EP1617972B1 - Method for rounding part edges - Google Patents

Method for rounding part edges Download PDF

Info

Publication number
EP1617972B1
EP1617972B1 EP04722146A EP04722146A EP1617972B1 EP 1617972 B1 EP1617972 B1 EP 1617972B1 EP 04722146 A EP04722146 A EP 04722146A EP 04722146 A EP04722146 A EP 04722146A EP 1617972 B1 EP1617972 B1 EP 1617972B1
Authority
EP
European Patent Office
Prior art keywords
blade
stream
edge
suction side
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04722146A
Other languages
German (de)
French (fr)
Other versions
EP1617972A1 (en
Inventor
Klemens Werner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Publication of EP1617972A1 publication Critical patent/EP1617972A1/en
Application granted granted Critical
Publication of EP1617972B1 publication Critical patent/EP1617972B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/08Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for polishing surfaces, e.g. smoothing a surface by making use of liquid-borne abrasives
    • B24C1/083Deburring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/47Burnishing
    • Y10T29/479Burnishing by shot peening or blasting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49332Propeller making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making

Definitions

  • the invention relates to a method for rounding edges on blades of turbomachines, in particular guide vanes and rotor blades of gas turbines.
  • edges on blades of turbomachines may be required for a variety of reasons. These include improving the strength and / or aerodynamics and avoiding the risk of injury.
  • these may be sharp edges on components that are to be rounded to the adjacent surfaces of the component.
  • the edges may also form planar or spatial surfaces that connect adjacent, generally significantly larger surfaces of the component. The latter case is usually present at relatively rough prefabricated edges on fluidically active blades of turbomachines, in particular on guide vanes and rotor blades of gas turbines, in which the blade edges to the adjacent pressure and / or suction side of the blade from strength and aerodynamics aspects are to round ,
  • the rounding is in the case of blade edges, which are due to the production generally relatively rough preprocessed, carried out to date largely by hand, with possibly hand-held machines, such as belt grinders, etc., are used. This is associated with a high manpower and time, and with targeted control and testing ultimately no reproducible, consistent machining result is guaranteed.
  • DE 197 20 750 C1 discloses a surface treatment method in which the surface is subjected to particle irradiation. As a result, compressive stresses are introduced into the material in order to increase the fatigue strength, in particular the tensile strength of the component.
  • DE 697 12 613 T2 additionally shows a method for honing cutting edges, which are processed by abrasive fluid jets with abrasive blasting agents to introduce fine grooves in the surface.
  • US 3,078,546 discloses a method for rounding edges wherein the jet consists at least largely of abrasive particles.
  • the object of the invention is to provide a method for rounding edges on blades of turbomachinery, which allows a significant time and personnel savings by a machine, possibly automatable operation and reproducible Results.
  • the latter should be as qualitatively flawless as possible at the lowest possible reject rate.
  • the jet with its center is set approximately tangentially to the profile center line of the blade at the blade edge at which the rounding is to take place.
  • non-clashing surfaces which are connected for example by an edge in the form of a flat or spatial surface, such as the pressure and suction side of a rough prefabricated edge of a blade of a gas turbine
  • tangents are placed on the two surfaces on such an edge and the Profile centerline set between the intersecting tangents.
  • this bisector affects the profile center line of the blade at the edge, ie in the stagnation point.
  • relatively small particles of 0 to 500 mesh size preferably 180 to 320 mesh size, are used.
  • the method generates a material removal for rounding and prevents cracks or roughness on the surfaces.
  • the beam is generated by means of a nozzle with a defined exit diameter and defined exit angle.
  • the relative movement between nozzle and component can preferably take place in a defined, variable distance between nozzle and blade edge.
  • the distance is generally adapted in the case of flat edges with varying width over their length in a corresponding manner continuously.
  • the direction of the center of the jet to the profile center line of the blade at the blade edge can be set at an angle ⁇ and / or set laterally offset relative to the profile center line in the direction of the pressure or suction, for example.
  • Aerodynamics form desired contour asymmetries on the edge to be rounded.
  • the blade 1 should have a streamlined shape in the finished state. This presupposes that the pressure side 4 and the suction side 5 of the blade profile correspond in the best possible way to the desired contour. This also assumes that the blade edges 2, 3, i. the leading edge and the trailing edge of the blade 1, the adjacent surfaces, i. the pressure and suction side 4.5, aerodynamically connect. In addition to the aerodynamic requirements, aspects of strength and wear also play an important role in the blade edges 2, 3. Typically, the leading and trailing edges of blades are designed to be rounded to meet all these requirements.
  • Blades having a relatively thin profile and relatively acute entry and exit edges such as, in particular, compressor blades of axial compressors, are often manufactured by forging and / or milling and / or electrochemical machining (ECM), wherein the blade edges are initially geometrically made relatively coarse, i. with flat surfaces, corners, bevels etc.
  • ECM electrochemical machining
  • the large-area pressure and suction sides 4.5 often correspond relatively well to the desired contour, so that there, if any, only a fine machining with little or no material removal is necessary.
  • the prefabricated entry and exit edges are rounded in such a way that they pass without kinks, steps or other impurities in the pressure and suction sides 4,5.
  • FIG. 1 shows a nozzle 8 of a jet device, not shown, from which a jet 7 emerges, which consists of abrasive particles and a carrier gas or a carrier liquid. At least a significant portion of the abrasive particles impinges at high speed perpendicular or approximately perpendicular to the only pre-machined, more or less still angular blade edge 2 whose initial state is indicated by dashed lines in Figure 1.
  • the center of the beam direction R runs here tangentially to the profile center line 6 of the blade 1 at the blade leading edge 2 and thus at least approximately corresponds to the later flow during operation.
  • an asymmetric removal with focus on the pressure or suction side can be achieved, which may be useful in certain circumstances.
  • the removal result depends on several factors, such as the jet pressure, the exit angle ⁇ of the jet 7 from the nozzle 8, the exit diameter D of the nozzle 8, the distance A of the blade edge 2 from the nozzle 8, the type of abrasive including the particle size and particle distribution in the beam 7, the jet direction R, and the local exposure time as a function of the blade edge parallel, relative feed rate between the nozzle 8 and the component 1.
  • factors are to be optimized depending on the blade geometry and the blade material, which usually requires practical experiments will be. If, for example, the distance between the blade edge 2, 3 and the nozzle 8 is too small, a concave hollowing of the blade edge 2, 3 with maximum removal in the region of the stagnation point may occur instead of a rounding, which must be avoided at all costs.
  • the inventive method is in principle applicable to all types of blades of turbomachinery.

Abstract

The invention relates to a method for rounding part edges, in particular for turbomashines. According to said invention, an edge (2,3) formed by at least two adjacent surfaces (4, 5) of a part (1) is rounded in a direction to said adjacent surfaces. A jet (7) consisting essentially of abrasive particles is directed to the edge (2, 3), the jet centre being tangential with respect to a bisectrix (6) between said surfaces (4, 5). Said jet is displaceable according to a defined feed with respect to the part (1) along the edge (2,3) in such a way that a defined removal of the part material is carried out associated with rounding in the direction of the surfaces (4, 5).

Description

Die Erfindung betrifft ein Verfahren zum Verrunden von Kanten an Schaufeln von Turbomaschinen, insbesondere von Leit- und Laufschaufeln von Gasturbinen.The invention relates to a method for rounding edges on blades of turbomachines, in particular guide vanes and rotor blades of gas turbines.

Das Verrunden von Kanten an Schaufeln von Turbomaschinen, insbesondere von Leit- und Laufschaufeln von Gasturbinen, kann aus verschiedensten Gründen erforderlich sein. Hierzu zählen die Verbesserung der Festigkeit und/oder Aerodynamik sowie die Vermeidung von Verletzungsgefahr. In Abhängigkeit vom Bauteil kann es sich dabei um scharfe Kanten an Bauteilen handeln, die zu den angrenzenden Oberflächen des Bauteils zu verrunden sind. Alternativ können die Kanten auch ebene oder räumliche Flächen bilden, die angrenzende, im Allgemeinen erheblich größere Oberflächen des Bauteils verbinden. Der letztgenannte Fall liegt üblicherweise bei relativ grob vorgefertigten Kanten an strömungsmechanisch wirksamen Schaufeln von Turbomaschinen, insbesondere an Leit- und Laufschaufeln von Gasturbinen, vor, bei dem die Schaufelkanten zur angrenzenden Druck- und/oder Saugseite der Schaufel aus Festigkeits- und Aerodynamikaspekten zu verrunden sind.The rounding of edges on blades of turbomachines, in particular guide vanes and rotor blades of gas turbines, may be required for a variety of reasons. These include improving the strength and / or aerodynamics and avoiding the risk of injury. Depending on the component, these may be sharp edges on components that are to be rounded to the adjacent surfaces of the component. Alternatively, the edges may also form planar or spatial surfaces that connect adjacent, generally significantly larger surfaces of the component. The latter case is usually present at relatively rough prefabricated edges on fluidically active blades of turbomachines, in particular on guide vanes and rotor blades of gas turbines, in which the blade edges to the adjacent pressure and / or suction side of the blade from strength and aerodynamics aspects are to round ,

Das Verrunden wird im Fall von Schaufelkanten, welche fertigungsbedingt im allgemeinen nur relativ grob vorbearbeitet sind, bis dato weitgehend in Handarbeit ausgeführt, wobei ggf. handgeführte Maschinen, wie Bandschleifer etc., eingesetzt werden. Dies ist mit einem hohen Personal- und Zeitaufwand verbunden, wobei auch mit gezielter Kontrolle und Prüfung letztlich kein reproduzierbares, gleichbleibendes Bearbeitungsergebnis gewährleistet ist.The rounding is in the case of blade edges, which are due to the production generally relatively rough preprocessed, carried out to date largely by hand, with possibly hand-held machines, such as belt grinders, etc., are used. This is associated with a high manpower and time, and with targeted control and testing ultimately no reproducible, consistent machining result is guaranteed.

DE 197 20 750 C1 offenbart ein Verfahren zur Oberflächenbehandlung, bei dem die Oberfläche einer Partikelbestrahlung unterzogen wird. Hierdurch werden Druckspannungen in das Material eingebracht, um die Dauerfestigkeit insbesondere die Zugfestigkeit des Bauteils zu erhöhen.DE 197 20 750 C1 discloses a surface treatment method in which the surface is subjected to particle irradiation. As a result, compressive stresses are introduced into the material in order to increase the fatigue strength, in particular the tensile strength of the component.

Außerdem ist bekannt, Oberflächen vor Beschichtungsvorgängen durch abrasives Strahlen aufzurauhen, um die Oberflächen zu reinigen und die Haftung zur Schicht zu verbessern. DE 697 12 613 T2 zeigt zusätzlich ein Verfahren zum Honen von Schneidkanten, wobei diese durch abrasive Fluidstrahlen mit abrasiven Strahlmitteln bearbeitet werden, um feine Riefen in die Oberfläche einzubringen.It is also known to roughen surfaces before coating operations by abrasive blasting to clean the surfaces and improve adhesion to the layer. DE 697 12 613 T2 additionally shows a method for honing cutting edges, which are processed by abrasive fluid jets with abrasive blasting agents to introduce fine grooves in the surface.

US 3,078,546, offenbart ein Verfahren zum Verrunden von Kanten wobei der Strahl zumindest großteils aus abrasiven Partikeln besteht.US 3,078,546 discloses a method for rounding edges wherein the jet consists at least largely of abrasive particles.

Angesichts dieser bekannten Verfahren und ihrer Nachteile bzw. ihrer anwendungstechnischen Grenzen besteht die Aufgabe der Erfindung darin, ein Verfahren zum Verrunden von Kanten an Schaufeln von Turbomaschinen bereitzustellen, welches durch eine maschinelle, ggf. automatisierbare Arbeitsweise eine erhebliche Zeit- und Personaleinsparung ermöglicht und zu reproduzierbaren Ergebnissen führt. Letztere sollen möglichst qualitativ einwandfrei bei möglichst kleiner Ausschussrate sein.In view of these known methods and their disadvantages or their application limits, the object of the invention is to provide a method for rounding edges on blades of turbomachinery, which allows a significant time and personnel savings by a machine, possibly automatable operation and reproducible Results. The latter should be as qualitatively flawless as possible at the lowest possible reject rate.

Die Aufgabe wird durch die in Patentanspruch 1 gekennzeichneten Merkmale gelöst.The object is solved by the features characterized in claim 1.

Überraschenderweise hat sich herausgestellt, dass durch abrasives Strahlen unter Beachtung definierter Bearbeitungsparameter und Düsendefinitionen relativ genaue, gerundete Oberflächengeometrien an den Kanten von relativ grob vorbearbeiteten Schaufeln herstellbar sind. Die Funktionstüchtigkeit dieses Verfahrens sowie seine Reproduzierbarkeit wurden in Versuchen bestätigt.Surprisingly, it has been found that relatively accurate, rounded surface geometries can be produced at the edges of relatively rough pre-machined blades by abrasive blasting, taking into account defined processing parameters and nozzle definitions. The functionality of this method and its reproducibility have been confirmed in experiments.

Beim erfindungsgemäßen Verfahren wird der Strahl mit seiner Mitte etwa tangential zur Profilmittellinie der Schaufel an der Schaufelkante, an der die Verrundung erfolgen soll, eingestellt. Bei nicht unmittelbar aufeinandertreffenden Oberflächen, die z.B. durch eine Kante in Form einer ebenen oder räumlichen Fläche verbunden sind, wie z.B. die Druck-und Saugseite einer grob vorgefertigten Kante einer Schaufel einer Gasturbine, werden Tangenten an die beiden Oberflächen an einer solchen Kante gelegt und die Profilmittellinie zwischen den sich schneidenden Tangenten festgelegt. Im letztgenannten Fall einer zur Druck- und Saugseite einer Schaufel zur verrundenden Kante tangiert diese Winkelhalbierende die Profilmittellinie der Schaufel an der Kante, d.h. im Staupunkt.In the method according to the invention, the jet with its center is set approximately tangentially to the profile center line of the blade at the blade edge at which the rounding is to take place. In non-clashing surfaces, which are connected for example by an edge in the form of a flat or spatial surface, such as the pressure and suction side of a rough prefabricated edge of a blade of a gas turbine, tangents are placed on the two surfaces on such an edge and the Profile centerline set between the intersecting tangents. In the latter case, one to the pressure and suction side of a blade to the verrandenden edge this bisector affects the profile center line of the blade at the edge, ie in the stagnation point.

Zur Reduzierung einer etwaigen Nachbearbeitung der verrundeten Kanten werden relativ kleine Partikel mit einer Größe von 0 bis 500 mesh, vorzugsweise von 180 bis 320 mesh, verwendet. Hierdurch wird mit dem Verfahren ein Materialabtrag zum Verrunden erzeugt und Risse oder Rauigkeiten an den Oberflächen vermieden.To reduce any reworking of the rounded edges, relatively small particles of 0 to 500 mesh size, preferably 180 to 320 mesh size, are used. As a result, the method generates a material removal for rounding and prevents cracks or roughness on the surfaces.

Unter anderem zur Erzeugung eines Strahls mit definierter Geometrie und Energie im Hinblick auf Querschnitt, Form etc. wird der Strahl mittels einer Düse mit definiertem Austrittsdurchmesser und definiertem Austrittwinkel erzeugt.Among other things, for generating a beam with defined geometry and energy in terms of cross-section, shape, etc., the beam is generated by means of a nozzle with a defined exit diameter and defined exit angle.

Zur Erzeugung einer gleichbleibenden Geometrie entlang der Kante kann die Relativbewegung zwischen Düse und Bauteil bevorzugt in einem definierten, variierbaren Abstand zwischen Düse und Schaufelkante erfolgen.In order to produce a constant geometry along the edge, the relative movement between nozzle and component can preferably take place in a defined, variable distance between nozzle and blade edge.

Der Abstand wird im allgemeinen bei flächigen Kanten mit sich über deren Länge ändernder Breite in entsprechender Weise stufenlos angepasst.The distance is generally adapted in the case of flat edges with varying width over their length in a corresponding manner continuously.

Bevorzugt kann die Richtung der Mitte des Strahls zur Profilmittellinie der Schaufel an der Schaufelkante in einem Winkel β angestellt und/oder zur Profilmittellinie in Richtung Druck- oder Saugseite seitlich versetzt eingestellt werden, um z.B. Aerodynamik gewollte Konturasymmetrien an der zu verrundenden Kante auszubilden.Preferably, the direction of the center of the jet to the profile center line of the blade at the blade edge can be set at an angle β and / or set laterally offset relative to the profile center line in the direction of the pressure or suction, for example. Aerodynamics form desired contour asymmetries on the edge to be rounded.

In den Unteransprüchen sind bevorzugte Ausgestaltungen sowie Anwendungen des Verfahrens und der Vorrichtung beschrieben.In the subclaims preferred embodiments and applications of the method and the device are described.

Die Erfindung wird nachfolgend anhand der Zeichnung mit Bezug auf Ausführungsbeispiele näher erläutert:

Fig. 1
zeigt in vereinfachter, nicht maßstäblicher Darstellung die Bearbeitung einer Eintrittskante einer Schaufel;
Fig. 2
zeigt in entsprechender Darstellung wie Fig. 1 ein alternatives Ausführungsbeispiel für die Bearbeitung.
The invention will be explained in more detail below with reference to the drawing with reference to exemplary embodiments:
Fig. 1
shows in simplified, not to scale representation, the processing of an entrance edge of a blade;
Fig. 2
shows in a similar representation as Fig. 1 shows an alternative embodiment for processing.

Anwendungsfälle liegen insbesondere überall dort, wo scharfe Kanten an Schaufeln zu angrenzenden Oberflächen hin zu verrunden sind oder wo vorgefertigte Kanten zur Gestaltung des Übergangs zwischen angrenzenden Oberflächen mit definierter Gestalt zu verrunden sind.Applications are especially where sharp edges on blades are to be rounded off to adjacent surfaces or where prefabricated edges to shape the transition between adjacent surfaces with a defined shape to round.

Nachfolgend wird das Verfahren anhand einer Kante an einer strömungsmechanisch wirksamen Schaufel einer Gasturbine beschrieben, wobei eine relativ grob vorgefertigte Schaufelkante zu angrenzenden Oberflächen, im vorliegenden Fall der Druck- und/oder Saugseite der Schaufel, zu verrunden ist.The method is described below with reference to an edge on a fluidically active blade of a gas turbine, wherein a relatively rough prefabricated blade edge is to be rounded to adjacent surfaces, in the present case the pressure and / or suction side of the blade.

Die Schaufel 1 soll im fertigbearbeiteten Zustand eine strömungsgünstige Gestalt aufweisen. Dies setzt voraus, dass die Druckseite 4 und die Saugseite 5 des Schaufelprofils bestmöglich der Sollkontur entsprechen. Dies setzt ebenfalls voraus, dass die Schaufelkanten 2, 3, d.h. die Eintrittskante und die Austrittskante der Schaufel 1, die angrenzenden Oberflächen, d.h. die Druck- und Saugseite 4,5, strömungsgünstig verbinden. Neben den aerodynamischen Anforderungen spielen auch festigkeits- und verschleißtechnische Aspekte bei den Schaufelkanten 2,3 eine wichtige Rolle. In der Regel werden die Ein- und Austrittskanten von Schaufeln definiert gerundet ausgeführt, um all diesen Anforderungen gerecht zu werden.The blade 1 should have a streamlined shape in the finished state. This presupposes that the pressure side 4 and the suction side 5 of the blade profile correspond in the best possible way to the desired contour. This also assumes that the blade edges 2, 3, i. the leading edge and the trailing edge of the blade 1, the adjacent surfaces, i. the pressure and suction side 4.5, aerodynamically connect. In addition to the aerodynamic requirements, aspects of strength and wear also play an important role in the blade edges 2, 3. Typically, the leading and trailing edges of blades are designed to be rounded to meet all these requirements.

Schaufeln mit relativ dünnem Profil und relativ spitzen Ein- und Austrittskanten, wie insbesondere Verdichterschaufeln von Axialverdichtern, werden häufig durch Schmieden und/oder Fräsen und/oder elektrochemische Bearbeitung (ECM) gefertigt, wobei die Schaufelkanten zunächst geometrisch nur relativ grob ausgeführt sind, d.h. mit ebenen Flächen, Ecken, Fasen etc.. Die großflächigen Druck -und Saugseiten 4,5 entsprechen häufig schon relativ genau der Sollkontur, so dass dort, falls überhaupt, nur noch eine Feinbearbeitung mit geringem oder keinem Materialabtrag nötig ist. Somit sind die vorgefertigten Ein- und Austrittskanten in der Weise zu runden, dass sie ohne Knicke, Stufen oder andere Störstellen in die Druck- und Saugseiten 4,5 übergehen.Blades having a relatively thin profile and relatively acute entry and exit edges, such as, in particular, compressor blades of axial compressors, are often manufactured by forging and / or milling and / or electrochemical machining (ECM), wherein the blade edges are initially geometrically made relatively coarse, i. with flat surfaces, corners, bevels etc. The large-area pressure and suction sides 4.5 often correspond relatively well to the desired contour, so that there, if any, only a fine machining with little or no material removal is necessary. Thus, the prefabricated entry and exit edges are rounded in such a way that they pass without kinks, steps or other impurities in the pressure and suction sides 4,5.

Erfindungsgemäß wird hierfür das abrasive Strahlen als Bearbeitungsverfahren mit gezieltem Abtrag des Schaufelmaterials verwendet. Man erkennt in der Fig. 1 eine Düse 8 einer nicht näher dargestellten Strahlvorrichtung, aus der ein Strahl 7 austritt, welcher aus abrasiven Partikeln und einem Trägergas bzw. einer Trägerflüssigkeit besteht. Zumindest ein erheblicher Teil der abrasiven Partikel trifft mit hoher Geschwindigkeit senkrecht oder näherungsweise senkrecht auf die nur vorbearbeitete, mehr oder weniger noch eckige Schaufelkante 2, deren Ausgangszustand in der Fig.1 gestrichelt angedeutet ist. Die Mitte der Strahlrichtung R verläuft hier tangential zur Profilmittellinie 6 der Schaufel 1 an der Schaufelvorderkante 2 und entspricht somit zumindest annähernd der späteren Anströmung im Betrieb. Es besteht selbstverständlich die Möglichkeit, die Längsmittelachse der Düse 8 und damit die Mitte des Strahles 7 bedarfsweise mehr zur Saugseite 5 oder zur Druckseite 4 zu verschieben und/oder den Anströmwinkel der Strahlrichtung R in gewissen Grenzen zu ändern, wie es in Fig. 2 anhand des Winkels β gezeigt ist. Auf diese Art lässt sich ein asymmetrischer Abtrag mit Schwerpunkt zur Druck- oder Saugseite hin erzielen, was unter gewissen Umständen sinnvoll sein kann.According to the invention, the abrasive blasting is used for this purpose as a processing method with targeted removal of the blade material. FIG. 1 shows a nozzle 8 of a jet device, not shown, from which a jet 7 emerges, which consists of abrasive particles and a carrier gas or a carrier liquid. At least a significant portion of the abrasive particles impinges at high speed perpendicular or approximately perpendicular to the only pre-machined, more or less still angular blade edge 2 whose initial state is indicated by dashed lines in Figure 1. The center of the beam direction R runs here tangentially to the profile center line 6 of the blade 1 at the blade leading edge 2 and thus at least approximately corresponds to the later flow during operation. It is of course possible, the longitudinal center axis of the nozzle 8 and thus the center of the beam 7, if necessary, to move more to the suction side 5 or to the pressure side 4 and / or to change the angle of attack of the jet direction R within certain limits, as shown in FIG of the angle β. In this way, an asymmetric removal with focus on the pressure or suction side can be achieved, which may be useful in certain circumstances.

Das Abtragergebnis hängt von mehreren Faktoren ab, wie dem Strahldruck, dem Austrittswinkel α des Strahles 7 aus der Düse 8, dem Austrittsdurchmesser D der Düse 8, dem Abstand A der Schaufelkante 2 von der Düse 8, der Art des Strahlmittels einschließlich der Partikelgröße und Partikelverteilung im Strahl 7, der Strahlrichtung R, und der lokalen Einwirkdauer in Abhängigkeit von der schaufelkantenparallelen, relativen Vorschubgeschwindigkeit zwischen der Düse 8 und dem Bauteil 1. Diese Faktoren sind in Abhängigkeit von der Schaufelgeometrie und dem Schaufelwerkstoff zu optimieren, wofür in aller Regel praktische Versuche erforderlich sein werden. Ist beispielsweise der Abstand zwischen Schaufelkante 2,3 und Düse 8 zu gering, so kann es statt zu einer Verrundung zu einer konkaven Aushöhlung der Schaufelkante 2,3 mit maximalen Abtrag im Bereich des Staupunktes kommen, was unbedingt zu vermeiden ist. Bei korrektem Abstand ergibt sich ein gewisser Partikelauftrag im Bereich des Staupunktes, wodurch dieser weitgehend vor Abtrag geschützt ist, und der eigentliche Abtrag zur Verrundung stromabwärts zur Druck- und Saugseite hin erfolgt. Nach einer solchen experimentellen Prozessoptimierung sind die Strahlergebnisse bei einem bestimmten Schaufeltyp jedoch sehr gleichmäßig und reproduzierbar, so dass eine maschinelle bzw. automatisierte Arbeitsweise möglich wird.The removal result depends on several factors, such as the jet pressure, the exit angle α of the jet 7 from the nozzle 8, the exit diameter D of the nozzle 8, the distance A of the blade edge 2 from the nozzle 8, the type of abrasive including the particle size and particle distribution in the beam 7, the jet direction R, and the local exposure time as a function of the blade edge parallel, relative feed rate between the nozzle 8 and the component 1. These factors are to be optimized depending on the blade geometry and the blade material, which usually requires practical experiments will be. If, for example, the distance between the blade edge 2, 3 and the nozzle 8 is too small, a concave hollowing of the blade edge 2, 3 with maximum removal in the region of the stagnation point may occur instead of a rounding, which must be avoided at all costs. If the distance is correct, there is a certain amount of particle deposition in the area of the stagnation point, as a result of which it is largely protected against removal, and the actual removal for rounding takes place downstream of the pressure and suction sides. After such experimental process optimization, however, the blasting results for a given blade type are very uniform and reproducible, so that a mechanical or automated operation is possible.

Das erfindungsgemäße Verfahren ist prinzipiell bei allen Arten von Schaufeln von Turbomaschinen anwendbar.The inventive method is in principle applicable to all types of blades of turbomachinery.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Bauteil/SchaufelComponent / blade
22
Kante/SchaufelkanteEdge / blade edge
33
Kante/SchaufelkanteEdge / blade edge
44
Oberfläche/DruckseiteSurface / printed page
55
Oberfläche/SaugseiteSurface / suction side
66
Winkelhalbierende/ProfilmittellinieBisecting / profile center line
77
Strahlbeam
88th
Düsejet
AA
Abstanddistance
DD
AustrittsdurchmesserOutlet diameter
RR
Strahlrichtungbeam direction
αα
Austrittswinkelexit angle
ββ
Winkelangle

Claims (13)

  1. Method for rounding edges on blades of turbomachines having a pressure side (4), a suction side (5) and a profile centre line (9) which extends therebetween, in particular vanes and rotor blades of gas turbines, a prefabricated blade edge (2, 3) being intended to be rounded towards the adjacent pressure side (4) and suction side (5) of the blade (1), a stream (7) at least largely comprising abrasive particles being adjusted with the centre thereof substantially tangential relative to the profile centre line (6) of the blade (1) at the blade edge (2, 3), and the stream (7) and the blade edge (2, 3) being moved relative to each other along the blade edge (2, 3) in such a manner that the rounding is carried out towards the pressure side (4) and suction side (5).
  2. Method according to claim 1, characterised in that the stream (7) comprises abrasive particles, a carrier gas and/or a carrier fluid, such as, for example, water.
  3. Method according to claim 1 or 2, characterised in that metal oxides, such as Al2O3 or SiO, other ceramic compounds, salts, such as NaCl, or organic compounds, such as plastics materials or ground corn, are used as abrasive particles.
  4. Method according to any one of the preceding claims, characterised in that particles are used having a size of from 0 to 500 mesh, preferably from 180 to 320 mesh.
  5. Method according to any one of the preceding claims, characterised in that the stream (7) is produced by means of a nozzle (8) having a defined outlet diameter (D) and a defined outlet angle (α), in particular a portion of the stream cross-section being kept free of particles at least to a large extent.
  6. Method according to any one of the preceding claims, characterised in that the pressure of the stream (7) is set to approximately from 3 to 3.5 bar.
  7. Method according to any one of the preceding claims, characterised in that the relative movement of the nozzle (8) and the component (1) is carried out with a defined variable spacing (A) between the nozzle (8) and the edge (2, 3).
  8. Method according to any one of the preceding claims, characterised in that, following the abrasive processing operation, at least one other processing operation, such as abrading or shot-blasting, is carried out.
  9. Method according to any one of the preceding claims, characterised in that it is used for processing components which are prefabricated by means of forging and/or milling and/or electrochemical machining (ECM), in particular blades (1), composed of alloys based on titanium (Ti), nickel (Ni) or cobalt (Co), in particular compressor blades of the axial type.
  10. Method according to any one of the preceding claims, characterised in that it is used for the processing of individual blades, blade segments, or integrally bladed discs or rings.
  11. Method according to any one of the preceding claims, characterised in that the direction (R) of the centre of the stream (7) is adjusted so as to be positioned at an angle (β) relative to the profile centre line (6) of the blade (1) at the blade edge (2, 3) and/or to be laterally offset relative to the profile centre line (6) in the direction towards the pressure or suction side.
  12. Method according to any one of the preceding claims, characterised in that the blade edges (2, 3) to be rounded have a face which is at least substantially transverse relative to the adjacent pressure and/or suction side (4, 5) and more or less angular transitions to the pressure and/or suction side (4, 5) and the stream (7) is directed perpendicularly or substantially perpendicularly on the face of the blade edge (2, 3).
  13. Method according to claim 12, characterised in that the direction (R) of the centre of the stream (7) is adjusted substantially tangentially relative to the profile centre line (6) of the blade (1) at the blade edge (2, 3).
EP04722146A 2003-04-27 2004-03-20 Method for rounding part edges Expired - Lifetime EP1617972B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10319020A DE10319020B4 (en) 2003-04-27 2003-04-27 Method of rounding edges on blades of turbomachinery
PCT/DE2004/000581 WO2004096493A1 (en) 2003-04-27 2004-03-20 Method for rounding part edges

Publications (2)

Publication Number Publication Date
EP1617972A1 EP1617972A1 (en) 2006-01-25
EP1617972B1 true EP1617972B1 (en) 2007-05-09

Family

ID=33393920

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04722146A Expired - Lifetime EP1617972B1 (en) 2003-04-27 2004-03-20 Method for rounding part edges

Country Status (5)

Country Link
US (1) US7950121B2 (en)
EP (1) EP1617972B1 (en)
DE (2) DE10319020B4 (en)
RU (1) RU2348505C2 (en)
WO (1) WO2004096493A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005054866A1 (en) * 2005-11-17 2007-05-31 Mtu Aero Engines Gmbh Method for producing metallic components, in particular for turbomachinery, with small edge radii
US8613641B2 (en) * 2008-10-22 2013-12-24 Pratt & Whitney Canada Corp. Channel inlet edge deburring for gas diffuser cases
EP2465636A1 (en) 2010-12-16 2012-06-20 MTU Aero Engines AG Method and device for forming a section of a component with a predefined contour
US10155298B2 (en) * 2011-12-21 2018-12-18 Sikorsky Aircraft Corporation Alpha case removal process for a main rotor blade spar
US9162301B2 (en) 2012-08-06 2015-10-20 General Electric Company Electrochemical machining tools and methods
US8906221B2 (en) 2012-08-06 2014-12-09 General Electric Company Electrochemical grinding tool and method
GB2506357B (en) * 2012-09-26 2015-01-28 Rolls Royce Plc Machining of an article
JP6253533B2 (en) * 2014-07-01 2017-12-27 株式会社神戸製鋼所 Cutting tool manufacturing method
RU2757171C1 (en) * 2021-04-06 2021-10-11 Общество с ограниченной ответственностью Управляющая компания "Алтайский завод прецизионных изделий" Method for shot blasting of high pressure fuel pump plunger bushings

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3078546A (en) * 1960-06-13 1963-02-26 Bruce E Kiernan Cutting tool
EP0616564B1 (en) * 1991-12-11 1996-09-18 DIAT, Christian Method for micro-cleaning a support and apparatus for implementing same
KR0127666B1 (en) * 1992-11-25 1997-12-30 모리시다 요이찌 Ceramic electronic device and method of producing the same
US5709587A (en) * 1996-03-25 1998-01-20 Kennametal Inc. Method and apparatus for honing an elongate rotary tool
DE19720756C1 (en) * 1997-05-07 1998-09-24 Tacr Turbine Airfoil Coating A Method for aqua-blasting component surfaces

Also Published As

Publication number Publication date
RU2005136898A (en) 2007-06-10
WO2004096493A1 (en) 2004-11-11
DE10319020B4 (en) 2006-06-14
US20070050977A1 (en) 2007-03-08
US7950121B2 (en) 2011-05-31
DE10319020A1 (en) 2004-11-25
RU2348505C2 (en) 2009-03-10
DE502004003770D1 (en) 2007-06-21
EP1617972A1 (en) 2006-01-25

Similar Documents

Publication Publication Date Title
EP1914323B1 (en) Method for introducing residual compressive stresses by shot peening
EP2093021B1 (en) Method and apparatus for controlled shot-peening of blisk blades
EP2794181B1 (en) Device for recontouring a gas turbine blade
EP2353772B1 (en) Method and device for fixing blisk blades to a surface
CH703747A2 (en) Component with at least one curved film cooling hole, and methods for their preparation.
EP2106876A1 (en) Method for aerodynamically shaping the leading edge of blisk blades
EP2093012A2 (en) Method and tooling for machining the annulus of a gas-turbine rotor provided with integrally formed blades
DE4341869A1 (en) Removal of hard coatings by ultra high pressure jets - involves nozzle set at certain distance from surface and producing flat pressurised jet
EP1617972B1 (en) Method for rounding part edges
EP2794180A1 (en) Device for recontouring a gas turbine blade
DE19807637A1 (en) Friction welding process for blading a rotor for a turbomachine
WO2010046353A1 (en) Manufacturing method for closed impellers
EP2099585B1 (en) Device and method for the surface peening of a component of a gas turbine
EP2125292B1 (en) Method and device for the surface peening of a partial element of a component of a gas turbine
EP2229258B1 (en) Method for producing integrally blade-mounted rotors
EP1954421B1 (en) Method for producing metallic components, particularly for turbo machines, having small edge radii, and component produced therewith
EP3733348A1 (en) Method for smoothing the surface of a workpiece
DE102008014725A1 (en) Method for producing a welded blisk drum
DE102016100663A1 (en) Apparatus and method for beam hardening of surface areas, in particular fir tree profiles
EP3222812A1 (en) Method for making or repairing a rotor blade, rotor blade, method for manufacturing or repairing a housing for a fluid flow machine and said housing
EP2465636A1 (en) Method and device for forming a section of a component with a predefined contour
DE102020101472A1 (en) Method and set of replacement parts for repairing a titanium aluminide low pressure turbine blade

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051018

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004003770

Country of ref document: DE

Date of ref document: 20070621

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070813

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080212

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180326

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180326

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230320

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 502004003770

Country of ref document: DE