozzle 50.

Die Anordnung nach Fig. 6 unterscheidet sich von der nach Fig 5 dadurch, dass ein Kreislauf der Fördergases vorgesehen ist; dies ist beispielsweise dann von Interesse, wenn anstelle von Förderluft Stickstoff als Fördergas eingesetzt wird. Durch die erste Förderleitung 32 wird Schüttgut 20 über den Zulauf-Stutzen 4 in den Puffer-Abschnitt 1 eingegeben. Der Abluft-Stutzen 50 ist über eine Verbindungs-Leitung 53 mit einem Kühler 54 und einem Sicherheitsfilter 55 mit dem Gebläse 49 verbunden. Auch hier wird die Leckluft aus der Zellenrad-Schleuse 47 bzw. dem vorgeordneten Vor-Behälter 46 über die Überlauf-Rohrleitung 27 in den Puffer-Abschnitt 1 geführt und von dort über den Abluft-Stutzen 35 und die Verbindungs-Leitung 53 der zweiten Förderleitung 48 zugeführt.The arrangement after Fig. 6 is different from the after Fig. 5 in that a cycle of the delivery gases is provided; This is for example of interest if, instead of conveying air nitrogen is used as a conveying gas. By the first feed line 32 bulk material 20 is input via the inlet nozzle 4 in the buffer section 1. The exhaust pipe 50 is connected via a connecting line 53 with a radiator 54 and a safety filter 55 to the blower 49. Here too will the leakage air from the cellular wheel lock 47 and the upstream pre-tank 46 via the overflow pipe 27 into the buffer section 1 and fed from there via the exhaust port 35 and the connecting line 53 of the second delivery line 48.

Durch die Kühlung des Fördergases im Kühler 54 wird das Schüttgut in der Förderleitung 48 zusätzlich gekühlt. Eine entsprechend der Ausgangstemperatur des gekühlten Fördergases niedrigere Mischungstemperatur von Schüttgut und Fördergas stellt sich hierbei bereits nach wenigen Metern Förderweg ein. Hierin liegt ein Vorteil der Anordnung nach Fig. 6 gegenüber der nach Fig. 3.By cooling the conveying gas in the cooler 54, the bulk material in the conveying line 48 is additionally cooled. A lower mixing temperature of bulk material and conveying gas, which corresponds to the starting temperature of the cooled conveying gas, is already established after a few meters of conveying. This is an advantage of the arrangement Fig. 6 opposite to the Fig. 3 ,

Claims (11)

  1. Device for tempering bulk material (20) comprising °
    - a heat exchanger section (2) through which bulk material (20) may flow in a direction of gravity,
    - a buffer section (1) for the bulk material (20), which buffer section (1) comprises a bulk material inlet (4) and is arranged upstream of the heat exchanger section (2) in the direction of gravity,
    - a discharge section (3) for discharging a bulk material flow, the discharge section (3) being arranged downstream of the heat exchanger section (2) in the direction of gravity,
    - a discharge device (22), which is associated with the discharge section (3), for the bulk material which is discharged from the discharge section (3), and characterized in that an overflow pipe (27) is provided for bulk material (20),
    -- with an inlet opening (29) of said overflow pipe (27) leading out of the buffer section (1), and
    -- with the overflow pipe (27) guiding into the discharged bulk material (20).
  2. Device according to claim 1, characterized in that a pneumatic conveyance line (32, 37) for bulk material (20) projects into the bulk material inlet (4).
  3. Device according to claim 1 or 2, characterized in that a silo (31) is arranged downstream of the discharge device (22), that the overflow pipe (27) guides into the discharged bulk material (20) downstream of the discharge device (22), and that all air is extracted from the silo (31).
  4. Device according to claim 2, characterized in that the overflow pipe (27) and the discharge device (22) merge to form a continuous conveyance line (38).
  5. Device according to claim 1, characterized in that an inlet feeder (47) for a pneumatic conveyance line (48) is arranged downstream of the discharge device (22), and that the overflow pipe (27) guides into the discharged bulk material (20) between the discharge device (22) and the inlet feeder (47).
  6. Device according to claim 5, characterized in that a reservoir (46) is arranged upstream of the inlet feeder (47), and that the discharge device (22) and the overflow pipe (27) guide into the reservoir (46).
  7. Device according to claim 5, characterized in that the reservoir (46) is closed.
  8. Device according to claim 5, characterized in that the buffer section (2) is provided with an air exhaust (50).
  9. Device according to claim 8, characterized in that the air exhaust (50) is connected with the pneumatic conveyance line (48) via a connection line (53) comprising a blower (49).
  10. Device according to claim 1, characterized in that in the heat exchanger section (2) are arranged heat exchanger pipes (7) which are arranged in the direction of gravity and are connected with the buffer section (2) and the discharge section (3).
  11. Device according to claim 2, characterized in that the overflow pipe (27) has a cross-section which is at least equal to but preferably at least twice the cross-section of the pneumatic conveyance line (32, 37).
EP05016930A 2004-09-13 2005-08-04 Granular material cooler Not-in-force EP1637824B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004044586A DE102004044586A1 (en) 2004-09-13 2004-09-13 Device for controlling the temperature of bulk material

Publications (3)

Publication Number Publication Date
EP1637824A2 EP1637824A2 (en) 2006-03-22
EP1637824A3 EP1637824A3 (en) 2006-12-27
EP1637824B1 true EP1637824B1 (en) 2009-03-18

Family

ID=35583451

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05016930A Not-in-force EP1637824B1 (en) 2004-09-13 2005-08-04 Granular material cooler

Country Status (3)

Country Link
EP (1) EP1637824B1 (en)
AT (1) ATE426138T1 (en)
DE (2) DE102004044586A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007053520A1 (en) * 2007-11-09 2009-05-14 Coperion Waeschle Gmbh & Co. Kg Device for cooling and / or heating bulk material
DE102009014786A1 (en) 2008-08-18 2010-02-25 Coperion Gmbh Processing plant for bulk material
DE102010027801A1 (en) 2010-04-15 2011-10-20 Coperion Gmbh Device for cooling or heating bulk material
DE102011078944B4 (en) * 2011-07-11 2014-09-25 Coperion Gmbh Bulk material heat exchanger device, heat exchanger system for bulk material with at least one such bulk material heat exchanger device and method for operating such a heat exchanger system
WO2022214118A1 (en) * 2021-04-06 2022-10-13 Gkn Sinter Metals Engineering Gmbh Heat exchanger for controlling the temperature of a solid substance

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD112934A1 (en) * 1974-07-17 1975-05-12
DD146846A1 (en) * 1979-12-21 1981-03-04 Eckhart Schlinzig METHOD FOR DRYING COFFEE FRUITS IN A BAY DRYER
NL187770C (en) * 1980-11-12 1992-01-02 Esmil Bv FLOW-UP DEVICE FOR A LIQUID MEDIUM CONTAINING A FLUIDISABLE GRAIN MASS.
JP3525208B2 (en) * 1995-10-09 2004-05-10 株式会社松井製作所 Cooling device for high temperature powder
IT1285524B1 (en) * 1996-10-18 1998-06-08 Sinco Eng Spa PROCEDURE FOR THE COOLING OF POLYESTER AND / OR POLYAMIDE RESINS
DE29618460U1 (en) * 1996-10-23 1997-09-25 Babcock Bsh Gmbh Shaft cooler
TR199902598T2 (en) * 1997-04-10 2000-04-21 E.I. Du Pont De Nemours & Company Improved method for producing crystalline carboxylic acids.
DE10054240A1 (en) * 2000-11-02 2002-05-08 Buehler Ag Shaft reactor with a gassed outlet cone

Also Published As

Publication number Publication date
ATE426138T1 (en) 2009-04-15
DE502005006864D1 (en) 2009-04-30
EP1637824A2 (en) 2006-03-22
EP1637824A3 (en) 2006-12-27
DE102004044586A1 (en) 2006-03-30

Similar Documents

Publication Publication Date Title
EP2378230A2 (en) Apparatus for cooling or heating bulk material
DE2629278C3 (en) Method and device for regulating the filling level in at least one distribution container
EP3152178B1 (en) Method for expanding raw material in the form of sand grains
EP2061712B1 (en) Conveyor device for powder materials
EP1637824B1 (en) Granular material cooler
AT516916B1 (en) Dosing system for a sanding system of a rail vehicle
EP2045003A1 (en) Device for conveying and mixing bulk material
WO2015158429A1 (en) Blowing device for a rotary air lock
DE2838445A1 (en) PNEUMATICALLY OPERATED MACHINE FOR DISTRIBUTING GRAINY GOODS
EP2239051B1 (en) Processing device for bulk material
DE10018752A1 (en) Mobile unit for producing animal feed from agricultural products and feed concentrate has pneumatic conveyor system for feed components, valves being fitted between processing components, e.g. press and grinder, to control material flow
WO2005092745A2 (en) Device and method for pneumatically conveying fine particle bulk materials
EP3415017B1 (en) Device and method for collecting and discharging free particles that occur while conveying rod-shaped items for the tobacco industry
EP2006628B1 (en) Device for cooling or heating bulk material and method for operating such a device
DE102011078954B4 (en) Bulk heat exchange apparatus
DE102011078948B4 (en) Heat exchanger system for bulk material and method for operating such a heat exchanger system
WO2002022476A1 (en) Device for passing heavily flowing bulk material into a delivery pipe
DE102012221973A1 (en) Bulk material-heat exchanger device comprises housing, bulk material supply line, bulk material feed section, bulk material-discharge portion adjacent to bulk material-heat exchanger portion, heat transfer fluid supply and throttle plate
EP1730058B1 (en) Device and method for pneumatically conveying fine-particle bulk materials
EP1004365B1 (en) Conveying device for bulk material with means for retaining coarse particles
DE102013101385A1 (en) Pellet dust suction device has air inlet and air outlet that are arranged in outer pipe, and are spaced from each other or formed as combined air inlet and outlet
DE102011078944B4 (en) Bulk material heat exchanger device, heat exchanger system for bulk material with at least one such bulk material heat exchanger device and method for operating such a heat exchanger system
DE3114372A1 (en) Pneumatic conveyor for dam building material in underground mining
WO2021180356A1 (en) Separator for separating a conveyed medium, preferably air, from a conveyed material, and method for separating conveyed material from a conveyed medium/conveyed material mixture
DE102015218297A1 (en) Pneumatic conveyor system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070208

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COPERION GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005006864

Country of ref document: DE

Date of ref document: 20090430

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090618

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090826

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090629

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090718

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090618

26N No opposition filed

Effective date: 20091221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120724

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130820

Year of fee payment: 9

Ref country code: GB

Payment date: 20130823

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130823

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20130821

Year of fee payment: 9

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 426138

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130804

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140804

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140901

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181024

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005006864

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200303