EP1630758B1 - Scattered light smoke detector - Google Patents

Scattered light smoke detector Download PDF

Info

Publication number
EP1630758B1
EP1630758B1 EP04023740A EP04023740A EP1630758B1 EP 1630758 B1 EP1630758 B1 EP 1630758B1 EP 04023740 A EP04023740 A EP 04023740A EP 04023740 A EP04023740 A EP 04023740A EP 1630758 B1 EP1630758 B1 EP 1630758B1
Authority
EP
European Patent Office
Prior art keywords
scattered light
signals
smoke detector
der
detector according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04023740A
Other languages
German (de)
French (fr)
Other versions
EP1630758A2 (en
EP1630758A3 (en
Inventor
August Dr. Kaelin
Dani Dr. Lippuner
Giuseppe Dr. Marbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP04020577A external-priority patent/EP1630759B1/en
Application filed by Siemens Schweiz AG filed Critical Siemens Schweiz AG
Priority to EP04023740A priority Critical patent/EP1630758B1/en
Priority to MX2007004102A priority patent/MX2007004102A/en
Priority to BRPI0516553-9A priority patent/BRPI0516553A/en
Priority to AU2005291248A priority patent/AU2005291248A1/en
Priority to CNA2005800340892A priority patent/CN101036173A/en
Priority to RU2007116951/09A priority patent/RU2007116951A/en
Priority to PCT/EP2005/055076 priority patent/WO2006037804A1/en
Priority to CA002583731A priority patent/CA2583731A1/en
Priority to KR1020077009287A priority patent/KR20070058647A/en
Priority to US11/664,874 priority patent/US7777634B2/en
Publication of EP1630758A2 publication Critical patent/EP1630758A2/en
Publication of EP1630758A3 publication Critical patent/EP1630758A3/en
Publication of EP1630758B1 publication Critical patent/EP1630758B1/en
Application granted granted Critical
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/20Calibration, including self-calibrating arrangements
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/20Calibration, including self-calibrating arrangements
    • G08B29/24Self-calibration, e.g. compensating for environmental drift or ageing of components
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/11Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
    • G08B17/113Constructional details

Definitions

  • the present invention relates to a scattered light smoke detector with an opto-electronic device for measuring stray signals at a forward and a backward scattering angle, and with evaluation electronics for obtaining a measured value from the stray signals and the comparison of an alarm value derived therefrom with an alarm threshold.
  • the JP 11 160238 A describes a photoelectric ionization smoke detector for discriminating white and black smoke. At least two light receivers are used for this, so that the emitted light can be received by a light transmitter at different scattering angles. By evaluating the received light, a distinction is made between white and black smoke.
  • the US 6218950 B1 describes a scattered light detector for the evaluation of scattered light signals.
  • the microprocessor-based scattered light detector measures scattered light signals at two scattered light angles and determines an alarm parameter.
  • An alarm value is determined by the ratio of the scattered light signals and subsequent comparison with the specific alarm parameter.
  • the US 5726633 describes a multi-sensor smoke detector having at least one ionization and one photoelectric sensor. Coefficients are determined for each sensor output and combined accordingly in a processing work.
  • the use of the difference of the stray signals or smoke signals for the formation of the measured value instead of a weighting of the measured value as a function of the ratio of the stray signals has the advantage that much less computer effort is needed and thus a short response time of the detector is ensured.
  • the difference of the scattered signals as well as their quotient allows the recognition of the type of smoke.
  • a first preferred embodiment of the scattered-light smoke detector according to the invention is characterized in that said linear combination takes place according to the formula [k 1 (BW + FW) + k 2 (BW-FW)], in which k 1 and k 2 are two among others are constants influenced by an application factor dependent on the environmental conditions at the intended installation location of the detector.
  • k 1 and k 2 are two among others are constants influenced by an application factor dependent on the environmental conditions at the intended installation location of the detector.
  • 0 ⁇ k 1 . k 2 ⁇ 5 preferably 0 ⁇ k 1 . k 2 ⁇ 3.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

Die vorliegende Erfindung betrifft einen Streulicht-Rauchmelder mit einer opto-elektronischen Anordnung zur Messung von Streusignalen unter einem Vorwärts- und einem Rückwärtsstreuwinkel, und mit einer Auswerteelektronik für die Gewinnung eines Messwerts aus den Streusignalen und den Vergleich eines von diesem abgeleiteten Alarmwerts mit einer Alarmschwelle.The present invention relates to a scattered light smoke detector with an opto-electronic device for measuring stray signals at a forward and a backward scattering angle, and with evaluation electronics for obtaining a measured value from the stray signals and the comparison of an alarm value derived therefrom with an alarm threshold.

Die JP 11 160238 A beschreibt einen photoelektrischen Ionisations-Rauchmelder zum Unterscheiden von weissen und schwarzen Rauch. Dafür werden zumindest zwei Lichtempfänger verwendet, sodass das ausgesandte Licht von einem Lichtsender unter verschiedenen Streuwinkeln empfangen werden kann. Durch eine Auswertung des empfangen Lichtes wird dann eine Unterscheidung zwischen weissem und schwarzen Rauch gemacht.The JP 11 160238 A describes a photoelectric ionization smoke detector for discriminating white and black smoke. At least two light receivers are used for this, so that the emitted light can be received by a light transmitter at different scattering angles. By evaluating the received light, a distinction is made between white and black smoke.

Die US 6218950 B1 beschreibt einen Streulichtmelder zur Evaluierung von Streulichtsignalen. Der mikroprozessor-basierte Streulichtmelder misst Streulichtsignale bei zwei Streulichtwinkeln und bestimmt einen Alarmparameter. Ein Alarmwert wird bestimmt durch das Verhältnis der Streulichtsignale und anschliessenden Vergleich mit dem bestimmten Alarmparameter.The US 6218950 B1 describes a scattered light detector for the evaluation of scattered light signals. The microprocessor-based scattered light detector measures scattered light signals at two scattered light angles and determines an alarm parameter. An alarm value is determined by the ratio of the scattered light signals and subsequent comparison with the specific alarm parameter.

Die US 5726633 beschreibt einen Multi-Sensor-Rauchmelder der zumindest einen lonisations- und einen photoelektrischen Sensor aufweist. Für jeden Sensor-Output werden Koeffizienten bestimmt und in einer Verarbeitungsarbeit entsprechend kombiniert.The US 5726633 describes a multi-sensor smoke detector having at least one ionization and one photoelectric sensor. Coefficients are determined for each sensor output and combined accordingly in a processing work.

Es ist schon lange bekannt, dass das bei Vorwärts- und Rückwärtsstreuung die beiden Streulichtanteile für verschiedene Arten von Bränden in charakteristischer Weise verschieden sind. Dieses Phänomen ist beispielsweise in der WO-A-84/01950 (= US-A-4 642 471 ) beschrieben, wo unter anderem offenbart ist, dass sich das für verschiedene Raucharten unterschiedliche Verhältnis der Streuung bei kleinem Streuwinkel zur Streuung bei grossem Streuwinkel zur Erkennung der Rauchart ausnützen lässt. Der grössere Streuwinkel könne auch über 90° gewählt werden, was eine Auswertung der Vorwärts- und der Rückwärts-Streuung bedeutet. Bei einem in der EP-A-1 022 700 (= US-B-6 218 950 ) beschriebenen Streulicht-Rauchmelder der eingangs genannten Art wird aus den Streusignalen ein Hell-/Dunkel-Quotient berechnet, der sich zur Erkennung der Rauchart ausnützen lässt. Die beiden Streusignale werden summiert und die Summe wird mit dem genannten Hell-/Dunkel-Quotienten multipliziert. Es erfolgt also eine Gewichtung des Messwerts in Abhängigkeit vom Verhältnis der Streusignale, bei welcher das Streusignal eines dunklen Aerosols eine höhere Gewichtung erfährt als das Streusignal eines hellen Aerosols.
Durch die Erfindung soll nun die Fehlalarmsicherheit der Streulicht-Rauchmelder der eingangs genannten Art erhöht werden, wobei gleichzeitig ein möglichst rasches Ansprechen gewährleistet sein soll.
Diese Aufgabe wird erfindungsgemäss durch einen Streulicht-Rauchmelder nach Anspruch 1 und ein Verfahren nach Anspruch 19 gelöst.
It has long been known that in forward and backward scattering, the two stray light components are characteristically different for different types of fires. This phenomenon is for example in the WO-A-84/01950 (= U.S.-A-4,642,471 ), where it is disclosed, inter alia, that it is possible to exploit the different for different types of smoke ratio of scattering at a small scattering angle to the scattering at a large scattering angle to detect the type of smoke. The larger spread angle can also be selected over 90 °, which means an evaluation of the forward and backward scattering. At one in the EP-A-1 022 700 (= US-B-6 218 950 ) described scattered light smoke detector of the type mentioned is calculated from the scattering signals, a light / dark quotient, which can be exploited to detect the type of smoke. The two scattered signals are summed and the sum is multiplied by the stated bright / dark quotient. Thus, there is a weighting of the measured value as a function of the ratio of the scattering signals, at which the scattering signal of a dark aerosol experiences a higher weighting than the scattering signal of a light aerosol.
With the invention, the false alarm safety of the scattered light smoke detector of the type mentioned is now to be increased, at the same time the fastest possible response should be ensured.
This object is achieved by a scattered light smoke detector according to claim 1 and a method according to claim 19.

Die Verwendung der Differenz der Streusignale oder Rauchsignale für die Bildung des Messwerts anstatt einer Gewichtung des Messwerts in Abhängigkeit vom Verhältnis der Streusignale hat den Vorteil, dass wesentlich weniger Rechneraufwand benötigt wird und somit eine kurze Ansprechzeit des Melders gewährleistet ist. Die Differenz der Streusignale ermöglicht ebenso wie deren Quotient die Erkennung der Rauchart.The use of the difference of the stray signals or smoke signals for the formation of the measured value instead of a weighting of the measured value as a function of the ratio of the stray signals has the advantage that much less computer effort is needed and thus a short response time of the detector is ensured. The difference of the scattered signals as well as their quotient allows the recognition of the type of smoke.

Eine erste bevorzugte Ausführungsform des erfindungsgemässen Streulicht-Rauchmelders ist dadurch gekennzeichnet, dass die genannte lineare Verknüpfung nach der Formel [k1(BW+FW) + k2(BW-FW)] erfolgt, in welcher k1 und k2 zwei unter anderem von einem von den Umgebungsbedingungen am vorgesehenen Installationsort des Melder abhängigen Applikationsfaktor beeinflusste Konstanten sind. Für die genannten Konstanten gilt 0 < k1. k2 < 5, vorzugsweise 0< k1. k2 ≤ 3.A first preferred embodiment of the scattered-light smoke detector according to the invention is characterized in that said linear combination takes place according to the formula [k 1 (BW + FW) + k 2 (BW-FW)], in which k 1 and k 2 are two among others are constants influenced by an application factor dependent on the environmental conditions at the intended installation location of the detector. For the stated constants, 0 <k 1 . k 2 <5, preferably 0 <k 1 . k 2 ≤ 3.

Der Applikationsfaktor ist anwendungsspezifisch wählbar, und zwar vorzugsweise in Abhängigkeit von einem den Anforderungen des Kunden entsprechenden Satz von Einstellparametern des Melders.
Eine Zweite bevorzugte Ausführungsform des erfindungsgemässen Streulicht-Rauchmelders ist dadurch gekennzeichnet, dass eine Verarbeitung des Messwerts in zwei Pfaden erfolgt, dass im ersten Pfad eine Bestimmung des Typs des betreffenden Feuers erfolgt und ein entsprechendes Steuersignal gebildet wird und im zweiten Pfad eine Verarbeitung des genannten Messwerts und dessen Vergleich mit einer Alarmschwelle erfolgt, und dass die Verarbeitung des Messwerts im zweiten Pfad durch das im ersten Pfad gebildete Steuersignal gesteuert ist.
Eine dritte bevorzugte Ausführungsform des erfindungsgemässen Streulicht-Rauchmelders ist dadurch gekennzeichnet, dass bei der Bestimmung des Typs des betreffenden Feuers eine Unterscheidung nach Schwelbrand und offenem Brand und gegebenenfalls weiteren Brandarten erfolgt.
Eine vierte bevorzugte Ausführungsform ist dadurch gekennzeichnet, dass die Verarbeitung des Messwerts im zweiten Pfad eine Begrenzung des Messwerts in einer nachfolgend als Slope Regler bezeichneten Stufe umfasst, wobei eine Beschränkung des Messwerts auf ein bestimmtes Niveau oder dessen Verstärkung durch Addition eines Zusatzsignals erfolgt.
Eine weitere bevorzugte Ausführungsform des erfindungsgemässen Streulicht-Rauchmelders ist dadurch gekennzeichnet, dass der Slope Regler sowohl einen raschen Anstieg des Messwerts aufgrund von Signalspitzen verhindert als auch langsame Signalanstiege bei Schwelbränden akzentuiert. Vorzugsweise ist der Slope Regler durch das im ersten Pfad gebildete Steuersignal gesteuert. Im Slope Regler wird durch eine sehr langsame Filterung des Messwerts ein langsames Rauchsignal gewonnen.
Weitere bevorzugte Weiterentwicklungen und Verbesserungen des erfindungsgemässen Streulicht-Rauchmelders sind in den Ansprüchen 12 bis 18 beansprucht.
Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels und der Zeichnungen näher erläutert; es zeigt:

  • Fig. 1 eine schematische Blockbilddarstellung eines erfindungsgemässen Rauchmelders; und
  • Fig. 2 einschematisches Blockdiagramm der Signalverarbeitung des Rauchmelders von Fig. 1.
Der in Fig. 1 dargestellte Rauchmelder 1, der nachfolgend als Melder bezeichnet wird, enthält zwei Sensorsysteme, ein elektro-optisches System mit zwei Infrarot emittierenden Lichtquellen (IRED) 2 und 3 und einer Empfangsdiode 4 und ein thermisches Sensorsystem mit zwei durch NTC-Widerstände gebildeten Temperatursensoren 5 und 6 zur Messung der Temperatur in der Umgebung des Melders 1. Zwischen den Lichtquellen 2, 3 und der Empfangsdiode 4 ist eine Messkammer 7 gebildet. Die beiden Sensorsysteme sind in einem rotationssymmetrischen Gehäuse (nicht dargestellt) angeordnet, das in einem an der Decke eines zu überwachenden Raumes montierten Sockel befestigt ist.
Die Temperatursensoren 5 und 6 liegen einander radial gegenüber, was den Vorteil hat, dass sie unterschiedliches Ansprechverhalten auf aus einer bestimmten Richtung anströmende Luft aufweisen, so dass die Richtungsabhängigkeit des Ansprechverhaltens reduziert wird. Die Anordnung der beiden Lichtquellen 2 und 3 ist so gewählt, dass die optische Achse der Empfangsdiode 4 mit der optischen Achse der einen Lichtquelle, darstellungsgemäss der Lichtquelle 2, einen stumpfen und mit der optischen Achse der anderen Lichtquelle, darstellungsgemäss der Lichtquelle 3, einen spitzen Winkel einschliesst. Das Licht der Lichtquellen 2 und 3 wird durch in die Messkammer 7 eindringenden Rauch gestreut und ein Teil dieses Streulichts fällt auf die Empfangsdiode 4, wobei man bei einem stumpfen Winkel zwischen den optischen Achsen von Lichtquelle und Empfangsdiode von Vorwärtsstreuung und bei einem spitzen Winkel zwischen den genannten optischen Achsen von Rückwärtsstreuung spricht. Der mechanische Aufbau des Melders 1 bildet nicht Gegenstand der vorliegenden Patentanmeldung wird daher hier nicht näher beschrieben; es wird in diesem Zusammenhang auf die EP-A-1 376 505 und auf die in dieser Anmeldung zitierten Literaturstellen verwiesen.
Zur besseren Diskriminierung zwischen verschiedenen Aerosolen können im Strahlengang sender- und/oder empfängerseitig aktive oder passive Polarisationsfilter vorgesehen sein. Als weitere Option können als Lichtquellen 2 und 3 Dioden verwendet werden, die eine Strahlung im Wellenlängenbereich des sichtbaren Lichts aussenden (siehe dazu EP-A-0 926 646 ), oder aber die Lichtquellen können Strahlung verschiedener Wellenlängen aussenden, beispielsweise die eine Lichtquelle rotes oder infrarotes und die andere blaues Licht. Es ist auch möglich, ultraviolettes Licht zu verwenden.
Der Melder 1 macht beispielsweise alle 2 Sekunden eine Messung, wobei die Vorwärts- und die Rückwärts-Streulichtsignale sequentiell erzeugt werden. Die Signale der Empfangsdiode, die nachfolgend als Sensorsignale bezeichnet werden, werden in einem Filter 8 von den gröbsten Störungen eines definierten Frequenzbereichs befreit und gelangen anschliessend in einen ASIC 9, der im wesentlichen einen Verstärker 10 und einen A/D-Wandler 11 aufweist. Anschliessend gelangen die im Folgenden als Streulichtsignale bezeichneten digitalisierten Sensorsignale, SB (Rückwärts-Streusignal) und SF (Vorwärts-Streusignal) in einen Micro Controller 12, der eine Sensor Control Software 13 für die digitale Verarbeitung der Streusignale enthält.
Der Sensor Control Software ist zusätzlich zu den Streusignalen SB und SF noch ein Offset-Signal OF zugeführt. Dieses ist das Ausgangssignal der Empfangsdiode 4, wenn diese nicht mit Streulicht von einer der beiden Lichtquellen 2 oder 3 beaufschlagt ist. Die mit T1 und T2 bezeichneten Signale der beiden Temperatursensoren 5 und 6 sind ebenfalls dem Micro Controller 12 zugeführt, und gelangen nach Digitalisierung in einem A/D-Wandler 18 zur Sensor Control Software 13.
Die Verarbeitung der Signale der verschiedenen Sensoren mit der Sensor Control Software 13 soll nun anhand von Fig. 2 erläutert werden: Zuerst erfolgt eine getrennte Vorverarbeitung sowohl der Streusignale SB und SF sowie des Offsetsignals OF einerseits als auch der Signale T1, T2 der Temperatursensoren 5, 6 anderseits in je einer Vorverarbeitungsstufe 14 bzw. 15. In der Rauchvorverarbeitung 14 werden die Schwankungen des Offset-Signals OF geglättet, indem der Zuwachs oder die Abnahme der Sensorsignale auf einen vorbestimmten Wert begrenzt wird. Dann wird das Offset-Signal OF von den Streusignalen subtrahiert. Die Vorverarbeitung der Signale T, und T2 in der Temperaturvorverarbeitung 15 ist erforderlich, weil zwischen der gemessenen und der tatsächlichen Temperatur ein Unterschied besteht, der unter anderem durch die thermische Masse der NTC-Widerstände 5 und 6 und des Meldergehäuses, durch die Position der NTC-Widerstände im Melder 1 und durch Einflüsse des Melders und dessen Umgebung bedingt ist, die zu einer Verzögerung führen. Die gemessene Temperatur wird mit einem Referenzwert verglichen und anschliessend wird anhand eines Modells auf die tatsächliche Temperatur zurückgerechnet. Diese tatsächliche Temperatur wird linearisiert und in ihrem Anstieg begrenzt, so dass am Ausgang der Temperaturvorverarbeitung 15 ein Temperatursignal T erhältlich ist, welches unter anderem der Rauchvorverarbeitung 14 zugeführt wird.
In der Rauchvorverarbeitung 14 erfolgt nach der Kompensation der Streusignale SB, SF mit dem Offset-Signal eine Temperaturkompensation, bei der aus dem Temperatursignal T ein Korrekturfaktor gewonnen wird, mit dem die Streusignale SB, SF multipliziert werden. Wenn es sich beim Melder 1 um einen rein optischen Melder ohne Temperatursensoren 5 und 6 handelt, dann ist im Melder ein einzelner Temperatursensor vorgesehen, der ein Temperatursignal liefert.
Das Temperatursignal T gelangt ausserdem in eine mit dem Bezugszeichen 16 bezeichnete Stufe Temperaturdifferenz und eine mit dem Bezugszeichen 17 bezeichnete Stufe Maximaltemperatur. In der Maximaltemperatur-Stufe 17 wird analysiert, ob das Maximum des Temperatursignals T einen Alarmwert von beispielsweise 80° C (in einigen Ländern 60° C) überschreitet. In der Temperaturdifferenz-Stufe 16 wird untersucht, wie rasch das Temperatursignal T ansteigt. Der Ausgang der Stufe 16 ist mit einem Eingang der Stufe 17 verbunden, an deren Ausgang ein Temperaturwert T' erhältlich ist, der für die weitere Signalverarbeitung verwendet wird.
Die in der Stufe 14 vorverarbeiteten Streusignale gelangen in ein Medianfilter 19, welches aus mehreren, vorzugsweise aus fünf, aufeinander folgenden Werten der Sensorsignale den Medianwert auswählt. Das Medianfilter 19 enthält ausserdem einen so genannten Time Shifter, der aus den genannten fünf Sensorsignalen den bezüglich der Reihenfolge mittleren, also den dritten Wert auswählt. Dann wird die Differenz aus diesen beiden Werten gebildet, die zu den Schwankungen der Streusignale proportional ist und eine Abschätzung der Standardabweichung des Streusignale ermöglicht. Diese ermöglicht wiederum die Berechnung von Störungen. Die Ausgangssignale des Medianfilters 19, die im Folgenden als Rauchsignale BW und FW bezeichnet werden, gelangen in eine mit dem Bezugszeichen 20 bezeichnete Extraktionstufe für die Gewinnung eines Rauchwerts S. Das Bezugszeichen BW bezeichnet das Rückwärts-Rauchsignal und das Bezugszeichen FW das Vorwärts-Rauchsignal.
In der Extraktionsstufe 20 erfolgt durch eine sehr langsame Filterung eine Hintergrundkompensation, bei der im wesentlichen durch Verstaubung bedingte Störungen kompensiert werden. Ausserdem wird die Summe der Rauchsignale (BW+FW) und die Differenz der Rauchsignale (BW-FW) gebildet und mit je einem Applikationsfaktor multipliziert. Die so gebildeten Terme werden dann linear verknüpft, beispielsweise nach der Formel k 1 BW + FW + k 2 BW - FW .
Figure imgb0001
in welcher k1 und k2 die genannten Applikationsfaktoren bezeichnen.
Das Ergebnis der linearen Verknüpfung ist der am Ausgang der Extraktionsstufe 20 erhältliche so genannte Messwert S, welcher der weiteren Signalverarbeitung zugrunde liegt. Der Applikationsfaktor hängt von der vorgesehenen Anwendung und vom vorgesehenen Einsatzort des Melders 1 ab, oder mit anderen Worten, welcher Typ von Feuer, insbesondere ob Schwelbrand oder offenes Feuer, mit Priorität detektiert werden soll.
Jeder Melder 1 besitzt einen an die Umgebung seines Installationsortes und an Wünsche des Kunden angepassten Satz geeigneter Parameter, das ist der so genannte Parametersatz. Dieser ist beim Melder 1 beispielsweise von der kritischen Feuergrösse, dem Brandrisiko, dem Personenrisiko, der Wertkonzentration, der Raumgeometrie und von Täuschungsgrössen abhängig, wobei die Täuschungsgrössen beispielsweise durch nicht von einem Feuer herrührenden Rauch, Abgase, Dampf, Staub, Fasern oder elektromagnetische Störungen gebildet sein können. Bei der linearen Verknüpfung der Rauchwerte gemäss Formel 1 gilt für die beiden Applikationsfaktoren k1 und k2: 0 < k1. k2 < 5, vorzugsweise 0 < k1. k2 ≤ 3.
In der Extraktionsstufe 20 erfolgt ausserdem eine Optimierung des Arbeitsbereichs des A/D-Wandlers 11 (Fig. 1) und eine Bestimmung der Kurz- und Langzeitvarianz der Sensorsignale und der Variationen von Rauschen im Signal. Eine grosse Varianz ist ein Hinweis auf Störungen und kann eine Reduktion der Detektionsgeschwindigkeit für bestimmte Parametersätze auslösen. Ausserdem erfolgt in der Stufe 20 noch eine abgeleitete Analyse, bei der berechnet wird, ob das Sensorsignal über eine längere Zeit von beispielsweise 40 Sekunden hauptsächlich zunimmt, das heisst monoton wächst, wobei eine monotone Zunahme des Sensorsignal auf ein Feuer hindeutet. Das Ergebnis der abgeleiteten Analyse wird bei einigen Parametersätzen dazu verwendet, die Geschwindigkeit der Signalverarbeitung anzupassen. Wenn beispielsweise das Sensorsignal monoton wächst und das Feuer in der nachfolgenden Bewertungsstufe 21 als offenes Feuer bewertet wird, kann die Geschwindigkeit der Signalverarbeitung vervierfacht werden, um einen höher empfindlichen Parametersatz zu erhalten. Die Monotonie wird dadurch bestimmt, dass man aus einer Anzahl von beispielsweise 20 Werten des Sensorsignals bestimmte Paare (Vn) und (Vn-5) auswählt, beispielsweise den ersten (V1) und den sechsten (V6), den sechsten (V6), und den elften (V11) Wert, und so weiter und die Differenzen (Vn-Vn-5) bildet. Eine Differenz Vn-Vn-5 > 0 entspricht einer monotonen Zunahme des Sensorsignals und diese ist ein Hinweis auf Feuer.
Der Messwert S wird vom Ausgangl der Extraktionsstufe 20 einerseits der schon erwähnten Bewertungsstufe 21 und andererseits einer mit Slope Regler 22 bezeichneten Stufe zur Regelung der Signalform zugeführt. In der Bewertungsstufe 21 werden der Brandtyp, das so genannte Störungskriterium, das so genannte Monotoniekriterium und die Wichtigkeit der Temperatur bestimmt. Die Bestimmung des Brandtyps erfolgt anhand der linearen Verknüpfung (BW+FW) + (BW-FW), wobei als mögliche Typen Schwelbrand, offener Brand oder transienter Brand in Frage kommt. Unter einem transienten Brand versteht man den Übergang vom Schwelbrand zum offenen Brand, der bei Zündung des Feuers detektiert wird. Selbstverständlich könnte für die Bestimmung des Brandtyps auch der Quotient (BW/FW) verwendet werden, wie dies beispielsweise in der der WO-A-84/01950 (= US-A-4 642 471 ) beschrieben ist. In dieser Publikation ist unter anderem offenbart, dass sich das für verschiedene Raucharten unterschiedliche Verhältnis der Streuung bei kleinem Streuwinkel zur Streuung bei grossem Streuwinkel zur Erkennung der Rauchart ausnützen lässt, wobei der grössere Streuwinkel auch über 90° gewählt werden könne.
Zur Bestimmung des Störungskriteriums werden die aus der Standardabweichung berechneten Störungen (Medianfilter 19) mit einem Schwellwert verglichen. Zur Bestimmung des Monotoniekriteriums wird die bei der abgeleiteten Analyse in der Extraktionsstufe 20 berechnete Monotonie des Sensorsignals mit einem Schwellwert verglichen. Die Bestimmung der Wichtigkeit der Temperatur erfolgt durch Vergleich des Anstiegs ΔT der Temperatursignale T1, T2 mit einem Schwellwert; ΔT > 20° bedeutet Brand.
Der Ausgang der Bewertungsstufe 21 ist einem Event Regler 23 zugeführt, der einerseits den Slope Regler 22 und andererseits die Maximaltemperatur 17 steuert. Im Event Regler 23 entscheidet das System, ob und gegebenenfalls wie die Signalverarbeitung geändert werden soll. Eine solche Änderung erfolgt im Slope Regler 22, der einen intelligenten Begrenzer von Anstieg/Abnahme des Sensorsignals darstellt und ausserdem Symmetrie und Gradient des Sensorsignals bestimmt.
In einigen Parametersätzen möchte man beispielsweise rein optische, also nur durch Rauch verursachte Alarme verbieten, beschränken oder unterstützen. Dazu verwendet man eine Methode, die den Messwert S beim Anstieg auf einen bestimmten Wert beschränkt und anderseits aus einem verzögerten Rauchsignal einen bestimmten Maximalwert ableitet, und dann je nachdem, ob eine Zündung erfolgt ist, einen der beiden Werte für die weitere Verarbeitung verwendet. Dadurch erfolgt einerseits eine Beschränkung von sehr schnellen, durch Signalspitzen verursachten Anstiegen des Messwerts S und andererseits eine Betonung (Unterstützung) von durch Schwelbrände verursachten sehr langsam ansteigenden Signalen.
Am Ausgang des Slope Reglers 22 sind zwei Signale erhältlich, einerseits ein durch die gerade beschriebene Verarbeitung gewonnener Rauchwert S' und andererseits ein durch eine sehr langsame Filterung gewonnenes langsames Rauchsignal S+. Der Rauchwert S' wird für die weitere Verarbeitung verwendet und unter anderem einem Bypass Addierer 25 zugeführt, dem auch das langsame Rauchsignal S+ zugeführt ist. In einer unmittelbar vor dem Bypass Addierer 25 angeordneten Stufe (nicht dargestellt) wird der Rauchwert S' auf einen vom jeweiligen Parametersatz abhängigen Wert begrenzt, zu dem dann im Bypass Addierer 25 das langsame Rauchsignal S+ addiert wird, wobei der Anstieg des langsamen Rauchsignals S+ vom jeweiligen Parametersatz abhängt und bei einem robusten Parametersatz geringer ist als bei einem empfindlichen Parametersatz. Der Bypass Addierer 25 dient also dazu, bei einem robusten Parametersatz bei einem rasch ansteigenden Rauchwert S' einen zu raschen Alarm zu vermeiden, und bei einem empfindlichen Parametersatz bei einem langsam ansteigenden Rauchwert S' die Alarmauslösung zu unterstützen.
Der Rauchwert S' und der Temperaturwert T' werden in Form von je zwei Werten Wos und Wop beziehungsweise Wts und Wtp verarbeitet, dabei bedeutet:
  • Wos Gewicht des optischen Pfades für Summenbildung
  • Wop Gewicht des optischen Pfades für Produktbildung
  • Wts Gewicht des thermischen Pfades für Summenbildung
  • Wtp Gewicht des thermischen Pfades für Produktbildung.
Dass sowohl eine Summierung 26 als auch eine Multiplikation 27 erfolgt, hat den Vorteil, dass bei der Summierung 26 bei hohem Temperatur- und auch nur geringem Rauchwert und bei der Multiplikation 27 auch bei geringem Temperatur- und geringem Rauchwert Alarm ausgelöst wird. Die entsprechenden Werte werden addiert und multipliziert, was zusammen mit dem Signal des Bypass Addierers 25 und dem Temperaturwert T' vier Signale ergibt, die einer Gefahrensignal-Zusammensetzung 28 zugeführt werden. Diese sucht aus den vier zugeführten Signalen dasjenige mit dem höchsten Wert als Alarmsignal aus.
In einer auf die Gefahrensignal-Zusammensetzung 28 folgenden Gefahrenstufen-Erfassung 29 erfolgt eine Zuordnung des Signals der Gefahrensignal-Zusammensetzung 26 zu einzelnen Gefahrenstufen und in einer Gefahrenstufen-Verifikation 28 wird überprüft, ob die betreffende Gefahrenstufe über eine bestimmte Zeit von beispielsweise 20 Sekunden überschritten wird. Ist dies der Fall, wird Alarm ausgelöst. Die gestrichelten Verbindungen vom Event Regler 23 zur Maximaltemperatur 17, zum Slope Regler 22, zur Multiplikation 27 und zur Gefahrenstufen-Verifikation 30 symbolisieren Steuerleitungen.The application factor can be selected on an application-specific basis, preferably as a function of a set of setting parameters of the detector which corresponds to the requirements of the customer.
A second preferred embodiment of the scattered-light smoke detector according to the invention is characterized in that the measured value is processed in two paths, that the type of fire in question is determined in the first path and a corresponding control signal is formed and in the second path a processing of said measured value and its comparison with an alarm threshold, and that the processing of the measurement value in the second path is controlled by the control signal formed in the first path.
A third preferred embodiment of the inventive scattered light smoke detector is characterized in that when determining the type of fire in question, a distinction to smoldering fire and open fire and possibly other types of fire takes place.
A fourth preferred embodiment is characterized in that the processing of the measured value in the second path comprises a limitation of the measured value in a level hereinafter referred to as Slope controller, wherein a limitation of the measured value to a certain level or its gain takes place by addition of an additional signal.
A further preferred embodiment of the scattered-light smoke detector according to the invention is characterized in that the slope controller both prevents a rapid increase in the measured value due to signal peaks and accentuates slow signal increases in the case of smoldering fires. Preferably, the slope controller is that in the first path controlled control signal controlled. In the slope regulator, a slow smoke signal is obtained by very slowly filtering the measured value.
Further preferred developments and improvements of the inventive scattered light smoke detector are claimed in claims 12 to 18.
In the following the invention will be explained in more detail with reference to an embodiment and the drawings; it shows:
  • 1 shows a schematic block diagram of a smoke detector according to the invention; and
  • FIG. 2 is a schematic block diagram of the signal processing of the smoke detector of FIG. 1. FIG.
The smoke detector 1 shown in Fig. 1, hereinafter referred to as a detector, contains two sensor systems, an electro-optical system with two infrared emitting light sources (IRED) 2 and 3 and a receiving diode 4 and a thermal sensor system with two by NTC resistors formed temperature sensors 5 and 6 for measuring the temperature in the vicinity of the detector 1. Between the light sources 2, 3 and the receiving diode 4, a measuring chamber 7 is formed. The two sensor systems are arranged in a rotationally symmetrical housing (not shown), which is fastened in a base mounted on the ceiling of a room to be monitored.
The temperature sensors 5 and 6 are radially opposed to each other, which has the advantage that they have different responses to air flowing in from a certain direction, so that the directional dependence of the response is reduced. The arrangement of the two light sources 2 and 3 is selected so that the optical axis of the receiving diode 4 with the optical axis of a light source, according to the light source 2, a dull and with the optical axis of the other light source, according to the light source 3, an acute Angle includes. The light of the light sources 2 and 3 is scattered by smoke entering the measuring chamber 7 and a part of this scattered light is incident on the receiving diode 4, wherein at an obtuse angle between the optical axes of light source and receiving diode of forward scattering and at an acute angle between the said optical axes of backward scattering speaks. The mechanical structure of the detector 1 is not subject of the present patent application will therefore not be described in detail here; it will be in this context on the EP-A-1 376 505 and to the references cited in this application.
For better discrimination between different aerosols can be provided in the beam path transmitter and / or receiver side active or passive polarizing filter. As a further option, 2 and 3 diodes can be used as light sources emitting radiation in the wavelength range of visible light (see EP-A-0 926 646 ), or else the light sources can emit radiation of different wavelengths, for example one light source red or infrared and the other blue light. It is also possible to use ultraviolet light.
For example, the detector 1 makes a measurement every 2 seconds, whereby the forward and backward scattered light signals are generated sequentially. The signals of the receiving diode, which are hereinafter referred to as sensor signals, are freed in a filter 8 of the grossest disturbances of a defined frequency range and then go into an ASIC 9, which essentially has an amplifier 10 and an A / D converter 11. Subsequently, the digitized sensor signals, SB (backscatter signal) and SF (forward scatter signal), referred to hereinafter as scattered light signals, enter a microcontroller 12, which contains a sensor control software 13 for the digital processing of the scattered signals.
In addition to the scatter signals SB and SF, the sensor control software also supplies an offset signal OF. This is the output signal of the receiving diode 4, if it is not exposed to stray light from one of the two light sources 2 or 3. The signals of the two temperature sensors 5 and 6 denoted by T 1 and T 2 are likewise supplied to the microcontroller 12, and after digitization in an A / D converter 18 reach the sensor control software 13.
The processing of the signals of the various sensors with the sensor control software 13 will now be explained with reference to FIG. 2: First, there is a separate preprocessing of both the scatter signals SB and SF and the offset signal OF on the one hand and the signals T 1 , T 2 of the temperature sensors 5, 6 on the other hand, each in a pre-processing stage 14 and 15. In the smoke preprocessing 14, the fluctuations of the offset signal OF are smoothed by the increase or decrease of the sensor signals is limited to a predetermined value. Then, the offset signal OF is subtracted from the leakage signals. The pre-processing of the signals T, and T 2 in the temperature preprocessing 15 is required because there is a difference between the measured and the actual temperature, which is due, inter alia, by the thermal mass of the NTC resistors 5 and 6 and the detector housing, by the position of NTC resistors in the detector 1 and due to influences of the detector and its environment is caused, leading to a delay. The measured temperature is compared with a reference value and then calculated back to the actual temperature using a model. This actual temperature is linearized and limited in its rise, so that at the output of the temperature preprocessing 15, a temperature signal T is available, which is supplied to the smoke preprocessing 14 among others.
In the smoke preprocessing 14 takes place after the compensation of the leakage signals SB, SF with the offset signal, a temperature compensation, in which a correction factor is obtained from the temperature signal T, with which the scattering signals SB, SF are multiplied. If it If the detector 1 is a purely optical detector without temperature sensors 5 and 6, then a single temperature sensor is provided in the detector, which supplies a temperature signal.
The temperature signal T also passes into a designated with the reference numeral 16 stage temperature difference and designated by the reference numeral 17 stage maximum temperature. In the maximum temperature stage 17, it is analyzed whether the maximum of the temperature signal T exceeds an alarm value of, for example, 80 ° C (60 ° C in some countries). In the temperature difference stage 16, it is examined how quickly the temperature signal T increases. The output of stage 16 is connected to an input of stage 17, at whose output a temperature value T 'is available, which is used for further signal processing.
The pre-processed in stage 14 scatter signals arrive in a median filter 19, which selects the median value from a plurality, preferably from five, successive values of the sensor signals. The median filter 19 also contains a so-called time shifter, which selects from the five sensor signals mentioned in the order of the middle, ie the third value. Then, the difference is formed from these two values, which is proportional to the variations of the leakage signals and allows estimation of the standard deviation of the leakage signals. This in turn allows the calculation of disturbances. The output signals of the median filter 19, hereinafter referred to as smoke signals BW and FW, pass into an extraction stage for obtaining a smoke value S designated by the reference numeral 20. The reference character BW denotes the backward smoke signal and the reference symbol FW the forward smoke signal.
In the extraction stage 20 is carried out by a very slow filtering a background compensation, are compensated in the substantially dust-related disorders. In addition, the sum of the smoke signals (BW + FW) and the difference of the smoke signals (BW-FW) are formed and multiplied by one application factor each. The terms thus formed are then linearly linked, for example according to the formula k 1 BW + FW + k 2 BW - FW ,
Figure imgb0001
in which k 1 and k 2 denote the named application factors.
The result of the linear combination is the so-called measured value S available at the output of the extraction stage 20, which is the basis for the further signal processing. The application factor depends on the intended application and the intended location of the detector 1, or in other words, which type of fire, in particular whether smoldering fire or open fire, should be detected with priority.
Each detector 1 has a set of suitable parameters adapted to the environment of its installation location and to the wishes of the customer, this is the so-called parameter set. This is the detector 1, for example, on the critical fire size, the fire risk, the personal risk, the value concentration, the space geometry and deception sizes, the deception sizes, for example, formed by non-fire smoke, exhaust gases, steam, dust, fibers or electromagnetic interference could be. For the linear combination of the smoke values according to formula 1, for the two application factors k 1 and k 2 : 0 <k 1 . k 2 <5, preferably 0 <k 1 . k 2 ≤ 3.
In the extraction stage 20 there is also an optimization of the working range of the A / D converter 11 (FIG. 1) and a determination of the short and long term variance of the sensor signals and the variations of noise in the signal. A large variance is an indication of disturbances and can trigger a reduction of the detection speed for certain parameter sets. In addition, in the step 20 is still a derived analysis in which it is calculated whether the sensor signal mainly over a longer period of, for example, 40 seconds increases, that is monotonically growing, with a monotonous increase in the sensor signal indicates a fire. The result of the derived analysis is used in some parameter sets to adjust the speed of signal processing. For example, if the sensor signal increases monotonously and the fire in the subsequent evaluation stage 21 is rated as open fire, the speed of the signal processing can be quadrupled to obtain a higher sensitive parameter set. The monotonicity is determined by selecting certain pairs (V n ) and (V n-5 ) from a number of, for example, 20 values of the sensor signal, for example the first (V 1 ) and the sixth (V 6 ), the sixth ( V 6 ), and the eleventh (V 11 ) value, and so on, forming the differences (V n -V n-5 ). A difference V n -V n-5 > 0 corresponds to a monotonous increase of the sensor signal and this is an indication of fire.
The measured value S is supplied from the output 1 of the extraction stage 20 on the one hand to the already mentioned evaluation stage 21 and on the other hand to a level designated by slope regulator 22 for regulating the signal form. In the rating level 21, the fire type, the so-called disturbance criterion, the so-called monotony criterion and the importance of the temperature are determined. The determination of the type of fire is based on the linear combination (BW + FW) + (BW-FW), whereby possible types of smoldering fire, open fire or transient fire come into question. Under a transient fire understands the transition from the smoldering fire to the open fire, which is detected when the fire is ignited. Of course, the quotient (BW / FW) could also be used to determine the type of fire, as described, for example, in US Pat WO-A-84/01950 (= U.S.-A-4,642,471 ) is described. In this publication it is disclosed, inter alia, that the different for different types of smoke ratio of scattering at a small scattering angle for scattering at a large scattering angle for detecting the type of smoke can be exploited, the larger scattering angle could be selected over 90 °.
To determine the interference criterion, the interferences calculated from the standard deviation (median filter 19) are compared with a threshold value. To determine the monotonicity criterion, the monotonicity of the sensor signal calculated in the derived analysis in the extraction stage 20 is compared with a threshold value. The determination of the importance of the temperature is carried out by comparing the increase ΔT of the temperature signals T 1 , T 2 with a threshold value; ΔT> 20 ° means fire.
The output of the evaluation stage 21 is fed to an event controller 23 which on the one hand controls the slope controller 22 and on the other hand the maximum temperature 17. In the event controller 23, the system decides whether and, if so, how the signal processing should be changed. Such a change is made in the slope controller 22, which is an intelligent limiter of the rise / fall of the sensor signal and also determines the symmetry and gradient of the sensor signal.
In some parameter sets, for example, one would like to prohibit, restrict or support purely optical alarms, that is, only smoke-induced alarms. For this purpose, a method is used which restricts the measured value S to a certain value during the rise and, on the other hand, derives a specific maximum value from a delayed smoke signal and then uses one of the two values for further processing, depending on whether ignition has taken place. On the one hand, this results in a limitation of very rapid rises in the measured value S caused by signal peaks, and on the other hand an emphasis (support) for very slowly rising signals caused by smoldering fires.
Two signals are available at the output of the slope regulator 22, on the one hand a smoke value S 'obtained by the processing just described and, on the other hand, a slow smoke signal S + obtained by a very slow filtering. The smoke value S 'is used for further processing and supplied, inter alia, to a bypass adder 25, to which also the slow smoke signal S + is supplied. In a stage (not shown) arranged immediately before the bypass adder 25, the smoke value S 'is limited to a value dependent on the respective parameter set, to which the slow smoke signal S + is then added in the bypass adder 25, the rise of the slow smoke signal S + depends on the respective parameter set and is lower for a robust parameter set than for one sensitive parameter set. The bypass adder 25 thus serves to avoid a too rapid alarm in the case of a robust parameter set with a rapidly rising smoke value S ', and to support the alarm triggering in the case of a sensitive parameter set with a slowly rising smoke value S'.
The smoke value S 'and the temperature value T' are processed in the form of two values W os and W op or W ts and W tp , where:
  • W os Weight of the optical path for summation
  • W op Weight of the optical path for product formation
  • W ts Weight of the thermal path for summation
  • W tp Weight of the thermal path for product formation.
The fact that both a summation 26 and a multiplication 27 takes place, has the advantage that at the summation 26 at high temperature and low smoke value and the multiplication 27 even with low temperature and low smoke alarm is triggered. The corresponding values are added and multiplied, which, together with the signal of the bypass adder 25 and the temperature value T ', yields four signals which are fed to a hazard signal composition 28. This selects from the four supplied signals the one with the highest value as an alarm signal.
In a danger level detection 29 following the danger signal composition 28, the signal of the danger signal composition 26 is assigned to individual danger levels and in a hazard level verification 28 it is checked whether the relevant danger level is exceeded for a certain time, for example 20 seconds , If this is the case, an alarm is triggered. The dashed connections from the event controller 23 to the maximum temperature 17, the slope controller 22, the multiplication 27 and the danger level verification 30 symbolize control lines.

Claims (19)

  1. Scattered light smoke detector with an optoelectronic arrangement for measurement of scatter signals (SB, SF) detected below at least one forward scatter angle and one backscatter angle, and with evaluation electronics (12) for obtaining a measured value from the scatter signals (SB, SF), characterized in that the scattered light smoke detector features a median filter (19) for obtaining backward and forward smoke signals (BW, FW) from the backscatter and forward scatter signals (SB, SF), with the median filter (19) obtaining the backward and forward smoke signals (BW, FW) from the difference between the median value selected of a number of consecutive values of the backscatter and forward scatter signals (SB, SF) and the average value of the said consecutive values of the backscatter and forward scatter signals (SB, SF) as regards the sequence, and that the measured value (S) being formed by a linear linkage of the sum of the scatter signals (SB, SF) or smoke signals (BW, FW) with the difference between the smoke signals (BW, FW).
  2. Scattered light smoke detector according to claim 1, characterized in that the said linear linking is undertaken using the formula [k1(BW+FW) + k2(BW-FW)], in which k1 and k2 are two constants influenced inter alia by an application factor dependent on one of the environmental conditions at the intended installation site of the detector.
  3. Scattered light smoke detector according to claim 2, characterized in that the following applies for said constants: 0 < k1. k2 < 5, preferably 0 < k1. k2 ≤ 3.
  4. Scattered light smoke detector according to claim 2,
    characterized in that the application factor is able to be selected for a specific application.
  5. Scattered light smoke detector according to claim 4, characterized in that the application factor is able to be detected depending on a set of setting parameters of the detector (1) corresponding to the requirements of the customer.
  6. Scattered light smoke detector according to one of the claims 1 to 5, characterized in that the measured value (S) is processed in two paths, that in the first path (21, 23) the type of fire involved is determined and a corresponding control signal is formed and in the second path (22, 25-30) the measured value (S) is processed and is compared with an alarm threshold, and that the processing of the measured value (S) in the second path (22, 25-30) is controlled by the control signal formed in the first path (21, 23).
  7. Scattered light smoke detector according to claim 6, characterized in that, when the type of fire involved is being determined, a distinction is made between smoldering fire and open fire and where necessary further fire types.
  8. Scattered light smoke detector according to claim 7, characterized in that the processing of the measured value (S) in the second path (22, 25-30) includes a restriction of the measured value (S) in a stage subsequently referred to as slope regulator (22), with a restriction of the measured value (S) to a specific level or its amplification by addition of a supplementary signal.
  9. Scattered light smoke detector according to claim 8, characterized in that the slope regulator (22) both prevents a rapid increase in the measured value (S) as a result of signal peaks and also accentuates slow signal increases with smoldering fires.
  10. Scattered light smoke detector according to claim 9, characterized in that the slope regulator (22) is controlled by the control signal formed in the first path (21, 23).
  11. Scattered light smoke detector according to claim 10, characterized in that a slow smoke signal (S+) is obtained in the slope regulator (22) by a very slow filtering of the measured value (S).
  12. Scattered light smoke detector according to claim 11, characterized in that at least one temperature sensor (5, 6) arranged in or on the housing of the detector (1) is provided for measuring the ambient temperature of the detector (1) and for outputting the appropriate temperature signal (T).
  13. Scattered light smoke detector according to claim 12, characterized in that the alarm is determined, from the output signal of the slope regulator (22) subsequently referred to as the smoke value (S'), from the slow smoke signal (S+) and from the temperature value (T) .
  14. Scattered light smoke detector according to claim 13, characterized in that both a summation (26) and a product formation (27) are undertaken with the smoke value (S') and the temperature value (T').
  15. Scattered light smoke detector according to claim 14, characterized in that the smoke value (S') and the temperature value (T') are each processed in the form of two values (Wos, Wop or Wts, Wtp), with Wos designating the weight of the optical path for the summation, Wop the weight of the optical path for the product formation, Wts the weight of the thermal path for the summation and Wtp the weight of the thermal path for the product formation.
  16. Scattered light smoke detector according to claim 15, characterized in that the signal with the highest value is selected from the result of the summation and the product formation and compared with the alarm threshold.
  17. Scattered light smoke detector according to claim 16, characterized in that, by comparing the said signal with the highest value to various alarm thresholds the signal is assigned to different risk levels and subsequently these risk levels are verified.
  18. Scattered light smoke detector according to claim 17, characterized in that the verification of the risk levels is controlled by the control signal formed in the first path (21, 22).
  19. Method for forming a measured value with a scattered light smoke detector featuring an optoelectronic arrangement for measurement of scatter signals (SB, SF) below a forward scatter angle and a backscatter angle, and with evaluation electronics (12) for obtaining a measured value from the scatter signals (SB, SF), characterized in that a median filter (19) of the scattered light smoke detector is used for obtaining backward and forward smoke signals (BW, FW) from the backscatter and forward scatter signals (SB, SF), with the median filter (19) obtaining the backward and forward smoke signals (BW, FW) from the difference between the median value selected from a number of consecutive values of the backscatter and forward scatter signals (SB, SF) and the average value of the said consecutive values of the backscatter and forward scatter signals (SB, SF) as regards the sequence and the measured value (S) being formed by a linear linkage of the sum of the scatter signals (SB, SF) or smoke signals (BW, FW) and the difference between the smoke signals (BW, FW).
EP04023740A 2004-08-31 2004-10-06 Scattered light smoke detector Not-in-force EP1630758B1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP04023740A EP1630758B1 (en) 2004-08-31 2004-10-06 Scattered light smoke detector
PCT/EP2005/055076 WO2006037804A1 (en) 2004-10-06 2005-10-06 Scattered light smoke detector
KR1020077009287A KR20070058647A (en) 2004-10-06 2005-10-06 Scattered light smoke detector
AU2005291248A AU2005291248A1 (en) 2004-10-06 2005-10-06 Scattered light smoke detector
CNA2005800340892A CN101036173A (en) 2004-10-06 2005-10-06 Scattered light smoke detector
RU2007116951/09A RU2007116951A (en) 2004-10-06 2005-10-06 SMOKE SIGNALS USING DIFFERENT LIGHT
MX2007004102A MX2007004102A (en) 2004-10-06 2005-10-06 Scattered light smoke detector.
CA002583731A CA2583731A1 (en) 2004-10-06 2005-10-06 Scattered light smoke detector
BRPI0516553-9A BRPI0516553A (en) 2004-10-06 2005-10-06 stray light smoke detector
US11/664,874 US7777634B2 (en) 2004-10-06 2005-10-06 Scattered light smoke detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04020577A EP1630759B1 (en) 2004-08-31 2004-08-31 Scattered-light smoke detector
EP04023740A EP1630758B1 (en) 2004-08-31 2004-10-06 Scattered light smoke detector

Publications (3)

Publication Number Publication Date
EP1630758A2 EP1630758A2 (en) 2006-03-01
EP1630758A3 EP1630758A3 (en) 2006-03-08
EP1630758B1 true EP1630758B1 (en) 2008-01-02

Family

ID=35520197

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04023740A Not-in-force EP1630758B1 (en) 2004-08-31 2004-10-06 Scattered light smoke detector

Country Status (10)

Country Link
US (1) US7777634B2 (en)
EP (1) EP1630758B1 (en)
KR (1) KR20070058647A (en)
CN (1) CN101036173A (en)
AU (1) AU2005291248A1 (en)
BR (1) BRPI0516553A (en)
CA (1) CA2583731A1 (en)
MX (1) MX2007004102A (en)
RU (1) RU2007116951A (en)
WO (1) WO2006037804A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI456531B (en) * 2011-10-24 2014-10-11 Panasonic Corp Smoke sensor
CN109601019A (en) * 2016-08-25 2019-04-09 西门子瑞士有限公司 For carrying out the method for fire detection and such scattered light smoke warner according to scattering light principle, by for connecting different wave length alternately with the other LED unit for the other optical pulse strikes for scattering angular

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630758B1 (en) 2004-08-31 2008-01-02 Siemens Schweiz AG Scattered light smoke detector
EP1884904A1 (en) * 2006-07-26 2008-02-06 Siemens Schweiz AG Danger type determination by means of at least two signals
EP2565858A1 (en) * 2007-03-09 2013-03-06 Xtralis Technologies Ltd Method and system for particle detection
TW201007634A (en) * 2008-08-06 2010-02-16 Univ Nat Taiwan Fire-fighting detection system and its weighting-value correction method
DE102010015467B4 (en) * 2010-04-16 2012-09-27 Winrich Hoseit Fire detector for monitoring a room
CN102455288B (en) * 2010-10-15 2014-10-15 西门子公司 Apparatus for carrying out calibration on photoelectric signal path of sensor device through online signal level monitoring
CN102571863A (en) * 2010-12-30 2012-07-11 国际商业机器公司 Method and device for realizing content sharing between mobile terminals
DE102011083939B4 (en) 2011-09-30 2014-12-04 Siemens Aktiengesellschaft Evaluating scattered light signals in an optical hazard detector and outputting both a weighted smoke density signal and a weighted dust / vapor density signal
DE102012020127B4 (en) 2012-10-15 2016-06-09 Telesystems Thorwarth Gmbh Arrangement for monitoring and early fire detection for several fire and / or explosion-hazard vessels and / or housings
DE102015009938B4 (en) 2015-07-30 2022-02-03 Diehl Aviation Gilching Gmbh Heated smoke detector
US20170191876A1 (en) * 2015-12-31 2017-07-06 Google Inc. Systems and methods for using a power characteristic of an optoelectronic component of a hazard detection system to determine a temperature of an environment
US20170191877A1 (en) * 2015-12-31 2017-07-06 Google Inc. Systems and methods for using a power characteristic of an optoelectronic component of a hazard detection system to determine a smoke condition of an environment
CN115691032A (en) * 2016-03-31 2023-02-03 西门子瑞士有限公司 Optical smoke detector and method thereof
WO2017218763A1 (en) 2016-06-15 2017-12-21 Carrier Corporation Smoke detection methodology
RU168853U1 (en) * 2016-08-22 2017-02-21 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) Smoke detector
WO2018089660A1 (en) 2016-11-11 2018-05-17 Carrier Corporation High sensitivity fiber optic based detection
WO2018089654A1 (en) 2016-11-11 2018-05-17 Carrier Corporation High sensitivity fiber optic based detection
EP3321905B1 (en) 2016-11-11 2022-10-12 Kidde Technologies, Inc. High sensitivity fiber optic based detection
CN109937438B (en) * 2016-11-11 2021-11-05 开利公司 High sensitivity optical fiber based detection
CA3043583A1 (en) 2016-11-11 2018-05-17 Carrier Corporation High sensitivity fiber optic based detection
JP7142235B2 (en) * 2018-03-26 2022-09-27 パナソニックIpマネジメント株式会社 Smoke detection system, smoke detection method, and program
CN109712367A (en) * 2019-02-20 2019-05-03 北大青鸟环宇消防设备股份有限公司 Smoke detector and smoke detection method
CN110136390A (en) * 2019-05-28 2019-08-16 赛特威尔电子股份有限公司 A kind of smog detection method, device, smoke alarm and storage medium
CN112384784B (en) * 2020-09-25 2024-04-16 香港应用科技研究院有限公司 Smoke detection system and method using multi-dimensional index monitoring based on multi-wavelength scattering
CN112330918A (en) * 2020-11-25 2021-02-05 中国民用航空飞行学院 Photoelectric smoke detector for aircraft cargo hold and detection method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4749871A (en) * 1985-05-08 1988-06-07 Adt, Inc. Self-diagnostic projected-beam smoke detector
SU1550555A1 (en) 1987-07-27 1990-03-15 Предприятие П/Я А-3462 Method and apparatus for checking presence of smoke in medium under check
GB2259763B (en) * 1991-09-20 1995-05-31 Hochiki Co Fire alarm system
US5726633A (en) * 1995-09-29 1998-03-10 Pittway Corporation Apparatus and method for discrimination of fire types
JPH11160238A (en) * 1997-11-28 1999-06-18 Matsushita Electric Works Ltd Photoelectric smoke sensor
DE19902319B4 (en) * 1999-01-21 2011-06-30 Novar GmbH, Albstadt-Ebingen Zweigniederlassung Neuss, 41469 Scattered light fire detectors
DE10246756B4 (en) * 2002-10-07 2006-03-16 Novar Gmbh Fire detection procedure and fire detector for its implementation
EP1630758B1 (en) 2004-08-31 2008-01-02 Siemens Schweiz AG Scattered light smoke detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI456531B (en) * 2011-10-24 2014-10-11 Panasonic Corp Smoke sensor
CN109601019A (en) * 2016-08-25 2019-04-09 西门子瑞士有限公司 For carrying out the method for fire detection and such scattered light smoke warner according to scattering light principle, by for connecting different wave length alternately with the other LED unit for the other optical pulse strikes for scattering angular
CN109601019B (en) * 2016-08-25 2021-07-06 西门子瑞士有限公司 Method for fire detection based on the scattered light principle and scattered light smoke alarm

Also Published As

Publication number Publication date
AU2005291248A1 (en) 2006-04-13
RU2007116951A (en) 2008-11-20
CA2583731A1 (en) 2006-04-13
KR20070058647A (en) 2007-06-08
US7777634B2 (en) 2010-08-17
CN101036173A (en) 2007-09-12
EP1630758A2 (en) 2006-03-01
EP1630758A3 (en) 2006-03-08
BRPI0516553A (en) 2008-09-09
WO2006037804A1 (en) 2006-04-13
MX2007004102A (en) 2007-06-15
US20090009347A1 (en) 2009-01-08

Similar Documents

Publication Publication Date Title
EP1630758B1 (en) Scattered light smoke detector
DE69636022T2 (en) Fire alarm system with distinction of smoke particles
EP2603907B1 (en) Evaluating scattered-light signals in an optical hazard detector and outputting a dust/steam warning or a fire alarm
DE3610466C2 (en)
DE19934171B4 (en) Filter system and method
EP2601644B1 (en) Evaluation of scattered light signals in an optical alarm system and evaluating both a weighted smoke density signal and a weighted dust/steam density signal
DE69819399T2 (en) Smoke detector and control system for the display
EP1103937B1 (en) Fire detector
EP1022700B1 (en) Light scattering fire detector
US5751209A (en) System for the early detection of fires
DE4200946A1 (en) FIRE DETECTING METHOD
DE19622806A1 (en) Method and device for detecting a fire with different types of fire sensors
EP1366477B1 (en) Method for recognition of fire
WO2002095705A1 (en) Self-aspirating fire detection system
DE3586774T2 (en) FIRE DETECTION AND EXTINGUISHING METHOD AND SYSTEM, SENSITIVE TO OPTICAL RADIATION AND MECHANICAL WAVE ENERGY.
EP3916691B1 (en) Method for detecting contamination of a fire detector, fire detector, computer program and machine readable storage medium
EP1630759B1 (en) Scattered-light smoke detector
EP0660282B1 (en) System for the early detection of fires
DE102020206454A1 (en) Method for fire detection with a fire alarm, fire alarm, computer program and machine-readable storage medium
DE68925937T2 (en) Detection and processing of waveforms
EP1619640A1 (en) Scattered-light smoke detector
WO2009149767A1 (en) Determination of an alarm-issuing time of an alarm device
DE10104861B4 (en) Procedure for fire detection
EP1369836B1 (en) Smoke detector and method for its operation
EP4339914A1 (en) Device and method for operating a smoke detector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

RIC1 Information provided on ipc code assigned before grant

Ipc: G08B 17/107 20060101AFI20060117BHEP

Ipc: G08B 29/24 20060101ALI20060117BHEP

Ipc: G08B 29/20 20060101ALI20060117BHEP

17P Request for examination filed

Effective date: 20060421

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20060616

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS SCHWEIZ AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REF Corresponds to:

Ref document number: 502004005830

Country of ref document: DE

Date of ref document: 20080214

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20080213

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2299782

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080602

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

26N No opposition filed

Effective date: 20081003

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

BERE Be: lapsed

Owner name: SIEMENS SCHWEIZ A.G.

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080703

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080403

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20100915

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101018

Year of fee payment: 7

Ref country code: IT

Payment date: 20101027

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20111020

Year of fee payment: 8

Ref country code: ES

Payment date: 20111108

Year of fee payment: 8

Ref country code: FR

Payment date: 20111024

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20120110

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20111219

Year of fee payment: 8

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 382923

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121006

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121006

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121006

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121006

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130501

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004005830

Country of ref document: DE

Effective date: 20130501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121006

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121031

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130501

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121007