EP1630841B1 - Schaltkammer und Hochleistungsschalter - Google Patents

Schaltkammer und Hochleistungsschalter Download PDF

Info

Publication number
EP1630841B1
EP1630841B1 EP04405527A EP04405527A EP1630841B1 EP 1630841 B1 EP1630841 B1 EP 1630841B1 EP 04405527 A EP04405527 A EP 04405527A EP 04405527 A EP04405527 A EP 04405527A EP 1630841 B1 EP1630841 B1 EP 1630841B1
Authority
EP
European Patent Office
Prior art keywords
arcing contact
contact piece
switching chamber
throat
contact pieces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04405527A
Other languages
English (en)
French (fr)
Other versions
EP1630841A1 (de
Inventor
Olaf Hunger
Max Claessens
Martin Holstein
Johan Abrahamsson
Martin Kriegel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Technology AG
Original Assignee
ABB Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AT04405527T priority Critical patent/ATE484067T1/de
Application filed by ABB Technology AG filed Critical ABB Technology AG
Priority to DE502004011745T priority patent/DE502004011745D1/de
Priority to EP04405527A priority patent/EP1630841B1/de
Priority to JP2007528550A priority patent/JP4833980B2/ja
Priority to CN2005800363076A priority patent/CN101048837B/zh
Priority to PCT/CH2005/000433 priority patent/WO2006021109A1/de
Publication of EP1630841A1 publication Critical patent/EP1630841A1/de
Priority to US11/709,819 priority patent/US7566842B2/en
Application granted granted Critical
Publication of EP1630841B1 publication Critical patent/EP1630841B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H33/901Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism making use of the energy of the arc or an auxiliary arc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/0062Testing or measuring non-electrical properties of switches, e.g. contact velocity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H2033/028Details the cooperating contacts being both actuated simultaneously in opposite directions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/7015Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts
    • H01H33/7023Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid characterised by flow directing elements associated with contacts characterised by an insulating tubular gas flow enhancing nozzle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H33/904Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism characterised by the transmission between operating mechanism and piston or movable contact

Definitions

  • the invention relates to the field of high voltage switch technology. It relates to a switching chamber for a high-performance switch and a high-performance switch and to a method for switching off a switching chamber according to the preamble of the independent claims.
  • a quenching gas high-performance switch with a switching chamber which has two arcing contact pieces, of which at least one is movable by means of a drive. After a contact separation burns an arc between the two arcing contact pieces.
  • a boiler room is provided for temporary storage of arc gas heated by the arc.
  • An insulating nozzle has to guide a quenching gas flow connected to the boiler room Engle. This will be a blowing reaches the arc, which should lead to its extinction, so that a current flowing through the high-power switch can be switched.
  • capacitive switching thus requires a high relative speed of the two arcing contact pieces.
  • a relative speed of the two arcing contact pieces necessary for capacitive switching can be determined experimentally or by model calculations.
  • the relative speed of the two arcing contact pieces is selected such that it meets the minimum requirements of the capacitive switching, optionally with a safety margin of a few percent.
  • Typical maximum relative speeds of the arcing contact pieces are between 5 m / s and 9 m / s.
  • EP 1 211 706 A1 is a high-performance switch with two movable arcing contact pieces known, with a maximum speed ratio of the two contact pieces is achieved in the opposite direction of movement from 1: 1.6 to 1: 1.7.
  • a high power switch with two movable arcing contact pieces and a heating chamber for temporarily storing quenching gas, which has been heated by an optionally burning between the arcing contact pieces arc.
  • the switch has an insulating nozzle, which has a throat for guiding a quenching gas flow, which in turn is connected by means of a channel with the heating chamber.
  • the two contact pieces move in the opposite direction, wherein the contact separation takes place and the Engnis is at least partially dammed by the second of the two contact pieces. While the throat is still at least partially closed by the second contact piece, there is a reversal of the movement of the second contact piece.
  • the second contact piece then moves in the same direction as the first of the two contact pieces. Due to the fact that the throat is still at least partially blocked by the second contact piece during the reversal of the direction of movement, an increase of the quenching gas pressure in the heating chamber can be generated. As a result, a stronger arc blowing can be achieved.
  • a switching chamber according to the invention for a high-power switch which can be filled with an extinguishing gas has a first arcing contact piece and a second arcing contact piece, of which at least one is movable by means of a drive. If necessary, an arc burns between the arcing contact pieces.
  • the switching chamber comprises a heating chamber for temporarily storing extinguishing gas heated by the arc, and an insulating nozzle which has a throat connected to the heating chamber for guiding an extinguishing gas flow.
  • the switching chamber according to the invention is designed such that during a switch-off operation, a maximum relative velocity v 12, max of the two arcing contact pieces is at least 1.3 times greater than a relative velocity v 12, c of the two arcing contact pieces necessary for the capacitive switching.
  • the inventive switching chamber can be designed such that during a turn-off, the maximum relative speed v 12, max of the two arcing contact pieces to each other at least 1.5 times, preferably at least 1.7 times large, advantageously at least 1.9 times as large or even at least twice as large as the relative speed v 12, c of the two arcing contact pieces necessary for the capacitive switching.
  • the speed v 12, c is the minimum required for capacitive switching relative speed of the two arcing contact pieces, so the smallest relative speed of the two arcing contact pieces, the capacitive switching allows.
  • the invention may consist in that the switching chamber is designed such that, if it is installed in a single-chamber high-power switch, for the maximum relative speed v 12, max of the two arcing contact pieces to each other during a turn-off: v 12 .
  • Advantage v 12 Max ⁇ ⁇ 31 ⁇ U N ⁇ p ⁇ f / e crit ⁇ p 0 .
  • U N is the rated voltage of the heavy-duty circuit breaker
  • p the pole factor of the high-power switch
  • E crit the field strength for discharges of the extinguishing gas
  • po is the filling pressure of the extinguishing gas
  • f is the mains frequency
  • E crit is about 8900 kV / (bar ⁇ m).
  • E crit is about 8900 kV / (bar ⁇ m).
  • Typical line frequencies are 50 Hz and 60 Hz.
  • Fill pressures po are typically 4.3 bar or 6 bar or above.
  • the pole factor p depends on the intended earthing conditions of the high-performance switch in the high-voltage network (see, for example, the IEC 62271-100 standard) and is typically 1.4 or 1.2, and occasionally more than 1.4.
  • Typical high-voltage switch rated voltages U N are of the order of 123 kV or 365 kV.
  • the invention may consist in that the switching chamber is designed such that for the maximum relative speed v 12, max of the two arcing contact pieces to each other during a turn-off operation: v 12 . Max ⁇ ⁇ 13 ⁇ m / s . advantageous v 12 . Max ⁇ ⁇ 15 ⁇ m / s . especially v 12 . Max ⁇ ⁇ 17 ⁇ m / s . especially advantageous v 12 . Max ⁇ ⁇ 19 ⁇ m / s .
  • the invention makes it possible to produce a very large arc gap within a very short time.
  • material from the insulating nozzle can be vaporized by the arc along a large part of the throat, advantageously along the entire length of the throat.
  • a large surface, in particular the entire inner surface of the throat can thus be used for a relatively long period of time for the generation (vaporization) of arc-extinguishing material.
  • a large amount of arc-quenching material is generated, so that an efficient arc blowing is achieved.
  • the movement of the insulating nozzle is coupled to the movement of one of the two contact pieces, in particular rigidly coupled (equally fast and rectified movement of the insulating nozzle and of the relevant contact piece).
  • the relative speed between the insulating nozzle and one of the two contact pieces satisfies one of the abovementioned conditions according to the invention for the maximum relative speed v 12, max of the two contact pieces.
  • the throat is at least partially dammed by one of the two arcing contact pieces, which is referred to as Verdämm contact piece and is movable, so the two arcing contact pieces advantageously until at least the time of release of the passage through the Verdämm contact piece (that is, therefore, at least to one Extinguishing gas flow through the throat is possible), such a relative speed, which satisfies one of the above conditions for v 12, max .
  • This relative speed may be the maximum relative speed v 12, max of the arcing contact pieces or also a relative speed which is less than v 12, max .
  • the invention may be that the switching chamber is designed such that both arcing contacts are movable, and that during a phase of opposite movement of the arcing contact pieces a ratio v1 / v2 of the speed v1 of the first arcing contact to the speed v2 of second arcing contact piece of v1 / v2 ⁇ 1: 2.4, in particular of v1 / v2 ⁇ 1: 2.7, v1 / v2 ⁇ 1: 2.8 or v1 / v2 ⁇ 1: 3 is achieved.
  • a speed ratio a large relative speed of the arcing contact pieces can be achieved. This is particularly advantageous if the mass to be moved with the first arcing contact piece is significantly larger (at least by a factor of 2 or 3 or 4 or more) than the mass to be moved with the second arcing contact piece.
  • a first drive for driving the first arcing contact piece and a second drive for driving the second arcing contact piece are provided.
  • the second drive (auxiliary drive) may be a drive drivable by the first drive.
  • the insulating nozzle can be driven by means of the first drive.
  • the switching chamber is advantageously designed such that in one phase during a rectified movement of the arcing contact pieces for the ratio v1 / v2 of the velocity v1 of the first arcing contact to the velocity v2 of the second arcing contact: 0.4 ⁇ v ⁇ 1 / v ⁇ 2 ⁇ 1.2 . especially 0.75 ⁇ v ⁇ 1 / v ⁇ 2 ⁇ 1 : 1.15.
  • the speed ratio v1 / v2 is between 0.9 and 1.1 or close to one or is substantially one.
  • a compression space is present whose volume is reduced during a switch-off. It may be the compression chamber with the boiler room identical or different from the boiler room, and be provided in particular a valve between the compression space and the boiler room.
  • the switch, or the switching chamber may be configured as a buffer switch (blow piston switch) or as a self-blowing switch or as a buffer switch self-blowing switch hybrid.
  • the switching chamber may be advantageously designed so that during a turn-off, after the contact separation, and while a quenching gas flow along an axis through the throat in the direction of the second arcing contact piece is possible, a measured parallel to the axis distance d between the throat and the second Arc contact piece is selected such that the flow velocity of the quenching gas flow is at a maximum in such a region, which is arranged with respect to the axis radially laterally adjacent to the second arcing contact piece and / or within the second arcing contact piece.
  • the area can be contiguous or consist of several subareas.
  • the distance d is a spacing.
  • the distance d is of course measured between the ends of Engnis facing each other and the second contact piece when the throat and the second contact piece are spaced from each other.
  • the distance d By said choice of the distance d, an optimization of the extinguishing gas flow, in particular in the region of the throat and the second contact piece is achieved.
  • the extinguishing gas flow is optimized so that a particularly high dielectric strength is generated where a particularly high dielectric load is present.
  • This advantageous effect is achieved by the described choice of the distance d, since a high quenching gas density can be achieved along the switching path, while a lower quenching gas density in the dielectrically less loaded area laterally (and / or inside) of the second contact piece is present.
  • D is the diameter of the cylinder near the end of the cylinder facing the second arcing contact during the extinguishing phase
  • the angle ⁇ is equal to an opening angle ⁇ of an extended region adjoining the throat
  • F' is the area of the radial cross-sectional area of an axis, optionally arranged in the second contact piece, for discharging extinguishing gas
  • the parameter b 1.4 ⁇ b ⁇ 4.5 . especially 1.7 ⁇ b ⁇ 4.0 . especially 2.1 ⁇ b ⁇ 3.5 . and especially advantageous 2.2 ⁇ b ⁇ 3.2 .
  • the throat is formed substantially cylindrical, and advantageously the second contact piece is also formed substantially cylindrical.
  • the diameter of the respective cylinder does not have to be completely constant and can vary slightly. Deviations from a circular cross section to, for example, elliptical cross sections are possible.
  • the throat (or the second contact piece) may have another, advantageously substantially prismatic shape and is still referred to as substantially cylindrical.
  • a corresponding radial dimension of the throat is then taken.
  • the diameter of such a circle can be taken with good accuracy, which has the same area as the throat near the second contact piece.
  • the diameter of the cylinder or the radial dimension of the prism must not be exactly constant.
  • the relevant quantity for the determination of d is the radial dimension at the end of the cylinder or prism facing the second contact piece. Such forms are also included in the term "substantially cylindrical".
  • the mentioned advantageous flow rate condition is fulfilled for the common switch geometries. If the distance d can be kept within a narrower of the specified ranges for d, maintenance of the advantageous extinguishing gas flow can be better ensured.
  • the quenching phase which occurs after the contact separation, and during which an extinguishing gas flow through the throat can take place in the direction of the second arcing contact piece (and also takes place in the case of switching).
  • the distance d satisfies the condition mentioned. This condition is that the region in which the flow velocity of said quenching gas flow directed through the throat toward the second contact piece is greatest is located within the second contact piece and / or laterally adjacent to the second contact piece.
  • the throat is at least partially insulated with a contact piece which can be designated as a damming contact piece, no (notable) extinguishing gas flow can take place through the throat.
  • the said condition for the distance d is advantageously fulfilled for at least 10 ms, more advantageously for at least 20 ms, at least 35 ms or at least 50 ms during a switch-off operation.
  • the Engnis can also be called a nozzle channel.
  • the contact separation means a separation of physical contact between the two arcing contact pieces 1 and 2.
  • the physical contact can be realized, for example, by contacting the contact pieces 1, 2 directly or by means of an intermediate contact piece contacting the two arcing contact pieces 1, 2. Contact pieces).
  • the second arcing contact piece is like a pin, in particular full pin-like design
  • the throat is at least partially deflatable by one of the two arcing contact pieces, which is referred to as Verdämm contact piece and is movable, and the switching chamber is designed such that during a Ausschaltvorganges there is a period during which a direction of movement of the Verdämm Contact piece remains unchanged and the maximum relative speed v 12, max of the two arcing contact pieces to each other is achieved. This period of time advantageously takes at least until the throat is no longer at least partially blocked by the damper contact piece.
  • a particularly preferred embodiment is characterized in that the Engnis by one of the two arcing contact pieces, which is referred to as Verdämm contact piece and is movable, is at least partially WegMmmbar, and that the switching chamber is designed such that during a Ausschaltvorgangs a reversal of movement of the at least one movable arc contact piece takes place when the Engnis is no longer dammed by the Verdämm contact piece at least partially.
  • the movement direction reversal taking place after the release of the throat through the damper contact piece also makes it possible to optimize the quenching gas flow near the damper contact piece.
  • the distance between the two contact pieces can be (slightly) increased or reduced or, with particular advantage, kept substantially constant.
  • a distance between the damper contact piece and the throat can be (slightly) increased or reduced or, particularly advantageously, kept substantially constant.
  • the movement of the insulating nozzle 1: 1 (rigid) is coupled to the movement of the first contact piece and the rectified after the movement direction reversal movement of the two contact pieces is also substantially the same size, a predetermined distance between the throat and the Verdämm contact piece in kept substantially constant.
  • a predetermined distance between the throat and the Verdämm contact piece in kept substantially constant.
  • a driven by the drive gear is used as an auxiliary drive (second drive)
  • a Velocity ratio v1 / v2 of the speed v1 of the first arcing contact piece to the speed v2 of the second arcing contact piece of v1 / v2 ⁇ 1: 1 in the same direction contact piece movement a constant contact piece spacing (and optionally also a constant distance between the throat and the Verdämm contact piece ), which remains constant even when the switch movement is decelerated by a damper mechanism.
  • the influence of return to said distances can be substantially eliminated. Return occurs when the movement of a driven contact piece is hindered by quenching gas in the boiler room, so that thereby takes place an unintended reversal of movement of at least one of the contact pieces.
  • a high-performance switch according to the invention has at least one switching chamber according to the invention and has the corresponding advantages.
  • the method according to the invention for switching off a switching chamber for a high-power switch that can be filled with a quenching gas, with a first arcing contact piece and with a second arcing contact piece, with at least one drive and with an insulating nozzle having a throat, has the steps that at least one of the two arcing contact pieces by means of Drive is moved, that a contact separation takes place and an arc burning between the arcing contact pieces is ignited, is heated by the quenching gas, and that the heated quenching gas is cached and led to the blowing of the arc through the Engnis.
  • a maximum relative speed v 12, max of the two arcing contact pieces is achieved, which is at least 1.3 times, in particular 1.5 times as large as a relative speed v 12, c of the two arcing contact pieces necessary for capacitive switching.
  • the inventive method can also be referred to as a method for switching an electric current by means of a switching chamber.
  • the two arcing contact pieces are arranged coaxially with each other.
  • the channel between the boiler room and Engnis can be advantageously designed as an annular channel.
  • the arcing contact pieces can also be rated current contacts at the same time.
  • separate rated current contacts are provided in addition to the arcing contact pieces.
  • the rated current contacts are separated from each other so that the electrical current to be interrupted commutes to the arcing contact pieces. Thereafter, the arc contact pieces are separated with ignition of the arc.
  • one of the two arcing contact pieces in particular the first arcing contact piece, have an opening for receiving the other, advantageously pin-shaped arcing contact piece in the closed switch state and for discharging extinguishing gas in the opened switch state.
  • this arc contact piece may be formed as a contact tulip with a plurality of contact fingers.
  • the second arcing contact piece is formed like a pin and is movable while the first contact piece has an opening for receiving the second contact piece, and is movable or not movable.
  • High-performance switches and switching chambers in the sense of this application are, in particular, those which are designed for nominal voltages of typically at least approximately 72 kV.
  • the arc in a switching chamber according to the invention generally burns close to the axis and is substantially stationary.
  • the base points of the arc are fixed to the ends of the arcing contact pieces.
  • Fig. 1 schematically shows an inventive switching chamber or a novel single-chamber high-performance switch in the open state (lower half) and in the closed state (upper half).
  • a gear 3 is shown schematically in plan.
  • the high-power switch filled with a quenching gas for example SF 6 , or a mixture of N 2 and SF 6
  • a quenching gas for example SF 6 , or a mixture of N 2 and SF 6
  • a suitable drive can be, for example, an electrodynamic drive or a spring-loaded drive.
  • a second arcing contact piece 2 is driven by an auxiliary drive 3, which is realized by the drive 3 driven by the drive.
  • the two arcing contacts 1.2 touch each other. It may additionally be provided not shown nominal current contact pieces.
  • the first contact piece 1 is rigidly connected to an insulating nozzle 5 and an auxiliary nozzle 13.
  • the insulating nozzle 5 has a throat 6, which is formed substantially cylindrical with a diameter D. Subsequent to the throat 6, a diameter-extended area 21 with an opening angle ⁇ adjoins. Through an annular channel 7, the Engnis is connected to a boiler room 11. Connected to the heating chamber 11 through a valve 12 is a compression space 10. The volume of the heating space is variable by means of a piston 15, which is advantageously fixed.
  • the high-power switch is formed substantially rotationally symmetrical with respect to an axis A, whereby axial directions z1 and z2 along which the arcing contact pieces move and vertical radial directions are defined.
  • Fig. 2 schematically a path-time diagram (zt curves) for the movement of the first contact piece 1 (dashed curve) and the second contact piece 2 (dotted curve) and for the relative movement of the two contact pieces (solid line) is shown.
  • vt curves The corresponding velocity-time curves (vt curves) are in Fig. 3 shown schematically.
  • the speed v1 of the first contact piece 1 (dashed curve) and the speed v2 of the second contact piece 2 (dotted curve) and the relative speed v12 of the two contact pieces (solid line) are shown.
  • the first arc contact piece 1 and the insulating nozzle 5, the auxiliary nozzle 13 and the valve 12 first move in the direction z1.
  • the second contact piece 2 moves in the direction z2.
  • the mass to be moved directly by the drive is large in relation to the mass to be moved by the gear 3. Up to shortly before reaching the maximum speed v1 can be waited therefore with the acceleration of the second contact piece 2.
  • the first contact piece 1 remains after reaching its maximum speed up to a deceleration process at the end of the switch-off at this speed.
  • the volume of the compression chamber is reduced, and the valve 12 can quenching gas flow into the heating chamber 10. Then, during a phase of high or maximum relative speed v12, the contact separation takes place with the ignition of an arc 4. It is possible that the contact separation takes place shortly (a few milliseconds) before or after reaching the maximum relative speeds.
  • the arc 4 leads to the heating of quenching gas and dissolves in Engnis 6 burn-off material from the insulating 5 out.
  • an overpressure in the heating chamber 11 is generated in this way.
  • the later from the boiler room 11 and possibly also from the compression chamber 10 through the boiler room 11 then through the channel 7 in between the two Contact pieces 1.2 arranged extinguishing path flowing extinguishing gas is then used to extinguish the arc. 4
  • quenching gas can flow through the channel 7 not only through the tulip-shaped first contact piece 1 (in the direction z1) but also (to a considerable extent) through the throat 6 and on the pin-shaped second one Pull contact piece 2 past (in the direction of z2).
  • a distance d between the second, advantageously pin-shaped contact piece 2 and the throat 6 can be kept substantially constant.
  • This distance d is chosen such that, in the case of an extinguishing gas flow through the throat 6 to the damper contact piece 2 (in the direction z 2), the maximum Flow rate laterally (ie radially) adjacent to the Verdämm contact piece 2, and in particular not on the route between the two arcing contact pieces 1 and 2 (or radially adjacent to this distance).
  • the distance d is chosen as d ⁇ (0.7 ⁇ 0.2) ⁇ D, where D is the diameter of the throat 6 (at its z2-sided end). If the opening angle ⁇ were smaller than 45 °, then the distance d would advantageously be selected approximately as d ⁇ (0.7 ⁇ 0.2) ⁇ D / tan ⁇ .
  • the Figs. 2 and 3 show the movements of the contact pieces 1,2 only until shortly after the use of damping.
  • P1 is designated a first phase, during which there is a maximum relative speed v12 with opposite movement of the two contact pieces 1,2. In the case shown this is v 12, max ⁇ 20 m / s.
  • P2 a second phase is designated, during which there is a speed ratio v1 / v2 of about 1: 1 in the same direction movement of the two contact pieces 1,2 after release of the throat.
  • a speed ratio v1 / v2 of about 1: 1 in the same direction movement of the two contact pieces 1,2 after release of the throat.
  • a lever 8 is rotatably mounted at a first end by means of a bolt 16 on the second contact piece 2.
  • the lever 8 is rotatably supported by a bolt 17 on a leg of an angle lever 9.
  • the second leg of the angle lever 9 is guided by means of a bolt 18 in a link plate 14.
  • the angle lever 9 is rotatably supported by means of a stationary, for example, attached to the housing of the high-power switch pin 19.
  • the movement of the link plate 14 (preferably rigidly) is coupled to the movement of the first contact piece 1.
  • the transmission 3 can convert a linear movement (of the drive) with a constant speed into a movement with reversal of the direction of movement.
  • a desired speed profile for the second contact piece 2 can be selected.
  • the transmission 3 can, as in Fig. 1 shown to be symmetrical, resulting in a more favorable distribution of forces and greater stability.
  • the speed v1 of the first contact piece 1 after the initial acceleration may typically be between 3 m / s and 10 m / s, for example 5 m / s.
  • the speed v2 of the second contact piece 1 can typically be 10 m / s to 20 m / s at the maximum, for example 15 m / s.
  • the maximum speed ratio v1 / v2 (with opposite motion) can be between 1: 2.4 and 1: 3.5, for example 1: 3.
  • the throat 6 and also the second contact piece 2 is formed substantially cylindrical.
  • the diameter of the respective cylinder does not have to be completely constant and can vary slightly. Deviations from a circular cross section to, for example, elliptical cross sections are possible.
  • throat lengths of more than 40 mm, advantageously more than 50 mm and more than 60 mm can be used.
  • a corresponding high-performance switch can be designed for rated cur- rent currents of more than 40 kA or more than 50 kA at nominal voltages of more than 170 kV or over 200 kV.

Landscapes

  • Circuit Breakers (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Description

    Technisches Gebiet
  • Die Erfindung bezieht sich auf das Gebiet der Hochspannungsschaltertechnik. Sie bezieht sich auf eine Schaltkammer für einen Hochleistungsschalter und auf einen Hochleistungsschalter sowie auf ein Verfahren zum Ausschalten einer Schaltkammer gemäss dem Oberbegriff der unabhängigen Patentansprüche.
  • Stand der Technik
  • Aus dem Stand der Technik sind mit einem Löschgas befüllbare Hochleistungsschalter mit einer Schaltkammer bekannt, die zwei Lichtbogenkontaktstücke aufweist, von denen mindestens eines mittels eines Antriebs bewegbar ist. Nach einer Kontakttrennung brennt zwischen den beiden Lichtbogenkontaktstücken ein Lichtbogen. Ein Heizraum ist zur Zwischenspeicherung von durch den Lichtbogen aufgeheiztem Löschgas vorgesehen. Eine Isolierdüse weist zur Führung einer Löschgasströmung ein mit dem Heizraum verbundenes Engnis auf. Dadurch wird eine Beblasung des Lichtbogens erreicht, die zu dessen Verlöschen führen soll, so dass ein durch den Hochleistungsschalter fliessender Strom geschaltet werden kann.
  • Nach der Kontakttrennung erfolgt eine Relativbewegung der beiden Lichtbogenkontaktstücke, um diese rasch voneinander zu entfernen, da durch die unmittelbar nach dem Verlöschen des Lichtbogens aufschwingende, sogenannte wiederkehrende Spannung sonst eine Rückzündung erfolgen kann. Erfolgt eine Rückzündung, so wurde nicht geschaltet.
  • Dieses sogenannte kapazitive Schalten erfordert somit eine grosse Relativgeschwindigkeit der beiden Lichtbogenkontaktstücke. Eine für kapazitives Schalten (minimale) notwendige Relativgeschwindigkeit der beiden Lichtbogenkontaktstücke kann experimentell oder durch Modell-Rechnungen bestimmt werden.
  • Bei aus dem Stand der Technik bekannten Hochleistungsschaltern und Schaltkammern ist die Relativgeschwindigkeit der beiden Lichtbogenkontaktstücke derart gewählt, dass sie den Minimalanforderungen des kapazitiven Schaltens entspricht, gegebenenfalls mit einer Sicherheitsmarge von wenigen Prozent.
  • Da im Falle der aus dem Stand der Technik bekannten Hochleistungsschalter das kapazitive Schalten die höchsten Anforderungen an die Relativgeschwindigkeit der beiden Lichtbogenkontaktstücke stellt, wurden keine nennenswert höheren Relativgeschwindigkeiten realisiert, denn dies würde eine aufwendigere Auslegung des Hochleistungsschalters und insbesondere entsprechend stärkere Antriebe und Dämpfungseinrichtungen erfordert haben, ohne erkennbare Vorteil zu erbringen.
  • Typische maximale Relativgeschwindigkeiten der Lichtbogenkontaktstücke liegen zwischen 5 m/s und 9 m/s.
  • Aus EP 1 211 706 A1 ist ein Hochleistungsschalter mit zwei bewegbaren Lichtbogenkontaktstücken bekannt, wobei ein maximales Geschwindigkeitsverhältnis der beiden Kontaktstücke bei entgegengesetzter Bewegungsrichtung von 1: 1.6 bis 1:1.7 erreicht wird.
  • Bei Schaltkammern und Hochleistungsschaltern der genannten Art ist es stets wünschenswert, eine stärkere Lichtbogenbeblasung zu erreichen.
  • Aus der Schrift DE 100 03 359 C1 beispielsweise ist ein Hochleistungsschalter bekannt mit zwei bewegbaren Lichtbogenkontaktstücken und einem Heizraum zum Zwischenspeichern von Löschgas, das durch einen gegebenenfalls zwischen den Lichtbogenkontaktstücken brennenden Lichtbogen erhitzt wurde. Der Schalter weist eine Isolierdüse auf, welche zur Führung einer Löschgasströmung ein Engnis aufweist, welches wiederum mittels eines Kanals mit dem Heizraum verbunden ist. Zunächst bewegen sich die beiden Kontaktstücke in entgegengesetzte Richtung, wobei die Kontakttrennung stattfindet und das Engnis durch das zweite der zwei Kontaktstücke zumindest teilweise verdämmt ist. Während das Engnis noch zumindest teilweise durch das zweite Kontaktstück verschlossen ist, findet eine Bewegungsrichungsumkehr des zweiten Kontaktstückes statt. Das zweite Kontaktstück bewegt sich dann also in dieselbe Richtung wie das erste der zwei Kontaktstücke. Dadurch, dass das Engnis während der Bewegungsrichtungsumkehr immer noch zumindest teilweise durch das zweite Kontaktstück verdämmt ist, kann eine Erhöhung des Löschgasdruckes im Heizraum erzeugt werden. Dadurch kann eine stärkere Lichtbogenbeblasung erreicht werden.
  • Darstellung der Erfindung
  • Es ist Aufgabe der Erfindung, eine alternative Möglichkeit zur Erzeugung einer besonders effektiven Lichtbogenbeblasung zu schaffen.
  • Diese Aufgabe löst eine Vorrichtung und ein Verfahren mit den Merkmalen der unabhängigen Patentansprüche.
  • Eine erfindungsgemässe Schaltkammer für einen mit einem Löschgas befüllbaren Hochleistungsschalter weist ein erstes Lichtbogenkontaktstück und ein zweites Lichtbogenkontaktstück auf, von denen mindestens eines mittels eines Antriebs bewegbar ist. Gegebenenfalls brennt zwischen den Lichtbogenkontaktstücken ein Lichtbogen. Die Schaltkammer umfasst einen Heizraum zur Zwischenspeicherung von durch den Lichtbogen aufgeheiztem Löschgas sowie eine Isolierdüse, welche zur Führung einer Löschgasströmung ein mit dem Heizraum verbundenes Engnis aufweist.
  • Gemäss einer ersten Sichtweise der Erfindung ist die erfindungsgemässe Schaltkammer derart ausgelegt, dass während eines Ausschaltvorgangs eine maximale Relativgeschwindigkeit v12,max der beiden Lichtbogenkontaktstücke zueinander mindestens 1.3 mal so gross ist wie eine zum kapazitiven Schalten notwendige Relativgeschwindigkeit v12,c der beiden Lichtbogenkontaktstücke .
  • Insbesondere kann die erfindungsgemässe Schaltkammer derart ausgelegt sein, dass während eines Ausschaltvorgangs die maximale Relativgeschwindigkeit v12,max der beiden Lichtbogenkontaktstücke zueinander mindestens 1.5 mal so gross, vorteilhaft mindestens 1.7 mal so gross, vorteilhaft mindestens 1.9 mal so gross oder sogar mindestens 2 mal so gross ist wie die zum kapazitiven Schalten notwendige Relativgeschwindigkeit v12,c der beiden Lichtbogenkontaktstücke.
  • Die Geschwindigkeit v12,c ist die für kapazitives Schalten minimal notwendige Relativgeschwindigkeit der beiden Lichtbogenkontaktstücke, also die kleinste Relativgeschwindigkeit der beiden Lichtbogenkontaktstücke, die kapazitives Schalten ermöglicht.
  • In einer anderen Sichtweise kann die Erfindung darin bestehen, dass die Schaltkammer derart ausgelegt ist, dass, wenn sie in einem einkammerigen Hochleistungsschalter eingebaut ist, für die maximale Relativgeschwindigkeit v12,max der beiden Lichtbogenkontaktstücke zueinander während eines Ausschaltvorgangs gilt: v 12 , max 23 × U N p f / E krit p 0 ,
    Figure imgb0001
    insbesondere v 12 , max 27 × U N p f / E krit p 0 ,
    Figure imgb0002
    vorteilhaft v 12 , max 31 × U N p f / E krit p 0 ,
    Figure imgb0003
    wobei
    UN die Nennspannung des Hochleistungsschalters,
    p der Polfaktor des Hochleistungsschalters,
    Ekrit die Einsatzfeldstärke für Entladungen des Löschgases, und
    po der Fülldruck des Löschgases ist, und
    f die Netzfrequenz ist, für die Schaltkammer ausgelegt ist.
  • Die Gleichung v 12 , c k × U N p f / E krit p 0 ,
    Figure imgb0004
    gibt in guter Näherung die für kapazitives Schalten notwendige minimale Maximal-Geschwindigkeit zwischen den beiden Lichtbogenkontaktstücken an, wobei der Faktor k typischerweise zwischen 16 und 18.5 liegt.
  • Die genannten Gleichungen / Ungleichungen für v12,c beziehungsweise v12,max gelten in der dargestellten Form auch für einen Hochleistungsschalter, der genau eine entsprechende Schaltkammer aufweist. Für die Berechnung von v12,c beziehungsweise v12,max für einen Hochleistungsschalter, der mehr als eine Schaltkammern aufweist, muss in die Gleichungen noch ein Faktor eingefügt werden (oder der Faktor k wird durch einen Faktor k' ersetzt), wodurch die Versteuerung des Hochleistungsschalters (beispielsweise durch parallel zu den Schaltkammern geschaltete Kapazitäten) berücksichtigt.
  • Für SF6 als Löschgas beträgt Ekrit etwa 8900 kV / (bar·m). Für andere Löschgase wie CF4 oder Mischungen von SF6 und N2 kann der entsprechende Ekrit-Wert einschlägigen Handbüchern entnommen werden. Typische Netzfrequenzen sind 50 Hz und 60 Hz. Fülldrucke po liegen typischerweise bei 4.3 bar oder 6 bar oder darüber. Der Polfaktor p hängt von den vorgesehenen Erdungsverhältnissen des Hochleistungsschalters im Hochspannungsnetz ab (siehe zum Beispiel die Norm IEC 62271-100) und beträgt typischerweise 1.4 oder 1.2, gelegentlich auch über 1.4. Typische Hochleistungsschalter-Nennspannungen UN sind von der Grössenordnung von 123 kV oder 365 kV.
  • In einer anderen Sichtweise kann die Erfindung darin bestehen, dass die Schaltkammer derart ausgelegt ist, dass für die maximale Relativgeschwindigkeit v12,max der beiden Lichtbogenkontaktstücke zueinander während eines Ausschaltvorgangs gilt: v 12 , max 13 m / s ,
    Figure imgb0005
    vorteilhaft v 12 , max 15 m / s ,
    Figure imgb0006
    insbesondere v 12 , max 17 m / s ,
    Figure imgb0007
    besonders vorteilhaft v 12 , max 19 m / s ,
    Figure imgb0008
  • Durch die Erfindung wird es möglich, innerhalb sehr kurzer Zeit eine sehr grosse Lichtbogenstrecke zu erzeugen. Vorteilhaft kann während eines wesentlichen Teils der Lichtbogenzeit (Lichtbogen-Brenndauer) durch den Lichtbogen Material aus der Isolierdüse entlang eines grossen Teils des Engnisses, vorteilhaft entlang der gesamten Länge des Engnisses, verdampft werden. Eine grosse Oberfläche, insbesondere die gesamte Engnis-Innenfläche, kann also während einer relativ langen Zeitdauer zur Erzeugung (Verdampfung) von lichtbogenlöschendem Material genutzt werden. Dadurch wird eine grosse Menge lichtbogenlöschenden Materials erzeugt, so dass eine effiziente Lichtbogenbeblasung erreicht wird. Aufgrund der sehr schnellen Relativbewegung kann diese grosse Menge lichtbogenlöschenden Materials bereits innerhalb einer sehr kurzen Zeit erzeugt werden, so dass ein sehr grosser Löschgasdruck erzeugbar ist, und die Druckerzeugung kann sehr rasch nach der Kontakttrennung stattfinden. Dadurch kann eine sehr starke Lichtbogenbeblasung und somit ein sehr sicheres Schalten, auch grosser Kurzschlussströme, erreicht werden.
  • Vorteilhaft ist die Bewegung der Isolierdüse an die Bewegung eines der beiden Kontaktstücke gekoppelt, insbesondere starr gekoppelt (gleichschnelle und gleichgerichtete Bewegung der Isolierdüse und des betreffenden Kontaktstücks). Vorteilhaft erfüllt die Relativgeschwindigkeit zwischen der Isolierdüse und einem der beiden Kontaktstücke eine der oben genannten erfindungsgemässen Bedingungen für die maximale Relativgeschwindigkeit v12,max der beiden Kontaktstücke.
  • Wenn das Engnis durch eines der beiden Lichtbogenkontaktstücke, das als Verdämm-Kontaktstück bezeichnet wird und bewegbar ist, zumindest teilweise verdämmbar ist, so weisen die beiden Lichtbogenkontaktstücke vorteilhaft bis mindestens zum Zeitpunkt der Freigabe des Engnisses durch das Verdämm-Kontaktstück (das heisst also, mindestens bis eine Löschgasströmung durch das Engnis ermöglicht ist), eine solche Relativgeschwindigkeit auf, die eine der oben genannten Bedingungen für v12,max erfüllt. Diese Relativgeschwindigkeit kann die maximale Relativgeschwindigkeit v12,max der Lichtbogenkontaktstücke sein oder auch eine Relativgeschwindigkeit, die geringer ist als v12,max.
  • In einer anderen Sichtweise kann die Erfindung darin bestehen, dass die Schaltkammer derart ausgelegt ist, dass beide Lichtbogenkontaktstücke bewegbar sind, und dass während einer Phase entgegengesetzter Bewegung der Lichtbogenkontaktstücke ein Verhältnis v1/v2 der Geschwindigkeit v1 des ersten Lichtbogenkontaktstückes zu der Geschwindigkeit v2 des
    zweiten Lichtbogenkontaktstückes von v1 /v2 ≤ 1:2.4, insbesondere von v1 /v2 ≤ 1 :2.7, v1 /v2 ≤ 1:2.8 oder v1 /v2 ≤ 1:3 erreicht wird. Durch ein solches Geschwindigkeitsverhältnis kann eine grosse Relativgeschwindigkeit der Lichtbogenkontaktstücke erreicht werden. Dies ist insbesondere dann vorteilhaft, wenn die mit dem ersten Lichtbogenkontaktstück zu bewegende Masse deutlich (mindestens um einen Fakor 2 oder 3 oder 4 oder mehr) grösser ist als die mit dem zweiten Lichtbogenkontaktstück zu bewegende Masse.
  • Wenn beide Lichtbogenkontaktstücke bewegbar sind, ist vorteilhaft ein erster Antrieb zum Antreiben des ersten Lichtbogenkontaktstücks und ein zweiter Antrieb zum Antreiben des zweiten Lichtbogenkontaktstücks vorgesehen. Insbesondere kann der zweite Antrieb (Hilfsantrieb) ein durch den ersten Antrieb antreibbares Getriebe sein. Vorteilhaft kann weiterhin die Isolierdüse mittels des ersten Antriebes antreibbar sein.
  • Im Falle zweier bewegbarer Lichtbogenkontaktstücke ist vorteilhaft die Schaltkammer derart ausgelegt, dass in einer Phase während einer gleichgerichteten Bewegung der Lichtbogenkontaktstücke für das Verhältnis v1/v2 der Geschwindigkeit v1 des ersten Lichtbogenkontaktstückes zu der Geschwindigkeit v2 des zweiten Lichtbogenkontaktstückes gilt: 0.4 v 1 / v 2 1.2 ,
    Figure imgb0009
    insbesondere 0.75 v 1 / v 2 1 : 1.15.
    Figure imgb0010
  • Besonders vorteilhaft liegt das Geschwindigkeitsverhältnis v1/v2 zwischen 0.9 und 1.1 oder nahe bei eins oder beträgt im wesentlichen eins.
  • In einer vorteilhaften Ausführungsform ist ein Kompressionsraum vorhanden, dessen Volumen während eines Ausschaltvorganges verringert wird. Es kann der Kompressionsraum mit dem Heizraum identisch oder von dem Heizraum verschieden sein, und insbesondere ein Ventil zwischen dem Kompressionsraum und dem Heizraum vorgesehen sein. Der Schalter, respektive die Schaltkammer, kann als Pufferschalter (Blaskolbenschalter) oder als Selbstblasschalter oder als ein Pufferschalter-Selbstblasschalter-Hybride ausgebildet sein.
  • Die Schaltkammer kann mit Vorteil derart ausgelegt sein, dass während eines Ausschaltvorgangs, nach der Kontakttrennung, und während eine Löschgasströmung entlang einer Achse durch das Engnis in Richtung des zweiten Lichtbogenkontaktstücks möglich ist, ein parallel zu der Achse gemessener Abstand d zwischen dem Engnis und dem zweiten Lichtbogenkontaktstück derart gewählt ist, dass die Strömungsgeschwindigkeit der Löschgasströmung in einem solchen Bereich maximal ist, der bezüglich der Achse radial seitlich neben dem zweiten Lichtbogenkontaktstück und/oder innerhalb des zweiten Lichtbogenkontaktstücks angeordnet ist. Der Bereich kann zusammenhängend sein oder aus mehreren Teilbereichen bestehen.
  • Der Abstand d ist eine Beabstandung. Der Abstand d misst sich selbstverständlich zwischen den einander zugewandten Enden von Engnis und zweitem Kontaktstück, wenn das Engnis und das zweite Kontaktstück voneinander beabstandet sind.
  • Durch die genannte Wahl des Abstandes d wird eine Optimierung des Löschgasflusses, insbesondere im Bereich des Engnisses und des zweiten Kontaktstücks, erreicht. Der Löschgasfluss ist dahingehend optimiert, dass eine besonders hohe Durchschlagsicherheit dort erzeugt wird, wo eine besonders hohe dielektrische Belastung vorliegt. Diese vorteilhafte Wirkung wird durch die beschriebene Wahl des Abstandes d erreicht, da eine hohe Löschgasdichte entlang der Schaltstrecke erreicht werden kann, während eine geringere Löschgasdichte in dem dielektrisch weniger belasteten Bereich seitlich (und/oder innerhalb) des zweiten Kontaktstücks vorliegt.
  • Vorteilhaft kann das Engnis im wesentlichen als ein Zylinder ausgebildet und die Schaltkammer derart ausgelegt sein, dass während eines Ausschaltvorgangs, nach der Kontakttrennung und während einer Löschphase, in der eine Löschgasströmung entlang einer Achse durch das Engnis in Richtung des zweiten Lichtbogenkontaktstücks möglich ist, ein parallel zu der Achse gemessener Abstand d zwischen dem Engnis und dem zweiten Lichtbogenkontaktstück derart gewählt ist, dass d = D × 1 + b cos α 1 2 1 / 2 sin α cos α
    Figure imgb0011
    gilt. Dabei ist D der Durchmesser des Zylinders nahe dem während der Löschphase dem zweiten Lichtbogenkontaktstück zugewandten Ende des Zylinders, der Winkel α ist gleich einem Öffnungswinkel α eines an das Engnis anschliessenden, erweiterten Bereiches, und für den Parameter b' gilt: b' = b - F/F', wobei F' der Flächeninhalt der bezüglich der Achse radial angeordneten Querschnittsfläche einer gegebenenfalls in dem zweiten Kontaktstück vorgesehenen Öffnung zum Abströmen von Löschgas ist, und für den Parameter b gilt: 1.4 b 4.5 ,
    Figure imgb0012
    insbesondere 1.7 b 4.0 ,
    Figure imgb0013
    insbesondere 2.1 b 3.5 ,
    Figure imgb0014
    und besonders vorteilhaft 2.2 b 3.2 ,
    Figure imgb0015
  • Das Engnis ist im wesentlichen zylindrisch ausgebildet, und mit Vorteil ist das zweite Kontaktstück ebenfalls im wesentlichen zylindrisch ausgebildet. Der Durchmesser des jeweiligen Zylinders (des Engnisses oder des zweiten Kontaktstücks) muss nicht völlig konstant sein und kann leicht variieren. Abweichungen von einem kreisförmigen Querschnitt zu beispielsweise elliptischen Querschnitten sind möglich. Das Engnis (oder auch das zweite Kontaktstück) kann eine andere, vorteilhaft im wesentlichen prismatische Form aufweisen und wird dennoch als im wesentlichen zylindrisch bezeichnet. Für den Durchmesser D ist dann eine entsprechende radiale Abmessung des Engnisses zu nehmen. Insbesondere kann mit guter Genauigkeit der Durchmesser eines solchen Kreises genommen werden, der denselben Flächeninhalt hat wie das Engnis nahe dem zweiten Kontaktstück. Auch muss der Durchmesser des Zylinders beziehungsweise die radiale Abmessung des Prismas nicht genau konstant sein. Die für die Bestimmung von d relevante Grösse ist die radiale Abmessung an dem dem zweiten Kontaktstück zugewandten Ende des Zylinders oder Prismas. Auch solche Formen sind in dem Begriff "im wesentlichen zylindrisch" umfasst.
  • Durch die beschriebene, zylinderdurchmesserabhängige Wahl des Abstandes d wird für die gängigen Schaltergeometrien die genannte vorteilhafte Strömungsgeschwindigkeitsbedingung erfüllt. Wenn der Abstand d innerhalb eines engeren der angegebenen Bereiche für d gehalten werden kann, kann ein Beibehalten der vorteilhaften Löschgasströmung besser sichergestellt werden.
  • Es gibt also eine als Löschphase bezeichnete Zeitspanne, die nach der Kontakttrennung liegt, und während der eine Löschgasströmung durch das Engnis in Richtung des zweiten Lichtbogenkontaktstücks stattfinden kann (und im Schaltfalle auch stattfindet). Während einer solchen Zeitspanne erfüllt der Abstand d die genannte Bedingung. Diese Bedingung lautet, dass der Bereich, in dem die Strömungsgeschwindigkeit der genannten, durch das Engnis in Richtung des zweiten Kontaktstücks gerichteten Löschgasströmung am grössten ist, innerhalb des zweiten Kontaktstücks und/oder seitlich neben dem zweiten Kontaktstück angeordnet ist.
  • Während das Engnis mit einem als Verdämm-Kontaktstück bezeichnbaren Kontaktstücks zumindest teilweise vedämmt ist, kann keine (nennenswerte) Löschgasströmung durch das Engnis stattfinden.
  • Die genannte Bedingung für den Abstand d ist vorteilhaft während mindestens 10 ms, vorteilhafter während mindestens 20 ms, mindestens 35 ms oder mindestens 50 ms während eines Ausschaltvorganges erfüllt.
  • Das Engnis kann auch als Düsenkanal bezeichnet werden.
  • Die Kontakttrennung bedeutet eine Trennung eines physischen Kontaktes zwischen den beiden Lichtbogenkontaktstücken 1 und 2. Der physische Kontakt kann beispielsweise durch ein direktes Einander-Kontaktieren der Kontaktstücke 1,2 realisiert sein oder mittels eines die beiden Lichtbogenkontaktstücke 1,2 kontaktierenden Zwischen-Kontaktstücks (Brücken-Kontaktstück).
  • Vorteilhaft ist das zweite Lichtbogenkontaktstück stiftartig, insbesondere vollstiftartig ausgebildet
  • In einer bevorzugten Ausführungsform ist das Engnis durch eines der beiden Lichtbogenkontaktstücke, das als Verdämm-Kontaktstück bezeichnet wird und bewegbar ist, zumindest teilweise verdämmbar, und die Schaltkammer ist derart ausgelegt, dass es während eines Ausschaltvorganges eine Zeitspanne gibt, während der eine Bewegungsrichtung des Verdämm-Kontaktstücks unverändert bleibt und die maximale Relativgeschwindigkeit v12,max der beiden Lichtbogenkontaktstücke zueinander erreicht wird. Diese Zeitspanne dauert vorteilhaft mindestens an, bis das Engnis nicht mehr durch das Verdämm-Kontaktstück zumindest teilweise verdämmt ist.
  • In dieser Ausführungsform gibt es somit nach der Kontakttrennung eine ununterbrochene Bewegung des Verdämm-Kontaktstücks in ein und dieselbe Richtung, wobei diese Bewegung mindestens bis zur Freigabe des Engnisses durch das Verdämm-Kontaktstück anhält, und wobei (irgendwann) während dieser Bewegung die maximale Relativgeschwindigkeit v12,max der beiden Lichtbogenkontaktstücke zueinander erreicht wird. Dadurch wird sichergestellt, dass sehr rasch eine sehr grosse Isolierdüsen-Oberfläche dem Lichtbogen ausgesetzt wird. Vorteilhaft findet keine Bewegungsrichtungsumkehr des Verdämm-Kontaktstücks statt, bevor das Engnis freigegeben ist.
  • Eine besonders bevorzugten Ausführungsform kennzeichnet sich dadurch, dass das Engnis durch eines der beiden Lichtbogenkontaktstücke, das als Verdämm-Kontaktstück bezeichnet wird und bewegbar ist, zumindest teilweise verdämmbar ist, und dass die Schaltkammer derart ausgelegt ist, dass während eines Ausschaltvorgangs eine Bewegungsrichtungsumkehr des mindestens einen bewegbaren Lichtbogenkontaktstücks stattfindet, wenn das Engnis nicht mehr durch das Verdämm-Kontaktstück zumindest teilweise verdämmt ist.
  • Dadurch kann innerhalb kurzer Zeit nach der Kontakttrennung eine grosse Menge lichtbogenlöschenden Materials erzeugt werden. Und es ist möglich, die Belastung einer die Kontaktstücke abbremsenden Dämpfungseinrichtung zu verringern oder eine weniger aufwendige Dämpfungseinrichtung einzusetzen,
  • Die nach der Freigabe des Engnisses durch das Verdämm-Kontaktstück stattfindende Bewegungsrichtungsumkehr ermöglicht desweiteren auch eine Optimierung des Löschgasflusses nahe dem Verdämm-Kontaktstück. Der Abstand zwischen den zwei Kontaktstücken kann, je nach Verhältnis der Geschwindigkeiten der beiden Kontaktstücke, (leicht) vergrössert oder verkleinert oder, besonders vorteilhaft, im wesentlichen konstantgehalten werden. Insbesondere kann auch ein Abstand zwischen dem Verdämm-Kontaktstück und dem Engnis (leicht) vergrössert oder verkleinert oder, besonders vorteilhaft, im wesentlichen konstant gehalten werden. Wenn beispielsweise die Bewegung der Isolierdüse 1:1 (starr) an die Bewegung des ersten Kontaktstücks gekoppelt ist und die nach der Bewegungsrichtungsumkehr gleichgerichtete Bewegung der beiden Kontaktstücke ebenfalls im wesentlichen gleich gross ist, kann ein vorgebbarer Abstand zwischen dem Engnis und dem Verdämm-Kontaktstück im wesentlichen konstant gehalten werden. Insbesondere und mit grossem Vorteil kann auch eine der weiter oben genannten Bedingungen für den Abstand d über einen längeren Zeitraum erfüllt werden.
  • Durch die Bewegungsumkehr wird eine zunächst antiparallele oder gegensinnigen Bewegung der zwei Lichtbogenkontaktstücke zu einer parallelen oder gleichsinnigen Bewegung der zwei Lichtbogenkontaktstücke.
  • Insbesondere wenn als Hilfsantrieb (zweiter Antrieb) ein von dem Antrieb angetriebenes Getriebe verwendet wird, kann bei der Wahl eines Geschwindigkeitsverhältnisses v1 /v2 der Geschwindigkeit v1 des ersten Lichtbogenkontaktstückes zu der Geschwindigkeit v2 des zweiten Lichtbogenkontaktstückes von v1/v2 ≈ 1:1 bei gleichsinniger Kontaktstück-Bewegung ein konstanter Kontaktstück-Abstand (und gegebenenfalls auch ein konstanter Abstand zwischen dem Engnis und dem Verdämm-Kontaktstück) erreicht werden, der auch dann noch konstant bleibt, wenn die Schalterbewegung durch einen Dämpfungsmechanismus abgebremst wird. Auch kann auf diese Weise der Einfluss von Rücklauf auf die genannten Abstände im wesentlichen eliminiert werden. Rücklauf entsteht, wenn die Bewegung eines angetriebenen Kontaktstücks durch Löschgas im Heizraum behindert wird, so dass dadurch eine ungewollte Bewegungsrichtungsumkehr mindestens eines der Kontaktstücke stattfindet.
  • Durch die mittels der Antriebe gezielt erzeugte Bewegungsrichtungsumkehr kann in einem solchen Hochleistungsschalter oder Schalterpol also eine gute Kontrolle der Kontaktstück-Abstände und des Engnis-Kontaktstück-Abstandes erreicht werden, so dass gewünschte Strömungsverhältnisse, insbesondere nahe dem Verdämm-Kontaktstück, einstellbar und auch bei verschiedenen Schaltfällen einhaltbar sind. Eine Optimierung des Löschgasflusses in Kontaktstücknähe wird ermöglicht.
  • Ein erfindungsgemässer Hochleistungsschalter weist mindestens eine erfindungsgemässe Schaltkammer auf und hat die entsprechenden Vorteile.
  • Das erfindungsgemässe Verfahren zum Ausschalten einer Schaltkammer für einen mit einem Löschgas befüllbaren Hochleistungsschalter, mit einem ersten Lichtbogenkontaktstück und mit einem zweiten Lichtbogenkontaktstück, mit mindestens einem Antrieb und mit einer ein Engnis aufweisenden Isolierdüse, weist die Schritte auf, dass mindestens eines der beiden Lichtbogenkontaktstücke mittels des Antriebs bewegt wird, dass eine Kontakttrennung stattfindet und ein zwischen den Lichtbogenkontaktstücken brennender Lichtbogen gezündet wird, durch den Löschgas aufgeheizt wird, und dass das aufgeheizte Löschgas zwischengespeichert und zur Beblasung des Lichtbogens durch das Engnis geführt wird.
  • Es kennzeichnet sich dadurch, dass während eines Ausschaltvorgangs eine maximale Relativgeschwindigkeit v12,max der beiden Lichtbogenkontaktstücke zueinander erreicht wird, die mindestens 1.3 mal, insbesondere 1.5 mal, so gross ist wie eine zum kapazitiven Schalten notwendige Relativgeschwindigkeit v12,c der beiden Lichtbogenkontaktstücke. Die Vorteile ergeben sich aus den Vorteilen der Schaltkammer.
  • Das erfindungsgemässe Verfahren kann auch als ein Verfahren zum Schalten eines elektrischen Stromes mittels einer Schaltkammer bezeichnet werden.
  • Mit Vorteil sind die beiden Lichtbogenkontaktstücke koaxial zueinander angeordnet. Der Kanal zwischen Heizraum und Engnis kann vorteilhaft als ein Ringkanal ausgebildet sein.
  • Die Lichtbogenkontaktstücke können gleichzeitig auch Nennstrom-Kontaktstücke sein. Vorteilhaft sind aber zusätzlich zu den Lichtbogenkontaktstücken noch separate Nennstrom-Kontaktstücke vorgesehen. Typischerweise werden bei einem Ausschaltvorgang zunächst die Nennstrom-Kontaktstücke voneinander getrennt, so dass der zu unterbrechende elektrische Strom auf die Lichtbogenkontaktstücke kommutiert. Danach werden die Lichtbogenkontaktstücke unter Zündung des Lichtbogens getrennt.
  • Mit Vorteil kann eines der beiden Lichtbogenkontaktstücke, insbesondere das erste Lichtbogenkontaktstück, eine Öffnung zur Aufnahme des anderen, vorteilhaft stiftartig ausgebildeten Lichtbogenkontaktstücks im geschlossenem Schalterzustand und zum Abströmen von Löschgas im geöffneten Schalterzustand aufweisen. Insbesondere kann dieses Lichtbogenkontaktstück als eine Kontakttulpe mit einer Vielzahl von Kontaktfingern ausgebildet sein.
  • Vorteilhaft ist es, wenn das zweite Lichtbogenkontaktstück stiftartig ausgebildet und bewegbar ist, während das erste Kontaktstück eine Öffnung zur Aufnahme des zweiten Kontaktstücks aufweist, und bewegbar oder nicht bewegbar ist.
  • Hochleistungsschalter und Schaltkamemrn im Sinne dieser Anmeldung sind insbesondere solche, die für Nennspannungen von typischerweise mindestens ca. 72 kV ausgelegt sind.
  • Der Lichtbogen in einer erfindungsgemässen Schaltkammer brennt im allgemeinen achsennah und ist im wesentlichen stationär. Im allgemeinen sind die Fusspunkte des Lichtbogens an den Enden der Lichtbogenkontaktstücke fixiert.
  • Weitere bevorzugte Ausführungsformen und Vorteile gehen aus den abhängigen Patentansprüchen und den Figuren hervor.
  • Kurze Beschreibung der Zeichnungen
  • Im folgenden wird der Erfindungsgegenstand anhand von bevorzugten Ausführungsbeispielen, welche in den beiliegenden Zeichnungen dargestellt sind, näher erläutert. Es zeigen schematisch:
  • Fig. 1
    eine erfindungsgemässe Schaltkammer mit zwei bewegbaren Lichtbogenkontaktstücken in geöffnetem und in geschlossenen Zustand im Schnitt, mit Getriebe in Aufsicht;
    Fig. 2
    eine Weg-Zeit-Kurve für einen Ausschaltvorgang;
    Fig. 3
    eine Geschwindigkeits-Zeit-Kurve für einen Ausschaltvorgang.
  • Die in den Zeichnungen verwendeten Bezugszeichen und deren Bedeutung sind in der Bezugszeichenliste zusammengefasst aufgelistet. Grundsätzlich sind in den Figuren gleiche oder gleichwirkende Teile mit gleichen Bezugszeichen versehen. Die beschriebenen Ausführungsbeispiele stehen beispielhaft für den Erfindungsgegenstand und haben keine beschränkende Wirkung.
  • Wege zur Ausführung der Erfindung
  • Fig. 1 zeigt schematisch eine erfindungsgemässe Schaltkammer oder einen erfindungsgemässen einkammerigen Hochleistungsschalter in geöffnetem Zustand (untere Bildhälfte) und in geschlossenem Zustand (obere Bildhälfte). Im rechten Bildteil ist schematisch ein Getriebe 3 in Aufsicht dargestellt. Der mit einem Löschgas (beispielsweise SF6, oder eine Mischung aus N2 und SF6) gefüllte Hochleistungsschalter weist ein erstes bewegbares Lichtbogenkontaktstück 1 auf, das durch einen nicht-dargestellen Antrieb antreibbar ist. Ein geeigneter Antrieb kann beispielsweise ein elektrodynamischer Antrieb oder ein Federspeicherantrieb sein.
  • Ein zweites Lichtbogenkontaktstück 2 wird durch einen Hilfsantrieb 3 angetrieben, welcher durch das durch den Antrieb angetriebene Getriebe 3 realisiert ist. Im geschlossenen Schalterzustand berühren die beiden Lichtbogenkontaktstücke 1,2 einander. Es können zusätzlich noch nichtdargestellte Nennstrom-Kontaktstücke vorgesehen sein.
  • Das erste Kontaktstück 1 ist mit einer Isolierdüse 5 und einer Hilfsdüse 13 starr verbunden. Die Isolierdüse 5 weist ein Engnis 6 auf, das im wesentlichen zylindrisch mit einem Durchmesser D ausgebildet ist. Anschliessend an das Engnis 6 schliesst ein im Durchmesser erweiterter Bereich 21 mit einem Öffnungswinkel α an. Durch einen Ringkanal 7 ist das Engnis mit einem Heizraum 11 verbunden. Mit dem Heizraum 11 durch ein Ventil 12 verbunden ist ein Kompressionsraum 10. Das Volumen des Heizraumes ist mittels eines Kolbens 15, der vorteilhaft feststehend ausgebildet ist, veränderbar.
  • Der Hochleistungsschalter ist im wesentlichen rotationssymmetrisch bezüglich einer Achse A ausgebildet, wodurch axiale Richtungen z1 und z2, entlang der sich die Lichtbogenkontaktstücke bewegen, und dazu senkrechte radiale Richtungen definiert sind.
  • In Fig. 2 ist schematisch ein Weg-Zeit-Diagramm (z-t-Kurven) für die Bewegung des ersten Kontaktstücks 1 (gestrichelte Kurve) und des zweiten Kontaktstücks 2 (gepunktete Kurve) sowie für die Relativ-Bewegung der beiden Kontaktstücke (durchgezogene Linie) dargestellt.
  • Die entsprechenden Geschwindigkeits-Zeit-Kurven (v-t-Kurven) sind in Fig. 3 schematisch dargestellt. Die Geschwindigkeit v1 des ersten Kontaktstücks 1 (gestrichelte Kurve) und die Geschwindigkeit v2 des zweiten Kontaktstücks 2 (gepunktete Kurve) sowie die Relativgeschwindigkeit v12 der beiden Kontaktstücke (durchgezogene Linie) sind dargestellt.
  • Während eines Ausschaltvorganges zum Unterbrechen eines durch den Hochleistungsschalter fliessenden Stromes bewegt sich zunächst das erste Lichtbogenkontaktstück 1 sowie die Isolierdüse 5, die Hilfsdüse 13 und das Ventil 12 in Richtung z1. Mit einer optionalen Verzögerung bewegt sich das zweite Kontaktstück 2 in Richtung z2. Die durch den Antrieb direkt zu bewegende Masse ist gross gegenüber der durch das Getriebe 3 zu bewegenden Masse. Bis kurz vor Erreichen der maximalen Geschwindigkeit v1 kann darum mit der Beschleunigung des zweiten Kontaktstücks 2 gewartet werden. Das erste Kontaktstück 1 verbleibt nach Erreichen seiner maximalen Geschwindigkeit bis zu einem Abbrems-Vorgang am Ende des Ausschaltvorganges auf dieser Geschwindigkeit.
  • Durch den feststehenden Kolben 1 5 wird das Volumen des Kompressionsraum reduziert, und das Ventil 12 lässt Löschgas in den Heizraum 10 fliessen. Dann findet während einer Phase hoher oder maximaler Relativgeschwindigkeit v12 die Kontakttrennung unter Zündung eines Lichtbogens 4 statt. Es ist möglich, dass die Kontakttrennung kurz (einige Millisekunden) vor oder nach dem Erreichen der maximalen Relativgeschwindigkeiten stattfindet.
  • Der Lichtbogen 4 führt zur Erhitzung von Löschgas und löst im Engnis 6 Abbrandmaterial aus der Isolierdüse 5 heraus. Vermittelst des Ringkanals 7 wird auf diese Weise ein Überdruck im Heizraum 11 erzeugt. Ab einer durch das Ventil 12 vorgebbaren Druckdifferenz zwischen dem Heizraum 11 und dem Kompressionsraum 10, beispielsweise wenn im Heizraum 11 ein grösserer Druck herrscht als im Kompressionsraum 10, schliesst das Ventil 12. Das später aus dem Heizraum 11 und gegebenenfalls auch aus dem Kompressionsraum 10 durch den Heizraum 11 dann durch den Kanal 7 in die zwischen den beiden Kontaktstücken 1,2 angeordnete Löschstrecke fliessende Löschgas dient dann der Löschung des Lichtbogens 4.
  • Nachdem das dem ersten Lichtbogenkontaktstück 1 zugewandte Ende des zweiten Lichtbogenkontaktstücks 2 den grössten Teil (ca. 80%) der Länge des Engnisses 6 mit maximaler Geschwindigkeit v2 (und somit während Vorliegens der maximalen Relativgeschwindigkeit v12,max der beiden Lichtbogenkontaktstücke) durchquert hat, verringert sich v2 wieder. Das zweite Kontaktstück 2 kommt zum Stillstand und bewegt sich, nachdem es das Engnis 6 freigegeben hat, in Richtung z1 und somit parallel zu (gleichgerichtet mit) dem ersten Kontaktstück 1. Nach dieser Bewegungsrichtungsumkehr erreicht das zweite Kontaktstück 2 bald die gleiche Geschwindigkeit wie das erste Kontaktstück 1.
  • Sobald das Engnis 6 vom zweiten Kontaktstück 2 nicht mehr zumindest teilweise verdämmt ist, kann Löschgas durch den Kanal 7 nicht nur durch das tulpenförmige erste Kontaktstück 1 (in Richtung z1), sondern auch (in nennenswertem Masse) durch das Engnis 6 und am stiftförmigen zweiten Kontaktstück 2 vorbei (in Richtung z2) abströmen.
  • Durch das Geschwindigkeitsverhältnis v1/v2 von im wesentlichen 1:1 bei gleichsinniger Bewegung der beiden Kontaktstücke 1,2 kann ein Abstand d zwischen dem zweiten, vorteilhaft stiftartig ausgebildeten Kontaktstück 2 und dem Engnis 6 im wesentlichen konstant gehalten werden. Dieser Abstand d ist derart gewählt, dass bei einer Löschgasströmung durch das Engnis 6 zum Verdämm-Kontaktstück 2 (in Richtung z2) die maximale Strömungsgeschwindigkeit seitlich (also radial) neben dem Verdämm-Kontaktstück 2 liegt, und insbesondere nicht auf der Strecke zwischen den beiden Lichtbogenkontaktstücken 1 und 2 (oder radial dieser Strecke benachbart). Dadurch wird eine besonders effiziente Lichtbogenbeblasung erreicht, und ein Rückzünden des Lichtbogens wird effektiv unterbunden. Der Abstand d wird als d ≈ (0.7±0.2)×D gewählt, wobei D der Durchmesser des Engnisses 6 (an seinem z2-seitigen Ende) ist. Wäre der Öffnungswinkel α kleiner als 45°, so würde der Abstand d vorteilhaft näherungsweise als d ≈ (0.7±0.2)×D / tan α gewählt.
  • Wenn durch das Getriebe 3 ein Geschwindigkeitsverhältnis v1/v2 von 1:1 (nach der Bewegungsrichtungsumkehr) vorgegeben ist, kann der Abstand d und damit auch die entsprechenden Strömungsverhältnisse auch dann eingehalten werden, wenn der Schalter in die Dämpfung geht, also die Kontaktstücke 1,2 durch einen Dämpfungsmechanismus abgebremst werden. Gegen Ende eines Ausschaltvorganges kommt es oft auch zu einem durch die Druckverhältnisse in dem Heizraum 11 und/oder dem Kompressionsraum 10 hervorgerufenen Rücklauf des ersten Kontaktstücks 1. Auch durch einen derartigen Rücklauf kann bei der Wahl eines Geschwindigkeitsverhältnisses v1/v2 von 1:1 der Abstand d nicht verändert werden. Insofern können optimale Strömungsverhältnisse bis ans Ende der Ausschaltbewegung beibehalten und dadurch eine sichere Lichtbogenlöschung ohne Rückzünden sichergestellt werden. Durch das Geschwindigkeitsverhältnis v1/v2 von 1:1 ist auch der Abstand zwischen den beiden Kontaktstücken 1 und 2 konstant, so dass die elektrische Feldverteilung konstanthaltbar ist.
  • Durch ein Geschwindigkeitsverhältnis v1/v2 von etwa 1:1 nach der Bewegungsrichtungsumkehr ist es möglich, die Belastung der Dämpfungseinrichtung zu verringern oder eine weniger aufwendige Dämpfungseinrichtung einzusetzen, da ein längerer Dämpfungshub (längere Strecke, während der die Bewegungen abgebremst werden) vorgesehen werden kann. Denn nach einem frühen Erreichen eines ausreichenden (typischerweise nahezu maximalen) Abstandes zwischen den Lichtbogenkontaktstücken kann das Abbremsen der Kontaktstücke bereits beginnen, da der Kontaktstück-Abstand durch die 1:1-Übersetzung konstantgehalten wird. Für ein Geschwindigkeitsverhältnis v1 /v2, das nahe bei eins liegt, gilt im Prinzip das gleiche, wobei jedoch kleine Veränderungen des Kontaktstück-Abstandes vorkommen.
  • Die Figs. 2 und 3 zeigen die Bewegungen der Kontaktstücke 1,2 nur bis kurz nach dem Einsatz der Dämpfung. Mit P1 ist eine erste Phase bezeichnet, während welcher bei entgegengesetzter Bewegung der beiden Kontaktstücke 1,2 eine maximale Relativgeschwindigkeit v12 vorliegt. Diese beträgt im dargestellten Fall v12,max ≈ 20 m/s. Mit P2 ist eine zweite Phase bezeichnet, während welcher bei gleichgerichter Bewegung der beiden Kontaktstücke 1,2 nach Freigabe des Engnisses ein Geschwindigkeitsverhältnis v1/v2 von etwa 1:1 vorliegt. In den Figs. 2 und 3 fällt das Ende der zweiten Phase P2 mit dem Einsatz der Dämpfung zusammen.
  • Wie dem rechten Teil vom Fig. 1 zu entnehmen ist (in Aufsicht), ist ein Hebel 8 an einem ersten Ende mittels eines Bolzens 16 an dem zweiten Kontaktstück 2 drehbar gelagert. An dem zweiten Ende des Hebels 8 ist der Hebel 8 mittels eines Bolzens 17 an einem Schenkel eines Winkelhebels 9 drehbar gelagert. Der zweite Schenkel des Winkelhebels 9 ist mittels eines Bolzens 18 in einer Kulissenscheibe 14 geführt. Der Winkelhebel 9 ist mittels eines ortsfesten, beispielsweise am Gehäuse des Hochleistungsschalters befestigten Bolzens 19 drehbar gelagert. Wie mittels einer Wirklinie W symbolisiert, ist die Bewegung der Kulissenscheibe 14 (vorzugsweise starr) an die Bewegung des ersten Kontaktstücks 1 gekoppelt.
  • Durch die mit dem Antrieb verbundene Kulissenscheibe 14 wird also über einen Hebelmechanismus die Bewegung des zweiten Kontaktstücks 2 gesteuert. Das Getriebe 3 kann eine lineare Bewegung (des Antriebes) mit konstanter Geschwindigkeit umsetzen in eine Bewegung mit Bewegungsrichtungsumkehr. Durch geeignete Wahl der Hebellängen und - winkel ist ein gewünschtes Geschwindigkeitsprofil für das zweite Kontaktstück 2 wählbar.
  • Das Getriebe 3 kann, wie in Fig. 1 dargestellt, symmetrisch aufgebaut sein, was zu einer günstigeren Kräfteverteilung und grösserer Stabilität führt.
  • Durch die Reduktion der Geschwindigkeit v2 des zweiten Kontaktstücks 2 am Ende der Ausschaltbewegung kann die Belastung einer die Bewegung der Kontaktstücke abbremsenden Dämpfungseinrichtung verringert werden, da eine geringere Bewegungsenergie absorbiert werden muss.
  • Die Geschwindigkeit v1 des ersten Kontaktstücks 1 kann nach der anfänglichen Bescheunigung typischerweise zwischen 3 m/s und 10 m/s betragen, beispielsweise 5 m/s. Die Geschwindigkeit v2 des zweiten Kontaktstücks 1 kann im Maximum typischerweise 10 m/s bis 20 m/s betragen, beispielsweise 15 m/s. Das maximale Geschwindigkeitsverhältnis v1 /v2 (bei entgegengesetzter Bewegung) kann zwischen 1 :2.4 und 1 :3.5 betragen, beispielsweise 1:3. Dadurch können entsprechend grosse Relativgeschwindigkeiten v12 zwischen typischerweise 15 m/s, 20 m/s und mehr erreicht werden, die eine rasche Freigabe des Engnisses 6 und eine effiziente Lichtbogenbeblasung durch Bereitstellung eines grossen Löschgasdruckes innerhalb kurzer Zeit ermöglichen. Ein grosser Abstand zwischen den Kontaktstücken 1 und 2 (Isolierstrecke) kann innerhalb sehr kurzer Zeit erreicht werden.
  • Mit Vorteil ist das Engnis 6 und auch das zweite Kontaktstück 2 im wesentlichen zylindrisch ausgebildet. Der Durchmesser des jeweiligen Zylinders (des Engnisses oder des zweiten Kontaktstücks) muss nicht völlig konstant sein und kann leicht variieren. Abweichungen von einem kreisförmigen Querschnitt zu beispielsweise elliptischen Querschnitten sind möglich.
  • Wenn das Engnis eine grosse Länge (axiale Erstreckung) aufweist, kann auf diese Weise eine sehr grosse Oberfläche der Isolierdüse dem Lichtbogen ausgesetzt werden, wodurch grosse Mengen Materials aus der Isolierdüse verdampft werden können, so dass eine effiziente Lichtbogenbeblasung erreicht wird. Insbesondere können Engnis-Längen von mehr als 40 mm, vorteilhaft mehr als 50 mm und mehr als 60 mm eingesetzt werden.
  • Ein entsprechender Hochleistungsschalter kann für Nennkurschlussströme von über über 40 kA oder über 50 kA bei Nennspannungen von über 170 kV oder über 200 kV ausgelegt sein.
  • Bezugszeichenliste
  • 1
    erstes Lichtbogenkontaktstück
    2
    zweites Lichtbogenkontaktstück, Verdämm-Kontaktstück
    3
    zweiter Antrieb, Hilfsantrieb, Getriebe
    4
    Lichtbogen
    5
    Isolierdüse
    6
    Engnis
    7
    Kanal, Ringkanal
    8
    Hebel
    9
    Winkelhebel
    10
    Kompressionsraum
    11
    Heizraum
    12
    Ventil
    13
    Hilfsdüse
    14
    Kulisse, Kulissenscheibe
    15
    Kolben
    16,17,18
    Bolzen, drehbare Lagerung
    19
    fixierter Bolzen, drehbare Lagerung
    21
    Bereich, (im Radius) erweiterter Bereich
    A
    Achse, Symmetrieachse
    b,b'
    Parameter
    d
    Abstand
    D
    Durchmesser, radiale Abmessung
    k
    Faktor
    P1
    Phase
    P2
    Phase
    v1
    Geschwindigkeit des ersten Kontaktstücks
    v2
    Geschwindigkeit des zweiten Kontaktstücks
    v12
    Relativgeschwindigkeit der Kontaktstücke
    v12,c
    für kapazitives Schalten minimal notwendie Relativgeschwindigkeit der Kontaktstücke
    v12,max
    maximale Relativgeschwindigkeit der Kontaktstücke
    W
    Wirklinie
    z
    Weg-Koordinate
    z1
    Richtung
    z2
    Richtung
    α'
    Winkel
    α
    Öffnungswinkel

Claims (18)

  1. Schaltkammer für einen mit einem Löschgas befüllten Hochleistungsschalter, mit einem ersten Lichtbogenkontaktstück (1) und einem zweiten Lichtbogenkontaktstück (2), von denen mindestens eines (1 ;2) mittels eines Antriebs bewegbar ist, mit einem gegebenenfalls zwischen den Lichtbogenkontaktstücken (1,2) brennenden Lichtbogen (4), mit einem Heizraum (11) zur Zwischenspeicherung von durch den Lichtbogen (4) aufgeheiztem Löschgas, und mit einer Isolierdüse (5), welche zur Führung einer Löschgasströmung ein mit dem Heizraum (11) verbundenes Engnis (6) aufweist,
    dadurch gekennzeichnet, dass
    während eines Ausschaltvorgangs eine maximale Relativgeschwindigkeit v12,max der beiden Lichtbogenkontaktstücke (1,2) zueinander mindestens 1.3 mal so gross ist wie eine zum kapazitiven Schalten notwendige Relativgeschwindigkeit v12,c der beiden Lichtbogenkontaktstücke (1,2) und dass in einem einkammerigen Hochleistungsschalter für die maximale Relativgeschwindigkeit v12,max der beiden Lichtbogenkontaktstücke (1,2) zueinander während eines Ausschaltvorgangs gilt: v 12 , max 23 × U N p f / E krit p 0 ,
    Figure imgb0016

    wobei UN die Nennspannung des Hochleistungsschalters, p der Polfaktor des Hochleistungsschalters, Ekrit die Einsatzfeldstärke für Entladungen des Löschgases, und p0 der Fülldruck des Löschgases ist, und f die Hochspannungsnetzfrequenz ist, für die die Schaltkammer ausgelegt ist, so dass ein grosser Löschgasdruck erzeugbar ist.
  2. Schaltkammer gemäss Anspruch 1, dadurch gekennzeichnet, dass während eines Ausschaltvorgangs die maximale Relativgeschwindigkeit v12,max der beiden Lichtbogenkontaktstücke (1,2) zueinander mindestens 1.5 mal so gross ist wie die zum kapazitiven Schalten notwendige Relativgeschwindigkeit v12,c der beiden Lichtbogenkontaktstücke (1,2).
  3. Schaltkammer gemäss einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass für die maximale Relativgeschwindigkeit v12,max der beiden Lichtbogenkontaktstücke zueinander während eines Ausschaltvorgangs (1 ,2) gilt: v 12 , max 13 m / s ,
    Figure imgb0017

    insbesondere v 12 , max 17 m / s .
    Figure imgb0018
  4. Schaltkammer gemäss einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass beide Lichtbogenkontaktstücke (1,2) bewegbar sind, und dass während einer Phase (P1) entgegengesetzter Bewegung der Lichtbogenkontaktstücke (1,2) ein Verhältnis v1/v2 der Geschwindigkeit v1 des ersten Lichtbogenkontaktstückes (1) zu der Geschwindigkeit v2 des zweiten Lichtbogenkontaktstückes (2) von v1 /v2 ≤ 1:2.4, insbesondere von v1/v2 ≤ 1 :2.8, erreicht wird.
  5. Schaltkammer gemäss einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass ein Kompressionsraum (10) vorhanden ist, dessen Volumen während eines Ausschaltvorganges verringert wird.
  6. Schaltkammer gemäss Anspruch 5, dadurch gekennzeichnet, dass der Kompressionsraum (10) von dem Heizraum (11) verschieden ist, und dass ein Ventil (12) zwischen dem Kompressionsraum (10) und dem Heizraum (11) vorgesehen ist.
  7. Schaltkammer gemäss einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass beide Lichtbogenkontaktstücke (1,2) bewegbar sind, und dass ein erster Antrieb zum Antreiben des ersten Lichtbogenkontaktstücks (1) und ein zweiter Antrieb (3) zum Antreiben des zweiten Lichtbogenkontaktstücks (2) vorgesehen ist.
  8. Schaltkammer gemäss Anspruch 7, dadurch gekennzeichnet, dass der zweite Antrieb (3) ein durch den ersten Antrieb antreibbares Getriebe (3) ist.
  9. Schaltkammer gemäss Anspruch 7 oder 8, dadurch gekennzeichnet, dass die isolierdüse (5) mittels des ersten Antriebes antreibbar ist.
  10. Schaltkammer gemäss einem der Ansprüche 7-9, dadurch gekennzeichnet, dass in einer Phase (P2) während einer gleichgerichteten Bewegung der Lichtbogenkontaktstücke (1,2) für das Verhältnis v1 /v2 der Geschwindigkeit v1 des ersten Lichtbogenkontaktstückes (1) zu der Geschwindigkeit v2 des zweiten Lichtbogenkontaktstückes (2) gilt: 0.4 ≥v1 /v2 1.2, insbesondere 0.75 ≥ v1 /v2 ≥ 1:1.15.
  11. Schaltkammer gemäss einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass während eines Ausschaltvorgangs, nach der Kontakttrennung und während eine Löschgasströmung entlang einer Achse (A) durch das Engnis (6) in Richtung (z2) des zweiten Lichtbogenkontaktstücks (2) möglich ist, ein parallel zu der Achse (A) gemessener Abstand d zwischen dem Engnis (6) und dem zweiten Lichtbogenkontaktstück (2) derart gewählt ist, dass die Strömungsgeschwindigkeit der Löschgasströmung in einem solchen Bereich maximal ist, der bezüglich der Achse (A) radial seitlich neben dem zweiten Lichtbogenkontaktstück (2) und/oder innerhalb des zweiten Lichtbogenkontaktstücks (2) angeordnet ist.
  12. Schaltkammer gemäss einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass das Engnis (6) im wesentlichen als ein Zylinder ausgebildet ist, und dass während eines Ausschaltvorgangs, nach der Kontakttrennung und während einer Löschphase, in der eine Löschgasströmung entlang einer Achse (A) durch das Engnis (6) in Richtung (z2) des zweiten Lichtbogenkontaktstücks (2) möglich ist, ein parallel zu der Achse (A) gemessener Abstand d zwischen dem Engnis (6) und dem zweiten Lichtbogenkontaktstück (2) derart gewählt ist, dass d = D × 1 + cosα ½ - 1 / 2 sinα cosα
    Figure imgb0019

    gilt, wobei D der Durchmesser des Zylinders nahe dem während der Löschphase dem zweiten Lichtbogenkontaktstück (2) zugewandten Ende des Zylinders ist, und wobei α gleich einem Öffnungswinkel α eines an das Engnis (6) anschliessenden, erweiterten Bereiches (21) ist, und wobei für den Parameter b' gilt: b'= b - F/F', wobei F' der Flächeninhalt der bezüglich der Achse (A) radial angeordneten Querschnittsfläche einer gegebenenfalls in dem zweiten Kontaktstück (2) vorgesehenen Öffnung zum Abströmen von Löschgas ist, und wobei für den Parameter b gilt: 1.4 b 4.5 ,
    Figure imgb0020

    insbesondere 1.7 b 4.0.
    Figure imgb0021
  13. Schaltkammer gemäss Anspruch 11 oder 12, dadurch gekennzeichnet, dass die genannte Bedingung für die Wahl des Abstandes d während mindestens 10 ms, insbesondere während mindestens 35 ms erfüllt ist.
  14. Schaltkammer gemäss einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass das zweite Lichtbogenkontaktstück (2) stiftartig ausgebildet ist.
  15. Schaltkammer gemäss einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass das Engnis (6) durch eines der beiden Lichtbogenkontaktstücke (1 ;2), das als Verdämm-Kontaktstück (2) bezeichnet wird und bewegbar ist, zumindest teilweise verdämmbar ist, und dass es während eines Ausschaltvorganges eine Zeitspanne gibt, während der eine Bewegungsrichtung (z2) des Verdämm-Kontaktstücks (2) unverändert bleibt und die maximale Relativgeschwindigkeit v12,max der beiden Lichtbogenkontaktstücke zueinander erreicht wird, und wobei diese Zeitspanne mindestens andauert, bis das Engnis (6) nicht mehr durch das Verdämm-Kontaktstück (2) zumindest teilweise verdämmt ist.
  16. Schaltkammer gemäss einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass das Engnis (6) durch eines der beiden Lichtbogenkontaktstücke (1 ;2), das als Verdämm-Kontaktstück (2) bezeichnet wird und bewegbar ist, zumindest teilweise verdämmbar ist, und dass während eines Ausschaltvorgangs eine Bewegungsrichtungsumkehr des mindestens einen bewegbaren Lichtbogenkontaktstücks (2) stattfindet, wenn das Engnis (6) nicht mehr durch das Verdämm-Kontaktstück (2) zumindest teilweise verdämmt ist.
  17. Hochleistungsschalter, dadurch gekennzeichnet, dass der Hochleistungsschalter mindestens eine Schaltkammer gemäss einem der vorangegangenen Ansprüche aufweist.
  18. Verfahren zum Ausschalten einer Schaltkammer für einen mit einem Löschgas befüllten Hochleistungsschalter, mit einem ersten Lichtbogenkontaktstück (1) und mit einem zweiten Lichtbogenkontaktstück (2), mit mindestens einem Antrieb und mit einer ein Engnis (6) aufweisenden Isolierdüse (5), wobei mindestens eines der beiden Lichtbogenkontaktstücke (1,2) mittels des Antriebs bewegt wird, wobei eine Kontakttrennung stattfindet und ein zwischen den Lichtbogenkontaktstücken (1,2) brennender Lichtbogen (4) gezündet wird, durch den Löschgas aufgeheizt wird, wobei das aufgeheizte Löschgas zwischengespeichert und zur Beblasung des Lichtbogens (4) durch das Engnis (6) geführt wird,
    dadurch gekennzeichnet, dass
    während eines Ausschaltvorgangs eine maximale Relativgeschwindigkeit v12,max der beiden Lichtbogenkontaktstücke (1,2) zueinander erreicht wird, die mindestens 1.3 mal so gross ist wie eine zum kapazitiven Schalten notwendige Relativgeschwindigkeit V12,c der beiden Lichtbogenkontaktstücke (1,2), und dass in einem einkammerigen Hochleistungsschalter für die maximale Relativgeschwindigkeit v12,max der beiden Lichtbogenkontaktstücke (1,2) zueinander während eines Ausschaltvorgangs gilt: v 12 , max 23 × U N p f / E krit p 0 , ̲
    Figure imgb0022

    wobei UN die Nennspannung des Hochleistungsschalters, p der Polfaktor des Hochleistungsschalters. Ekrit die Einsatzfeldstärke für Entladungen des Löschgases, und p0 der Fülldruck des Löschgases ist, und f die Hochspannungsnetzfrequenz ist, für die die Schaltkammer ausgelegt ist, so dass ein grosser Löschgasdruck erzeugbar ist.
EP04405527A 2004-08-23 2004-08-23 Schaltkammer und Hochleistungsschalter Expired - Lifetime EP1630841B1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE502004011745T DE502004011745D1 (de) 2004-08-23 2004-08-23 Schaltkammer und Hochleistungsschalter
EP04405527A EP1630841B1 (de) 2004-08-23 2004-08-23 Schaltkammer und Hochleistungsschalter
AT04405527T ATE484067T1 (de) 2004-08-23 2004-08-23 Schaltkammer und hochleistungsschalter
CN2005800363076A CN101048837B (zh) 2004-08-23 2005-07-22 开关室和大功率开关
JP2007528550A JP4833980B2 (ja) 2004-08-23 2005-07-22 スイッチング・チャンバ及びヘビーデューティ・サーキット・ブレーカ
PCT/CH2005/000433 WO2006021109A1 (de) 2004-08-23 2005-07-22 Schaltkammer und hochleistungsschalter
US11/709,819 US7566842B2 (en) 2004-08-23 2007-02-23 Switching chamber and heavy-duty circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP04405527A EP1630841B1 (de) 2004-08-23 2004-08-23 Schaltkammer und Hochleistungsschalter

Publications (2)

Publication Number Publication Date
EP1630841A1 EP1630841A1 (de) 2006-03-01
EP1630841B1 true EP1630841B1 (de) 2010-10-06

Family

ID=34932248

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04405527A Expired - Lifetime EP1630841B1 (de) 2004-08-23 2004-08-23 Schaltkammer und Hochleistungsschalter

Country Status (7)

Country Link
US (1) US7566842B2 (de)
EP (1) EP1630841B1 (de)
JP (1) JP4833980B2 (de)
CN (1) CN101048837B (de)
AT (1) ATE484067T1 (de)
DE (1) DE502004011745D1 (de)
WO (1) WO2006021109A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2887367A1 (de) 2013-12-19 2015-06-24 ABB Technology AB Gasisolierter Hochspannungsschutzschalter

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2949170B1 (fr) * 2009-08-14 2011-11-25 Areva T & D Sas Chambre de coupure pour disjoncteur a moyenne ou haute tension a energie de manoeuvre reduite
US8890019B2 (en) 2011-02-05 2014-11-18 Roger Webster Faulkner Commutating circuit breaker
US9824838B2 (en) * 2011-02-05 2017-11-21 Alevo International, S.A. Commutating circuit breaker
WO2013013112A1 (en) 2011-07-20 2013-01-24 Pennsylvania Breaker, Llc Gas blast interrupter
AU2012315502B2 (en) * 2011-09-30 2016-06-30 Innolith Assets Ag Commutating circuit breaker
DE112013002015T5 (de) * 2012-04-11 2015-04-23 Abb Technology Ag Leistungsschalter
US9054530B2 (en) 2013-04-25 2015-06-09 General Atomics Pulsed interrupter and method of operation
JP6418079B2 (ja) * 2015-06-24 2018-11-07 Smk株式会社 コンタクトの接触構造
KR102519246B1 (ko) * 2016-07-21 2023-04-06 히타치 에너지 스위처랜드 아게 개선된 메인 노즐을 갖는 가스 절연 고전압 스위칭 디바이스

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683383B1 (fr) * 1991-11-04 1993-12-31 Gec Alsthom Sa Disjoncteur a haute ou moyenne tension a triple mouvement.
DE19613569A1 (de) * 1996-04-04 1997-10-09 Asea Brown Boveri Leistungsschalter
JPH1083748A (ja) * 1996-09-10 1998-03-31 Mitsubishi Electric Corp 開閉器
FR2770678B1 (fr) * 1997-10-30 1999-12-31 Gec Alsthom T & D Sa Disjoncteur de generateur a commande mecanique unique
FR2790592B1 (fr) * 1999-03-01 2001-04-06 Alstom Disjoncteur haute tension a double mouvement
DE10003359C1 (de) 2000-01-21 2001-07-19 Siemens Ag Hochspannungs-Leistungsschalter mit zwei antreibbaren Lichtbogenkontaktstücken und einem Heizraum
DE10006167B4 (de) * 2000-02-11 2009-07-23 Abb Schweiz Ag Leistungsschalter
FR2807870B1 (fr) * 2000-04-18 2002-05-24 Alstom Interrupteur a soufflage d'arc, possedant une chambre de coupure a compression de gaz reduite et un mouvement alternatif du piston
FR2817389B1 (fr) * 2000-11-30 2003-01-03 Schneider Electric High Voltag Appareillage de coupure electrique haute tension a double mouvement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2887367A1 (de) 2013-12-19 2015-06-24 ABB Technology AB Gasisolierter Hochspannungsschutzschalter

Also Published As

Publication number Publication date
US7566842B2 (en) 2009-07-28
CN101048837A (zh) 2007-10-03
EP1630841A1 (de) 2006-03-01
US20070205182A1 (en) 2007-09-06
JP2008511107A (ja) 2008-04-10
WO2006021109A8 (de) 2006-04-20
WO2006021109A1 (de) 2006-03-02
DE502004011745D1 (de) 2010-11-18
CN101048837B (zh) 2010-12-22
ATE484067T1 (de) 2010-10-15
JP4833980B2 (ja) 2011-12-07

Similar Documents

Publication Publication Date Title
WO2006021109A1 (de) Schaltkammer und hochleistungsschalter
EP0809269B1 (de) Hochspannungs-Leistungsschalter mit zwei antreibbaren Schaltkontaktstücken
EP1109187B1 (de) Hybridleistungsschalter
DE69507453T2 (de) Hochspannungsschalter mit dielektrischem Gas mit Selbst-Beblasung
DE60120885T2 (de) Hochspannungsschaltgerät mit Doppelbewegung
WO2006021107A1 (de) Hochleistungsschalter mit bewegungsumkehr
EP2343721A1 (de) Gasisolierter Hochspannungsschalter
DE19809088C1 (de) Hochspannungsleistungsschalter mit einer Isolierstoffdüse
WO2006021108A1 (de) Hochleistungsschalter
DE1199368B (de) Hochspannungsleistungsschalter
DE29709084U1 (de) Druckgasschalter
EP2923369B1 (de) Schaltverfahren und schalteinrichtung
EP2645396B1 (de) Druckgasschalter
DE69106986T2 (de) Hochspannungsschalter mit Selbstbeblasung.
DE102014102929A1 (de) Gasdämpfer für einen Hochspannungsschalter
DE69112568T2 (de) Hochspannungslastschalter.
EP0025833B1 (de) Druckgasschalter
WO1991015025A1 (de) Druckgasleistungsschalter mit antreibbarem kompressionskolben
DE3930548C2 (de) Druckgasschalter
EP3991196A1 (de) Elektrische schalteinrichtung
DE2759265C3 (de) Druckgasschalter
DE69019314T2 (de) Druckgaslastschalter.
DE19730583B4 (de) Druckgasschalter
WO2002058091A1 (de) Vakuumschalter sowie system und verfahren zu seiner steuerung
DE102014216171A1 (de) Elektrische Schalteinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20060722

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ABB SCHWEIZ AG INTELLECTUAL PROPERTY (CH-LC/IP)

REF Corresponds to:

Ref document number: 502004011745

Country of ref document: DE

Date of ref document: 20101118

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110207

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110117

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

26N No opposition filed

Effective date: 20110707

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004011745

Country of ref document: DE

Effective date: 20110707

BERE Be: lapsed

Owner name: ABB TECHNOLOGY A.G.

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110823

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 484067

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110823

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120822

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110823

Ref country code: CY

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20101006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130823

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004011745

Country of ref document: DE

Owner name: HITACHI ENERGY SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB TECHNOLOGY AG, ZUERICH, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004011745

Country of ref document: DE

Owner name: ABB SCHWEIZ AG, CH

Free format text: FORMER OWNER: ABB TECHNOLOGY AG, ZUERICH, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004011745

Country of ref document: DE

Owner name: ABB POWER GRIDS SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB TECHNOLOGY AG, ZUERICH, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004011745

Country of ref document: DE

Representative=s name: DENNEMEYER & ASSOCIATES S.A., DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004011745

Country of ref document: DE

Representative=s name: ZIMMERMANN & PARTNER PATENTANWAELTE MBB, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFUS

Owner name: ABB SCHWEIZ AG, CH

Free format text: FORMER OWNER: ABB TECHNOLOGY AG, CH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ABB SCHWEIZ AG, CH

Effective date: 20180912

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ABB POWER GRIDS SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004011745

Country of ref document: DE

Owner name: HITACHI ENERGY SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004011745

Country of ref document: DE

Owner name: HITACHI ENERGY LTD, CH

Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004011745

Country of ref document: DE

Representative=s name: DENNEMEYER & ASSOCIATES S.A., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004011745

Country of ref document: DE

Owner name: ABB POWER GRIDS SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB SCHWEIZ AG, BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004011745

Country of ref document: DE

Owner name: HITACHI ENERGY SWITZERLAND AG, CH

Free format text: FORMER OWNER: ABB POWER GRIDS SWITZERLAND AG, BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004011745

Country of ref document: DE

Owner name: HITACHI ENERGY LTD, CH

Free format text: FORMER OWNER: ABB POWER GRIDS SWITZERLAND AG, BADEN, CH

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230902

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230822

Year of fee payment: 20

Ref country code: DE

Payment date: 20230821

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004011745

Country of ref document: DE

Representative=s name: DENNEMEYER & ASSOCIATES S.A., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004011745

Country of ref document: DE

Owner name: HITACHI ENERGY LTD, CH

Free format text: FORMER OWNER: HITACHI ENERGY SWITZERLAND AG, BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 502004011745

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL