EP1627421A2 - Amorphous optical coupling structure for an electromagnetic wave detector and associated detector - Google Patents

Amorphous optical coupling structure for an electromagnetic wave detector and associated detector

Info

Publication number
EP1627421A2
EP1627421A2 EP04766022A EP04766022A EP1627421A2 EP 1627421 A2 EP1627421 A2 EP 1627421A2 EP 04766022 A EP04766022 A EP 04766022A EP 04766022 A EP04766022 A EP 04766022A EP 1627421 A2 EP1627421 A2 EP 1627421A2
Authority
EP
European Patent Office
Prior art keywords
patterns
optical coupling
coupling structure
detector
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04766022A
Other languages
German (de)
French (fr)
Inventor
Philippe Thales Intellectual Property Bois
Nadia THALES Intellectual Pty BRIERE DE L'ISLE
Eric Thales Intellectual Property Costard
Alfredo Thales Intellectual Property DE ROSSI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe Francaise de Detecteurs Infrarouges SOFRADIR SAS
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1627421A2 publication Critical patent/EP1627421A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors

Definitions

  • the field of the invention is that of electromagnetic wave detectors made of semiconductor material and in particular with a quantum multi-well structure, particularly suitable for the infrared field.
  • This type of structure has the advantage of providing very good sensitivities due to the discretization of the energy levels within the conduction bands of the photoconductive materials used.
  • the electric field of the incident electromagnetic wave has a component along the direction of growth of the layers, or in the direction D indicated in figure 1 , direction perpendicular to the plane of the layers.
  • the major drawback of using networks is the wavelength and angle resonance associated with the increase in absorption, which limits the use of these devices to a very narrow absorption window. These resonances are directly linked to the periodic nature of the networks. Thus if one wants to have a detector capable of detecting a wavelength domain having a wider spectral band, it is necessary to seek other solutions than network structures. This is why the present invention provides a new amorphous optical coupling structure intended to couple electromagnetic radiation to the surface of a photodetector, to erase the periodic effects while ensuring efficient optical coupling.
  • the subject of the present invention is an optical coupling structure intended to couple electromagnetic radiation to the surface of a photodetector, characterized in that it comprises a coupling surface paved in first and second directions perpendicular to each other, by a set of N series of first patterns, second patterns, ... of nth patterns, the patterns being identical within the same series, the patterns being distributed in the first and second directions, the centers between two adjacent patterns or the inter-reticular distance between two adjacent patterns being variable and the first, the second, ... the nth patterns being square and / or rectangular
  • the density of patterns on the coupling surface is substantially constant over the whole of said surface.
  • the optical coupling surface consists of a set of N series of first, second, ... nth identical elementary cells within the same series constituting the tiling, each first, second, ... nth elementary cell comprising a pattern homothetic to said elementary cell.
  • the average of the distances between the centers of the adjacent patterns or that of the inter-reticular distances between two patterns adjacent, in the first direction and the average in the second direction are substantially equal to the wavelength of the electromagnetic radiation in the detector medium.
  • the inter-reticular space between the patterns is constant.
  • each pattern is centered within an elementary cell, the inter-reticular distance between patterns not being constant, the filling rate of the elementary cells with the patterns being constant
  • the surface of coupling can include first, second, third and fourth patterns of dimensions aa, bb, ab and ba respectively
  • the patterns can both be engraved at the coupling surface and produced on the surface of the coupling surface by conventional photolithography methods and typically include an engraving depth of the order of lambda / 4.
  • the paving can be obtained by depositing a very conductive layer of the Gold or Silver type.
  • the invention also relates to an electromagnetic wave detector comprising a quantum multi-well structure operating on interband or intersubband transitions by absorption of radiation around a lambda wavelength, and comprising means of optical coupling of said radiation , characterized in that the optical coupling means comprise an optical coupling structure according to the invention.
  • the object of the invention is to reinforce the electromagnetic field in the form of optical modes at the level of the active layer and can therefore be applied to inter-band or inter-band transitions.
  • the detector can advantageously comprise a stack of layers produced on the surface of a substrate, said stack comprising the quantum multi-well structure and external layers, the first and second patterns being etched within an external layer.
  • the invention also relates to a matrix electromagnetic wave detector characterized in that it comprises a matrix of unitary detector elements according to the invention, each unitary element detector comprising a stack of layers, said stack comprising the quantum multi-well structure and external layers, the first and second patterns being etched within an external layer, said elements being produced on the surface of a common substrate.
  • the stack of active layers is a stack of semiconductor layers of the GaAs type, doped GaAIAs, the substrate being of the GaAs type, doped or not.
  • the detector may comprise a substrate transparent to the wavelength of the radiation and a reflective layer at said wavelength, said reflective layer being on the surface of the patterns, so as to operate the detector in reflection.
  • the invention finally relates to a laser source comprising a quantum multi-well structure operating on interband or intersubband transitions at a lambda wavelength and comprising an optical coupling structure according to the invention.
  • FIG. 1 shows schematically a quantum multi-well structure according to the known art.
  • FIG. 2 illustrates a quantum multi-well detector having optical coupling means of the matrix diffraction grating type, according to the prior art
  • Figure 3 illustrates a first variant of the optical coupling structure according to the invention.
  • Figure 4 illustrates a second variant of the optical coupling structure according to the invention.
  • Figure 5 illustrates a third variant of the optical coupling structure according to the invention.
  • FIG. 6 illustrates an example of a quantum multi-well detector according to the invention, seen in section.
  • Figure 7 illustrates an example of a matrix detector according to the invention.
  • the coupling structure according to the invention comprises a set of patterns paved at a coupling surface, distributed in two orthogonal directions Dx and Dy, the density of patterns over the entire surface being substantially constant.
  • the coupling surface is made up of 4 series of elementary patterns, two series of square patterns of dimensions c * c, d * d and two series of rectangular patterns of dimensions c * d and d * c, as illustrated in Figure 3.
  • the distance between patterns is constant and equal to e.
  • the dimension c + e is adapted to a first wavelength ⁇ - * and the dimension d + e is adapted to a second wavelength ⁇ 2 , so as to obtain an efficient coupling structure over a certain spectral band. That is, c + e ⁇ ⁇ -i / n and d + e ⁇ ⁇ 2 / n, n being the optical index of the detector medium.
  • the optical coupling surface is defined in elementary surfaces also 0 called elementary cells of dimensions a * a, a * b, b * a and b * b, as illustrated in FIG. 4.
  • the patterns have dimensions c * c, Cf dvi, d * C and d * d respectively.
  • the dimensions CM and 5 CIM are determined to maintain the same filling rate as the cells a * a and b * b.
  • the dimension a is adapted to a first wavelength ⁇ -i and the dimension b is adapted to a second wavelength ⁇ 2 , so as to obtain an efficient coupling structure over a certain spectral band.
  • the pattern is placed in the center of the cell, the difference between each pattern is variable within the structure (e c + e, e + ed, Third variant:
  • the optical coupling surface is defined in elementary surfaces also called elementary cells of dimensions a * a, a * b, b * a and b * b, as illustrated in FIG. 5.
  • the patterns have dimensions c * c, c * d, d * c and d * d respectively.
  • the dimension c is adapted to a first wavelength ⁇ i and the dimension d is adapted to a second wavelength ⁇ 2 , so as to obtain an efficient coupling structure over a certain spectral band.
  • the filling rate is not the same between square cells and rectangular cells.
  • the optical structure according to the invention can comprise engraved patterns (preferred mode because technologically easier to produce).
  • the detector can be conventionally produced on the surface of a substrate made of semiconductor material which can be undoped S.
  • An assembly of layers constituting an ohmic contact called lower Ci of highly doped semiconductor material is deposited on the surface of the substrate.
  • This ohmic contact supports all of the semiconductor layers constituting the MPQ quantum multi-well structure, the latter is in contact with an assembly of layers constituting an ohmic contact called higher Cs, the detection being ensured between the two ohmic contact layers.
  • the patterns can be etched in the ohmic contact layer Cs as illustrated in FIG. 6 which represents a sectional view.
  • FIG. 7 illustrates an example of a matrix detector according to the invention in which all of the patterns are produced on the surface of a common substrate with an ohmic contact layer also common.
  • a first ohmic contact layer Ci is also made transparent.
  • the second ohmic contact layer Cs is deposited.
  • the patterns are engraved within the Cs layer.
  • We proceed to the definition of the unit detection elements by etching all the layers up to the surface of the lower contact layer Ci. - On the matrix detector thus obtained, it is advantageous to deposit a layer of encapsulation.
  • the lower ohmic contact layer is made of Si doped GaAs with a doping rate of 5. 10 1 8 cm -3 and a thickness typically of 2 microns.
  • the quantum multiwell structure is achieved by stacking
  • 50 periods composed of a layer of GaAs doped Si with a charge carrier concentration of 5. 10 18 cm -3 of thickness 5 nm, inserted between two barrier layers made of Ga 0.75 Al 0.25 As thickness 50 nm.
  • the upper contact layer is identical to the lower contact layer and also has a thickness of 2 microns;
  • the patterns of the amorphous coupling pattern are produced within this upper contact layer.
  • the etching depths are 1.2 micron and the steps of the patterns a and b of 2.4 microns and 2.7 microns (the average optical index of the structure being 3.3 to 9 microns).
  • the filling rate of the surface of the upper contact layer is typically of the order of 50%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Light Receiving Elements (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

The invention relates to an optical coupling structure which is intended to couple electromagnetic radiation to the surface of a photodetector. The invention is characterised in that it comprises a coupling surface which is covered along first and second perpendicular axes with a set of N series (M1i, M2i, , Mni) of first patterns, second patterns, …nth patterns. According to the invention, the patterns within one series are identical and said patterns are distributed along the first and second axes. Moreover, the distance between the centres of two adjacent patterns and the interreticular distances between two adjacent patterns are variable. The invention also relates to a detector or a laser source comprising said coupling structure. The invention can be used for infrared detection.

Description

SRUCTURE AMORPHE DE COUPLAGE OPTIQUE POUR DETECTEUR D'ONDES ELECTROMAGNETIQUES ET DETECTEUR ASSOCIE OPTICAL COUPLING AMORPHOUS STRUCTURE FOR ELECTROMAGNETIC WAVE DETECTOR AND ASSOCIATED DETECTOR
Le domaine de l'invention est celui des détecteurs d'ondes électromagnétiques en matériau semiconducteur et notamment à structure à multipuits quantiques, particulièrement adapté au domaine infrarouge.The field of the invention is that of electromagnetic wave detectors made of semiconductor material and in particular with a quantum multi-well structure, particularly suitable for the infrared field.
Les progrès rapides de la croissance par épitaxie sur substrats de type GaAs ont permis le développement d'une nouvelle classe de détecteurs d'ondes électromagnétiques utilisant l'absorption d'un rayonnement autour d' une longueur d'onde lambda, correspondant à la transition d'électrons entre différents niveaux d'énergie au sein d'une même bande ou entre bande de valence et bande de conduction. Le schéma de la figure 1 illustre ce type de transition.The rapid progress of growth by epitaxy on GaAs type substrates has enabled the development of a new class of electromagnetic wave detectors using the absorption of radiation around a lambda wavelength, corresponding to the transition of electrons between different energy levels within the same band or between valence band and conduction band. The diagram in Figure 1 illustrates this type of transition.
L'évolution récente des performances de ce type de composants est liée en particulier à la réalisation relativement facile de multicouches de semiconducteurs à hétérojonctions dans le système standard de l'épitaxie par jets moléculaires ( BE), c'est-à-dire le système GaAs/Ga (i-X)AI xAs. En ajustant les paramètres de croissance, l'épaisseur des puits quantiques et le pourcentage x en Aluminium dans les barrières imposant le potentiel de confinement, on peut choisir de centrer une bande étroite ( environ 1 micron) de détection sur une longueur d'onde donnée.The recent evolution of the performance of this type of component is linked in particular to the relatively easy production of heterojunction semiconductor multilayers in the standard system of molecular beam epitaxy (BE), that is to say the system GaAs / Ga (i- X ) AI x As. By adjusting the growth parameters, the thickness of the quantum wells and the percentage x of Aluminum in the barriers imposing the confinement potential, we can choose to center a narrow band (approximately 1 micron) of detection on a given wavelength.
Ce type de structure présente l'intérêt de fournir de très bonnes sensibilités en raison de la discrétisation des niveaux d'énergie au sein des bandes de conduction des matériaux photoconducteurs utilisés.This type of structure has the advantage of providing very good sensitivities due to the discretization of the energy levels within the conduction bands of the photoconductive materials used.
Dans le contexte des transitions intersousbandes, pour que ce type de transitions soit possible il est nécessaire que le champ électrique de l'onde électromagnétique incidente ait une composante le long de la direction de croissance des couches, soit selon la direction D indiquée en figure 1 , direction perpendiculaire au plan des couches.In the context of intersubband transitions, for this type of transitions to be possible it is necessary that the electric field of the incident electromagnetic wave has a component along the direction of growth of the layers, or in the direction D indicated in figure 1 , direction perpendicular to the plane of the layers.
Il a déjà été proposé d'utiliser des moyens de couplage de type réseau de diffraction (cf Goossen et Lyon, APL 47(1985), p1257-1259) pour générer ladite composante perpendiculaire en créant des rayonnements diffractés. Notamment des réseaux lamellaires (1 D) ou echelettes qui ne permettent de coupler qu'une seule polarisation de la lumière. Mais aussi des réseaux croisés de diffraction sont connus pour coupler les différentes composantes de champ électrique d'un rayonnement incident comme illustré en figure 2. Le réseau matriciel Rij permet de diffracter le rayonnement incident aussi bien selon la direction Dx que selon la direction Dy.It has already been proposed to use coupling means of the diffraction grating type (cf. Goossen and Lyon, APL 47 (1985), p1257-1259) to generate said perpendicular component by creating diffracted radiation. In particular lamellar networks (1 D) or scales which allow only one polarization of light to be coupled. But also crossed diffraction gratings are known to couple the different electric field components of an incident radiation as illustrated in Figure 2. The matrix network Rij makes it possible to diffract the incident radiation both in the direction Dx and in the direction Dy.
L'inconvénient majeur de l'utilisation de réseaux est la résonance en longueur d'onde et en angle associée à l'augmentation de l'absorption, ce qui limite l'utilisation de ces dispositifs à une fenêtre d'absorption très étroite. Ces résonances sont directement liées à la nature périodique des réseaux. Ainsi si l'on veut disposer d'un détecteur capable de détecter un domaine de longueurs d'onde ayant une bande spectrale plus large il faut rechercher d'autres solutions que les structures réseaux. C'est pourquoi la présente invention propose une nouvelle structure amorphe de couplage optique destinée à coupler un rayonnement électromagnétique à la surface d'un photo détecteur, pour gommer les effets périodiques tout en assurant un couplage optique efficace.The major drawback of using networks is the wavelength and angle resonance associated with the increase in absorption, which limits the use of these devices to a very narrow absorption window. These resonances are directly linked to the periodic nature of the networks. Thus if one wants to have a detector capable of detecting a wavelength domain having a wider spectral band, it is necessary to seek other solutions than network structures. This is why the present invention provides a new amorphous optical coupling structure intended to couple electromagnetic radiation to the surface of a photodetector, to erase the periodic effects while ensuring efficient optical coupling.
Il s'agit d'une structure dans laquelle on peut définir un ordre à courte distance qui apparaît dans les composantes de Fourier aux fréquences spatiales correspondant aux longueurs d'ondes auxquelles est sensible le détecteur destiné à utiliser cette structure de couplage, mais sans pouvoir définir un ordre à longue distance correspondant à une structure périodique.It is a structure in which we can define an order at short distance which appears in the Fourier components at the spatial frequencies corresponding to the wavelengths to which the detector intended to use this coupling structure is sensitive, but without being able define a long distance order corresponding to a periodic structure.
Plus précisément la présente invention a pour objet une structure de couplage optique destinée à coupler un rayonnement électromagnétique à la surface d'un photodétecteur caractérisée en ce qu'elle comporte une surface de couplage pavée selon une première et une seconde directions perpendiculaires entre elles, par un ensemble de N séries de premiers motifs, de seconds motifs, ... de nième motifs, les motifs étant identiques au sein d'une même série, les motifs étant distribués selon la première et la seconde direction, les centres entre deux motifs adjacents ou la distance inter-réticulaire entre deux motifs adjacents étant variables et les premiers, les seconds, ... les nième motifs étant de forme carrée et/ou de forme rectangulaireMore specifically, the subject of the present invention is an optical coupling structure intended to couple electromagnetic radiation to the surface of a photodetector, characterized in that it comprises a coupling surface paved in first and second directions perpendicular to each other, by a set of N series of first patterns, second patterns, ... of nth patterns, the patterns being identical within the same series, the patterns being distributed in the first and second directions, the centers between two adjacent patterns or the inter-reticular distance between two adjacent patterns being variable and the first, the second, ... the nth patterns being square and / or rectangular
Avantageusement la densité de motifs à la surface de couplage est sensiblement constante sur l'ensemble de ladite surface.Advantageously, the density of patterns on the coupling surface is substantially constant over the whole of said surface.
Avantageusement la surface de couplage optique est constituée d'un ensemble de N séries de premières, secondes, ... nième cellules élémentaires identiques au sein de la même série constituant le pavage, chaque première, seconde, ... nième cellule élémentaire comprenant un motif homothétique à ladite cellule élémentaire.Advantageously, the optical coupling surface consists of a set of N series of first, second, ... nth identical elementary cells within the same series constituting the tiling, each first, second, ... nth elementary cell comprising a pattern homothetic to said elementary cell.
Avantageusement la moyenne des distances entre les centres des motifs adjacents ou celle des distances inter-réticulaires entre deux motifs adjacents, suivant la première direction et la moyenne suivant la seconde direction sont sensiblement égales à la longueur d'onde du rayonnement électromagnétiques dans le milieu détecteur.Advantageously, the average of the distances between the centers of the adjacent patterns or that of the inter-reticular distances between two patterns adjacent, in the first direction and the average in the second direction are substantially equal to the wavelength of the electromagnetic radiation in the detector medium.
Selon une première variante de l'invention l'espace inter-réticulaire entre les motifs est constant.According to a first variant of the invention, the inter-reticular space between the patterns is constant.
Selon une seconde variante de l'invention, chaque motif est centré au sein d'une cellule élémentaire, la distance inter-réticulaire entre motifs n'étant pas constante, le taux de remplissage des cellules élémentaires par les motifs étant constant Typiquement la surface de couplage peut comprendre des premiers, des seconds, des troisièmes et des quatrièmes motifs respectivement de dimensions a.a, b.b, a.b et b.a.According to a second variant of the invention, each pattern is centered within an elementary cell, the inter-reticular distance between patterns not being constant, the filling rate of the elementary cells with the patterns being constant Typically the surface of coupling can include first, second, third and fourth patterns of dimensions aa, bb, ab and ba respectively
Les motifs peuvent aussi bien être gravés au niveau de la surface de couplage que réalisés à la surface de la surface de couplage par des procédés classiques de photolithographie et comprendre typiquement une profondeur de gravure de l'ordre de lambda /4.The patterns can both be engraved at the coupling surface and produced on the surface of the coupling surface by conventional photolithography methods and typically include an engraving depth of the order of lambda / 4.
Selon une variante de l'invention, le pavage peut être obtenu par déposition d'une couche très conductrice de type Or ou Argent.According to a variant of the invention, the paving can be obtained by depositing a very conductive layer of the Gold or Silver type.
L'invention a aussi pour objet un détecteur à ondes électromagnétiques comprenant une structure à multipuits quantiques fonctionnant sur des transitions interbandes ou intersousbandes par absorption d'un rayonnement autour d' une longueur d'onde lambda, et comprenant des moyens de couplage optique dudit rayonnement, caractérisé en ce que les moyens de couplage optique comprennent une structure de couplage optique selon l'invention.The invention also relates to an electromagnetic wave detector comprising a quantum multi-well structure operating on interband or intersubband transitions by absorption of radiation around a lambda wavelength, and comprising means of optical coupling of said radiation , characterized in that the optical coupling means comprise an optical coupling structure according to the invention.
De manière générale, l'invention a pour objet de renforcer le champ électromagnétique sous forme de modes optiques au niveau de la couche active et peut donc être appliquée aux transitions intersousbandes ou interbandes.In general, the object of the invention is to reinforce the electromagnetic field in the form of optical modes at the level of the active layer and can therefore be applied to inter-band or inter-band transitions.
Le détecteur peut avantageusement comprendre un empilement de couches réalisé à la surface d'un substrat, ledit empilement comprenant la structure à multipuits quantiques et des couches externes, les premiers et les seconds motifs étant gravés au sein d'une couche externe. L'invention a encore pour objet un détecteur d'ondes électromagnétiques matriciel caractérisé en ce qu'il comprend une matrice d'éléments détecteurs unitaires selon l'invention, chaque élément unitaire détecteur comportant un empilement de couches, ledit empilement comprenant la structure à multipuits quantiques et des couches externes, les premiers et seconds motifs étant gravés au sein d'une couche externe, lesdits éléments étant réalisés à la surface d'un substrat commun. Selon une variante de l'invention l'empilement des couches actives est un empilement de couches semiconductrices de type GaAs, GaAIAs dopées, le substrat étant de type GaAs dopé ou non.The detector can advantageously comprise a stack of layers produced on the surface of a substrate, said stack comprising the quantum multi-well structure and external layers, the first and second patterns being etched within an external layer. The invention also relates to a matrix electromagnetic wave detector characterized in that it comprises a matrix of unitary detector elements according to the invention, each unitary element detector comprising a stack of layers, said stack comprising the quantum multi-well structure and external layers, the first and second patterns being etched within an external layer, said elements being produced on the surface of a common substrate. According to a variant of the invention, the stack of active layers is a stack of semiconductor layers of the GaAs type, doped GaAIAs, the substrate being of the GaAs type, doped or not.
Selon une variante de l'invention, le détecteur peut comprendre un substrat transparent à la longueur d'onde du rayonnement et une couche reflectrice à ladite longueur d'onde, ladite couche reflectrice étant à la surface des motifs, de manière à faire fonctionner le détecteur en réflexion.According to a variant of the invention, the detector may comprise a substrate transparent to the wavelength of the radiation and a reflective layer at said wavelength, said reflective layer being on the surface of the patterns, so as to operate the detector in reflection.
L'invention a enfin pour objet une source laser comprenant une structure à multipuits quantiques fonctionnant sur des transitions interbandes ou intersousbandes à une longueur d'onde lambda et comprenant une structure de couplage optique selon l'invention.The invention finally relates to a laser source comprising a quantum multi-well structure operating on interband or intersubband transitions at a lambda wavelength and comprising an optical coupling structure according to the invention.
L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description qui va suivre et grâce aux figures annexées parmi lesquelles :The invention will be better understood and other advantages will appear on reading the description which follows and thanks to the appended figures among which:
• La figure 1 schématise une structure à multipuits quantiques selon l'art connu. • La figure 2 illustre un détecteur à multipuits quantiques possédant des moyens de couplage optique de type réseau matriciel de diffraction, selon l'art antérieur• Figure 1 shows schematically a quantum multi-well structure according to the known art. FIG. 2 illustrates a quantum multi-well detector having optical coupling means of the matrix diffraction grating type, according to the prior art
• La figure 3 illustre une première variante de structure de couplage optique selon l'invention. • La figure 4 illustre une seconde variante de structure de couplage optique selon l'invention.• Figure 3 illustrates a first variant of the optical coupling structure according to the invention. • Figure 4 illustrates a second variant of the optical coupling structure according to the invention.
• La figure 5 illustre une troisième variante de structure optique de couplage selon l'invention.• Figure 5 illustrates a third variant of the optical coupling structure according to the invention.
• La figure 6 illustre un exemple de détecteur à multipuits quantiques selon l'invention, vu en coupe.FIG. 6 illustrates an example of a quantum multi-well detector according to the invention, seen in section.
• La figure 7 illustre un exemple de détecteur matriciel selon l'invention. De manière générale la structure de couplage selon l'invention comprend un ensemble de motifs pavés au niveau d'une surface de couplage, répartis selon deux directions orthogonales Dx et Dy, la densité de motifs sur l'ensemble de la surface étant sensiblement constante.• Figure 7 illustrates an example of a matrix detector according to the invention. In general, the coupling structure according to the invention comprises a set of patterns paved at a coupling surface, distributed in two orthogonal directions Dx and Dy, the density of patterns over the entire surface being substantially constant.
Pour réaliser une structure de couplage amorphe il est nécessaire de répartir les motifs de manière apériodique. Pour réaliser cette condition nous allons décrire ci-après différentes alternatives non exhaustives qui permettent d'atteindre le but recherché.To make an amorphous coupling structure, it is necessary to distribute the patterns aperiodically. To achieve this condition We will describe below various non-exhaustive alternatives which make it possible to achieve the desired goal.
5 Première variante :5 First variant:
La surface de couplage est composée de 4 séries de motifs élémentaires, deux séries de motifs carrés de dimensions c*c, d*d et deux séries de motifs rectangulaires de dimensions c*d et d*c, comme illustré en o figure 3. La distance entre motifs est constante et égale à e.The coupling surface is made up of 4 series of elementary patterns, two series of square patterns of dimensions c * c, d * d and two series of rectangular patterns of dimensions c * d and d * c, as illustrated in Figure 3. The distance between patterns is constant and equal to e.
La dimension c+e est adaptée à une première longueur d'onde λ-* et la dimension d+e est adaptée à une seconde longueur d'onde λ2, de manière à obtenir une structure de couplage efficace sur une certaine bande spectrale. C'est-à-dire que c + e ≡ λ-i/n et d + e ≡ λ2/n , n étant l'indice optique du milieu 5 détecteur.The dimension c + e is adapted to a first wavelength λ- * and the dimension d + e is adapted to a second wavelength λ 2 , so as to obtain an efficient coupling structure over a certain spectral band. That is, c + e ≡ λ-i / n and d + e ≡ λ 2 / n, n being the optical index of the detector medium.
Seconde variante :Second variant:
La surface de couplage optique est définie en surfaces élémentaires encore 0 appelées cellules élémentaires de dimensions a*a, a*b, b*a et b*b, comme illustré en figure 4.The optical coupling surface is defined in elementary surfaces also 0 called elementary cells of dimensions a * a, a * b, b * a and b * b, as illustrated in FIG. 4.
Selon cette variante : quatre séries de motifs sont employées (M1i, M2i, M3i,According to this variant: four series of patterns are used (M1i, M2i, M3i,
M4i) homothétiques desdites cellules élémentaires. Les motifs ont respectivement des dimensions c*c, Cf dvi, d* C et d*d. Les dimensions CM et 5 CIM sont déterminées pour conserver le même taux de remplissage que les cellules a*a et b*b.M4i) homothetics of said elementary cells. The patterns have dimensions c * c, Cf dvi, d * C and d * d respectively. The dimensions CM and 5 CIM are determined to maintain the same filling rate as the cells a * a and b * b.
La dimension a est adaptée à une première longueur d'onde λ-i et la dimension b est adaptée à une seconde longueur d'onde λ2, de manière à obtenir une structure de couplage efficace sur une certaine bande spectrale. 0 Pour chaque type de cellule, le motif est placé au centre de la cellule, l'écart entre chaque motif est variable au sein de la structure ( ec+e , e +ed, Troisième variante :The dimension a is adapted to a first wavelength λ-i and the dimension b is adapted to a second wavelength λ 2 , so as to obtain an efficient coupling structure over a certain spectral band. 0 For each type of cell, the pattern is placed in the center of the cell, the difference between each pattern is variable within the structure (e c + e, e + ed, Third variant:
La surface de couplage optique est définie en surfaces élémentaires encore appelées cellules élémentaires de dimensions a*a, a*b, b*a et b*b, comme illustré en figure 5.The optical coupling surface is defined in elementary surfaces also called elementary cells of dimensions a * a, a * b, b * a and b * b, as illustrated in FIG. 5.
Selon cette variante : quatre séries de motifs sont employées (M1 i, M2i, M3i, M4i) homothétiques desdites cellules élémentaires. Les motifs ont respectivement des dimensions c*c, c*d, d*c et d*d.According to this variant: four series of patterns are used (M1 i, M2i, M3i, M4i) homothetic to said elementary cells. The patterns have dimensions c * c, c * d, d * c and d * d respectively.
La dimension c est adaptée à une première longueur d'onde λi et la dimension d est adaptée à une seconde longueur d'onde λ2, de manière à obtenir une structure de couplage efficace sur une certaine bande spectrale.The dimension c is adapted to a first wavelength λi and the dimension d is adapted to a second wavelength λ 2 , so as to obtain an efficient coupling structure over a certain spectral band.
Le taux de remplissage n'est pas le même entre les cellules carrées et les cellules rectangulaires.The filling rate is not the same between square cells and rectangular cells.
De manière générale, la structure optique selon l'invention peut comprendre des motifs gravés (mode préféré car technologiquement plus facile à réaliser) ..In general, the optical structure according to the invention can comprise engraved patterns (preferred mode because technologically easier to produce).
Le détecteur peut être de manière classique réalisé à la surface d'un substrat en matériau semiconducteur qui peut être non dopé S. Un assemblage de couches constituant un contact ohmique dit inférieur Ci en matériau semiconducteur fortement dopé est déposé à la surface du substrat. Ce contact ohmique supporte l'ensemble des couches semiconductrices constitutives de la structure à multipuits quantiques MPQ, celle-ci est en contact avec un assemblage de couches constituant un contact ohmique dit supérieur Cs, la détection étant assurée entre les deux couches de contact ohmiques. Avantageusement les motifs peuvent être gravés dans la couche de contact ohmique Cs comme illustré en figure 6 qui représente une vue en coupe.The detector can be conventionally produced on the surface of a substrate made of semiconductor material which can be undoped S. An assembly of layers constituting an ohmic contact called lower Ci of highly doped semiconductor material is deposited on the surface of the substrate. This ohmic contact supports all of the semiconductor layers constituting the MPQ quantum multi-well structure, the latter is in contact with an assembly of layers constituting an ohmic contact called higher Cs, the detection being ensured between the two ohmic contact layers. Advantageously, the patterns can be etched in the ohmic contact layer Cs as illustrated in FIG. 6 which represents a sectional view.
La description ci-dessus a montré des configurations de couplage optique pour un détecteur élémentaire qui peuvent être avantageusement appliquées dans le cadre d'un détecteur matriciel comportant des éléments unitaires, chacun de ces éléments unitaires comportant en surface des moyens de couplage optique comprenant des motifs de diffraction selon les directions Dx et Dy. La figure 7 illustre un exemple de détecteur matriciel selon l'invention dans lequel l'ensemble des motifs est réalisé à la surface d'un substrat commun avec une couche de contact ohmique également commune. Pour réaliser cette architecture, on procède de la manière suivante : Sur un substrat transparent aux longueurs d'onde auxquelles est sensible le détecteur, on réalise une première couche de contact ohmique Ci également transparente.The above description has shown optical coupling configurations for an elementary detector which can advantageously be applied within the framework of a matrix detector comprising unitary elements, each of these unitary elements comprising on the surface optical coupling means comprising patterns. diffraction in the directions Dx and Dy. FIG. 7 illustrates an example of a matrix detector according to the invention in which all of the patterns are produced on the surface of a common substrate with an ohmic contact layer also common. To achieve this architecture, the procedure is as follows: On a transparent substrate at the wavelengths to which the detector is sensitive, a first ohmic contact layer Ci is also made transparent.
Sur cette couche de contact ohmique, on réalise un empilement de couches constitutives de la structure à multipuits quantiques. On procède au dépôt de la seconde couche de contact ohmique Cs.On this ohmic contact layer, a stack of constituent layers of the quantum multi-well structure is produced. The second ohmic contact layer Cs is deposited.
On grave les motifs au sein de la couche Cs. On procède à la définition des éléments unitaires de détection en gravant l'ensemble des couches jusqu" à la surface de la couche de contact inférieure Ci. - Sur le détecteur matriciel ainsi obtenu, on peut avantageusement procéder au dépôt d'une couche d'encapsulation.The patterns are engraved within the Cs layer. We proceed to the definition of the unit detection elements by etching all the layers up to the surface of the lower contact layer Ci. - On the matrix detector thus obtained, it is advantageous to deposit a layer of encapsulation.
Exemple de réalisationExample of realization
Nous allons décrire un exemple de détecteur selon l'invention, fonctionnant dans le domaine infrarouge et plus particulièrement adapté aux domaines 8-12 microns :We will describe an example of a detector according to the invention, operating in the infrared range and more particularly adapted to the 8-12 micron ranges:
Sur un substrat en GaAs intrinsèquement non dopé, on réalise le dépôt de la couche de contact ohmique inférieur en GaAs dopé Si avec un taux de dopage de 5. 10 1 8 cm -3 et une épaisseur typiquement de 2 microns.On an intrinsically undoped GaAs substrate, the lower ohmic contact layer is made of Si doped GaAs with a doping rate of 5. 10 1 8 cm -3 and a thickness typically of 2 microns.
La structure à multipuits quantiques est réalisée par l'empilement deThe quantum multiwell structure is achieved by stacking
50 périodes composées d'une couche de GaAs dopée Si avec une concentration en porteurs de charge de 5. 10 18 cm -3 d'épaisseur 5 nm, insérée entre deux couches barrières constituées de Ga 0,75 Al 0,25 As d'épaisseur 50 nm.50 periods composed of a layer of GaAs doped Si with a charge carrier concentration of 5. 10 18 cm -3 of thickness 5 nm, inserted between two barrier layers made of Ga 0.75 Al 0.25 As thickness 50 nm.
La couche de contact supérieur est identique à la couche de contact inférieur et présente également une épaisseur de 2 microns ;The upper contact layer is identical to the lower contact layer and also has a thickness of 2 microns;
Les motifs du motif de couplage amorphe sont réalisés au sein de cette couche de contact supérieur.The patterns of the amorphous coupling pattern are produced within this upper contact layer.
Pour obtenir les effets diffractants recherchés à une longueur d'onde de fonctionnement autour de 9 microns, les profondeurs de gravure sont de 1.2 micron et les pas des motifs a et b de 2,4 microns et 2.7 microns (l'indice optique moyen de la structure étant de 3,3 à 9 microns). Le taux de remplissage de la surface de la couche de contact supérieur est typiquement de l'ordre de 50%. To obtain the desired diffracting effects at an operating wavelength around 9 microns, the etching depths are 1.2 micron and the steps of the patterns a and b of 2.4 microns and 2.7 microns (the average optical index of the structure being 3.3 to 9 microns). The filling rate of the surface of the upper contact layer is typically of the order of 50%.

Claims

REVENDICATIONS
1. Structure de couplage optique destinée à coupler un rayonnement électromagnétique à la surface d'un photodétecteur, caractérisée en ce qu'elle comporte une surface de couplage pavée selon une première et une seconde directions perpendiculaires entre elles, par un ensemble de N séries (M1 i, M2i, ... Mni) de premiers motifs, de seconds motifs, ... de nièmes motifs, les motifs étant identiques au sein d'une même série, les motifs étant distribués selon la première et la seconde direction, la distance entre les centres de deux motifs adjacents ou la distance inter- réticulaire entre deux motifs adjacents étant variables et les premiers, les seconds, ... les nième motifs étant de forme carrée et/ou de forme rectangulaire.1. Optical coupling structure intended to couple electromagnetic radiation to the surface of a photodetector, characterized in that it comprises a coupling surface paved in first and second directions perpendicular to each other, by a set of N series ( M1 i, M2i, ... Mni) of first patterns, second patterns, ... nth patterns, the patterns being identical within the same series, the patterns being distributed in the first and second directions, the distance between the centers of two adjacent patterns or the inter-reticular distance between two adjacent patterns being variable and the first, the second, ... the nth patterns being square and / or rectangular.
2. Structure de couplage optique selon la revendication 1 , caractérisée en ce que la moyenne des distances inter-réticulaires entre deux motifs adjacents, suivant la première direction et la moyenne suivant la seconde direction sont sensiblement égales à la longueur d'onde du rayonnement électromagnétique dans le milieu détecteur.2. Optical coupling structure according to claim 1, characterized in that the average of the inter-reticular distances between two adjacent patterns, in the first direction and the average in the second direction are substantially equal to the wavelength of the electromagnetic radiation in the detector medium.
3. Structure de couplage optique selon la revendication 2, caractérisée en ce que les motifs de forme carrée ou rectangulaire ont des distances inter-réticulaires constantes.3. Optical coupling structure according to claim 2, characterized in that the patterns of square or rectangular shape have constant inter-reticular distances.
4. Structure de couplage optique selon la revendication 2, caractérisée en ce que la surface de couplage optique est constituée d'un ensemble de N séries de premières, secondes, ... nième cellules élémentaires identiques au sein de la même série constituant le pavage, chaque première, seconde, ... nième cellule élémentaire comprenant un motif homothétique à ladite cellule élémentaire.4. Optical coupling structure according to claim 2, characterized in that the optical coupling surface consists of a set of N series of first, second, ... nth identical elementary cells within the same series constituting the tiling , each first, second, ... nth elementary cell comprising a pattern homothetic to said elementary cell.
5. Structure de couplage optique selon la revendication 3, caractérisée en ce que la surface de couplage est constituée de quatre séries de cellules élémentaires respectivement a*a, b*b, a*b et b*a. 5. Optical coupling structure according to claim 3, characterized in that the coupling surface consists of four series of elementary cells respectively a * a, b * b, a * b and b * a.
6. Structure de couplage optique selon la revendication 5, caractérisée en ce que le taux de remplissage des cellules par les motifs est constant, les distances entre motifs étant variables.6. Optical coupling structure according to claim 5, characterized in that the filling rate of the cells by the patterns is constant, the distances between patterns being variable.
7. Structure de couplage optique selon la revendication 5, caractérisée en ce que le taux de remplissage des cellules est variable.7. Optical coupling structure according to claim 5, characterized in that the filling rate of the cells is variable.
8. Détecteur d'ondes électromagnétiques comprenant une structure à multipuits quantiques fonctionnant sur des transitions interbandes ou intersousbandes par absorption d'un rayonnement à une longueur d'onde lambda, et comprenant des moyens de couplage optique dudit rayonnement, caractérisé en ce que :8. Electromagnetic wave detector comprising a quantum multi-well structure operating on interband or intersubband transitions by absorption of radiation at a lambda wavelength, and comprising means for optical coupling of said radiation, characterized in that:
Les moyens de couplage optique comprennent une structure de couplage optique selon l'une des revendications 1 à 7The optical coupling means comprise an optical coupling structure according to one of claims 1 to 7
9. Détecteur d'ondes électromagnétiques selon la revendication 8, caractérisé en ce qu'il comprend un empilement de couches réalisé à la surface d'un substrat, ledit empilement comprenant la structure à multipuits quantiques et des couches externes, les motifs étant gravés au sein d'une couche externe.9. electromagnetic wave detector according to claim 8, characterized in that it comprises a stack of layers produced on the surface of a substrate, said stack comprising the quantum multi-well structure and external layers, the patterns being etched with within an outer layer.
10. Détecteur d'ondes électromagnétiques selon la revendication 9, caractérisé en ce que l'épaisseur des premiers et seconds motifs est de l'ordre de lambda / 4 .10. Electromagnetic wave detector according to claim 9, characterized in that the thickness of the first and second patterns is of the order of lambda / 4.
1 1. Détecteur d'ondes électromagnétique selon l'une des revendications 9 ou 10, caractérisé en ce que l'empilement des couches actives est un empilement de couches semiconductrices de type GaAs, GaAIAs dopées, le substrat étant de type GaAs dopé ou non.1 1. electromagnetic wave detector according to one of claims 9 or 10, characterized in that the stack of active layers is a stack of semiconductor layers of GaAs type, doped GaAIAs, the substrate being of GaAs type doped or not .
12. Détecteur d'ondes électromagnétiques selon l'une des revendications 8 à 11 , caractérisé en ce qu'il comprend un substrat transparent à la longueur d'onde du rayonnement et une couche reflectrice à ladite longueur d'onde, ladite couche reflectrice étant à la surface des motifs, de manière à faire fonctionner le détecteur en réflexion. 12. electromagnetic wave detector according to one of claims 8 to 11, characterized in that it comprises a substrate transparent to the wavelength of the radiation and a reflecting layer at said wavelength, said reflecting layer being on the surface of the patterns, so as to operate the detector in reflection.
13. Détecteur d'ondes électromagnétiques matriciel, caractérisé en ce qu'il comprend une matrice d'éléments unitaires détecteurs selon l'une des revendications 8 à 12, chaque élément unitaire détecteur comportant un empilement de couches, ledit empilement comprenant la structure à multipuits quantiques et des couches externes, les motifs étant gravés au sein d'une couche externe, lesdits éléments étant réalisés à la surface d'un substrat commun.13. Matrix electromagnetic wave detector, characterized in that it comprises a matrix of detector unit elements according to one of claims 8 to 12, each detector unit element comprising a stack of layers, said stack comprising the multi-well structure quantum and external layers, the patterns being etched within an external layer, said elements being produced on the surface of a common substrate.
14. Source laser comprenant une structure à multipuits quantiques fonctionnant sur des transitions interbandes ou intersousbandes à une longueur d'onde lambda, et comprenant des moyens de couplage optique dudit rayonnement, caractérisé en ce que :14. Laser source comprising a quantum multi-well structure operating on interband or intersubband transitions at a lambda wavelength, and comprising means for optical coupling of said radiation, characterized in that:
Les moyens de couplage optique comprennent une structure de couplage optique selon l'une des revendications 1 à 7 The optical coupling means comprise an optical coupling structure according to one of claims 1 to 7
EP04766022A 2003-05-27 2004-05-26 Amorphous optical coupling structure for an electromagnetic wave detector and associated detector Withdrawn EP1627421A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0306431A FR2855653B1 (en) 2003-05-27 2003-05-27 OPTICAL COUPLING AMORPHOUS STRUCTURE FOR ELECTROMAGNETIC WAVE SENSOR AND ASSOCIATED DETECTOR
PCT/EP2004/050929 WO2004107392A2 (en) 2003-05-27 2004-05-26 Amorphous optical coupling structure for an electromagnetic wave detector and associated detector

Publications (1)

Publication Number Publication Date
EP1627421A2 true EP1627421A2 (en) 2006-02-22

Family

ID=33427481

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04766022A Withdrawn EP1627421A2 (en) 2003-05-27 2004-05-26 Amorphous optical coupling structure for an electromagnetic wave detector and associated detector

Country Status (4)

Country Link
US (1) US7687760B2 (en)
EP (1) EP1627421A2 (en)
FR (1) FR2855653B1 (en)
WO (1) WO2004107392A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2855654B1 (en) * 2003-05-27 2006-03-03 Thales Sa ELECTROMAGNETIC WAVE DETECTOR WITH OPTICAL COUPLING SURFACE COMPRISING LAMELLAR PATTERNS
FR2863774B1 (en) * 2003-12-16 2006-03-03 Thales Sa PHOTODETECTOR WITH CLOSELY FIELD CONCENTRATION
FR2893184B1 (en) 2005-11-10 2007-12-28 Thales Sa OPTICAL STRUCTURE FOR LOCATING AN ELECTRO-MAGNETIC FIELD AND DEVICE FOR DETECTORS OR EMITTERS COMPRISING SUCH A STRUCTURE
FR2933781A1 (en) * 2008-07-11 2010-01-15 Thales Sa PHOTONIC CRYSTAL PHOTON EXTRACTOR FOR HIGH-PERFORMANCE OPTICAL MICRO-SOURCES
FR2933786B1 (en) * 2008-07-11 2010-08-20 Thales Sa OPTICAL DEVICE COMPRISING GAINP-BASED PHOTONIC CRYSTAL WITHOUT TWO PHOTON ABSORPTION
FR2937791B1 (en) * 2008-10-24 2010-11-26 Thales Sa POLARIMETRIC IMAGING DEVICE OPTIMIZED IN RELATION TO THE POLARIZATION CONTRAST
FR2937792B1 (en) * 2008-10-24 2011-03-18 Thales Sa MULTISPECTRAL IMAGING DEVICE BASED ON QUANTUM MULTI-WELLS
JP5621394B2 (en) * 2009-11-19 2014-11-12 セイコーエプソン株式会社 Sensor chip, sensor cartridge and analyzer

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2507821A1 (en) * 1981-06-16 1982-12-17 Thomson Csf JUNCTION VERTICAL FIELD EFFECT TRANSISTOR AND MANUFACTURING METHOD
FR2548453B1 (en) * 1983-06-30 1986-11-14 Thomson Csf METHOD FOR MANUFACTURING A HIGH FREQUENCY VERTICAL JUNCTION FIELD-EFFECT TRANSISTOR
FR2640044B1 (en) * 1988-12-06 1993-02-12 Thomson Csf OPTICAL RADIATION DETECTION DEVICE
FR2653229B1 (en) * 1989-10-12 1992-01-17 Thomson Csf CAPACITIVE ELECTROMAGNETIC WAVE DETECTOR.
FR2655434B1 (en) * 1989-12-05 1992-02-28 Thomson Csf OPTICAL DEVICE WITH QUANTUM WELLS AND METHOD FOR PRODUCING THE SAME.
FR2655774A1 (en) * 1989-12-08 1991-06-14 Thomson Csf IMPROVEMENT TO POWER TRANSISTORS IN III-V MATERIALS ON SILICON SUBSTRATE AND METHOD OF MANUFACTURE
FR2670006B1 (en) * 1990-11-29 1993-03-12 Thomson Csf ELECTRONIC BOLOMETER WITH QUANTUM WELL AND APPLICATION TO A RADIATION DETECTOR.
SE468188B (en) * 1991-04-08 1992-11-16 Stiftelsen Inst Foer Mikroelek METHOD FOR CONNECTING RADIATION IN AN INFRARED DETECTOR, APPLIED DEVICE
FR2678774B1 (en) * 1991-07-05 1998-07-10 Thomson Csf ELECTROMAGNETIC WAVE DETECTOR.
FR2693594B1 (en) * 1992-07-07 1994-08-26 Thomson Csf Electromagnetic wave detector with quantum wells.
FR2729789B1 (en) * 1993-09-10 1998-03-20 Thomson Csf QUANTUM WELL DETECTOR AND METHOD FOR PRODUCING THE SAME
FR2718571B1 (en) * 1994-04-08 1996-05-15 Thomson Csf Semiconductor hybrid component.
US5485015A (en) * 1994-08-25 1996-01-16 The United States Of America As Represented By The Secretary Of The Army Quantum grid infrared photodetector
FR2726691B1 (en) * 1994-11-08 1997-01-24 Thomson Csf LARGE-DIMENSIONAL PHOTODETECTOR AND METHOD FOR PRODUCING SUCH A PHOTODETECTOR
FR2726903B1 (en) * 1994-11-10 1996-12-06 Thomson Csf INTEGRATED ECARTOMETER
US5539206A (en) * 1995-04-20 1996-07-23 Loral Vought Systems Corporation Enhanced quantum well infrared photodetector
FR2756667B1 (en) * 1996-12-04 1999-02-19 Thomson Csf BISPECTRAL ELECTROMAGNETIC WAVE DETECTOR
FR2756666B1 (en) * 1996-12-04 1999-02-19 Thomson Csf ELECTROMAGNETIC WAVE DETECTOR
US5773831A (en) * 1997-03-19 1998-06-30 Lockheed Martin Vought Systems Corporation Patch coupled infrared photodetector
JP3955367B2 (en) * 1997-09-30 2007-08-08 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー Optical semiconductor device and manufacturing method thereof
FR2780203B1 (en) * 1998-06-23 2003-07-04 Thomson Csf QUANTUM WELL DETECTOR WITH PHOTOEXCITED ELECTRON STORAGE LAYER
US6441373B1 (en) * 1998-09-14 2002-08-27 Fujitsu Limited Infrared photodetector and method of manufacturing the same
US6180990B1 (en) * 1999-03-26 2001-01-30 Lockheed Martin Corporation Hyperspectral radiation detector
JP2000299488A (en) * 1999-04-13 2000-10-24 Fujitsu Ltd Manufacture of infrared sensor
US6875975B2 (en) * 1999-12-24 2005-04-05 Bae Systems Information And Electronic Systems Integration Inc Multi-color, multi-focal plane optical detector
FR2808925B1 (en) * 2000-05-12 2003-08-08 Thomson Csf BI-SPECTRAL OPTICAL DETECTOR
FR2808926B1 (en) * 2000-05-12 2003-08-01 Thomson Csf POLARIMETRIC OPTICAL DETECTOR
FR2811808B1 (en) * 2000-07-11 2002-10-25 Thomson Csf SELF-COMPENSATION DEVICE FOR SUBTRACTIVE DETECTORS
US6828642B2 (en) * 2001-04-17 2004-12-07 Lockhead Martin Corporation Diffraction grating coupled infrared photodetector
FR2834130B1 (en) * 2001-12-20 2005-02-18 Thales Sa PROCESS FOR IMPROVING THE OPTICAL CHARACTERISTICS OF MULTILAYER OPTOELECTRONIC COMPONENTS
US7135698B2 (en) * 2002-12-05 2006-11-14 Lockheed Martin Corporation Multi-spectral infrared super-pixel photodetector and imager

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR2855653A1 (en) 2004-12-03
FR2855653B1 (en) 2005-10-21
WO2004107392A3 (en) 2005-01-13
US7687760B2 (en) 2010-03-30
US20060243892A1 (en) 2006-11-02
WO2004107392A2 (en) 2004-12-09

Similar Documents

Publication Publication Date Title
EP2180512B1 (en) Polarimetric imaging device optimised in relation to polarisation contrast
EP2180511B1 (en) Multi-spectrum imaging device based on quantum multi-wells
EP2368273A1 (en) Photodetector having a very thin semiconducting region
EP2865017B1 (en) Semiconductor structure with absorbing region in a focusing cavity
EP2477231A2 (en) Photodetector optimised by metal texturing on the rear surface
FR2971594A1 (en) TERAHERTZ MODULATOR
FR2729789A1 (en) QUANTUM WELL SENSOR AND METHOD OF MAKING SAME
EP0638831A1 (en) Quantum well photorefractive device
WO1992022847A1 (en) Photorefractive device
EP1627421A2 (en) Amorphous optical coupling structure for an electromagnetic wave detector and associated detector
EP1695390A1 (en) Photodetector having a near field concentration
EP2432033B1 (en) Multi-layer bispectral detector with photodiodes
WO2012080989A2 (en) Photodetection device
EP1627434A1 (en) Electromagnetic wave detector with an optical coupling surface comprising lamellar patterns
EP0511057A1 (en) Wave modulator and optical detector with quantum wells
EP0736791B1 (en) Quantum well photorefractive device
EP0651477B1 (en) Integrated surface emitting laser device
EP3948409B1 (en) Ultra-fast modulator for modulating the amplitude of laser radiation
EP0477072B1 (en) Multilayer electro-optical light modulator
WO2013030482A1 (en) Reflector device for rear face of optical devices
FR2761813A1 (en) MULTI-PURPOSE ELECTROMAGNETIC WAVE DETECTOR WITH REDUCED DIAPHOTIE
FR2770913A1 (en) Photorefractive device with optical cavity of tunable length
EP0658791A1 (en) Photorefractive cell

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051122

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOFRADIR

17Q First examination report despatched

Effective date: 20151015

RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 31/0232 20140101ALI20190212BHEP

Ipc: H01L 31/0352 20060101AFI20190212BHEP

Ipc: H01L 27/146 20060101ALI20190212BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20190423

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190904