EP1626552B1 - Kommunikation mittels mehrerer unabhängiger Wege - Google Patents

Kommunikation mittels mehrerer unabhängiger Wege Download PDF

Info

Publication number
EP1626552B1
EP1626552B1 EP05011271.3A EP05011271A EP1626552B1 EP 1626552 B1 EP1626552 B1 EP 1626552B1 EP 05011271 A EP05011271 A EP 05011271A EP 1626552 B1 EP1626552 B1 EP 1626552B1
Authority
EP
European Patent Office
Prior art keywords
information
signal
unit
communication
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05011271.3A
Other languages
English (en)
French (fr)
Other versions
EP1626552A2 (de
EP1626552A3 (de
Inventor
Nambirajan Seshadri
Jeyhan Karaoguz
James D. Bennett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Broadcom Corp
Original Assignee
Broadcom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Broadcom Corp filed Critical Broadcom Corp
Publication of EP1626552A2 publication Critical patent/EP1626552A2/de
Publication of EP1626552A3 publication Critical patent/EP1626552A3/de
Application granted granted Critical
Publication of EP1626552B1 publication Critical patent/EP1626552B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0817Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with multiple receivers and antenna path selection
    • H04B7/082Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with multiple receivers and antenna path selection selecting best antenna path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/14Multichannel or multilink protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/40Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass for recovering from a failure of a protocol instance or entity, e.g. service redundancy protocols, protocol state redundancy or protocol service redirection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0096Channel splitting in point-to-point links

Definitions

  • Various communication systems may utilize a single communication path to communicate information. Such communication may be limited by the communication environment along the single communication path. For example, a communication network of the single communication path may experience partial or full failure. Also for example, a communication network of the single communication path may experience periods of degraded performance, for example, due to varying network utilization or environmental conditions.
  • a communication system may roam through respective coverage areas of various communication networks. For example, a communication system may initially communicate relatively well in a communication network. Then the communication system may be relocated to a different geographical location or physical orientation, and the quality of communication between the communication system and the communication network may be degraded.
  • US 6 735 168 B 1 discloses a system and method that enable communicating telephonic call data over data networks by the steps of receiving data units from a first data network over redundant communication paths, and determining whether the received data units have an error. One of the received date units is then selected from one of the redundant communication paths determined not to have an error, and the selected data unit is forwarded to a second data network.
  • US 2002/161 851 A1 discloses a method of forward error control in which a transmitter receives data from an input device to create one or more original codewords that are transmitted onto each of two physically distinct telecommunication channels to increase the robustness of the overall effective telecommunications channel between the transmitter and the receiver, and to minimize the elapsed time between when the transmitter transmits the original codeword and when the receiver has a fmal estimate of the original codeword available for output.
  • Figure 1 shows a diagram of an exemplary multiple network communication environment 100, in accordance with various aspects of the present invention.
  • the exemplary communication environment 100 may be referred to in the following discussion to provide exemplary illustrations of various aspects of the present invention. By no means, is the scope of various aspects of the present invention to be limited by characteristics of the exemplary communication environment 100.
  • the exemplary communication environment 100 may comprise a first communication system 110 (e.g., a portable communication device).
  • the first communication system 110 is generally illustrated as a portable handheld communication device, the first communication system 110 may comprise characteristics of any of a variety of communication systems.
  • the first communication system 110 may comprise characteristics of a cellular phone, paging device, portable multi-media communication device, pocket computer, personal digital assistant, portable telephone, desktop or portable computer, etc. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of a particular communication system.
  • the exemplary communication environment 100 may comprise a wireless carrier central office 120 that, for example, manages routing information and communicating information through various communication networks (including, e.g., a wireless network) with other communication systems.
  • a wireless carrier central office 120 that, for example, manages routing information and communicating information through various communication networks (including, e.g., a wireless network) with other communication systems.
  • the following discussion may refer to the wireless carrier central office 120 as an example of a system with which other communication systems may communicate information.
  • various aspects of the present invention should not be limited by characteristics of a particular communication system.
  • the first communication system 110 may comprise the capability to communicate information over a plurality of communication paths (e.g. , with a plurality of communication networks).
  • a communication path may generally be defined as a route that information (or data) travels between one communication system and one or more other communication systems.
  • a communication path may comprise any of a variety of communication path characteristics. For example and without limitation, a communication path may comprise a direct link between communication systems or may comprise one or more intervening communication networks between communication systems.
  • a first communication path of the plurality of communication paths may comprise a first communication network
  • a second communication path of the plurality of information communication paths may comprise a second communication network in place of at least a portion of the first communication network.
  • a first communication path of a plurality of information communication paths may comprise a telecommunication network
  • a second communication path of the plurality of information communication paths may comprise a computer communication network in place of at least a portion of the telecommunication network.
  • the first communication path may comprise utilizing a telecommunication network to provide the entire communication path between first and second communication systems
  • the second communication path may utilize a computer network to communicate between the first communication system and a central switch of the telecommunication network and utilize the telecommunication network to communicate information between the central switch and the second communication system.
  • the first communication system 110 is communicatively coupled to the wireless carrier central office 120 through two communication paths.
  • the first communication path comprises a wireless interface 130 (e.g. , a base transceiver subsystem of the wireless carrier infrastructure) between the first communication system 110 and the wireless carrier central office 120.
  • the second communication path comprises a local wireless interface 140 between the first communication system 110 and a local gateway 141.
  • the local wireless interface 140 and local gateway 141 may, for example and without limitation, be part of a local communication system (e.g., a local telecommunication system or local area computer network) such as might be found at a workplace.
  • the gateway 141 may comprise a modem and be communicatively coupled through communication link 142 to a broadband communication network 143.
  • the broadband communication network 143 may, for example and without limitation, comprise characteristics of a cable, DSL or satellite broadband access provider.
  • the broadband communication network 143 may be coupled through communication link 144 to the wireless carrier central office 120.
  • Communication links 142 and 144 may comprise characteristics of any of a variety of communication link types.
  • communication links 142 and 144 may utilize any of a variety of communication media (e.g. , wired, wireless, tethered optical, non-tethered optical, etc.).
  • communication links 142 and 144 may be based on any of a variety of communication standards or protocols. The scope of various aspects of the present invention should not be limited by characteristics of any particular communication link type.
  • the first communication system 110 may communicate message information with the wireless carrier central office 120 over either of the described first or second communication paths (e.g. , through the wireless interface 130 and coupled wireless communication network; or the local wireless interface 140 and coupled computer network). Note that though the exemplary first communication system 110 is illustrated as communicating over two different communication paths and associated networks, the first communication system 110 may also comprise the capability to communicate over more than two different communication paths and associated networks.
  • the exemplary communication environment 100 also comprises a second communication system 150 (e.g., a portable e-mail device, pocket computer, desktop computer, or laptop with multi-network communication capability) that comprises the capability to communicate information over a plurality of communication paths (e.g. , with a plurality of communication networks).
  • a second communication system 150 e.g., a portable e-mail device, pocket computer, desktop computer, or laptop with multi-network communication capability
  • a plurality of communication paths e.g. , with a plurality of communication networks.
  • the second communication system 150 is communicatively coupled to the wireless carrier central office 120 through two communication paths.
  • the first communication path comprises a wireless interface 160 (e.g. , a base transceiver subsystem of the wireless carrier's infrastructure) between the second communication system 150 and the wireless carrier central office 120.
  • the second communication path comprises a local wireless interface 170 (e.g. , comprising a wireless router and modem).
  • the local wireless interface 170 may, for example and without limitation, be part of a home or personal communication system (e.g., a home-centric telecommunication system or personal area computer network) such as might be found in the home.
  • the second communication system 150 may communicate information with the wireless carrier central office 120 over either of the described first or second communication paths. Note that although the exemplary second communication system 150 is illustrated as communicating over two different communication paths and associated networks, the second communication system 150 may also comprise the capability to communicate over more than two different communication paths and associated networks.
  • the third communication system 180 is communicatively coupled to the wireless carrier central office 120 through two communication paths.
  • the first communication path comprises a wireless interface 190 (e.g. , a base transceiver subsystem of the wireless carrier's infrastructure) between the third communication system 180 and the wireless carrier central office 120.
  • the second communication path comprises a wireless interface 193 of a CDMA network 195, which is in turn, communicatively coupled to a transport network 197 through communication link 196.
  • the transport network 197 may then, for example, be communicatively coupled to the wireless carrier central office 120 through communication link 198.
  • communication links 196 and 198 may comprise characteristics of any of a variety of communication link types.
  • the third communication system 180 may communicate information with the wireless carrier central office 120 over either of the described first or second communication paths. Note that although the exemplary third communication system 180 is illustrated as communicating over two different communication paths and associated networks, the third communication system 180 may also comprise the capability to communicate over more than two different communication paths and associated networks.
  • the exemplary communication environment 100 is merely exemplary and will be referred to in the following discussion to provide specific examples of generally broader aspects of the present invention. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of the exemplary communication environment 100.
  • FIG. 2 shows a flow diagram of an exemplary method 200, in a communication system, for receiving information through multiple communication paths, in accordance with various aspects of the present invention.
  • a communication system may comprise characteristics of any of a variety of communication systems (e.g ., portable or handheld communication systems).
  • a communication system may comprise characteristics of a cellular phone, paging device, portable multi-media communication device, pocket computer, personal digital assistant, portable telephone, desktop or portable computer, etc. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of a particular communication system.
  • the exemplary method 200 may begin at step 210.
  • the exemplary method 200, and all methods discussed herein, may begin for any of a variety of reasons.
  • the method 200 may begin executing when a communication system that is implementing the method 200 resets or powers up.
  • the method 200 may begin upon a user command (e.g ., an explicit command that causes the communication system to communicate). Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of any particular initiating event or condition.
  • the exemplary method 200 may, at step 220, comprise receiving a first signal directly (i.e., without an intervening communication network) from a first communication network, where the first signal communicates information.
  • information may, for example, comprise one or more units of information, where a "unit of information" is generally a quantifiable amount of information.
  • a unit of information may be a packet, bit, symbol, data frame, message, song, program, music video, movie, timed segment of a communication, etc.
  • Such information may comprise characteristics of any of a variety of types of information (e.g ., textual, graphical, multi-media, video, audio, pictorial, general data, etc.).
  • the scope of various aspects of the present invention should not be limited by characteristics of a particular type of information or by any arbitrary notion of what a unit of such information may comprise.
  • the first communication network may comprise characteristics of any of a variety of communication network types.
  • the first communication network may comprise a telecommunication network, television network or a computer network.
  • the first communication network may, for example, comprise a relatively small area network, for example, a personal area network ("PAN”) or local area network ("LAN").
  • PAN personal area network
  • LAN local area network
  • the first communication network may, for example, comprise a relatively large area network, for example, a metropolitan area network ("MAN”), national communication network or worldwide communication network (e.g ., the Internet or various satellite communication networks).
  • the first communication network may be a portion of (or all of) a first communication path between communicating systems.
  • a communication path may comprise one or more communicatively coupled communication networks.
  • the first communication system 110 may receive a first signal directly from wireless interface 130 of the wireless carner's communication infrastructure, where the first signal communicates a unit of information (e.g ., a segment of a telephone call).
  • the second communication system 150 may receive a first signal directly from the local wireless interface 170 of a personal area network, where the first signal communicates a unit of information ( e.g ., a song).
  • the third communication system 180 may receive a first signal directly from a wireless access point 193 of the CDMA network 195, where the first signal communicates a unit of information (e.g ., a video image).
  • the first communication network may comprise characteristics of any of a variety of communication network types. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of a particular communication network type.
  • the first signal may comprise characteristics of any of a variety of communication signal types.
  • the first signal may be communicated over any of a variety of communication media (e.g ., wired, wireless, tethered optical, non-tethered optical, etc.).
  • the first signal may communicate information (e.g ., a unit of information) using any of a large variety of encoding strategies, modulation techniques, compression techniques, communication protocols, etc.
  • the first signal may comprise a wireless signal communicated utilizing the IEEE 802.11 communication standard that communicates video information compressed in accordance with MPEG-4, part 10, which is encrypted utilizing public/private key encryption.
  • the first signal may comprise a wireless signal communicated utilizing the GSM communication standard that communicates cellular telephone information.
  • the first signal may comprise characteristics of any of a variety of communication signal types. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of any particular communication signal type.
  • Step 220 may, for example, comprise receiving the first signal utilizing a receiver.
  • a receiver may comprise characteristics of any of a variety of receiver types.
  • the receiver may comprise characteristics of a wired, wireless or optical receiver.
  • the receiver may be adapted to communicate information communicated utilizing any of a variety of communication protocols or standards.
  • the receiver may, for example, be associated with an antenna (or other signal port) coupled to the receiver.
  • the scope of various aspects of the present invention should not be limited by characteristics of any particular type of receiver or other apparatus that may receive a signal that communicates information.
  • the exemplary method 200 may, at step 230, comprise receiving a second signal directly from a second communication network (e.g ., substantially different than the first communication network), where the second signal communicates information (e.g ., the unit of information discussed previously with regard to the first signal).
  • the second signal may generally communicate the same unit of information that the first signal ( e.g ., received at step 220) communicates.
  • communicating a same unit of information does not necessarily comprise communicating the same data.
  • a unit of information may be communicated with a variety of data resolutions (e.g ., spatial, color, intensity and/or temporal resolutions, etc.).
  • a unit of information may be communicated utilizing a variety of data compression techniques and/or encoding strategies.
  • the first and second signals may each communicate at least a portion of the same unit of information.
  • the first and second signals may also communicate information that identifies the unit of information (or portion thereof) that is communicated.
  • each of the first and second signals may communicate data packets or frames comprising header information that identifies the particular unit of information being communicated.
  • identification information may, for example and without limitation, comprise timestamp information, sequence information, data identification information, etc.
  • the first signal may communicate a unit of information along with header information identifying the unit of information
  • the second signal may communicate the same unit of information along with at least a portion of the same header information identifying the unit of information.
  • the second communication network may comprise characteristics of any of a variety of communication network types.
  • the second communication network may be a portion of (or all of) a second communication path between communicating systems.
  • the second communication path may share one or more communication networks (or portions thereof).
  • the second communication network may be communicatively coupled (directly or indirectly) with the first communication network discussed previously.
  • the first communication system 110 may receive a second signal directly from local wireless interface 140 of, for example, an office LAN, where the second signal communicates a unit of information (e.g ., a segment of a telephone call).
  • a unit of information e.g ., a segment of a telephone call
  • the first signal (received from wireless interface 130, discussed previously) and the second signal may each communicate at least a portion of the same unit of information (e.g ., the same segment of a telephone call).
  • the second communication system 150 may receive a second signal directly from wireless interface 160 of the wireless carrier's communication infrastructure, where the second signal communicates a unit of information (e.g ., a song).
  • the first signal received from the local wireless interface 170, discussed previously
  • the second signal may each communicate at least a portion of the same unit of information (e.g ., the same song or a portion thereof).
  • the third communication system 180 may receive a second signal directly from a wireless access point 190 the wireless carrier's communication infrastructure, where the second signal communicates a unit of information (e.g ., a video image).
  • the first signal received from the wireless access point 193 of the CDMA network 195, discussed previously
  • the second signal may each communicate at least a portion of the same unit of information (e.g ., the same video image).
  • the second communication network may comprise characteristics of any of a variety of communication network types. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of a particular communication network type.
  • the second signal may comprise characteristics of any of a variety of communication signal types.
  • the second signal may be communicated over any of a variety of communication media (e.g ., wired, wireless, tethered optical, non-tethered optical, etc.).
  • the second signal may communicate information (e.g ., a unit of information) using any of a large variety of encoding strategies, modulation techniques, compression techniques, communication protocols, etc.
  • the second signal may comprise a wireless signal communicated utilizing the IEEE 802.11 communication standard that communicates video information compressed in accordance with MPEG-4, part 10, which is encrypted utilizing public/private key encryption.
  • the second signal may comprise a wireless signal communicated utilizing the GSM communication standard that communicates cellular telephone information.
  • the second signal may comprise characteristics of any of a variety of communication signal types. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of any particular communication signal type.
  • Step 230 may, for example, comprise receiving the second signal utilizing a receiver.
  • a receiver may comprise characteristics of any of a variety of receiver types.
  • the receiver may comprise characteristics of a wired, wireless or optical receiver.
  • the receiver may be adapted to communicate information communicated utilizing any of a variety of communication protocols or standards.
  • the receiver may, for example, be independent of a receiver utilized to receive the first signal at step 220.
  • the receiver may share one or more components with a receiver utilized to receive the first signal at step 220.
  • the receiver may, for example, be associated with an antenna (or other signal port) coupled to the receiver.
  • the scope of various aspects of the present invention should not be limited by characteristics of any particular type of receiver or other apparatus that may receive a signal that communicates information.
  • the exemplary method 200 may, at step 240, comprise processing the received first signal and the received second signal to determine the information (e.g ., a unit of information) communicated by the first and second signals received at steps 220 and 230.
  • Step 240 may comprise processing the received first and second signals in any of a variety of manners, non-limiting examples of which are presented below.
  • the exemplary method 200 may comprise buffering one or both of the received first signal (or information representative thereof) and the received second signal (or information representative thereof). Such buffering may be utilized, for example and without limitation, to compensate for timing issues related to receipt and/or processing of the first and second signals.
  • step 240 may comprise processing the first signal to determine the unit of information, and determining a first indication of reliability for the unit of information determined from the first signal.
  • step 240 may then comprise processing the second signal to determine the unit of information, and determining a second indication of reliability for the unit of information determined from the second signal.
  • Step 240 may then comprise determining the unit of information based, at least in part, on the determined first and second indications of reliability.
  • step 240 may, for example, comprise determining the unit of information by selecting, either the unit of information determined from the first signal or the unit of information determined from the second signal, based at least in part on the respective indications of reliability.
  • step 240 may comprise determining the unit of information by combining the unit of information determined from the first signal and the unit of information determined from the second signal. Such combining may, for example and without limitation, be based at least in part on a weighting technique related to the respective indications of reliability.
  • step 240 may comprise processing the received first signal to determine the unit of information as communicated by the first signal.
  • Step 240 may then comprise processing the received second signal to determine the unit of information by utilizing the unit of information determined from the first signal to determine the unit of information from the second signal.
  • step 240 may comprise determining the unit of information from the second signal by basing decisions of such a determination on the unit of information that has already been determined from the first signal. Such determination may also, for example, be based on an indication of reliability associated with the unit of information as communicated by the first signal.
  • the exemplary method 200 may, at step 250, perform continued processing.
  • Such continued processing may comprise characteristics of any of a large variety of continued processing.
  • step 250 may comprise returning to step 220 to receive and process more information.
  • step 250 may comprise performing additional processing to present received information to a user.
  • step 250 may comprise interfacing with a user to determine whether or how to process received information.
  • step 250 may comprise transmitting information. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of any particular continued processing.
  • Figure 3 shows a flow diagram of an exemplary method 300, in a communication system, for receiving information through multiple communication paths, in accordance with various aspects of the present invention.
  • the exemplary method 300 may, at step 320, comprise receiving a first signal directly from a first communication network, where the first signal communicates information (e.g ., a unit of information).
  • exemplary step 320 may, for example and without limitation, share various characteristics with step 220 of the exemplary method 200 illustrated in Figure 2 and discussed previously.
  • the exemplary method 300 may, at step 330, comprise receiving a second signal directly from a second communication network (e.g ., substantially different than the first communication network), where the second signal communicates information (e.g ., the unit of information discussed previously with regard to the first signal).
  • exemplary step 330 may, for example and without limitation, share various characteristics with step 230 of the exemplary method 200 illustrated in Figure 2 and discussed previously.
  • the exemplary method 300 may, at step 340, comprise processing the received first signal and the received second signal to determine the information (e.g ., the unit of information communicated by the first and second signals received at steps 320 and 330).
  • Exemplary step 340 may, for example and without limitation, share various characteristics with step 240 of the exemplary method 200 illustrated in Figure 2 and discussed previously. The following discussion will present exemplary sub-steps for step 340. Note, however, that the scope of various aspects of the present invention should not be limited by characteristics of such exemplary sub-steps.
  • the exemplary method 300 may, at step 342, comprise processing the received first signal to determine the information (e.g ., the unit of information). Such processing may comprise performing any of a large variety of signal processing operations to determine information from a received signal.
  • step 342 may comprise performing signal demodulation, digital detection (for digital signals), signal decoding, decrypting, decompressing, error detecting and correcting, etc.
  • the scope of various aspects of the present invention should not be limited by any particular manner of determining information from a signal.
  • the exemplary method 300 may, at step 343, comprise determining a first indication of reliability for the unit of information determined from the received first signal (e.g ., a unit of information determined at step 342).
  • An indication of reliability may generally be viewed as a signal or value (e.g ., a numeric value, alpha-numeric value, etc.) associated with a degree of confidence that a unit of information determined from a signal is accurate or reliable.
  • a numeric scale may be utilized with high numbers associated with a relatively high degree of confidence and low numbers associated with a relatively low degree of confidence.
  • a numeric scale may correspond to a degree of statistical probability that a determined unit of information is accurate.
  • the scope of various aspects of the present invention should not be limited by any particular indication of the reliability (or accuracy) of information.
  • Step 343 may comprise determining the first indication of reliability for the unit of information in any of a variety of manners. For example and without limitation, step 343 may determine the indication of reliability based, at least in part, on the frequency of detected and/or corrected errors. Also for example, step 343 may comprise determining the indication of reliability based, at least in part, on communication environmental conditions (e.g ., S/N ratio). Further for example, step 343 may comprise determining the indication of reliability based, at least in part, on a predetermined confidence level (e.g ., based on previous history with a particular information source or communication network from which the first signal was received). Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of any particular manner of determining an indication of reliability or degree of confidence in received information.
  • the exemplary method 300 may, at step 344, comprise processing the received second signal to determine the unit of information.
  • Exemplary step 344 may, for example and without limitation, share various characteristics with exemplary step 342 discussed previously, albeit with respect to the second signal received at step 330, instead of the first signal received at step 320.
  • the exemplary method 300 may, at step 345, may comprise determining a second indication of reliability for the information (e.g ., the unit of information) determined at step 344.
  • Exemplary step 345 may, for example and without limitation, share various characteristics with exemplary step 343 discussed previously, albeit with respect to the second signal received at step 330 and the information determined at step 344, instead of the first signal received at step 320 and the information determined at step 342.
  • the exemplary method 300 may, at step 346, comprise determining the unit of information based, at least in part, on the determined first and second indications of reliability.
  • Step 346 may comprise determining the unit of information, based at least in part on the determined first and second indications of reliability, in any of a variety of manners.
  • the following discussion will include various non-limiting exemplary illustrations, which should by no means, limit the scope of various aspects of the present invention.
  • step 346 may comprise selecting the most reliable unit of information.
  • step 346 may comprise determining, based at least in part on the respective indications of reliability determined at steps 343 and 345, that the information (e.g ., a unit of information) communicated by the first signal received at step 320 and determined at step 342 is more reliable than the information ( e.g ., a unit of information) communicated by the second signal received at step 330 and determined at step 344.
  • Step 346 may then, for example, select the unit of information determined at step 342.
  • step 346 may comprise determining the unit of information based, at least in part, on the unit of information determined (e.g ., at step 342) from the received first signal, the first indication of reliability (e.g ., determined at step 343), the unit of information determined ( e.g ., at step 344) from the received second signal, and the second indication of reliability (e.g ., as determined at step 345).
  • step 346 may comprise determining the unit of information based, at least in part, on a weighted average. Such a weighted average may, for example, comprise weighting each unit of information (or portions thereof) by their respective indications of reliability.
  • step 346 may comprise determining the unit of information based, at least in part, on the determined first and second indications of reliability. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of any particular manner of making such determination.
  • Exemplary method 300 was presented to provide specific exemplary illustrations of generally broader aspects of the present invention. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of the exemplary method 300.
  • Figure 4 shows a flow diagram of an exemplary method 400, in a communication system, for receiving information through multiple communication paths, in accordance with various aspects of the present invention.
  • the exemplary method 400 may, at step 420, comprise receiving a first signal directly from a first communication network, where the first signal communicates information (e.g ., a unit of information).
  • exemplary step 420 may, for example and without limitation, share various characteristics with steps 220 and 320 of the exemplary methods 200, 300 illustrated in Figures 2-3 and discussed previously.
  • the exemplary method 400 may, at step 430, comprise receiving a second signal directly from a second communication network (e.g ., substantially different than the first communication network), where the second signal communicates information (e.g ., the unit of information discussed previously with respect to the first signal).
  • exemplary step 430 may, for example and without limitation, share various characteristics with steps 230 and 330 of the exemplary methods 200, 300 illustrated in Figures 2-3 and discussed previously.
  • the exemplary method 400 may, at step 440, comprise processing the received first signal and the received second signal to determine the information (e.g ., a unit of information communicated by the first and second signals received at steps 420 and 430).
  • Exemplary step 440 may, for example and without limitation, share various characteristics with steps 240 and 340 of the exemplary methods 200, 300 illustrated in Figures 2-3 and discussed previously. The following discussion will present exemplary sub-steps for step 440. Note, however, that the scope of various aspects of the present invention should not be limited by characteristics of such exemplary sub-steps.
  • the exemplary method 400 may, at step 442, comprise processing the received first signal to determine the information (e.g ., the unit of information).
  • Exemplary step 442 may, for example and without limitation, share various characteristics with step 342 of the exemplary method 300 illustrated in Figure 3 and discussed previously.
  • the exemplary method 400 may, at step 443, comprise determining a first indication of reliability for the unit of information determined from the received first signal (e.g ., a unit of information determined at step 442).
  • Exemplary step 443 may, for example and without limitation, share various characteristics with step 343 of the exemplary method 300 illustrated in Figure 3 and discussed previously.
  • the exemplary method 400 may, at step 444, comprise processing the received second signal to determine the unit of information by utilizing the unit of information determined from the first signal ( e.g ., at step 442) to determine the unit of information from the second signal.
  • Step 440 may comprise performing such processing in any of a variety of manners. The following discussion will include various non-limiting exemplary illustrations, characteristics of which should not limit the scope of various aspects of the present invention.
  • step 444 may comprise utilizing the unit of information determined from the first signal as basis information, which may be modified in accordance with the unit of information determined from the second received signal. For example, if the unit of information (or a portion thereof) determined from the second received signal is different from a corresponding unit of information (or a portion thereof) determined from the first received signal, and the reliability of the unit of information determined from the second signal is relatively high, then step 444 may determine that the unit of information (or a portion thereof) determined from the second signal outweighs the unit of information determined from the first signal.
  • step 444 may comprise utilizing the unit of information determined from the first signal as guide information, which may be utilized to adjust or influence the unit of information determined from the second received signal. For example, if the unit of information (or a portion thereof) determined from the second received signal is of relatively low reliability, then step 444 may modify such information in accordance with the unit of information determined from the first received signal ( e.g ., particularly when reliability of the unit of information determined from the first received signal is relatively high).
  • step 444 may, in various exemplary scenarios comprise utilizing respective indications of reliability for the units of information determined from the first and second signals. Note, however, that step 444 does not necessarily utilize such indications of reliability. For example and without limitation, step 444 may comprise utilizing a predetermined algorithm for determining the unit of information from the second signal, based at least in part on the unit of information determined from the first signal, where such predetermined algorithm does not explicitly utilize a determination of information reliability.
  • the exemplary method 400 may, at step 450, comprise performing continued processing.
  • Step 450 may generally comprise performing any of a variety of continued processing (e.g ., as discussed previously with regard to step 250 of the exemplary method 200 illustrated at Figure 2 ).
  • Step 450 may, for example, return execution flow of the exemplary method 400 to step 420 for receiving and processing additional signals and information.
  • Step 450 may also, for example, utilize the unit of information determined from the second signal at step 444 to further refine the unit of information determined from the first signal (e.g ., utilizing an iterative processing approach).
  • step 450 may comprise determining a second indication of reliability for the unit of information determined from the second signal (e.g ., at step 444).
  • Step 442 may then, in the exemplary scenario, comprise utilizing the determined unit of information as determined from the second signal and the determined second indication of reliability to refine or re-determine the unit of information from the first signal.
  • step 444 may comprise processing the received second signal to determine the unit of information by utilizing the unit of information determined from the first signal to determine the unit of information from the second signal. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of any particular manner of making such determination.
  • Exemplary method 400 was presented to provide specific exemplary illustrations of generally broader aspects of the present invention. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of the exemplary method 400.
  • Figure 5 shows a flow diagram of an exemplary method 500, in a communication system, for utilizing multiple communication paths for communicating information (e.g ., a unit of information), in accordance with various aspects of the present invention.
  • the exemplary method 500 may be implemented in any of a variety of communication systems.
  • a communication system may comprise characteristics of a cellular phone, paging device, portable multi-media communication device, pocket computer, personal digital assistant, portable telephone, desktop or portable computer, etc. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of a particular communication system.
  • the information may, for example, comprise one or more units of information.
  • a "unit of information" is generally a quantifiable amount of information.
  • a unit of information may be a packet, bit, symbol, data frame, message, song, program, music video, movie, timed segment of a communication, etc.
  • Such information may comprise characteristics of any of a variety of types of information (e.g ., textual, graphical, multi-media, video, audio, pictorial, general data, etc.).
  • the scope of various aspects of the present invention should not be limited by characteristics of a particular type of information or by any arbitrary notion of what a unit of such information may comprise.
  • the exemplary method 500 may, at step 520, comprise determining a first set of information representative of the unit of information.
  • the first set of information may be representative of the unit of information in any of a variety of ways.
  • the first set of information may correspond exactly to the unit of information.
  • the first set of information may comprise a compressed, encoded or encrypted version of the unit of information. Accordingly, the scope of various aspects of the present invention should not be limited by any particular manner in which a set of information may represent a unit of information.
  • Step 520 may comprise determining the first set of information in any of a variety of manners.
  • step 520 may comprise compressing data representative of the unit of information. Such compression may, for example, be performed in any of a variety of manners and/or in accordance with any of a variety of compression standards.
  • step 520 may comprise encoding or encrypting information representative of the unit of information. The scope of various aspects of the present invention should not be limited by characteristics of any particular manner of determining a set of information that is representative of a particular unit of information.
  • the exemplary method 500 may, at step 530, comprise determining a second set of information representative of the unit of information.
  • Step 530 may, for example and without limitation, share various characteristics with exemplary step 520.
  • the second set of information may be identical to the first set of information.
  • the second set of information may be different than the first set of information.
  • the second set of information might comprise a compressed representation of the unit of information
  • the first set of information might comprise an exact representation of the unit of information or a different compressed representation than the second set of information.
  • the second and first sets of information may be encoded or encrypted differently.
  • the second and first sets of information may represent the unit of information at different respective resolution levels (e.g ., data point, spatial and/or temporal resolution levels).
  • the first and second sets of information may comprise or be communicated with any of a variety of additional information (e.g ., information not directly representative of the unit of information).
  • additional information may comprise information identifying the unit of information (or portion thereof) that is represented.
  • additional information may also comprise timestamp or sequence information.
  • the first and second sets of information may be sub-divided into one or more data frames or packets, each of which comprises header information.
  • respective headers of the first and second sets of information may comprise information that may be utilized to synchronize or correlate the first and second sets of information.
  • the first and second sets of information may comprise at least some common header information.
  • respective headers of the first and second sets of information may comprise common source and/or destination information.
  • first and second sets of information may comprise or be communicated with any of a variety of additional information. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of any particular type of additional information.
  • step 530 may comprise determining a second set of information representative of the unit of information. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of a particular manner in which a unit of information may be represented or by any particular manner of determining a set of information that is representative of a particular unit of information.
  • the exemplary method 500 may, at step 540, comprise communicating the first set of information in a first signal communicated directly to (and through) a first communication network.
  • the first communication network may, for example, be communicatively coupled to one or more other communication systems to which the first signal may be communicated.
  • Various characteristics of signals and networks were discussed previously with regard to the discussion of Figure 2 .
  • the first communication system 110 may communicate a first signal to the wireless carrier central office 120 (or another system communicatively coupled thereto) through wireless interface 130 of the wireless carner's communication infrastructure, where the first signal communicates a first set of information representative of a unit of information (e.g ., a segment of a telephone call).
  • the second communication system 150 may communicate a first signal to the wireless carrier central office 120 through local wireless interface 170 of a personal area network, where the first signal communicates a first set of information representative of a unit of information (e.g ., a song).
  • the third communication system 180 may communicate a first signal to the wireless carrier central office through a wireless access point 193 of the CDMA network 195, where the first signal communicates a first set of information representative of a unit of information (e.g ., a video image).
  • the wireless carrier central office 120 may communicate a first signal to the first communication system 110 through wireless interface 130, where the first signal communicates a first set of information representative of a unit of information (e.g ., a text message).
  • the first signal may comprise characteristics of any of a variety of communication signal types
  • the first communication network may comprise characteristics of any of a variety of communication network types. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of any particular signal type or type of communication network.
  • Step 540 may, for example, comprise transmitting the first signal utilizing a transmitter (or transceiver).
  • a transmitter may comprise characteristics of any of a variety of transmitter types.
  • the transmitter may comprise characteristics of a wired, wireless or optical transmitter.
  • the transmitter may be adapted to communicate information communicated utilizing any of a variety of communication protocols or standards.
  • the transmitter may, for example, be associated with an antenna (or other signal port) coupled to the transmitter.
  • the scope of various aspects of the present invention should not be limited by characteristics of any particular type of transmitter or other apparatus that may transmit a signal that communicates information.
  • the exemplary method 500 may, at step 550, comprise communicating the second set of information (e.g ., as determined at step 530) in a second signal communicated directly to (and through) a second communication network (e.g ., substantially different from the first communication network).
  • the second communication network may, for example, be communicatively coupled to one or more other communication systems to which the second signal may be communicated.
  • Non-limiting exemplary characteristics of various signal and communication network types were presented previously. Consider the following non-limiting illustrative examples.
  • the first communication system 110 may communicate a second signal to the wireless carrier central office 120 through the local wireless interface 140 of, for example, an office LAN, where the second signal communicates the second set of information representative of the unit of information (e.g ., a segment of a telephone call).
  • the second communication system 150 may communicate a second signal to the wireless carrier central office 120 through the wireless interface 160 of the wireless carrier's communication infrastructure, where the second signal communicates the second set of information representative of the unit of information (e.g ., a song).
  • the third communication system 180 may communicate a second signal to the wireless carrier central office 120 through a wireless access point 190 of the wireless carrier's communication infrastructure, where the second signal communicates the second set of information representative of the unit of information (e.g., a video image).
  • the wireless carrier central office 120 may communicate a second signal to the first communication system 110 through the broadband access network 143; local gateway 141 and local wireless interface 140, where the second signal communicates the second set of information representative of the unit of information (e.g ., a text message).
  • step 550 may comprise communicating the second set of information (e.g ., as determined at step 530) in a second signal communicated directly to (and through) a second communication network. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of any particular type of signal or type of communication network.
  • Step 550 may, for example, comprise transmitting the second signal utilizing a transmitter (or transceiver).
  • a transmitter may comprise characteristics of any of a variety of transmitter types.
  • the transmitter may comprise characteristics of a wired, wireless or optical transmitter.
  • the transmitter may be adapted to communicate information communicated utilizing any of a variety of communication protocols or standards.
  • the transmitter may, for example, be independent of a transmitter utilized to transmitter the first signal at step 540.
  • the transmitter may share one or more components with a transmitter utilized to receive the first signal at step 540.
  • the transmitter may, for example, be associated with an antenna (or other signal port) coupled to the transmitter.
  • the scope of various aspects of the present invention should not be limited by characteristics of any particular type of transmitter or other apparatus that may transmit a signal that communicates information.
  • FIG. 6 is a drawing showing a block diagram of an exemplary communication environment 600 comprising a communication system 610 for communicating (i.e., receiving and/or transmitting) information, in accordance with various aspects of the present invention.
  • a communication system 610 for communicating (i.e., receiving and/or transmitting) information, in accordance with various aspects of the present invention.
  • Various components of the exemplary communication system 610 may, for example and without limitation, share various functional characteristics with the exemplary methods 200-500 illustrated in Figures 2-5 and discussed previously.
  • the exemplary communication environment 600 may share various characteristics with the exemplary communication environment 100 illustrated in Figure 1 and discussed previously. Note that the exemplary communication environment 600 shows a relatively small set of communication systems and communication system components. The relatively small set was selected for the purpose of illustrative clarity and should by no means limit the scope of various aspects of the present invention.
  • the exemplary communication environment 600 comprises a communication system 610, which comprises a communication interface module 620 and a signal processing module 630.
  • the communication system 610 is communicatively coupled to the second system 690 through a plurality of communication paths.
  • the second system 690 may, for example and without limitation, communicate any of a variety of information with the communication system 610.
  • a first exemplary communication path between the communication system 610 and the second system 690 flows through communication link 644, the first communication network 640 and communication link 642.
  • the second exemplary communication path between the communication system 610 and the second system 690 flows through communication link 652, the second communication network 650, communication link 654, the first communication network 640 and communication link 642.
  • the second exemplary communication path comprises a portion of the first communication path (e.g ., at least a portion of the first communication network 640 and communication link 642).
  • the third exemplary communication path between the communication system 610 and the second system 690 flows through communication link 652, the second communication network 650, communication link 656, the third communication network 660 and communication link 662.
  • the third communication network 660 will occasionally be referred to as the Internet 660. Note, however, that such an illustrative example should in no way limit the scope of various aspects of the present invention.
  • the third communication path comprises a portion of the second communication path (e.g ., communication link 652 and at least a portion of the second communication network 650), but is completely independent of the first communication path. This serves to illustrate that various communication paths may be independent from, or dependent on, other communication paths or communication network components thereof.
  • the first, second and third exemplary communication paths, and their respective communication networks, will be utilized to provide specific examples of various broader aspects of the present invention.
  • various communication paths may comprise any of a variety of communication path characteristics
  • the communication networks may comprise any of a variety of communication network characteristics. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of any particular communication path, by characteristics of one or more communication networks that a communication path may include, or by any particular number of communication paths or networks.
  • the communication system 610 may comprise characteristics of any of a variety of communication systems (e.g ., portable or handheld communication systems).
  • the communication system 610 may comprise characteristics of a cellular phone, paging device, portable multi-media communication device, pocket computer, personal digital assistant, portable telephone, desktop or portable computer, etc. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of a particular communication system.
  • the communication system 610 may comprise a communication interface module 620 and a signal processing module 630.
  • the communication interface module 620 may, in turn, comprise a first transceiver module 622 and a second transceiver module 624.
  • transceiver may, in turn, comprise a first transceiver module 622 and a second transceiver module 624.
  • transceiver may, in turn, comprise a first transceiver module 622 and a second transceiver module 624.
  • transceiver “receiver,” and “transmitter.” Such terms may often be used interchangeably, and accordingly, the scope of various aspects of the present invention should not be limited by a specific utilization of such terms.
  • the following discussion will refer to respective signals communicated by the respective transceivers. It should be noted that in various scenarios, a plurality of signals may be communicated by a single transceiver.
  • the first transceiver module 622 may, for example, receive a first signal directly from the first communication network 640 ( e.g ., over communication link 644), where the first signal communicates information.
  • information may, for example, comprise one or more units of information, where a "unit of information" is generally a quantifiable amount of information.
  • a unit of information may be a packet, bit, symbol, data frame, message, song, program, music video, movie, timed segment of a communication, etc.
  • Such information may comprise characteristics of any of a variety of types of information (e.g ., textual, graphical, multi-media, video, audio, pictorial, general data, etc.).
  • the scope of various aspects of the present invention should not be limited by characteristics of a particular type of information or by any arbitrary notion of what a unit of such information may comprise.
  • the first communication network 640 may comprise characteristics of any of a variety of communication network types.
  • the first communication network 640 may comprise a telecommunication network, television network or a computer network.
  • the first communication network 640 may, for example, comprise a relatively small area network, for example, a personal area network ("PAN") or local area network ("LAN").
  • PAN personal area network
  • LAN local area network
  • the first communication network 640 may, for example, comprise a relatively large area network, for example, a metropolitan area network ("MAN”), national communication network or worldwide communication network (e.g ., the Internet or various satellite communication networks).
  • the first communication network 640 may be a portion of (or all of) a first communication path between communicating systems.
  • a communication path may comprise one or more communicatively coupled communication networks. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of a particular communication network type.
  • the first signal may comprise characteristics of any of a variety of communication signal types.
  • the first signal may be communicated over any of a variety of communication media (e.g ., wired, wireless, tethered optical, non-tethered optical, etc.).
  • the first signal may communicate information (e.g ., a unit of information) using any of a large variety of encoding strategies, modulation techniques, compression techniques, communication protocols, etc.
  • the first signal may comprise a wireless signal communicated utilizing the IEEE 802.11 communication standard that communicates video information compressed in accordance with MPEG-4, part 10, which is encrypted utilizing public/private key encryption.
  • the first signal may comprise a wireless signal communicated utilizing the GSM communication standard that communicates cellular telephone information.
  • the first signal may comprise characteristics of any of a variety of communication signal types. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of any particular communication signal type.
  • the first transceiver module 622 may comprise characteristics of any of a variety of transceiver (or receiver or transmitter) types.
  • the first transceiver module 622 may comprise characteristics of a wired, wireless or optical transceiver.
  • the first transceiver module 622 may be adapted to communicate information utilizing any of a variety of communication protocols or standards.
  • the first transceiver module 622 may, for example, be associated with an antenna (or other signal port) coupled to the first transceiver module 622.
  • the scope of various aspects of the present invention should not be limited by characteristics of any particular type of transceiver, receiver or other apparatus that may receive a signal that communicates information.
  • the second transceiver module 624 may, for example, receive a second signal directly from the second communication network 650, which may be substantially different than the first communication network 640, where the second signal communicates information (e.g ., the unit of information discussed previously with regard to the first signal).
  • the second signal may generally communicate the same unit of information that the first signal (e.g ., received by the first transceiver module 622) communicates.
  • communicating a same unit of information does not necessarily comprise communicating the same data.
  • a unit of information may be communicated with a variety of data resolutions (e.g ., spatial, color, intensity and/or temporal resolutions).
  • a unit of information may be communicated utilizing a variety of data compression techniques and/or encoding strategies.
  • the first and second signals may each communicate at least a portion of the same unit of information.
  • the first and second signals may also communicate information that identifies the unit of information (or portion thereof) that is communicated.
  • each of the first and second signals may communicate data packets or frames comprising header information that identifies the particular unit of information being communicated.
  • identification information may, for example and without limitation, comprise timestamp information, sequence information, data identification information, etc.
  • the first signal may communicate a unit of information along with header information identifying the unit of information
  • the second signal may communicate the same unit of information along with at least a portion of the same header information identifying the unit of information.
  • the second communication network 650 may comprise characteristics of any of a variety of communication network types. As illustrated in the exemplary communication environment 600, the second communication network 650 may be a portion of, or all of, a communication path between communicating systems (e.g ., the communication system 610 and the second system 690). Note that the second communication path may share one or more communication networks (or portions thereof) with other communication paths. For example, the second communication network 650 may be communicatively coupled through communication link 654 (directly or indirectly) with the first communication network 640 discussed previously.
  • the second communication network may comprise characteristics of any of a variety of communication network types. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of a particular communication network type.
  • the second signal may comprise characteristics of any of a variety of communication signal types.
  • the second signal may be communicated over any of a variety of communication media (e.g ., wired, wireless, tethered optical, non-tethered optical, etc.).
  • the second signal may communicate information (e.g ., a unit of information) using any of a large variety of encoding strategies, modulation techniques, compression techniques, communication protocols, etc.
  • the second signal may comprise a wireless signal communicated utilizing the IEEE.
  • the second signal may comprise a wireless signal communicated utilizing the GSM communication standard that communicates cellular telephone information.
  • the second signal may comprise characteristics of any of a variety of communication signal types. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of any particular communication signal type.
  • the signal processing module 630 may process the first signal (e.g ., received by the first transceiver module 622) and the second signal (e.g ., received by the second transceiver module 624) to determine the information (e.g ., the unit of information) communicated by the first and second signals.
  • the signal processing module 630 may process the received first and second signals in any of a variety of manners, non-limiting examples of which are presented below.
  • the signal processing module 630 may process the first signal (e.g ., as received by the first transceiver module 622) to determine the unit of information, and determine a first indication of reliability for the unit of information determined from the first signal.
  • the signal processing module 630 may then process the second signal (e.g ., as received by the second transceiver module 624) to determine the unit of information, and determine a second indication of reliability for the unit of information determined from the second signal.
  • the signal processing module 630 may then determine the unit of information based, at least in part, on the determined first and second indications of reliability.
  • the signal processing module 630 may, for example, determine the unit of information by selecting, either the unit of information determined from the first signal or the unit of information determined from the second signal, based at least in part on the respective indications of reliability.
  • the signal processing module 630 may determine the unit of information by combining the unit of information determined from the first signal and the unit of information determined from the second signal. Such combining may, for example and without limitation, be based at least in part on a weighting technique related to the respective indications of reliability.
  • the signal processing module 630 may process the first signal (e.g ., as received by the first transceiver module 622) to determine the unit of information as communicated by the first signal.
  • the signal processing module 630 may then process the second signal (e.g ., as received by the second transceiver module 624) to determine the unit of information by utilizing the unit of information determined from the first signal to determine the unit of information from the second signal.
  • the signal processing module 630 may determine the unit of information from the second signal by basing decisions of such a determination on the unit of information that has already been determined from the first signal. Such determination may also, for example, be based on an indication of reliability associated with the unit of information as communicated by the first signal.
  • Figure 7 is a diagram illustrating an exemplary communication system 700 that receives information through multiple communication paths, in accordance with various aspects of the present invention.
  • Various components of the exemplary communication system 700 may, for example and without limitation, share various functional characteristics with the exemplary methods 200-400 illustrated in Figures 2-4 and discussed previously. Also without limitation, components of the exemplary communication system 700 may also share various characteristics with components of the exemplary communication system 610 illustrated in Figure 6 and discussed previously.
  • the exemplary communication system 700 may comprise a communication interface module 720 and a signal processing module 730.
  • the communication interface module 720 may comprise a first receiver module 722 and a second (or Nth) receiver module 724.
  • the signal processing module 730 may comprise a first decoder 732 and a second (or Nth) decoder 734.
  • the signal processing module 730 may also comprise a selector/combiner module 736.
  • the communication interface module 720 may, for example and without limitation, share various characteristics with the communication interface module 620 illustrated in Figure 6 and discussed previously. Also for example, the communication interface module 720 may share various functional characteristics with steps 220-230, 320-330 and 420-430 of exemplary methods 200-400 illustrated in Figures 2-4 and discussed previously.
  • the exemplary communication system 700, and the exemplary communication systems 800, 900 shown in Figures 8-9 , are illustrated with antennas coupled to transmitters and/or receivers. It should be noted that the antennas are merely illustrative and accordingly, the scope of various aspects of the present invention should not be limited by characteristics of RF wireless communication systems.
  • the first receiver module 722 may receive a first signal directly from a first communication network, where the first signal communicates information (e.g ., a unit of information).
  • the first receiver module 722 may, for example and without limitation, share various functional characteristics with steps 220, 320 and 420 of the exemplary methods 200-400 illustrated in Figures 2-4 and discussed previously.
  • the first receiver module 722 may also, for example, share various characteristics with the first transceiver module 622 illustrated in Figure 6 and discussed previously.
  • the second receiver module 724 may receive a second signal directly from a second communication network (e.g ., substantially different than the first communication network), where the second signal communicates information (e.g ., the unit of information discussed previously with respect to the first signal).
  • the second receiver module 724 may, for example and without limitation, share various functional characteristics with steps 230, 330 and 430 of the exemplary methods 200-400 illustrated in Figures 2-4 and discussed previously.
  • the second receiver module 724 may also, for example, share various characteristics with the second transceiver module 624 illustrated in Figure 6 and discussed previously.
  • the signal processing module 730 may, for example, process the first signal (e.g ., as received by the first receiver module 722) and the second signal (e.g ., as received by the second receiver module 724) to determine the information (e.g ., a unit of information communicated by the first and second signals).
  • the signal processing module 730 may, for example and without limitation, share various characteristics with steps 240 and 340 of the exemplary methods 200, 300 illustrated in Figures 2-3 and discussed previously. The following discussion will present exemplary processing scenarios for the signal processing module 730. Note, however, that the scope of various aspects of the present invention should not be limited by characteristics of such exemplary processing scenarios.
  • the signal processing module 730 may, for example, process the received first signal to determine the information communicated by the first signal (e.g ., the unit of information). Such processing may comprise performing any of a large variety of signal processing operations to determine information from a received signal. For example and without limitation, the signal processing module 730 may utilize a first decoder 732 to decode the received first signal. Also, the signal processing module 730 may perform other or additional processing tasks, for example, signal demodulation, digital detection (for digital signals), signal decoding, decrypting, decompressing, error detecting and correcting, etc. The scope of various aspects of the present invention should not be limited by characteristics of any particular manner of determining information from a signal or by characteristics of related apparatus.
  • the signal processing module 730 may, for example, determine a first indication of reliability for the unit of information determined from the received first signal.
  • an indication of reliability may generally be viewed as a signal or value (e.g., a numeric value, alpha-numeric value, etc.) associated with a degree of confidence that a unit of information determined from a signal is accurate or reliable.
  • a numeric scale may be utilized with high numbers associated with a relatively high degree of confidence and low numbers associated with a relatively low degree of confidence.
  • a numeric scale may correspond to a degree of statistical probability that a determined unit of information is accurate.
  • the scope of various aspects of the present invention should not be limited by any particular indication of the reliability (or accuracy) of information.
  • the signal processing module 730 may determine the first indication of reliability for the unit of information in any of a variety of manners. For example and without limitation, the signal processing module 730 may determine the indication of reliability based, at least in part, on the frequency of detected and/or corrected errors. Also for example, the signal processing module 730 may determine the indication of reliability based, at least in part, on communication environmental conditions (e.g ., S/N ratio). Further for example, the signal processing module 730 may determine the indication of reliability based, at least in part, on a predetermined confidence level (e.g ., based on previous history with a particular information source or communication network from which the first signal was received). Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of any particular manner of (or apparatus for) determining an indication of reliability or degree of confidence in received information.
  • the signal processing module 730 may, for example, process the received second signal to determine the unit of information.
  • the signal processing module 730 may, for example and without limitation, share various functional characteristics with exemplary step 344 of the exemplary method 300 illustrated in Figure 3 and discussed previously.
  • the signal processing module 730 may, for example, determine a second indication of reliability for the information (e.g ., the unit of information) determined from the second signal.
  • the signal processing module 730 may, for example and without limitation, share various functional characteristics with exemplary step 345 of the exemplary method 300 illustrated in Figure 3 and discussed previously.
  • the signal processing module 730 may, for example, determine the unit of information based, at least in part, on the determined first and second indications of reliability.
  • the signal processing module 730 may, for example and without limitation, share various functional characteristics with exemplary step 346 of the exemplary method 300 illustrated in Figure 3 and discussed previously.
  • the signal processing module 730 may determine the unit of information, based at least in part on the determined first and second indications of reliability, in any of a variety of manners.
  • the following discussion will include various non-limiting exemplary illustrations, which should by no means, limit the scope of various aspects of the present invention.
  • the signal processing module 730 may select the most reliable unit of information.
  • the selector/combiner module 736 may determine, based at least in part on the respective indications of reliability determined previously, that the information (e.g ., a unit of information) determined from the received first signal is more reliable than the information ( e.g ., a unit of information) determined from the received second signal. The selector/combiner module 736 may then, for example, select the unit of information determined from the received first signal.
  • the signal processing module 730 may determine the unit of information based, at least in part, on the unit of information determined from the received first signal, the first indication of reliability, the unit of information determined from the received second signal, and the second indication of reliability.
  • the selector/combiner module 736 may determine the unit of information based, at least in part, on a weighted average. Such a weighted average may, for example, comprise weighting each unit of information (or portions thereof) by their respective indications of reliability.
  • the signal processing module 730 may determine the unit of information based, at least in part, on the determined first and second indications of reliability. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of any particular manner of making such determination.
  • Exemplary communication system 700 was presented to provide specific exemplary illustrations of generally broader aspects of the present invention. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of the exemplary communication system 700.
  • Figure 8 is a diagram illustrating an exemplary communication system 800 that receives information through multiple communication paths, in accordance with various aspects of the present invention.
  • the communication system 800 may, for example and without limitation, share various characteristics with the exemplary communication systems 610, 700 illustrated in Figures 6-7 and discussed previously. Also for example, components of the communication system 800 may share various functional characteristics with the exemplary methods 200, 400 illustrated in Figures 2 and 4 and discussed previously.
  • the exemplary communication system 800 may comprise a communication interface module 820 and a signal processing module 830.
  • the communication interface module 820 may comprise a first receiver module 822 and a second (or Nth) receiver module 824.
  • the signal processing module 830 may comprise a first decoder 832 and a second (or Nth) decoder 834.
  • the communication interface module 820 may, for example and without limitation, share various characteristics with the communication interface modules 620, 720 illustrated in Figures 6-7 and discussed previously. Also for example, the communication interface module 820 may share various functional characteristics with steps 220-230 and 420-430 of exemplary methods 200, 400 illustrated in Figures 2 and 4 and discussed previously.
  • the signal processing module 830 may, for example, process the first signal (e.g ., as received by the first receiver module 822) and the second signal (e.g ., as received by the second receiver module 824) to determine the information (e.g ., a unit of information communicated by the first and second signals).
  • the signal processing module 830 may, for example and without limitation, share various characteristics with steps 240 and 440 of the exemplary methods 200, 400 illustrated in Figures 2 and 4 and discussed previously. The following discussion will present exemplary processing scenarios for the signal processing module 830. Note, however, that the scope of various aspects of the present invention should not be limited by characteristics of such exemplary processing scenarios.
  • the signal processing module 830 may, for example, process the received first signal to determine the information communicated by the first signal (e.g ., the unit of information).
  • the signal processing module 830 may, for example and without limitation, share various functional characteristics with step 442 of the exemplary method 400 illustrated in Figure 4 and discussed previously. Such processing may comprise performing any of a large variety of signal processing operations to determine information from a received signal.
  • the signal processing module 830 may utilize a first decoder 832 to decode the received first signal.
  • the signal processing module 830 may perform other or additional processing tasks, for example, signal demodulation, digital detection (for digital signals), signal decoding, decrypting, decompressing, error detecting and correcting, etc.
  • the scope of various aspects of the present invention should not be limited by characteristics of any particular manner of determining information from a signal or by characteristics of related apparatus.
  • the signal processing module 830 may, for example, determine a first indication of reliability for the unit of information determined from the received first signal.
  • the signal processing module 830 may, for example and without limitation, share various functional characteristics with step 443 of the exemplary method 400 illustrated in Figure 4 and discussed previously.
  • the signal processing module 830 may determine an indication of reliability in any of a variety of manners. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of any particular manner of (or apparatus for) determining an indication of reliability or degree of confidence in received information.
  • the exemplary signal processing module 830 may, for example, process the received second signal (e.g ., as received by the second receiver module 824) to determine the unit of information by utilizing the unit of information determined from the first signal ( e.g ., as discussed above) to determine the unit of information from the second signal.
  • the signal processing module 830 may, for example and without limitation, share various functional characteristics with step 444 of the exemplary method 400 illustrated in Figure 4 and discussed previously.
  • the signal processing module 830 may perform such processing in any of a variety of manners.
  • the following discussion will include various non-limiting exemplary illustrations, characteristics of which should not limit the scope of various aspects of the present invention.
  • the signal processing module 830 may utilize the unit of information determined from the first signal as basis information, which may be modified in accordance with the unit of information determined from the second received signal. For example, if the unit of information (or a portion thereof) determined from the second received signal is different from a corresponding unit of information (or a portion thereof) determined from the first received signal, and the reliability of the unit of information determined from the second signal is relatively high, then the signal processing module 830 may determine that the unit of information (or a portion thereof) determined from the second signal outweighs the unit of information determined from the first signal.
  • the signal processing module 830 may utilize the unit of information determined from the first signal as guide information, which may be utilized to adjust or influence the unit of information determined from the second received signal. For example, if the unit of information (or a portion thereof) determined from the second received signal is of relatively low reliability, then the signal processing module 830 may modify such information in accordance with the unit of information determined from the first received signal ( e.g ., particularly when reliability of the unit of information determined from the first received signal is relatively high).
  • the signal processing module 830 may, in various exemplary scenarios, utilize respective indications of reliability for the units of information determined from the first and second signals. Note, however, that the signal processing module 830 does not necessarily utilize such indications of reliability. For example and without limitation, the signal processing module 830 may utilize a predetermined algorithm for determining the unit of information from the second signal, based at least in part on the unit of information determined from the first signal, where such predetermined algorithm does not explicitly utilize a determination of information reliability.
  • the signal processing module 830 may utilize an iterative approach to determining the unit of information from the first and second received signals. For example, the signal processing module 830 may utilize the unit of information determined from the second signal to further refine the unit of information determined from the first signal ( e.g ., utilizing an iterative processing approach). For example, the signal processing module 830 may determine a second indication of reliability for the unit of information determined from the second signal. The signal processing module 830 may then, in the exemplary scenario, utilize the unit of information determined from the second signal and the determined second indication of reliability to refine or re-determine the unit of information from the first signal.
  • the signal processing module 830 may process the received second signal to determine the unit of information by utilizing the unit of information determined from the first signal to determine the unit of information from the second signal. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of any particular manner of making such determination.
  • the exemplary system 800 was presented to provide specific exemplary illustrations of generally broader aspects of the present invention. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of the exemplary system 800.
  • Figure 9 is a diagram illustrating an exemplary communication system 900 that communicates information through multiple communication paths, in accordance with various aspects of the present invention.
  • the communication system 900 may, for example and without limitation, share various characteristics with the exemplary communication system 610 illustrated in Figure 6 and discussed previously. Also for example, components of the communication system 900 may share various functional characteristics with the exemplary method 500 illustrated in Figure 5 and discussed previously.
  • the exemplary communication system 900 may comprise a communication interface module 920 and a signal processing module 930.
  • the communication interface module 920 may comprise a first transmitter module 922 and a second (or Nth) transmitter module 924.
  • the communication interface module 920 may, for example and without limitation, share various characteristics with the communication interface module 620 illustrated in Figure 6 and discussed previously. Also for example, the communication interface module 920 may share various functional characteristics with steps 540 and 550 of the exemplary method 500 illustrated in Figure 5 and discussed previously.
  • the signal processing module 930 may, for example and without limitation, share various functional characteristics with steps 520 and 530 of the exemplary method 500 illustrated in Figure 5 and discussed previously.
  • the signal processing module 930 may determine a first set of information representative of a unit of information.
  • the first set of information may be representative of the unit of information in any of a variety of ways.
  • the first set of information may correspond exactly to the unit of information.
  • the first set of information may comprise a compressed, encoded or encrypted version of the unit of information. Accordingly, the scope of various aspects of the present invention should not be limited by any particular manner in which a set of information may represent a unit of information.
  • the signal processing module 930 may determine the first set of information in any of a variety of manners. For example and without limitation, the signal processing module 930 may compress data representative of the unit of information. The signal processing module 930 may, for example, perform such compression in any of a variety of manners and/or in accordance with any of a variety of compression standards. Also for example, the signal processing module 930 may encode or encrypt information representative of the unit of information.
  • the scope of various aspects of the present invention should not be limited by characteristics of any particular manner of determining a set of information that is representative of a particular unit of information.
  • the signal processing module 930 may also, for example, determine a second set of information representative of the unit of information.
  • the second set of information may be identical to the first set of information.
  • the second set of information may be different than the first set of information.
  • the second set of information might comprise a compressed representation of the unit of information, while the first set of information might comprise an exact representation of the unit of information or a different compressed representation than the second set of information.
  • the second and first sets of information may be encoded or encrypted differently.
  • the second and first sets of information may represent the unit of information at different respective resolution levels (e.g ., data point, spatial and/or temporal resolution levels).
  • the first and second sets of information may comprise or be communicated with any of a variety of additional information (e.g ., information not directly representative of the unit of information).
  • additional information may comprise information identifying the unit of information (or portion thereof) that is represented.
  • additional information may also comprise timestamp or sequence information.
  • the first and second sets of information may be sub-divided into one or more data frames or packets, each of which comprises header information.
  • respective headers of the first and second sets of information may comprise information that may be utilized to synchronize or correlate the first and second sets of information.
  • the first and second sets of information may comprise at least some common header information.
  • respective headers of the first and second sets of information may comprise common source and/or destination information.
  • first and second sets of information may comprise or be communicated with any of a variety of additional information. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of any particular type of additional information.
  • the signal processing module 930 may determine first and second sets of information representative of the unit of information. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of a particular manner in which a unit of information may be represented or by any particular manner of determining a set of information that is representative of a particular unit of information.
  • the signal processing module 930 may utilize the communication interface module 920 (e.g ., the first transmitter module 922) to communicate the first set of information in a first signal communicated directly to (and through) a first communication network.
  • the first communication network may, for example, be communicatively coupled to one or more other communication systems to which the first signal may be communicated.
  • the communication system 610 may communicate a first signal to the second system 690.
  • the communication interface module 620 may communicate the first signal directly to the first communication network 640 through communication link 644, where the first communication network 640 may then communicate the first signal to the second system 690 through communication link 642.
  • the first signal may comprise characteristics of any of a variety of communication signal types
  • the first communication network may comprise characteristics of any of a variety of communication network types. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of any particular signal type or type of communication network.
  • the signal processing module 930 may utilize the first transmitter module 922 to communicate the first set of information in a first signal.
  • the first transmitter module 922 may comprise characteristics of any of a variety of transmitter types.
  • the transmitter may comprise characteristics of a wired, wireless or optical transmitter.
  • the first transmitter module 922 may be adapted to communicate information communicated utilizing any of a variety of communication protocols or standards.
  • the first transmitter module 922 may, for example, be associated with an antenna (or other signal port) coupled to the first transmitter module 922.
  • the scope of various aspects of the present invention should not be limited by characteristics of any particular type of transmitter or other apparatus that may transmit a signal that communicates information.
  • the signal processing module 930 may utilize the communication interface module 920 (e.g ., the second transmitter module 924) to communicate the second set of information in a second signal communicated directly to (and through) a second communication network (e.g ., substantially different from the first communication network).
  • the second communication network may, for example, be communicatively coupled to one or more other communication systems to which the second signal may be communicated.
  • Non-limiting exemplary characteristics of various signal and communication network types were presented previously.
  • the communication system 610 may communicate a second signal to the second system 690.
  • the communication interface module 620 may communicate the second signal directly to the second communication network 650 through communication link 652.
  • the second communication network 650 may then communication the second signal to the second system 690 through any of a plurality of paths (e.g ., through communication link 654, the first communication network 640 and communication link 642; or through communication link 656, the third communication network 660 and communication link 662).
  • the signal processing module 930 may utilize the second transmitter module 924 to communicate the second set of information in a second signal.
  • the second transmitter module 924 may comprise characteristics of any of a variety of transmitter types.
  • the second transmitter module 924 may comprise characteristics of a wired, wireless or optical transmitter.
  • the second transmitter module 924 may be adapted to communicate information communicated utilizing any of a variety of communication protocols or standards.
  • the second transmitter module 924 may, for example, be independent of the first transmitter module 922. Alternatively, for example, the second transmitter module 924 may share one or more components with the first transmitter module 922.
  • the second transmitter module 924 may, for example, be associated with an antenna (or other signal port) coupled to the second transmitter module 924.
  • the scope of various aspects of the present invention should not be limited by characteristics of any particular type of transmitter or other apparatus that may transmit a signal that communicates information.
  • the signal processing module 930 may utilize the communication interface module 920 to communicate the first set of information in a first signal communicated directly to a first communication network and to communicate the second set of information in a second signal communicated directly to a second communication network. Accordingly, the scope of various aspects of the present invention should not be limited by characteristics of any particular type of signal, type of communication network or type of transmitter.
  • the exemplary communication system 900 illustrated in Figure 9 and discussed above was presented to provide specific examples of generally broader aspects of the present invention. Accordingly, the scope of various aspects of the present invention should not be limited by specific characteristics of the exemplary communication system 900.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Claims (18)

  1. Verfahren zum Bestimmen einer Informationseinheit in einer Kommunikationsvorrichtung (110, 610, 700, 800, 900), wobei das Verfahren umfasst:
    - Empfangen eines ersten Signals von einem ersten Kommunikationsnetzwerk (143, 640), das einen ersten Informationssatz umfasst, der repräsentativ für die Informationseinheit ist,
    - Empfangen eines zweiten Signals von einem zweiten Kommunikationsnetzwerk (195, 650), das einen zweiten Informationssatz umfasst, der repräsentativ für die Informationseinheit ist,
    - Verarbeiten des empfangenen ersten Signals und des empfangenen zweiten Signals, um die Informationseinheit zu bestimmen,
    - wobei die Verarbeitung umfasst:
    - Verarbeiten des empfangenen ersten Signals, um die Informationseinheit zu bestimmen,
    - Verarbeiten des empfangenen zweiten Signals, um die Informationseinheit zu bestimmen,
    - Bestimmen einer ersten Verlässlichkeitsangabe für die anhand des empfangenen ersten Signals bestimmte Informationseinheit,
    - Bestimmen einer zweiten Verlässlichkeitsangabe für die anhand des empfangenen zweiten Signals bestimmte Informationseinheit,
    - wobei das Verfahren gekennzeichnet ist durch:
    - Nutzen, in einem iterativen Verfahren, der anhand des empfangenen zweiten Signals bestimmten Informationseinheit zum erneuten Bestimmen der Informationseinheit anhand des ersten Signals, und
    - Nutzen der zweiten Verlässlichkeitsangabe zum erneuten Bestimmen der Informationseinheit anhand des ersten empfangenen Signals.
  2. Verfahren nach Anspruch 1, das ferner umfasst:
    Bestimmen der Informationseinheit basierend zumindest zum Teil auf der bestimmten ersten und zweiten Verlässlichkeitsangabe.
  3. Verfahren nach Anspruch 2, wobei das Bestimmen der Informationseinheit basierend zumindest zum Teil auf der bestimmten ersten und zweiten Verlässlichkeitsangabe das Auswählen entweder der anhand des empfangenen ersten Signals bestimmten Informationseinheit oder der anhand des empfangenen zweiten Signals bestimmten Informationseinheit basierend zumindest zum Teil auf der ersten und zweiten Verlässlichkeitsangabe umfasst.
  4. Verfahren nach Anspruch 2, wobei das Bestimmen der Informationseinheit basierend zumindest zum Teil auf der bestimmten ersten und zweiten Verlässlichkeitsangabe das Bestimmen der Informationseinheit basierend zumindest zum Teil auf:
    - der anhand des empfangenen ersten Signals bestimmten Informationseinheit,
    - der ersten Verlässlichkeitsangabe,
    - der anhand des empfangenen zweiten Signals bestimmten Informationseinheit, und
    - der zweiten Verlässlichkeitsangabe umfasst.
  5. Verfahren nach Anspruch 1, wobei das erste Signal unter Verwendung einer ersten Codierungsstrategie und das zweite Signal unter Verwendung einer zweiten Codierungsstrategie codiert wird, die sich von der ersten Codierungsstrategie unterscheidet.
  6. Verfahren nach Anspruch 2, wobei das Bestimmen der Informationseinheit basierend zumindest zum Teil auf der bestimmten ersten und zweiten Verlässlichkeitsangabe das Bestimmen der Informationseinheit basierend zumindest zum Teil auf einem gewichteten Mittelwert umfasst, der wenigstens bestimmt wird anhand:
    - der anhand des empfangenen ersten Signals bestimmten Informationseinheit,
    - der ersten Verlässlichkeitsangabe,
    - der anhand des empfangenen zweiten Signals bestimmten Informationseinheit, und
    - der zweiten Verlässlichkeitsangabe.
  7. Verfahren nach Anspruch 1, wobei das erste und das zweite Signal auf unterschiedlichen jeweiligen
    - Codierungsstrategien,
    - Modulationstechniken oder
    - Kommunikationsprotokollen basieren.
  8. Verfahren nach Anspruch 1, wobei das Verarbeiten des empfangenen ersten Signal und des empfangenen zweiten Signals zum Bestimmen der Informationseinheit umfasst:
    - Verarbeiten des empfangenen zweiten Signals, um die Informationseinheit zu bestimmen, unter Nutzung der anhand des empfangenen ersten Signals bestimmten Informationseinheit, um die Informationseinheit anhand des empfangenen zweiten Signals zu bestimmen.
  9. Verfahren nach Anspruch 8, das ferner das Bestimmen einer ersten Verlässlichkeitsangabe für die anhand des empfangenen ersten Signals bestimmte Informationseinheit umfasst, und wobei das Verarbeiten des empfangenen zweiten Signals, um die Informationseinheit zu bestimmen, das Nutzen der anhand des empfangenen ersten Signals bestimmten Informationseinheit und der bestimmten ersten Verlässlichkeitsangabe umfasst, um die Informationseinheit anhand des empfangenen zweiten Signals zu bestimmen.
  10. Verfahren nach Anspruch 1, das ferner umfasst:
    - Bestimmen des ersten Informationssatzes, der repräsentativ für die Informationseinheit ist,
    - Nutzen eines ersten Kommunikationsprotokolls, um den ersten Informationssatz im ersten Signal an die Kommunikationsvorrichtung zu kommunizieren,
    - Bestimmen des zweiten Informationssatzes, der repräsentativ für die Informationseinheit ist,
    - Nutzen eines zweiten Kommunikationsprotokolls, das sich von dem ersten Kommunikationsprotokoll unterscheidet, um den zweiten Informationssatz im unabhängig vom ersten Kommunikationsnetzwerk (143, 640) kommunizierten zweiten Signal an die Kommunikationsvorrichtung zu kommunizieren.
  11. Kommunikationsvorrichtung (110, 610, 700, 800, 900) zum Bestimmen einer Informationseinheit, die umfasst:
    - ein erstes Empfängermodul (722), das von einem ersten Kommunikationsnetzwerk (143, 640) ein erstes Signal empfängt, das einen ersten Informationssatz umfasst, der repräsentativ für die Informationseinheit ist,
    - ein zweites Empfängermodul (724), das von einem zweiten Kommunikationsnetzwerk (195, 650) ein zweites Signal empfängt, das einen zweiten Informationssatz umfasst, der repräsentativ für die Informationseinheit ist, und
    - wenigstens ein Verarbeitungsmodul (930), das betriebsfähig dafür ausgelegt ist:
    - das empfangene erste Signal und das empfangene zweite Signal zu verarbeiten, um die Informationseinheit zu bestimmen,
    - wobei die Verarbeitung umfasst:
    - Verarbeiten des empfangenen ersten Signals, um die Informationseinheit zu bestimmen,
    - Verarbeiten des empfangenen zweiten Signals, um die Informationseinheit zu bestimmen,
    - Bestimmen einer ersten Verlässlichkeitsangabe für die anhand des empfangenen ersten Signals bestimmte Informationseinheit,
    - Bestimmen einer zweiten Verlässlichkeitsangabe für die anhand des empfangenen zweiten Signals bestimmte Informationseinheit,
    - wobei die Kommunikationsvorrichtung dadurch gekennzeichnet ist, dass das wenigstens eine Verarbeitungsmodul (930) ferner betriebsfähig dafür ausgelegt ist:
    - in einem iterativen Verfahren, die anhand des empfangenen zweiten Signals bestimmte Informationseinheit zum weiteren erneuten Bestimmen der Informationseinheit anhand des ersten Signals zu nutzen, und
    - die zweite Verlässlichkeitsangabe zum erneuten Bestimmen der Informationseinheit anhand des ersten empfangenen Signals zu nutzen.
  12. Vorrichtung nach Anspruch 11, wobei, beim Verarbeiten des empfangenen ersten Signals und des empfangenen zweiten Signals zum Bestimmen der Informationseinheit, das Verarbeitungsmodul (930)
    die Informationseinheit basierend zumindest zum Teil auf der bestimmten ersten und zweiten Verlässlichkeitsangabe bestimmt.
  13. Vorrichtung nach Anspruch 12, wobei, beim Bestimmen der Informationseinheit basierend zumindest zum Teil auf der bestimmten ersten und zweiten Verlässlichkeitsangabe, wenigstens ein Modul (736) entweder die anhand des empfangenen ersten Signals bestimmte Informationseinheit oder die anhand des empfangenen zweiten Signals bestimmte Informationseinheit basierend zumindest zum Teil auf der ersten und zweiten Verlässlichkeitsangabe auswählt.
  14. Vorrichtung nach Anspruch 13, wobei, beim Bestimmen der Informationseinheit basierend zumindest zum Teil auf der bestimmten ersten und zweiten Verlässlichkeitsangabe, das wenigstens eine Verarbeitungsmodul (930) die Informationseinheit basierend zumindest zum Teil auf:
    - der anhand des empfangenen ersten Signals bestimmten Informationseinheit,
    - der ersten Verlässlichkeitsangabe,
    - der anhand des empfangenen zweiten Signals bestimmten Informationseinheit, und
    - der zweiten Verlässlichkeitsangabe bestimmt.
  15. Vorrichtung nach Anspruch 14, wobei, beim Bestimmen der Informationseinheit basierend zumindest zum Teil auf der bestimmten ersten und zweiten Verlässlichkeitsangabe, das wenigstens eine Verarbeitungsmodul (930) die Informationseinheit basierend zumindest zum Teil auf einem gewichteten Mittelwert bestimmt, der wenigstens bestimmt wird anhand:
    - der anhand des empfangenen ersten Signals bestimmten Informationseinheit,
    - der ersten Verlässlichkeitsangabe,
    - der anhand des empfangenen zweiten Signals bestimmten Informationseinheit, und
    - der zweiten Verlässlichkeitsangabe.
  16. Vorrichtung nach Anspruch 11, wobei das erste und das zweite Signal auf unterschiedlichen jeweiligen
    - Codierungsstrategien,
    - Modulationstechniken oder
    - Kommunikationsprotokollen basieren.
  17. Vorrichtung nach Anspruch 11, wobei das wenigstens eine Verarbeitungsmodul (930) das empfangene zweite Signal verarbeitet, um die Informationseinheit zu bestimmen, und zwar unter Nutzung der anhand des ersten Signals bestimmten Informationseinheit, um die Informationseinheit anhand des zweiten Signals zu bestimmen.
  18. Vorrichtung nach Anspruch 17, wobei, beim Verarbeiten des empfangenen ersten Signals und des empfangenen zweiten Signals, um die Informationseinheit zu bestimmen, das wenigstens eine Verarbeitungsmodul (930):
    - eine erste Verlässlichkeitsangabe für die anhand des ersten Signals bestimmte Informationseinheit bestimmt, und
    - die anhand des ersten Signals bestimmte Informationseinheit und die erste Verlässlichkeitsangabe nutzt, um die Informationseinheit anhand des zweiten Signals zu bestimmen.
EP05011271.3A 2004-08-13 2005-05-24 Kommunikation mittels mehrerer unabhängiger Wege Active EP1626552B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US60139304P 2004-08-13 2004-08-13
US11/092,933 US8111617B2 (en) 2004-08-13 2005-03-29 Multiple independent pathway communications

Publications (3)

Publication Number Publication Date
EP1626552A2 EP1626552A2 (de) 2006-02-15
EP1626552A3 EP1626552A3 (de) 2008-03-19
EP1626552B1 true EP1626552B1 (de) 2014-08-27

Family

ID=35355689

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05011271.3A Active EP1626552B1 (de) 2004-08-13 2005-05-24 Kommunikation mittels mehrerer unabhängiger Wege

Country Status (3)

Country Link
US (2) US8111617B2 (de)
EP (1) EP1626552B1 (de)
TW (1) TWI274489B (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7010002B2 (en) * 2001-06-14 2006-03-07 At&T Corp. Broadband network with enterprise wireless communication method for residential and business environment
FI120480B (fi) * 2006-05-15 2009-10-30 Software Cellular Network Ltd Menetelmä ja järjestelmä käyttäjälaitteen konfiguroimiseksi
TWI330789B (en) * 2007-01-30 2010-09-21 Holtek Semiconductor Inc Two-wire seriel communication interface device and method using handshaking
US8488573B2 (en) * 2008-02-27 2013-07-16 Midwest Telecom Of America, Inc. Apparatus and method for delivering public switched telephone network service and broadband internet access
US9787501B2 (en) 2009-12-23 2017-10-10 Pismo Labs Technology Limited Methods and systems for transmitting packets through aggregated end-to-end connection
US9258216B2 (en) 2009-12-23 2016-02-09 Pismo Labs Technology Limited Methods and systems for transmitting packets through network interfaces
US10218467B2 (en) 2009-12-23 2019-02-26 Pismo Labs Technology Limited Methods and systems for managing error correction mode
US9253630B2 (en) 2011-06-02 2016-02-02 Truphone Limited Identity management for mobile devices
US9603006B2 (en) 2011-09-19 2017-03-21 Truphone Limited Managing mobile device identities
WO2015001395A1 (en) * 2013-07-05 2015-01-08 Pismo Labs Technology Limited Methods and systems for transmitting packets through network interfaces
US11558906B2 (en) * 2020-02-26 2023-01-17 Westinghouse Air Brake Technologies Corporation Operator authentication with a vehicle using different pathways

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6735168B1 (en) * 1996-06-25 2004-05-11 Nortel Networks Limited Method and architecture for providing telephony between data networks and PSTN
US5873044A (en) * 1997-02-21 1999-02-16 Motorola, Inc. Method and apparatus in a radio communication system for synchronizing transmissions while maintaining full user traffic
CA2295930C (en) * 1997-07-24 2010-12-14 Yamanouchi Pharmaceutical Co., Ltd. Pharmaceutical compositions having cholesterol-lowering effect
US7020821B2 (en) * 2001-02-22 2006-03-28 Lucent Technologies Inc. Redundant packet telecommunication network system using minimum hamming distances to construct a final estimate of a original codeword
US7023810B1 (en) * 2001-03-21 2006-04-04 Cisco Technology, Inc. Decoding using redundant packet selection information in wireless communications systems
US7103019B1 (en) * 2001-03-21 2006-09-05 Cisco Technology, Inc. Error correction using redundant packet streams in wireless communications systems
US6941378B2 (en) * 2001-07-03 2005-09-06 Hewlett-Packard Development Company, L.P. Method for assigning a streaming media session to a server in fixed and mobile streaming media systems
WO2003044962A2 (en) * 2001-11-16 2003-05-30 Morpho Technologies Viterbi convolutional coding method and apparatus
US8817757B2 (en) * 2001-12-12 2014-08-26 At&T Intellectual Property Ii, L.P. Zero-configuration secure mobility networking technique with web-based authentication interface for large WLAN networks
DE60320260T2 (de) * 2002-07-31 2009-08-06 Interdigital Technology Corp., Wilmington Weiterreichen zwischen einem zellularen system und einem drathlosen lokalen netz
US20040137901A1 (en) * 2003-01-13 2004-07-15 Ryutaro Hamasaki Vertical handover method by IP multicast
US9166867B2 (en) * 2003-01-27 2015-10-20 Qualcomm Incorporated Seamless roaming
US20040223553A1 (en) * 2003-02-07 2004-11-11 Kumar Derek D. Method and system for wireless audio transmission using low bit-weight words
US20040264410A1 (en) * 2003-06-30 2004-12-30 Motorola, Inc. Method and apparatus for providing a communication unit with a handoff between networks

Also Published As

Publication number Publication date
US20060034184A1 (en) 2006-02-16
US20120127885A1 (en) 2012-05-24
TWI274489B (en) 2007-02-21
TW200627870A (en) 2006-08-01
EP1626552A2 (de) 2006-02-15
EP1626552A3 (de) 2008-03-19
US8111617B2 (en) 2012-02-07

Similar Documents

Publication Publication Date Title
EP1626552B1 (de) Kommunikation mittels mehrerer unabhängiger Wege
US9736832B2 (en) Wireless communications system that supports multiple modes of operation
US7839952B2 (en) Data rate coordination in protected variable-rate links
US8971790B2 (en) Method and apparatus for broadcast services in a communication system
KR101479478B1 (ko) 무선 신호로부터 비트 스트림을 복구하는 방법
US8165613B2 (en) Method and apparatus for transmitting data using information on communication environment
US20080192699A1 (en) Wireless LAN network, and mobile station and method of controlling handoff in the same
JP4891337B2 (ja) 複数の物理層接続を有する単一論理リンクを用いる通信方法および装置
US8315212B2 (en) Energy based communication path selection
KR20100072011A (ko) 모바일 환경에서의 향상된 블라인드 디코딩
WO2007000742A2 (en) Adaptive modulation for cooperative coded systems
US20060092877A1 (en) Data transport in GSM system
US7764711B2 (en) CDMA transmission apparatus and CDMA transmission method
US20080181160A1 (en) Method and apparatus for transmitting frames across a communication network
US8116244B2 (en) Method and apparatus for transmitting a superframe across a communication network
US20230209334A1 (en) Methods and apparatus for secure voice communications
JP2000261398A (ja) 通信装置
US9172503B2 (en) System and method for improving signaling channel robustness
KR20070103660A (ko) QoS 보장 방법 및 장치
CN102027701B (zh) 用于对控制信道的非排他复用进行信道差错控制的装置和方法
KR100644594B1 (ko) 무선 데이터 송수신 장치 및 그 방법
JP2002261726A (ja) Ofdm信号送受信装置
US20060034316A1 (en) Energy based information transfer methodology
WO2004114620A1 (ja) 無線通信装置
US20080031217A1 (en) Method For Selecting Receiving Stations In A Data Radio Transmitting System

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BROADCOM CORPORATION

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20080919

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20090608

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140327

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005044569

Country of ref document: DE

Effective date: 20141009

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005044569

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150528

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150524

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005044569

Country of ref document: DE

Representative=s name: BOSCH JEHLE PATENTANWALTSGESELLSCHAFT MBH, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005044569

Country of ref document: DE

Owner name: AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LT, SG

Free format text: FORMER OWNER: BROADCOM CORP., IRVINE, CALIF., US

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005044569

Country of ref document: DE

Owner name: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE., SG

Free format text: FORMER OWNER: BROADCOM CORP., IRVINE, CALIF., US

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005044569

Country of ref document: DE

Representative=s name: BOSCH JEHLE PATENTANWALTSGESELLSCHAFT MBH, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005044569

Country of ref document: DE

Owner name: AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE. LT, SG

Free format text: FORMER OWNER: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD., SINGAPORE, SG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602005044569

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H04L0029060000

Ipc: H04L0065000000

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240510

Year of fee payment: 20