EP1619751B1 - Wideband antenna of low profile - Google Patents

Wideband antenna of low profile Download PDF

Info

Publication number
EP1619751B1
EP1619751B1 EP05012307A EP05012307A EP1619751B1 EP 1619751 B1 EP1619751 B1 EP 1619751B1 EP 05012307 A EP05012307 A EP 05012307A EP 05012307 A EP05012307 A EP 05012307A EP 1619751 B1 EP1619751 B1 EP 1619751B1
Authority
EP
European Patent Office
Prior art keywords
emission surface
antenna
max
base
antenna according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05012307A
Other languages
German (de)
French (fr)
Other versions
EP1619751A1 (en
Inventor
Eugen Arnold
Ingo Dr. Walter
Ullrich Dr. Fuchs
Birgit Dr. Michael
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
EADS Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EADS Deutschland GmbH filed Critical EADS Deutschland GmbH
Publication of EP1619751A1 publication Critical patent/EP1619751A1/en
Application granted granted Critical
Publication of EP1619751B1 publication Critical patent/EP1619751B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/40Element having extended radiating surface

Definitions

  • the invention relates to an antenna comprising a radiating surface and a base surface.
  • Stripe antennas also referred to as patch antennas, are characterized by a low weight and a small cross section, which gives you an easy handling and a wide field of application.
  • Known strip antennas consist of a metal strip, which is arranged at a predeterminable distance parallel to a metallic base. Between the strip and the base is usually a homogeneous dielectric. The length of the metal strip is selected so that the electrical length of the line forming the strip with the base is about half a wavelength (in dielectric) long. The width of the metal surface essentially determines the impedance of the antenna, the distance of the strip to the base essentially determines the bandwidth. This distance is at the same time the height of the strip antenna. Typically, the height is between one-twentieth and one-fifth of the free space wavelength at mid-band, with a larger height has a higher bandwidth result.
  • a disadvantage of the strip antennas is the low bandwidth.
  • the shape of the metal strip is selected such that the resonance frequencies of two or more oscillation modes of the antenna have a relatively small frequency spacing.
  • bandwidth ratios of up to 1.6: 1 can be achieved.
  • the bandwidth ratio is defined as the ratio of the upper Frequency limit to the lower frequency limit.
  • Such strip antennas are eg off EP 0 989 628 B1 and WO 2004/021514 A1 known. Off at the strip antenna EP 0 989 628 B1 the base is connected by means of a coaxial cable with the radiating surface, wherein the coaxial cable is used to supply signals to the radiating surface.
  • the base surface in this case has a vertical edge, which extends perpendicularly from the base surface, so that an "L" or "U” -shaped cross-section results.
  • a disadvantage of this arrangement is that for certain applications too low bandwidth.
  • the objects of the documents FR 2 791 815 A1 and EP 1 052 723 A2 each relate to an object according to the preamble of claim 1. Aus US 2001/0050636 A1
  • an antenna is known with various embodiments of a radiating surface.
  • a slot perpendicular to the longitudinal extent L of the emission surface is embodied within the border of the emission surface, the slot being bridged by one or more discrete inductances.
  • taper here means that along the longitudinal extent L of the emission surface, the width B and the height H of the emission surface vary over the base surface.
  • the emission surface advantageously has a maximum length L max ⁇ 0.6 ⁇ max , a maximum width B max ⁇ ⁇ max and a maximum height H max ⁇ 0.4 ⁇ max with respect to the base area, where ⁇ max is the free space wavelength at the lower frequency limit f u is the frequency band of the antenna.
  • ⁇ max is the free space wavelength at the lower frequency limit f u is the frequency band of the antenna.
  • VSWR VSWR in a frequency range [f u , f o ] with f u and f o as the lower and upper frequency limit of the frequency band of the antenna is preferably VSWR ⁇ 3, where for the bandwidth f o / f u ⁇ 1.4 applies.
  • the radiating surface advantageously has a constant tapering.
  • the radiating surface has the shape of an isosceles triangle.
  • the radiating surface together with the base area forms a TEM waveguide with constant characteristic impedance.
  • the means for feeding electromagnetic energy to the antenna are preferably arranged in the region of the smallest distance between radiating surface and base surface. In the case of a triangular radiating surface, this may expediently be a corner of the radiating surface.
  • the feed is preferably a coaxial feed.
  • the coaxial inner conductor is galvanically connected to the radiating surface, while the outer conductor is galvanically connected to the base of the antenna.
  • the taping of the width of the radiating surface and the height of the radiating surface above the base is suitably chosen to match the impedance of the connected feeder cable, since then the resulting at the feed point higher vibration modes of the antenna are excited only with low amplitude.
  • the discrete components which are distributed below the radiating surface in predeterminable locations with predeterminable values, serve to improve the adaptation for the lower part of the frequency range. Values and locations can be selected according to the respective requirements for the adaptation and to the radiation pattern of the antenna.
  • the discrete components may in particular be inductors and / or capacitors.
  • discrete component is to be understood functionally.
  • an embodiment of a printed on a substrate (not shown) line can be used.
  • the antenna according to the invention enables a very broadband radio method, e.g. Hopping operation.
  • a simultaneous feeding of the antenna with multiple transmission lines, which are distributed in a wide frequency range possible.
  • the antenna according to the invention it is possible to simultaneously receive a plurality of received signals lying in a wide frequency band.
  • Another advantage of the antenna according to the invention is the ability to use this broadband antenna directly in front of a metallic or non-metallic wall without degrading its adaptation or radiation pattern. This is also possible with conformal adaptation of the radiating surface to a possibly curved shape of the metallic wall.
  • the wall itself can be used as a base.
  • the wall could e.g. be a part of the surface of a vehicle, a ship or an airplane. Due to the low height of the antenna, the antenna towers only slightly above the vehicle surface. This applies to versions for the VHF, the UHF and of course for the microwave range.
  • the antenna element in a structure in a first preferred embodiment according to Fig. 1 to 3 comprises a radiating surface 1 and a metallic base 2.
  • a connection 7 - hereinafter referred to as signal terminal - for supplying signals to the radiating surface 1 is present.
  • the signal connection 7 by means of a coaxial cable can be effected by means of a person skilled in the known measures, wherein the inner conductor of the coaxial cable with the radiating surface 1 and the outer conductor of the coaxial cable to the base 2 is conductively connected.
  • the antenna element in a housing may be housed.
  • the region 5 of the signal terminal 7 may preferably means, such as pins (not shown) may be present, which allow a secure holding the radiating surface 1 in a fixed, separated from the base 2 position.
  • pins are suitably made of electrically non-conductive material, such as plastic.
  • B the filling of the space area between the base 2 and the radiating surface 1 with dielectric material matching dielectric constant.
  • Fig. 4 shows a second embodiment of an antenna according to the invention.
  • the parts of the radiating surface 1 in the region 4 of the discrete components 3 and / or in the region 5 of the signal terminal (not shown) are executed parallel to the base 2.
  • the handling of the emission surface 1 and in particular the attachment of the discrete components 3 and the signal connection to the emission surface 1 can be improved.
  • the radiating surface 1 has by way of example a distance value H max of 0.13 * ⁇ max to the base 2, where ⁇ max is the free space wavelength at the lower frequency limit f u of the frequency band of the antenna.
  • the distance H max is suitably determined as solder on the base 2.
  • the size L max is, for example, 0.25 * ⁇ max
  • the size B max is also 0.25 * ⁇ max by way of example.
  • the location and value of the discrete components are selected as a function of H max , L max and B max .
  • the distance H max between the radiating surface 1 and the base 2 in the region 4 of the discrete components 3 can be changed for reasons of improved adaptation.
  • the radiating surface 1 has a slot 11 which is perpendicular to its longitudinal extent L. Thereby, the radiating surface 1 is split into a rear part HT and a front part VT. According to the invention, this slot 11 is formed by discrete dummy elements (not shown), e.g. Inductors bridged. In addition to the large bandwidth, which causes the wiring with suitable reactive elements, can be influenced by the value and the location of the dummy elements and the radiation pattern of the antenna.
  • discrete dummy element is to be understood functionally.
  • an embodiment of a printed on a substrate (not shown) line can be used.
  • the base 2 can advantageously be flat, single curved or double curved and the radiating surface 1 can be made to conform to the curvature of the base 2. This makes it possible to attach the antenna assembly also on any desired carrier structures with low space requirements.
  • Fig. 5 shows the curve of the standing wave ratio VSWR at the feed point of the signal terminal of the in Fig. 4 illustrated embodiment as a function of frequency.
  • the underlying ratio of standing waves is based on the Scattering of the voltage is calculated, which are measured at the entrance of the connection of the feed means on the radiating surface 1.
  • VSWR is less than 2 in the frequency range 220-450 MHz. In the entire frequency band of 200-1050 MHz, the VSWR is less than 3.
  • antennas 9 are arranged on the circumference of a cylinder 8.
  • the shape of the cylinder 8 can be useful similar to a ship's mast.
  • the antennas 9 are placed on the outer surface of the cylinder 8 and are used as transmitting antennas for different frequency ranges. Possible transmission or reception ranges are eg 30-100 MHz, 100-200 MHz and 200-600 MHz.
  • the cylinder arrays are used in the transmission case for communication and electronic countermeasures to disturb opposing communication devices. In the reception case, the arrays are used for communication and for electronic support measures, ie, viewing, bearing, and classification of foreign communication devices.
  • the antennas 9 are distributed via so-called beamforming networks 10 (beamforming) both in sum diagrams and in individual radiator diagrams to the terminals, ie transmitters and receivers.

Abstract

An antenna comprises a radiant surface (1) and a basic surface (2) between which one or more discrete components (3) are arranged in which the radiant surface (1) tapers regarding its width (B) and its height (H) to the basic surfaces (2). An independent claim is included for an arrangement of several antennas.

Description

Die Erfindung betrifft eine Antenne umfassend eine Abstrahlfläche und eine Grundfläche.The invention relates to an antenna comprising a radiating surface and a base surface.

Streifenantennen, auch als Patch-Antennen bezeichnet, zeichnen sich durch ein geringes Gewicht und einen geringen Querschnitt aus, was Ihnen eine leichte Handhabung und ein breites Anwendungsfeld verschafft.Stripe antennas, also referred to as patch antennas, are characterized by a low weight and a small cross section, which gives you an easy handling and a wide field of application.

Bekannte Streifenantennen bestehen aus einem Metallstreifen, der in einem vorgebbaren Abstand parallel zu einer metallischen Grundfläche angeordnet ist. Zwischen dem Streifen und der Grundfläche befindet sich meist ein homogenes Dielektrikum. Die Länge des Metallstreifens ist so gewählt, dass die elektrische Länge der Leitung, die der Streifen mit der Grundfläche bildet, ungefähr eine halbe Wellenlänge (im Dielektrikum) lang ist. Die Breite der Metallfläche bestimmt im Wesentlichen die Impedanz der Antenne, der Abstand des Streifens zur Grundfläche bestimmt im Wesentlichen die Bandbreite. Dieser Abstand ist gleichzeitig die Bauhöhe der Streifenantenne. Üblicherweise liegt die Bauhöhe zwischen einem Zwanzigstel und einem Fünftel der Freiraumwellenlänge bei Bandmitte, wobei eine größere Bauhöhe eine höhere Bandbreite zur Folge hat.Known strip antennas consist of a metal strip, which is arranged at a predeterminable distance parallel to a metallic base. Between the strip and the base is usually a homogeneous dielectric. The length of the metal strip is selected so that the electrical length of the line forming the strip with the base is about half a wavelength (in dielectric) long. The width of the metal surface essentially determines the impedance of the antenna, the distance of the strip to the base essentially determines the bandwidth. This distance is at the same time the height of the strip antenna. Typically, the height is between one-twentieth and one-fifth of the free space wavelength at mid-band, with a larger height has a higher bandwidth result.

Ein Nachteil der Streifenantennen ist die geringe Bandbreite. Zur Vergrößerung der Bandbreite wird z.B. die Form des Metallstreifens derart gewählt, dass die Resonanzfrequenzen von zwei oder mehr Schwingungsmoden der Antenne einen relativ geringen Frequenzabstand besitzen. Dadurch lassen sich Bandbreiteverhältnisse von bis zu 1,6:1 erreichen. Das Bandbreiteverhältnis ist definiert als das Verhältnis der oberen Frequenzgrenze zur unteren Frequenzgrenze. Solche Streifenantennen sind z.B. aus EP 0 989 628 B1 und WO 2004/021514 A1 bekannt.
Bei der Streifenantenne aus EP 0 989 628 B1 ist die Grundfläche dabei mittels eines Koaxialkabels mit der Abstrahlfläche verbunden, wobei das Koaxialkabel der Zuführung von Signalen an die Abstrahlfläche dient. Die Grundfläche weist in diesem Fall einen senkrechten Rand auf, welcher sich senkrecht von der Grundfläche erstreckt, so dass sich ein "L"- oder "U"-förmiger Querschnitt ergibt. Ein Nachteil dieser Anordnung ist die für bestimme Anwendungsgebiete zu geringe Bandbreite. Die Gegenstände der Dokumente FR 2 791 815 A1 und EP 1 052 723 A2 betreffen jeweils einen Gegenstand entsprechend dem Oberbegriff des Patentanspruchs 1. Aus US 2001/0050636 A1 ist eine Antenne bekannt mit verschiedenen Ausführungsformen einer Abstrahlfläche.
A disadvantage of the strip antennas is the low bandwidth. To increase the bandwidth, for example, the shape of the metal strip is selected such that the resonance frequencies of two or more oscillation modes of the antenna have a relatively small frequency spacing. As a result, bandwidth ratios of up to 1.6: 1 can be achieved. The bandwidth ratio is defined as the ratio of the upper Frequency limit to the lower frequency limit. Such strip antennas are eg off EP 0 989 628 B1 and WO 2004/021514 A1 known.
Off at the strip antenna EP 0 989 628 B1 the base is connected by means of a coaxial cable with the radiating surface, wherein the coaxial cable is used to supply signals to the radiating surface. The base surface in this case has a vertical edge, which extends perpendicularly from the base surface, so that an "L" or "U" -shaped cross-section results. A disadvantage of this arrangement is that for certain applications too low bandwidth. The objects of the documents FR 2 791 815 A1 and EP 1 052 723 A2 each relate to an object according to the preamble of claim 1. Aus US 2001/0050636 A1 For example, an antenna is known with various embodiments of a radiating surface.

Für bestimmte kommerzielle und militärische Anwendungsgebiete, z.B. dem Hopping Betrieb bei militärischen Kommunikationsdiensten, bei Kampffeldüberwachungssystemen, bei Sendesystemen, bei denen mehrere Sender, die auf verschiedenen Frequenzen arbeiten, gleichzeitig an die gleiche Antenne angeschlossen sind sowie bei entsprechenden Empfangssystemen benötigt man Antennen, die zwar die geringe Bauhöhe und Baugröße aber eine beträchtlich größere Bandbreite besitzen, als sie sich mit Streifenantennen erzielen lassen. Es gibt natürlich andere Antennentypen, die das geforderte Bandbreiteverhältnis besitzen. Diese besitzen jedoch in vielen Fällen wesentlich größere Abmessungen.For certain commercial and military applications, e.g. The hopping operation in military communications services, combat field monitoring systems, transmission systems in which several transmitters operating at different frequencies are simultaneously connected to the same antenna and in receiving systems requires antennas, although the low height and size but a considerably larger Have bandwidth than they can be achieved with striped antennas. Of course, there are other types of antennas that have the required bandwidth ratio. However, these have much larger dimensions in many cases.

Es ist somit Aufgabe der Erfindung eine verbesserte Antenne anzugeben, mit welcher die Bandbreite wesentlich erhöht werden kann.It is therefore an object of the invention to provide an improved antenna, with which the bandwidth can be substantially increased.

Diese Aufgabe wird mit der Antenne gemäß Patentanspruch 1 gelöst. Vorteilhafte Ausführungen der Antenne sind Gegenstand von Unteransprüchen.This object is achieved with the antenna according to claim 1. Advantageous embodiments of the antenna are the subject of dependent claims.

Bei der erfindungsgemäßen Antenne ist innerhalb der Umrandung der Abstrahlfläche ein Schlitz senkrecht zur Längenausdehnung L der Abstrahlfläche ausgeführt, wobei der Schlitz durch ein oder mehrere diskrete Induktivitäten überbrückt ist.In the case of the antenna according to the invention, a slot perpendicular to the longitudinal extent L of the emission surface is embodied within the border of the emission surface, the slot being bridged by one or more discrete inductances.

Mit dem Begriff Taperung ist hierbei gemeint, dass entlang der Längsausdehnung L der Abstrahlfläche die Breite B sowie die Höhe H der Abstrahlfläche über der Grundfläche variieren.The term taper here means that along the longitudinal extent L of the emission surface, the width B and the height H of the emission surface vary over the base surface.

Die Abstrahlfläche weist vorteilhaft eine maximale Länge Lmax ≤ 0,6 λmax, eine maximale Breite Bmax ≤ λmax und eine bezüglich der Grundfläche maximale Höhe Hmax ≤ 0,4 λmax auf, wobei λmax die Freiraumwellenlänge an der unteren Frequenzgrenze fu des Frequenzbandes der Antenne ist. Für das Stehwellenverhältnis VSWR gilt in einem Frequenzbereich [fu, fo] mit fu und fo als untere und obere Frequenzgrenze des Frequenzbandes der Antenne bevorzugt VSWR ≤ 3, wobei für die Bandbreite fo/fu ≥ 1,4 gilt.The emission surface advantageously has a maximum length L max ≦ 0.6 λ max , a maximum width B max ≦ λ max and a maximum height H max ≦ 0.4 λ max with respect to the base area, where λ max is the free space wavelength at the lower frequency limit f u is the frequency band of the antenna. For the VSWR VSWR in a frequency range [f u , f o ] with f u and f o as the lower and upper frequency limit of the frequency band of the antenna is preferably VSWR ≤ 3, where for the bandwidth f o / f u ≥ 1.4 applies.

Die Abstrahlfläche weist vorteilhaft eine konstante Taperung auf. In diesem Fall weist die Abstrahlfläche die Form eines gleichschenkligen Dreiecks auf. Dabei bildet die Abstrahlfläche zusammen mit der Grundfläche einen TEM-Wellenleiter mit konstantem Wellenwiderstand.The radiating surface advantageously has a constant tapering. In this case, the radiating surface has the shape of an isosceles triangle. The radiating surface together with the base area forms a TEM waveguide with constant characteristic impedance.

Die Mittel zur Einspeisung elektromagnetischer Energie auf die Antenne sind bevorzugt im Bereich des geringsten Abstandes zwischen Abstrahlfläche und Grundfläche angeordnet. Bei einer dreieckförmigen Abstrahlfläche kann dies zweckmäßig eine Ecke der Abstrahlfläche sein.
Die Einspeisung ist bevorzugt eine koaxiale Einspeisung. Dabei wird der koaxiale Innenleiter galvanisch mit der Abstrahlfläche verbunden, während der Außenleiter galvanisch mit der Grundfläche der Antenne verbunden ist. Die Taperung der Breite der Abstrahlfläche und der Höhe der Abstrahlfläche über der Grundfläche wird dabei zweckmäßig passend zur Impedanz des angeschlossenen Speisekabels gewählt, da dann die an der Speisestelle entstehenden höheren Schwingungsmoden der Antenne nur mit geringer Amplitude angeregt werden.
The means for feeding electromagnetic energy to the antenna are preferably arranged in the region of the smallest distance between radiating surface and base surface. In the case of a triangular radiating surface, this may expediently be a corner of the radiating surface.
The feed is preferably a coaxial feed. In this case, the coaxial inner conductor is galvanically connected to the radiating surface, while the outer conductor is galvanically connected to the base of the antenna. The taping of the width of the radiating surface and the height of the radiating surface above the base is suitably chosen to match the impedance of the connected feeder cable, since then the resulting at the feed point higher vibration modes of the antenna are excited only with low amplitude.

Die diskreten Bauelemente, die unterhalb der Abstrahlfläche an vorgebbaren Orten mit vorgebbaren Werten verteilt sind, dienen zur Verbesserung der Anpassung für den unteren Teil des Frequenzbereichs. Werte und Orte lassen sich entsprechend den jeweiligen Forderungen an die Anpassung und an das Strahlungsdiagramm der Antenne wählen. Die diskreten Bauelemente können insbesondere Induktivitäten und/oder Kapazitäten sein.The discrete components, which are distributed below the radiating surface in predeterminable locations with predeterminable values, serve to improve the adaptation for the lower part of the frequency range. Values and locations can be selected according to the respective requirements for the adaptation and to the radiation pattern of the antenna. The discrete components may in particular be inductors and / or capacitors.

Selbstverständlich sind aber auch andere als dreieckförmige Formen und nichtkonstante Höhen- und Breitentaperung der Abstrahlfläche der Antenne im speziellen Fall sinnvoll. Dadurch sind weitere Verbesserungen der Anpassung und der Form des Strahlungsdiagramms möglich.Of course, but other than triangular shapes and non-constant height and Breitentaperung the radiating surface of the antenna in a special case make sense. This allows further improvements in the fit and shape of the radiation pattern.

Der Begriff "diskretes Bauelement" ist funktionell zu verstehen. Hier kann natürlich statt einer diskreten Induktivität oder Kapazität auch eine Ausführung aus einer auf einem Substrat (nicht dargestellt) gedruckten Leitung verwendet werden.The term "discrete component" is to be understood functionally. Here, of course, instead of a discrete inductance or capacitance, an embodiment of a printed on a substrate (not shown) line can be used.

Die erfindungsgemäße Antenne ermöglicht ein sehr breitbandiges Funkverfahren, z.B. Hoppingbetrieb. Außerdem ist eine gleichzeitige Speisung der Antenne mit mehreren Sendelinien, die in einem breiten Frequenzbereich verteilt sind, möglich. Darüber hinaus ist es mit der erfindungsgemäßen Antenne möglich, mehrere in einem breiten Frequenzband liegende Empfangssignale gleichzeitig zu empfangen.The antenna according to the invention enables a very broadband radio method, e.g. Hopping operation. In addition, a simultaneous feeding of the antenna with multiple transmission lines, which are distributed in a wide frequency range possible. Moreover, with the antenna according to the invention it is possible to simultaneously receive a plurality of received signals lying in a wide frequency band.

Ein weiterer Vorteil der erfindungsgemäßen Antenne ist die Möglichkeit, diese breitbandige Antenne direkt vor einer metallischen oder nichtmetallischen Wand zu verwenden, ohne dass sich ihre Anpassung oder ihr Strahlungsdiagramm verschlechtert. Dies ist auch möglich bei konformer Anpassung der Abstrahlfläche an eine eventuell gekrümmte Form der metallischen Wand. Bei einer metallischen Wand kann die Wand selbst als Grundfläche verwendet werden. Die Wand könnte z.B. ein Teil der Oberfläche eines Fahrzeugs, eines Schiffs oder eines Flugzeugs sein. Durch die geringe Bauhöhe der Antenne überragt die Antenne die Fahrzeugoberfläche nur wenig. Dies gilt sowohl für Ausführungen für den VHF-, den UHF und natürlich für den Mikrowellenbereich.Another advantage of the antenna according to the invention is the ability to use this broadband antenna directly in front of a metallic or non-metallic wall without degrading its adaptation or radiation pattern. This is also possible with conformal adaptation of the radiating surface to a possibly curved shape of the metallic wall. For a metallic wall, the wall itself can be used as a base. The wall could e.g. be a part of the surface of a vehicle, a ship or an airplane. Due to the low height of the antenna, the antenna towers only slightly above the vehicle surface. This applies to versions for the VHF, the UHF and of course for the microwave range.

Die Erfindung sowie weitere vorteilhafte Ausführungsformen der Erfindung werden im weiteren anhand von Zeichnungen näher erläutert. Es zeigen :

Fig. 1
eine erste Ausführungsform eines Antennenaufbaus gemäß der vorliegenden Erfindung in perspektivischer Darstellung,
Fig. 2
den Antennenaufbau von Fig. 1 in Seitenansicht,
Fig. 3
den Antennenaufbau von Fig. 1 in Draufsicht,
Fig. 4
eine zweite Ausführungsform eines Antennenaufbaus gemäß der vorliegen- den Erfindung in perspektivischer Darstellung,
Fig. 5
den Kurvenverlauf des Stehwellenverhältnisses an der Speisestelle der in Fig. 4 dargestellten Ausführung als Funktion der Frequenz,
Fig. 6
eine beispielhafte Ausführungsform einer Anwendung einer erfindungsgemä- ßen Antenne einer ersten oder zweiten Ausführungsform.
The invention and further advantageous embodiments of the invention will be explained in more detail with reference to drawings. Show it :
Fig. 1
A first embodiment of an antenna assembly according to the present invention in perspective view,
Fig. 2
the antenna structure of Fig. 1 in side view,
Fig. 3
the antenna structure of Fig. 1 in plan view,
Fig. 4
A second embodiment of an antenna structure according to the present invention in a perspective view,
Fig. 5
the curve of the standing wave ratio at the feed point of in Fig. 4 illustrated embodiment as a function of frequency,
Fig. 6
an exemplary embodiment of an application of an inventive antenna of a first or second embodiment.

Das Antennenelement in einem Aufbau in einer ersten bevorzugten Ausführungsform gemäß Fig. 1 bis 3 umfasst eine Abstrahlfläche 1 und eine metallische Grundfläche 2. Zweckmäßig ist an der Speisestelle ein Anschluss 7 - im Weiteren als Signalanschluss bezeichnet - , insbesondere in Form eines Koaxialkabels (nicht dargestellt), zum Zuführen von Signalen an die Abstrahlfläche 1 vorhanden. Der Signalanschluss 7 mittels eines Koaxialkabels kann dabei mittels einem Fachmann bekannter Maßahmen erfolgen, wobei der Innenleiter des Koaxialkabels mit der Abstrahlfläche 1 und der Außenleiter des Koaxialkabels mit der Grundfläche 2 leitend verbunden ist. Zweckmäßig kann das Antennenelement in einem Gehäuse (nicht dargestellt) untergebracht sein.
Im Bereich 5 des Signalanschlusses 7 können bevorzugt Mittel, z.B. Stifte (nicht dargestellt) vorhanden sein, welche ein sicheres Halten der Abstrahlfläche 1 in einer festen, von der Grundfläche 2 getrennten Position ermöglichen. Diese Stifte bestehen zweckmäßig aus elektrisch nicht leitenden Material, z.B. Kunststoff. Selbstverständlich sind auch andere dem Fachmann bekannte Halterungen möglich, z. B. die Füllung des Raumbereichs zwischen der Grundfläche 2 und der Abstrahlfläche 1 mit dielektrischen Material passender Dielektrizitätskonstante.
The antenna element in a structure in a first preferred embodiment according to Fig. 1 to 3 comprises a radiating surface 1 and a metallic base 2. Expediently at the feed point a connection 7 - hereinafter referred to as signal terminal -, in particular in the form of a coaxial cable (not shown), for supplying signals to the radiating surface 1 is present. The signal connection 7 by means of a coaxial cable can be effected by means of a person skilled in the known measures, wherein the inner conductor of the coaxial cable with the radiating surface 1 and the outer conductor of the coaxial cable to the base 2 is conductively connected. Suitably, the antenna element in a housing (not shown) may be housed.
In the region 5 of the signal terminal 7 may preferably means, such as pins (not shown) may be present, which allow a secure holding the radiating surface 1 in a fixed, separated from the base 2 position. These pins are suitably made of electrically non-conductive material, such as plastic. Of course, other known in the art holders are possible, for. B. the filling of the space area between the base 2 and the radiating surface 1 with dielectric material matching dielectric constant.

Fig. 4 zeigt eine zweite Ausführungsform einer erfindungsgemäßen Antenne. Bei dieser Ausführungsform sind die Teile der Abstrahlfläche 1 im Bereich 4 der diskreten Bauelemente 3 und/oder im Bereich 5 des Signalanschlusses (nicht dargestellt) parallel zur Grundfläche 2 ausgeführt. Dadurch lässt sich die Handhabung der Abstrahlfläche 1 und insbesondere die Befestigung der diskreten Bauelemente 3 und des Signalanschlusses an die Abstrahlfläche 1 verbessern. Fig. 4 shows a second embodiment of an antenna according to the invention. In this embodiment, the parts of the radiating surface 1 in the region 4 of the discrete components 3 and / or in the region 5 of the signal terminal (not shown) are executed parallel to the base 2. As a result, the handling of the emission surface 1 and in particular the attachment of the discrete components 3 and the signal connection to the emission surface 1 can be improved.

Die Abstrahlfläche 1 weist im Bereich 4 der diskreten Bauelemente 3 beispielhaft einen Abstandswert Hmax von 0,13*λmax zur Grundfläche 2 auf, wobei λmax dabei die Freiraumwellenlänge an der unteren Frequenzgrenze fu des Frequenzbandes der Antenne ist. Der Abstand Hmax wird hierbei zweckmäßig als Lot auf die Grundfläche 2 bestimmt. Die Größe Lmax beträgt beispielhaft 0,25*λmax, die Größe Bmax beträgt beispielhaft ebenfalls 0,25*λmax. Ort und Wert der diskreten Bauelemente werden in Abhängigkeit von Hmax, Lmax und Bmax gewählt. Selbstverständlich kann der Abstand Hmax zwischen der Abstrahlfläche 1 und der Grundfläche 2 in dem Bereich 4 der diskreten Bauelemente 3 aus Gründen einer verbesserten Anpassung verändert werden.In the region 4 of the discrete components 3, the radiating surface 1 has by way of example a distance value H max of 0.13 * λ max to the base 2, where λ max is the free space wavelength at the lower frequency limit f u of the frequency band of the antenna. The distance H max is suitably determined as solder on the base 2. The size L max is, for example, 0.25 * λ max , the size B max is also 0.25 * λ max by way of example. The location and value of the discrete components are selected as a function of H max , L max and B max . Of course, the distance H max between the radiating surface 1 and the base 2 in the region 4 of the discrete components 3 can be changed for reasons of improved adaptation.

Erfindungsgemäß weist die Abstrahlfläche 1 einen senkrecht zur ihrer Längenausdehnung L ausgeführten Schlitz 11 auf. Dadurch wird die Abstrahlfläche 1 in einen hinteren Teil HT und einen vorderen Teil VT aufgespaltet. Erfindungsgemäß wird dieser Schlitz 11 durch diskrete Blindelemente (nicht dargestellt), z.B. Induktivitäten überbrückt. Neben der großen Breitbandigkeit, die die Beschaltung mit geeigneten Blindelementen bewirkt, lässt sich durch den Wert und den Ort der Blindelemente auch das Strahlungsdiagramm der Antenne beeinflussen.According to the invention, the radiating surface 1 has a slot 11 which is perpendicular to its longitudinal extent L. Thereby, the radiating surface 1 is split into a rear part HT and a front part VT. According to the invention, this slot 11 is formed by discrete dummy elements (not shown), e.g. Inductors bridged. In addition to the large bandwidth, which causes the wiring with suitable reactive elements, can be influenced by the value and the location of the dummy elements and the radiation pattern of the antenna.

Der Begriff "diskretes Blindelement" ist funktionell zu verstehen. Hier kann natürlich statt einer diskreten Induktivität auch eine Ausführung aus einer auf einem Substrat (nicht dargestellt) gedruckten Leitung verwendet werden.The term "discrete dummy element" is to be understood functionally. Here, of course, instead of a discrete inductance, an embodiment of a printed on a substrate (not shown) line can be used.

Die Grundfläche 2 kann bei der ersten und zweiten Ausführungsform der Erfindung vorteilhaft eben, einfach- oder doppeltgekrümmt und die Abstrahlfläche 1 zu der Krümmung der Grundfläche 2 konform ausgeführt. Dadurch ist es möglich, den Antennenaufbau auch auf beliebig geformten Trägerstrukturen mit geringem Raumbedarf anzubringen.In the first and second embodiments of the invention, the base 2 can advantageously be flat, single curved or double curved and the radiating surface 1 can be made to conform to the curvature of the base 2. This makes it possible to attach the antenna assembly also on any desired carrier structures with low space requirements.

Fig. 5 zeigt den Kurvenverlauf des Stehwellenverhältnisses VSWR an der Speisestelle des Signalanschlusses der in Fig. 4 dargestellten Ausführung als Funktion der Frequenz. Das zugrunde liegende Verhältnis stehender Wellen wird basierend auf der Streuung der Spannung berechnet, welche am Eingang des Anschlusses der Speisemittel an der Abstrahlfläche 1 gemessen werden.
Im Frequenzbereich von 220-450 MHz beträgt das Stehwellenverhältnis VSWR weniger als 2. Im gesamten Frequenzband von 200-1050 MHz beträgt das Stehwellenverhältnis weniger als 3.
Fig. 5 shows the curve of the standing wave ratio VSWR at the feed point of the signal terminal of the in Fig. 4 illustrated embodiment as a function of frequency. The underlying ratio of standing waves is based on the Scattering of the voltage is calculated, which are measured at the entrance of the connection of the feed means on the radiating surface 1.
VSWR is less than 2 in the frequency range 220-450 MHz. In the entire frequency band of 200-1050 MHz, the VSWR is less than 3.

In Fig.6 ist eine beispielhafte Ausführungsform einer Anwendung einer erfindungsgemäßen Antenne dargestellt. Mehrere Antennen 9 sind am Umfang eines Zylinders 8 angeordnet. Die Form des Zylinders 8 kann dabei zweckmäßig die einem Schiffsmast ähneln. Die Antennen 9 sind auf die Außenfläche des Zylinders 8 gesetzt und werden als Sendeantennen für verschiedene Frequenzbereiche verwendet. Mögliche Sende- bzw. Empfangsbereiche sind dabei z.B. 30-100 MHz, 100-200 MHz und 200-600 MHz.
Die Zylinderarrays werden im Sendefall für Kommunikation und elektronische Gegenmaßnahmen zur Störung gegnerischer Kommunikationseinrichtungen verwendet. Im Empfangsfall werden die Arrays für Kommunikation und für elektronische Unterstützungsmaßnahmen, d.h. Auffassung, Peilung und Klassifikation fremder Kommunikationseinrichtungen verwendet. Zweckmäßig werden die Antennen 9 dabei über so genannte Strahlformungsnetzwerke 10 (beamforming) sowohl in Summendiagramme als auch in Einzelstrahlerdiagramme auf die Endgeräte, also Sender und Empfänger verteilt.
In Figure 6 an exemplary embodiment of an application of an antenna according to the invention is shown. Several antennas 9 are arranged on the circumference of a cylinder 8. The shape of the cylinder 8 can be useful similar to a ship's mast. The antennas 9 are placed on the outer surface of the cylinder 8 and are used as transmitting antennas for different frequency ranges. Possible transmission or reception ranges are eg 30-100 MHz, 100-200 MHz and 200-600 MHz.
The cylinder arrays are used in the transmission case for communication and electronic countermeasures to disturb opposing communication devices. In the reception case, the arrays are used for communication and for electronic support measures, ie, viewing, bearing, and classification of foreign communication devices. Expediently, the antennas 9 are distributed via so-called beamforming networks 10 (beamforming) both in sum diagrams and in individual radiator diagrams to the terminals, ie transmitters and receivers.

Claims (10)

  1. Antenna comprising an emission surface (1) and a metallic base (2),
    wherein
    one or more discrete components (3) is or are connected between the emission surface (1) and the base surface (2), and wherein the emission surface (1) has a first area, in which the width B and the height H of the emission surface (1) are tapered towards the base surface (2), characterized in that
    a slot (11) is formed within the boundary of the emission surface (1), at right angles to the longitudinal extent L of the emission surface (1), wherein the slot (11) is bridged by one or more discrete inductances.
  2. Antenna according to Claim 1, wherein the emission surface (1) has a maximum length Lmax ≤ 0.64λmax, a maximum width Bmax ≤ λmax, and a maximum height Hmax with respect to the base surface (2) ≤ 0.4 λmax, where λmax is the free-space wavelength at the lower frequency limit fu of the frequency band of the antenna.
  3. Antenna according to one of the preceding claims, wherein the height H and the width B of the emission surface (1) have a constant taper.
  4. Antenna according to one of Claims 1-2, wherein the height H and the width B of the emission surface (1) have a non-constant taper.
  5. Antenna according to one of the preceding claims, wherein means are provided for holding the emission surface (1), and hold the emission surface (1) in a fixed position, separated from the base surface (2).
  6. Antenna according to one of the preceding claims, wherein means (7) are provided for feeding electromagnetic power to the antenna, which means (7) are arranged in the area (5) of the shortest separation between the emission surface (1) and the base surface (2).
  7. Antenna according to Claim 8, wherein the emission surface (1) has a further area (4, 5) in the area (4) of the discrete components (3) and/or in the area (5) of the feed means (7), in which the emission surface is parallel to the base surface (2).
  8. Antenna according to one of the preceding claims, wherein the base surface (2) is planar, has single curvature or has double curvature, and the emission surface (1) is designed to conform to the curvature of the base surface (2).
  9. Arrangement comprising a plurality of antennas according to one of the preceding claims, wherein the antennas are arranged along the circumference of a cylindrical supporting structure (8).
  10. Arrangement according to Claim 9, wherein the antennas are connected to one another via beamforming networks (10).
EP05012307A 2004-07-23 2005-06-08 Wideband antenna of low profile Not-in-force EP1619751B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004036001A DE102004036001A1 (en) 2004-07-23 2004-07-23 Broadband antenna with low height

Publications (2)

Publication Number Publication Date
EP1619751A1 EP1619751A1 (en) 2006-01-25
EP1619751B1 true EP1619751B1 (en) 2010-10-06

Family

ID=34937310

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05012307A Not-in-force EP1619751B1 (en) 2004-07-23 2005-06-08 Wideband antenna of low profile

Country Status (5)

Country Link
US (1) US7548204B2 (en)
EP (1) EP1619751B1 (en)
AT (1) ATE484089T1 (en)
DE (2) DE102004036001A1 (en)
ES (1) ES2351191T3 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4982252B2 (en) * 2007-05-30 2012-07-25 寛治 大塚 Transmission line aperture antenna device
US20140320364A1 (en) * 2013-04-26 2014-10-30 Research In Motion Limited Substrate integrated waveguide horn antenna
TWI528642B (en) * 2013-09-05 2016-04-01 啟碁科技股份有限公司 Antenna and electronic device
US10418693B2 (en) * 2017-04-11 2019-09-17 Fitbit, Inc. Band latch mechanism and housing with integrated antenna
US10809666B2 (en) 2018-05-22 2020-10-20 Fitbit, Inc. Low-profile band latch mechanism
US11033082B1 (en) 2020-04-14 2021-06-15 Fitbit, Inc. Wearable device straps and attachment hardware therefor
WO2022172313A1 (en) * 2021-02-09 2022-08-18 三菱電機株式会社 Antenna device

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB964458A (en) * 1961-08-23 1964-07-22 Telefunken Patent Improvements in or relating to directional acrials
US4546358A (en) * 1984-01-19 1985-10-08 The United States Of America As Represented By The Secretary Of The Army Large broadband free radiating electromagnetic test cell
CA2047999C (en) * 1991-07-30 2000-10-31 Gary A. Gibson Broadband electromagnetic field simulator
US5734350A (en) * 1996-04-08 1998-03-31 Xertex Technologies, Inc. Microstrip wide band antenna
SE507077C2 (en) * 1996-05-17 1998-03-23 Allgon Ab Antenna device for a portable radio communication device
FR2778500B1 (en) * 1998-05-05 2000-08-04 Socapex Amphenol PLATE ANTENNA
KR100322385B1 (en) 1998-09-14 2002-06-22 구관영 Broadband Patch Antenna with Ground Plane of L-shape and U-shape
EP1024552A3 (en) * 1999-01-26 2003-05-07 Siemens Aktiengesellschaft Antenna for radio communication terminals
US6157344A (en) * 1999-02-05 2000-12-05 Xertex Technologies, Inc. Flat panel antenna
FR2791815A1 (en) * 1999-04-02 2000-10-06 Rene Liger Compact metallic plate UHF antenna, e.g. for small transponders, has folded trihedral structure with horizontal and vertical sections forming ground planes and inclined section acting as radiator
FI113588B (en) * 1999-05-10 2004-05-14 Nokia Corp Antenna Design
US6567047B2 (en) * 2000-05-25 2003-05-20 Tyco Electronics Logistics Ag Multi-band in-series antenna assembly
US6466176B1 (en) * 2000-07-11 2002-10-15 In4Tel Ltd. Internal antennas for mobile communication devices
DE60137272D1 (en) * 2000-11-22 2009-02-12 Panasonic Corp Built-in antenna for a mobile radio
US6670925B2 (en) * 2001-06-01 2003-12-30 Matsushita Electric Industrial Co., Ltd. Inverted F-type antenna apparatus and portable radio communication apparatus provided with the inverted F-type antenna apparatus
US20030020668A1 (en) * 2001-07-26 2003-01-30 Peterson George Earl Broadband polling structure
US6667716B2 (en) * 2001-08-24 2003-12-23 Gemtek Technology Co., Ltd. Planar inverted F-type antenna
JP3763764B2 (en) * 2001-09-18 2006-04-05 シャープ株式会社 Plate-like inverted F antenna and wireless communication device
US6590540B1 (en) * 2002-01-31 2003-07-08 The United States Of America As Represented By The Secretary Of The Navy Ultra-broadband antenna incorporated into a garment
DE10204877A1 (en) * 2002-02-06 2003-08-14 Siemens Ag Radio communication device and printed circuit board with at least one electrically conductive correction element
KR100626667B1 (en) 2002-08-28 2006-09-22 한국전자통신연구원 Planar Inverted F Antenna
US6911940B2 (en) * 2002-11-18 2005-06-28 Ethertronics, Inc. Multi-band reconfigurable capacitively loaded magnetic dipole
US7012572B1 (en) * 2004-07-16 2006-03-14 Hrl Laboratories, Llc Integrated ultra wideband element card for array antennas

Also Published As

Publication number Publication date
DE502005010330D1 (en) 2010-11-18
US7548204B2 (en) 2009-06-16
DE102004036001A1 (en) 2006-03-16
ES2351191T3 (en) 2011-02-01
US20060044201A1 (en) 2006-03-02
ATE484089T1 (en) 2010-10-15
EP1619751A1 (en) 2006-01-25

Similar Documents

Publication Publication Date Title
EP0952625B1 (en) Antenna for several radio communications services
DE102005060648B4 (en) Antenna device with radiation characteristics suitable for ultra wide band communication
DE69907322T2 (en) antenna
DE69628392T2 (en) Antenna with two resonance frequencies
DE60211889T2 (en) BROADBAND ANTENNA FOR WIRELESS COMMUNICATION
DE69936657T2 (en) CIRCULAR POLARIZED DIELECTRIC RESONATOR ANTENNA
EP3635814B1 (en) Dual-polarised crossed dipole and antenna arrangement having two such dual-polarised crossed dipoles
DE60109608T2 (en) ANTENNA AND RADIO UNIT WITH ANY SUCH ANTENNA
DE69924104T2 (en) Asymmetric dipole antenna arrangement
EP0965152B1 (en) Resonant antenna
EP1619751B1 (en) Wideband antenna of low profile
DE602005002330T2 (en) Logarithmic periodic microstrip array antenna with grounded semi-coplanar waveguide to microstrip line transition
DE602004000584T2 (en) Integrated antenna system with circularly polarized patch antenna and vertically polarized patch antenna
DE102007056258A1 (en) Chip antenna and mobile telecommunication terminal, which has these
DE102008014931B4 (en) Fractal antenna for vehicles
DE102005015561A1 (en) Broadband internal antenna for mobile communication terminal, has radiator with conductive stripline through which current flows to form current paths in different directions to set certain broadband using electromagnetic coupling
DE10226111B4 (en) A circular polarization antenna device and use thereof for a radio communication device
DE10022107A1 (en) Integrated antenna for mobile phones
EP3108535B1 (en) Multi-range antenna for a receiver and/or transmitter device for mobile use
DE19729664C2 (en) Planar broadband antenna
DE102010015823A1 (en) Antenna module for vehicle, has feeding pin extended to top surface of substrate, where pin has pin extension extending over patch antenna surface, which forms antenna structure for radiating or receiving electromagnetic waves
DE60313588T2 (en) MICROWAVE ANTENNA
WO2007048258A1 (en) Antenna arrangement having a broadband monopole antenna
DE112013001993B4 (en) antenna device
EP1812988B1 (en) Planar wideband antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20060407

17Q First examination report despatched

Effective date: 20060621

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005010330

Country of ref document: DE

Date of ref document: 20101118

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Effective date: 20110120

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101006

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110206

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110106

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110207

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

26N No opposition filed

Effective date: 20110707

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005010330

Country of ref document: DE

Effective date: 20110707

BERE Be: lapsed

Owner name: EADS DEUTSCHLAND G.M.B.H.

Effective date: 20110630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 484089

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005010330

Country of ref document: DE

Owner name: AIRBUS DEFENCE AND SPACE GMBH, DE

Free format text: FORMER OWNER: EADS DEUTSCHLAND GMBH, 85521 OTTOBRUNN, DE

Effective date: 20140916

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005010330

Country of ref document: DE

Owner name: AIRBUS DS ELECTRONICS AND BORDER SECURITY GMBH, DE

Free format text: FORMER OWNER: EADS DEUTSCHLAND GMBH, 85521 OTTOBRUNN, DE

Effective date: 20140916

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005010330

Country of ref document: DE

Owner name: HENSOLDT SENSORS GMBH, DE

Free format text: FORMER OWNER: EADS DEUTSCHLAND GMBH, 85521 OTTOBRUNN, DE

Effective date: 20140916

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20110400010

Country of ref document: GR

Effective date: 20110218

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005010330

Country of ref document: DE

Owner name: AIRBUS DS ELECTRONICS AND BORDER SECURITY GMBH, DE

Free format text: FORMER OWNER: AIRBUS DEFENCE AND SPACE GMBH, 85521 OTTOBRUNN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005010330

Country of ref document: DE

Owner name: HENSOLDT SENSORS GMBH, DE

Free format text: FORMER OWNER: AIRBUS DEFENCE AND SPACE GMBH, 85521 OTTOBRUNN, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20160615

Year of fee payment: 12

Ref country code: CZ

Payment date: 20160607

Year of fee payment: 12

Ref country code: ES

Payment date: 20160614

Year of fee payment: 12

Ref country code: GB

Payment date: 20160621

Year of fee payment: 12

Ref country code: FI

Payment date: 20160613

Year of fee payment: 12

Ref country code: DE

Payment date: 20160621

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160627

Year of fee payment: 12

Ref country code: SE

Payment date: 20160620

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160628

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005010330

Country of ref document: DE

Representative=s name: LIFETECH IP SPIES & BEHRNDT PATENTANWAELTE PAR, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005010330

Country of ref document: DE

Owner name: HENSOLDT SENSORS GMBH, DE

Free format text: FORMER OWNER: AIRBUS DS ELECTRONICS AND BORDER SECURITY GMBH, 82024 TAUFKIRCHEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005010330

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170608

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170608

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170609

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170608

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170608

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180111

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170609