EP1613855B1 - Fuel injector provided with a servo leakage free valve - Google Patents

Fuel injector provided with a servo leakage free valve Download PDF

Info

Publication number
EP1613855B1
EP1613855B1 EP04717029A EP04717029A EP1613855B1 EP 1613855 B1 EP1613855 B1 EP 1613855B1 EP 04717029 A EP04717029 A EP 04717029A EP 04717029 A EP04717029 A EP 04717029A EP 1613855 B1 EP1613855 B1 EP 1613855B1
Authority
EP
European Patent Office
Prior art keywords
pressure
space
servo valve
fuel injector
sealing seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP04717029A
Other languages
German (de)
French (fr)
Other versions
EP1613855A1 (en
Inventor
Hans-Christoph Magel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1613855A1 publication Critical patent/EP1613855A1/en
Application granted granted Critical
Publication of EP1613855B1 publication Critical patent/EP1613855B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0028Valves characterised by the valve actuating means hydraulic
    • F02M63/0029Valves characterised by the valve actuating means hydraulic using a pilot valve controlling a hydraulic chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/025Injectors structurally combined with fuel-injection pumps characterised by the pump drive hydraulic, e.g. with pressure amplification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/02Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type
    • F02M59/10Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive
    • F02M59/105Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps of reciprocating-piston or reciprocating-cylinder type characterised by the piston-drive hydraulic drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/466Electrically operated valves, e.g. using electromagnetic or piezoelectric operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/20Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift
    • F02M61/205Means specially adapted for varying the spring tension or assisting the spring force to close the injection-valve, e.g. with damping of valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0003Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure
    • F02M63/0005Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure using valves actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0003Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure
    • F02M63/0007Fuel-injection apparatus having a cyclically-operated valve for connecting a pressure source, e.g. constant pressure pump or accumulator, to an injection valve held closed mechanically, e.g. by springs, and automatically opened by fuel pressure using electrically actuated valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/025Hydraulically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure

Definitions

  • the pressure booster device has a pressure booster piston, which is exposed as a stepped piston with pressure surfaces a working space, a differential pressure chamber and a high-pressure chamber.
  • the pressure booster piston and the injection valve member are actuated by a switching valve that drives a hydraulic servo valve piston.
  • the servo valve piston seals a control chamber, a first hydraulic chamber and a second hydraulic chamber by means of a first sealing seat against a low-pressure side return.
  • a formed on the servo valve piston second sealing seat separates in the activated state of the pressure booster connected to the return second hydraulic space from the first hydraulic space connected to the system pressure of the common rail.
  • the servo valve piston is exposed to the high-pressure connected first hydraulic chamber with an end face end face.
  • Another fuel injector with an integrated pressure booster device is off DE 102 18 904 A1 known, which also has a servohydraulisches switching valve for controlling the pressure booster and the Spritzvenfilglieds.
  • the switching valve is driven by a piezoelectric actuator which acts on a valve element via a power transmission piston or coupler piston.
  • the valve element closes by means of a first sealing seat a hydraulic space which is hydraulically brewed with the differential pressure chamber, from a hydraulic control chamber, which in turn is connected to the low pressure / return.
  • a control chamber opposite the second sealing seat separates in the open state of the first sealing seat, the hydraulic space acted upon by the system pressure working space, so that the differential pressure chamber via the control chamber in the return pressure is relieved to activate the pressure booster.
  • WO 2004/003376 A1 a fuel injector with a pressure booster device and with a servohydraulic switching valve, in which the switching valve is a 2/2-way valve that uses a single sealing seat in the deactivated state of the pressure booster separates the connected via the control room with system pressure differential pressure chamber from the system pressure and connects to the return ,
  • DE 101 23 914 A1 relates to a fuel injector for internal combustion engine with a fuel injector which can be supplied by a high-pressure fuel source. Between the fuel injector and the high-pressure fuel source is connected to a movable pressure booster piston having pressure booster.
  • the pressure booster piston separates a connectable to the high-pressure fuel source space from a high-pressure chamber connected to the fuel injector. By filling a backspace of Pressure booster with fuel or by emptying the back space of fuel, the fuel pressure in the high-pressure chamber can be varied.
  • the fuel injector has a movable closing piston for opening and closing injection openings.
  • the closing piston protrudes into a closing pressure chamber, so that the closing piston can be acted upon by fuel pressure in order to achieve a force acting on the closing piston in the closing direction.
  • the closing pressure chamber and the rear space are formed by a common closing pressure-return chamber, with all sub-areas of the closing pressure-return space permanently for replacement connected by fuel.
  • a high-pressure chamber communicates with the high-pressure fuel source in such a way that, apart from pressure oscillations, at least the fuel pressure of the high-pressure fuel source can constantly be present in the high-pressure chamber.
  • the pressure chamber and the high pressure chamber are formed by a common injection space, wherein all portions of the injection chamber are permanently connected to each other for the exchange of fuel.
  • DE 102 294 18.6 refers to a fuel injector for injecting fuel into the combustion chamber of an internal combustion engine.
  • the fuel injection device comprises a high pressure source, a pressure booster and a metering valve.
  • the pressure booster comprises a working space and a control space, which are separated from each other by a piston, wherein a pressure change in the control chamber of the pressure booster causes a pressure change in a compression space.
  • the compression chamber acts on a fuel inlet to a nozzle chamber surrounding an injection valve member.
  • a nozzle control chamber which acts upon the injection valve member can be filled from the compression region both on the high pressure side via a line containing an inlet throttle point and can also be connected to a space of the pressure booster via a line containing an outlet throttle point.
  • the metering valve according to the solution described above is designed as a 3/2-valve, which controls a occurring according to this solution with pressure booster high return flow.
  • a simplified and cost-effective production can be achieved when the metering valve is designed as a 3/2 servo valve, it is disadvantageous to have a leakage gap which sets in the quiescent state of the fuel injector and forms between the control chamber of the servo piston of the servo valve and a return line.
  • the leakage gap effluent actuating fluid deteriorates the system efficiency and requires a large guide length of the sealing gap.
  • a large guide length of the sealing gap in turn pulls a large length of the valve body of the servo valve after what is undesirable in terms of the available installation space, since the smallest possible size of a fuel injector with integrated pressure booster is sought.
  • the proposed design of the inventively proposed servo valve for a fuel injector with pressure booster for direct-injection internal combustion engines has at rest no leakage on the piston of the servo valve.
  • the leakage amount is significantly reduced, whereby the efficiency of the fuel injector can be significantly improved.
  • Due to the selected design of a 3/2-Servovalve required on the servo piston guide lengths can be significantly reduced, whereby the length of the servo valve and the space occupied by this significantly decreases.
  • a very compact servo valve can be realized for controlling a fuel injector having a pressure intensifier.
  • the trained as 3/2 valve servo valve can be designed as a seat-seat valve.
  • the valve is designed with a one-piece servo valve piston and a multi-part valve body.
  • an axial offset of a multi-part servo valve housing can be compensated.
  • the proposed design of the 3/2-Servoventiles as a seat-seat valve, the occurring when using slide seals with small overlap lengths wear and tolerance problems can be avoided.
  • the easy accessibility of the valve seats ensures easy manufacturability.
  • a high-pressure line 2 is acted upon by high-pressure fuel.
  • the high pressure line 2 opens into a working space 5 of a pressure booster 3.
  • the working space 5 is permanently acted upon by the high pressure fuel of the pressure source 1.
  • the working space 5 of the pressure booster 3 is separated by a booster piston 4 from a differential pressure chamber 6 (back space) of the pressure booster 3.
  • the booster piston 4 of the pressure booster 3 is acted upon by a return spring 8, which is supported on a support plate 7, which in turn is received in an injector 19 of the fuel injector 18.
  • a compression chamber 9 of the pressure booster 3 is acted upon.
  • the booster piston 4 comprises, at its end facing the compression space 9, an end face 20 which, upon activation of the pressure booster 3, enters the compression space 9 of the pressure booster 3 and compresses the fuel contained therein.
  • the differential pressure chamber 6 (back space) of the pressure booster 3 is connected via an overflow 10 with an injection valve 14 acting on a control chamber 12 in connection.
  • a first throttle point 11 lying in the flow direction of the fuel in front of the control chamber 12, respectively.
  • the control chamber 12 is for the injection valve member 14 via a second throttle body 15 containing line with the compression chamber 9 of the pressure booster 3 in combination.
  • a spring 13 is received, which acts on the upper end face of the needle-shaped injection valve member 14.
  • the injection valve member 14 comprises a pressure stage, which is enclosed by a nozzle chamber 16 formed in a nozzle body.
  • the volume of fuel entering via a nozzle chamber inlet 17 from the compression chamber 9 into the nozzle chamber 16 flows along an annular gap at the combustion chamber end of the injection valve member 14 injection ports and is injected into the combustion chamber of the internal combustion engine upon release of the injection openings through the needle-shaped injection valve member 14.
  • a servo valve 22 which, in the embodiment variant shown in FIG. 1, has a valve body 26 which comprises a first valve body part 27 and a second valve body part 28.
  • the valve body 26 encloses a servo valve piston 23 with which a first sealing seat 24 and a second sealing seat 25 can be released or closed.
  • a sealing edge 29 is formed on the first valve body component 27, to which a conical surface 33 of the servo valve piston 23 can be made to seal, whereby the second sealing seat 25 is represented.
  • the servo valve piston 23 has a first sealing seat 24 designed here as a flat seat, with which a flow control chamber 35 from which a first return 30 branches off can be released or closed.
  • the fuel volume contained in the control chamber 36 of the servo valve 22 acts on an end face 39 of the servo valve piston 23.
  • the servo valve piston 23 has a mushroom-shaped configured section, the upper side of which is formed by the conical surface 33.
  • the mushroom-shaped portion is bounded on the conical surface 33 opposite side by an annular surface 34.
  • the servovalve piston 23 of the servo valve 22 shown in FIG. 1 is acted on at the end face 39 by the fuel volume contained in the control chamber 36 of the servo valve 22.
  • this is closed, ie, the second sealing seat 25 is opened, while the first sealing seat 24 is closed to the flow control chamber 35.
  • the servo valve piston 23 is guided in the first valve body part 27 of the valve body 26 high pressure-tight with respect to the control chamber 36 and the first hydraulic chamber 37.
  • At this guide area is in the idle state of the servo valve 22 system pressure; ie both the control chamber 36 and the first hydraulic chamber 37 have the same pressure, so that no leakage flow in the direction of the first return 30 occurs.
  • the entire area of the servo valve piston 23 of the servo valve 22 according to the embodiment variant shown in FIG. 1 is under system pressure with respect to the control chamber 36, the first and second hydraulic 37 and 38 and the second sealing seat 25.
  • Figure 2 shows a variant of the first sealing seat of the servo valve, which is designed in this embodiment as a conical sealing seat, while the further sealing seat of the servo valve piston is designed as a slide seal.
  • the servo valve piston 46 in FIG. 2 is provided in the region of its first sealing seat 24 above the flow control space 35 for the first return 30 with a conical surface 40 which has a sealing edge formed above the flow control chamber in a one-piece valve body 41 35 interacts.
  • the servo valve piston 46 of the servo valve 22 according to FIG. 2 has a slide portion 43, which is formed in the same diameter as the piston part of the servo valve piston 46, which separates the control chamber 36 in the first hydraulic chamber 37.
  • the first hydraulic chamber 37 and the control chamber 36 in the one-piece valve body 41 are supplied from the work dream 5 of the pressure booster 3 - analogous to the representation of Figure 1 - with fuel.
  • control chamber 36 and the first hydraulic chamber 37 in the one-piece valve body 41 of the servo valve 22 is at system pressure. Also, according to this embodiment, no leakage current occurs between said hydraulic chambers 36 and 37, respectively. Also according to this embodiment, the entire area of the servo valve piston 46, i. the control chamber 36, the first hydraulic chamber 37 and the second hydraulic chamber 38 and the second sealing seat 25 acted upon by system pressure. If the first sealing seat 24 of the servo valve 22 is closed, leakage does not occur according to this embodiment of the servo valve 22 against the first return 30, which branches off from the outlet control chamber 35.
  • the trained on the servo valve piston 46 slide portion 43 has a slide edge 45 which cooperates with a slide edge 44 on the one-piece valve body 41 of the servo valve 22.
  • first sealing seat 24 shown in FIG. 1 or FIG. 2 as a flat seat (FIG. 1) or as a conical seat (FIG. 2 reference 40) or of the second sealing seat 25 as a conical surface 33 cooperating with a sealing edge 29 or as a slide seal 44
  • 45 combinations of flat seat, conical seat, ball seat or slide edges can be used in any arrangement.
  • spring elements not explicitly shown in FIGS. 1 and 2 can also be used.
  • a two-part servo valve housing 26 including a first valve body portion 27 and a second valve body portion 28 is advantageous. This facilitates the assembly. If the first sealing seat 24 according to the embodiment in FIG. 1 is designed as a flat seat, manufacturing tolerances in the axial offset of the two valve body parts 27 and 28 can be compensated for one another.
  • first sealing seat 24 - formed here as a flat seat - is hired by the prevailing in the control chamber 36 of the servo valve 22 large hydraulic force sealingly against the second valve body part 28, so that a tightness in today achievable manufacturing accuracies for is ensured under very high pressure fuel against the first return 30.
  • the pressure booster 3 - here integrated in the injector 19 of the fuel injector 18 - has the working space 5 and the differential pressure chamber 6 (back space), which are separated from each other by the booster piston 4.
  • the restoring force on the booster piston is applied by a restoring spring 8, which is supported on the support body 7 provided on the injector body side.
  • the end face 20 of the booster piston 4 acts on a compression chamber 9, from which the nozzle chamber inlet 17 branches off to the nozzle chamber 16 in this body of the force injector 8.
  • the differential pressure chamber 6 (back space) of the pressure booster 3 is depressurized.
  • a control of the switching valve 32 which is opened, so that the control chamber 36 of the servo valve 22 is relieved of pressure in the second return 31.
  • the servo valve piston 23 moves upwardly and closes the second sealing seat 25, while in the latter Upward movement of the servo valve piston 23, the first sealing seat 24 opens.
  • the opening degree of the first sealing seat 24 is dimensioned so that a residual pressure in the second hydraulic chamber 38 is maintained even in the open state of the first sealing seat 24. This ensures that the servo valve piston 23 of the servo valve 22 remains in its open position and the second sealing seat 25 is always closed.
  • the differential pressure chamber 6 (back space) of the pressure booster 3 is decoupled from the high pressure accumulator 1 pending high pressure and pressure relief via the Ab Kunststofftechnisch 21, the Ab Kunststoffraum 35 in the first return 30. Due to this, in the compression space 9 of the pressure booster 3, the pressure corresponding to the transmission ratio of the pressure booster 3 increases. About the nozzle space inlet 17 is this translated pressure in the nozzle chamber 16 at. Due to the translated in the nozzle chamber 16 translated pressure, which acts on the compression stage of the injection valve member 14, this opens, whereby the opening into the combustion chamber of the internal combustion engine injection openings are released and the injection process begins. When fully open injection valve member 14, the second throttle point 15 is closed, so that no leakage current occurs during the injection process.
  • the switching valve 32 of the servo valve 22 is closed, whereby 22 system pressure builds up in the control chamber 36 of the servo valve.
  • the system pressure 36 acts on the end face 39 of the servo valve 23 and moves the servo valve piston 23 down to its initial position, whereby the second sealing seat 25 is opened and the first sealing seat 24 to the drain control chamber 35 and the first return 30 is closed again.
  • a pressure build-up in the differential pressure chamber 6 via the second hydraulic chamber 38 and the discharge line 21 takes place via the opened second sealing seat 25. Furthermore, the pressure prevailing in the pressure source 1 builds up over the working chamber 5, the first hydraulic chamber 37, the second hydraulic chamber 38, the diversion line 21, the differential pressure chamber 6 and the overflow line 10 also in the control chamber 12 for the injection valve member 14. As a result, the pressure in the compression chamber 9 and in the nozzle chamber 16, which are hydraulically connected to each other via the nozzle chamber inlet 17, falls. Due to the drop of the translated pressure in the nozzle chamber 16 and the compression chamber 9, the injection valve member 14 is supported by the action of the spring 13 is closed, whereby the injection is terminated.
  • the first and the second sealing seat 24 or 25 may be formed as combinations of flat seat, conical seat, ball seat or slide seats (see illustration according to FIG.
  • the inventively proposed solution of a servo valve 22 without pilot leakage can be used in all fuel injectors with pressure booster 3, which are controlled by a pressure change of the differential pressure chamber 6 (back space).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Technisches GebietTechnical area

Zum Einbringen von Kraftstoff in direkteinspritzende Verbrennungskraftmaschinen werden hubgesteuerte Einspritzsysteme mit Hochdruckspeicherraum eingesetzt. Der Vorteil dieser Einspritzsysteme liegt darin, dass der Einspritzdruck an Last und Drehzahl in weiten Bereichen angepasst werde kann. Zur Reduzierung der Emissionen und zum Erzielen einer hohen spezifischen Leistung ist ein hoher Einspritzdruck erforderlich. Das erreichbare Druckniveau von Hochdruckkraftstoffpumpen ist aus Festigkeitsgründen begrenzt, so dass zur weiteren Drucksteigerung bei Kraftstoffeinspritzsystemen Druckverstärker in den Kraftstoffinjektoren zum Einsatz kommen.For introducing fuel into direct-injection internal combustion engines, stroke-controlled injection systems with high-pressure storage space are used. The advantage of these injection systems is that the injection pressure can be adapted to load and speed in a wide range. To reduce emissions and achieve high specific power, high injection pressure is required. The achievable pressure level of high-pressure fuel pumps is limited for reasons of strength, so that pressure amplifiers in the fuel injectors are used to further increase the pressure in fuel injection systems.

Stand der TechnikState of the art

Aus dem nachveröffentlichten Dokument WO 2004/036027 A1 ist eine Kraftstoffeinspritzeinrichtung mit einem Einspritzventilglied und einer Druckübersetzungseinrichtung bzw. Druckübersetzer bekannt. Die Druckübersetzungseinrichtung weist einen Druckübersetzerkolben auf, der als Stufenkolben mit Druckflächen einem Arbeitsraum, einem Differenzdruckraum und einem Hochdruckraum ausgesetzt ist. Der Druckübersetzerkolben und das Einspritzventilglied werden von einem Schaltventil betätigt, das einen hydraulischen Servoventilkolben ansteuert. Der Servoventilkolben dichtet einen Steuerraum, einen ersten hydraulischen Raum und einen zweiten hydraulischen Raum mittels eines ersten Dichtsitzes gegen einen niederdruckseitigen Rücklauf ab. Ein am Servoventilkolben ausgebildeter zweiter Dichtsitz trennt im aktivierten Zustand des Druckübersetzers den mit dem Rücklauf verbundenen zweiten hydraulischen Raum von dem mit dem Systemdruck des Common-Rails verbundenen ersten hydraulischen Raum ab. Der Servoventilkolben ist dabei dem mit Hochdruck verbundenen ersten hydraulischen Raum mit einer stirnseitigen Endfläche ausgesetzt.From the post-published document WO 2004/036027 A1 a fuel injection device with an injection valve member and a pressure booster or pressure booster is known. The pressure booster device has a pressure booster piston, which is exposed as a stepped piston with pressure surfaces a working space, a differential pressure chamber and a high-pressure chamber. The pressure booster piston and the injection valve member are actuated by a switching valve that drives a hydraulic servo valve piston. The servo valve piston seals a control chamber, a first hydraulic chamber and a second hydraulic chamber by means of a first sealing seat against a low-pressure side return. A formed on the servo valve piston second sealing seat separates in the activated state of the pressure booster connected to the return second hydraulic space from the first hydraulic space connected to the system pressure of the common rail. The servo valve piston is exposed to the high-pressure connected first hydraulic chamber with an end face end face.

Ein weiterer Kraftstoffinjektor mit einer integrierten Druckübersetzungseinrichtung ist aus DE 102 18 904 A1 bekannt, der ebenfalls ein servohydraulisches Schaltventil zum Ansteuern des Druckübersetzers und des Spritzvenfilglieds aufweist. Das Schaltventil wird dabei von einem Piezoaktor angesteuert, der über einen Kraftübertragungskolben bzw. Kopplerkolben auf ein Ventilelement einwirkt. Das Ventilelement schließt dabei mittels eines ersten Dichtsitzes einen hydraulischen Raum, der mit dem Differenzdruckraum hydraulisch verbudnen ist, von einem hydraulischen Steuerraum ab, der wiederum mit dem Niederdruck/Rücklauf verbundenen ist. Ein dem Steuerraum gegenüberliegender zweite Dichtsitz trennt im geöffneten Zustand des ersten Dichtsitzes den hydraulischen Raum vom mit Systemdruck beaufschlagten Arbeitsraum, so dass zum Aktivieren des Druckübersetzers der Differenzdruckraum über den Steuerraum in den Rücklauf druckentlastet ist.Another fuel injector with an integrated pressure booster device is off DE 102 18 904 A1 known, which also has a servohydraulisches switching valve for controlling the pressure booster and the Spritzvenfilglieds. The switching valve is driven by a piezoelectric actuator which acts on a valve element via a power transmission piston or coupler piston. The valve element closes by means of a first sealing seat a hydraulic space which is hydraulically brewed with the differential pressure chamber, from a hydraulic control chamber, which in turn is connected to the low pressure / return. A control chamber opposite the second sealing seat separates in the open state of the first sealing seat, the hydraulic space acted upon by the system pressure working space, so that the differential pressure chamber via the control chamber in the return pressure is relieved to activate the pressure booster.

Aus WO 2004/003376 A1 ein Kraftstoffinjektor mit einer Druckübersetzungseinrichtung und mit einem servohydraulischen Schaltventil bekannt, bei dem das Schaltventil ein 2/2-Wegeventil ist, das mittels eines einzigen Dichtsitzes im deaktivierten Zustand des Druckübersetzers den über den Steuerraum mit Systemdruck verbundenen Differenzdruckraum vom Systemdruck trennt und mit dem Rücklauf verbindet.Out WO 2004/003376 A1 a fuel injector with a pressure booster device and with a servohydraulic switching valve, in which the switching valve is a 2/2-way valve that uses a single sealing seat in the deactivated state of the pressure booster separates the connected via the control room with system pressure differential pressure chamber from the system pressure and connects to the return ,

DE 101 23 914 A1 bezieht sich auf eine Kraftstoffeinspritzeinrichtung für Brennkraftmaschine mit einem von einer Kraftstoffhochdruckquelle versorgbaren Kraftstoffinjektor. Zwischen dem Kraftstoffinjektor und der Kraftstoffhochdruckquelle ist eine einen beweglichen Druckübersetzerkolben aufweisende Druckübersetzungseinrichtung geschaltet. Der Druckübersetzerkolben trennt einen an die Kraftstoffhochdruckquelle anschließbaren Raum von einem mit dem Kraftstoffinjektor verbundenen Hochdruckraum. Durch Befüllen eines Rückraumes der Druckübersetzungseinrichtung mit Kraftstoff beziehungsweise durch Entleeren des Rückraumes von Kraftstoff kann der Kraftstoffdruck im Hochdruckraum variiert werden. Der Kraftstoffinjektor weist einen beweglichen Schließkolben zum Öffnen und Verschließen von Einspritzöffnungen auf. Der Schließkolben ragt in einen Schließdruckraum hinein, so dass der Schließkolben mit Kraftstoffdruck beaufschlagbar ist zur Erzielung einer in Schließrichtung auf den Schließkolben wirkenden Kraft. Der Schließdruckraum und der Rückraum werden durch einen gemeinsamen Schließdruck-Rückraum gebildet, wobei sämtliche Teilbereiche des Schließdruck-Rückraumes permanent zum Austausch von Kraftstoff miteinander verbunden sind. Es ist ein Druckraum zum Versorgen der Einspritzöffnungen mit Kraftstoff und zum Beaufschlagen des Schließkolbens mit einer in Öffnungsrichtung wirkenden Kraft vorgesehen. Ein Hochdruckraum steht derart mit der Kraftstoffhochdruckquelle in Verbindung, dass im Hochdruckraum, abgesehen von Druckschwingungen, ständig zumindest der Kraftstoffdruck der Kraftstoffhochdruckquelle anliegen kann. Der Druckraum und der Hochdruckraum werden durch einen gemeinsamen Einspritzraum gebildet, wobei sämtliche Teilbereiche des Einspritzraumes permanent zum Austausch von Kraftstoff miteinander verbunden sind. DE 101 23 914 A1 relates to a fuel injector for internal combustion engine with a fuel injector which can be supplied by a high-pressure fuel source. Between the fuel injector and the high-pressure fuel source is connected to a movable pressure booster piston having pressure booster. The pressure booster piston separates a connectable to the high-pressure fuel source space from a high-pressure chamber connected to the fuel injector. By filling a backspace of Pressure booster with fuel or by emptying the back space of fuel, the fuel pressure in the high-pressure chamber can be varied. The fuel injector has a movable closing piston for opening and closing injection openings. The closing piston protrudes into a closing pressure chamber, so that the closing piston can be acted upon by fuel pressure in order to achieve a force acting on the closing piston in the closing direction. The closing pressure chamber and the rear space are formed by a common closing pressure-return chamber, with all sub-areas of the closing pressure-return space permanently for replacement connected by fuel. There is provided a pressure space for supplying the injection openings with fuel and for acting on the closing piston with a force acting in the opening direction. A high-pressure chamber communicates with the high-pressure fuel source in such a way that, apart from pressure oscillations, at least the fuel pressure of the high-pressure fuel source can constantly be present in the high-pressure chamber. The pressure chamber and the high pressure chamber are formed by a common injection space, wherein all portions of the injection chamber are permanently connected to each other for the exchange of fuel.

DE 102 294 18.6 bezieht sich auf eine Kraftstoffeinspritzeinrichtung zum Einspritzen von Kraftstoff in den Brennraum einer Verbrennungskraftmaschine. Die Kraftstoffeinspritzeinrichtung umfasst eine Hochdruckquelle, einen Druckübersetzer sowie ein Zumessventil. Der Druckübersetzer umfasst einen Arbeitsraum und einen Steuerraum, die voneinander durch einen Kolben getrennt sind, wobei eine Druckänderung im Steuerraum des Druckübersetzers eine Druckänderung in einem Kompressionsraum bewirkt. Der Kompressionsraum beaufschlagt über einen Kraftstoffzulauf einen ein Einspritzventilglied umgebenden Düsenraum. Ein das Einspritzventilglied beaufschlagender Düsensteuerraum ist sowohl hochdruckseitig über eine eine Zulaufdrosselstelle enthaltende Leitung vom Kompressionsbereich befüllbar als auch ablaufseitig über eine eine Ablaufdrosselstelle enthaltende Leitung mit einem Raum des Druckübersetzers verbindbar. DE 102 294 18.6 refers to a fuel injector for injecting fuel into the combustion chamber of an internal combustion engine. The fuel injection device comprises a high pressure source, a pressure booster and a metering valve. The pressure booster comprises a working space and a control space, which are separated from each other by a piston, wherein a pressure change in the control chamber of the pressure booster causes a pressure change in a compression space. The compression chamber acts on a fuel inlet to a nozzle chamber surrounding an injection valve member. A nozzle control chamber which acts upon the injection valve member can be filled from the compression region both on the high pressure side via a line containing an inlet throttle point and can also be connected to a space of the pressure booster via a line containing an outlet throttle point.

Das Zumessventil gemäß der vorstehend beschriebenen Lösung ist als 3/2-Ventil ausgebildet, welches eine gemäß dieser Lösung mit Druckverstärker auftretende hohe Rücklaufmenge steuert. Bei Ausbildung des Zumessventiles als 3/2-Servoventil lässt sich zwar eine vereinfachte und kostengünstige Fertigung erreichen, nachteilig ist jedoch ein Leckagespalt, der sich im Ruhezustand des Kraftsoffinjektors einstellt und zwischen dem Steuerraum des Servokolbens des Servoventiles und einer Rücklaufleitung ausbildet. Durch den Leckagespalt abfließendes Betätigungsfluid verschlechtert den Systemwirkungsgrad und erfordert eine große Führungslänge des Dichtspaltes. Eine große Führungslänge des Dichtspaltes wiederum zieht eine große Baulänge des Ventilkörpers des Servoventiles nach sich, was hinsichtlich des zur Verfügung stehenden Einbauraumes unerwünscht ist, da eine möglichst kompakte Baugröße eines Kraftstoffinjektors mit integriertem Druckübersetzer angestrebt wird.The metering valve according to the solution described above is designed as a 3/2-valve, which controls a occurring according to this solution with pressure booster high return flow. Although a simplified and cost-effective production can be achieved when the metering valve is designed as a 3/2 servo valve, it is disadvantageous to have a leakage gap which sets in the quiescent state of the fuel injector and forms between the control chamber of the servo piston of the servo valve and a return line. By the leakage gap effluent actuating fluid deteriorates the system efficiency and requires a large guide length of the sealing gap. A large guide length of the sealing gap in turn pulls a large length of the valve body of the servo valve after what is undesirable in terms of the available installation space, since the smallest possible size of a fuel injector with integrated pressure booster is sought.

Darstellung der ErfindungPresentation of the invention

Die vorgeschlagene Bauform des erfindungsgemäß vorgeschlagenen Servoventils für einen Kraftstoffinjektor mit Druckverstärker für direkteinspritzende Verbrennungskraftmaschinen weist im Ruhezustand keine Leckage am Kolben des Servoventiles auf. Dadurch wird die Leckagemenge erheblich reduziert, wodurch sich der Wirkungsgrad des Kraftstoffinjektors erheblich verbessern lässt. Durch die gewählte Bauform eines 3/2-Servoventiles können die am Servokolben erforderlichen Führungslängen erheblich verkleinert werden, wodurch die Baulänge des Servoventiles und der durch dieses beanspruchte Bauraum erheblich abnimmt. Dadurch kann ein sehr kompaktbauendes Servoventil zur Ansteuerung eines einen Druckübersetzer aufweisenden Kraftstoffinjektors realisiert werden.The proposed design of the inventively proposed servo valve for a fuel injector with pressure booster for direct-injection internal combustion engines has at rest no leakage on the piston of the servo valve. As a result, the leakage amount is significantly reduced, whereby the efficiency of the fuel injector can be significantly improved. Due to the selected design of a 3/2-Servovalve required on the servo piston guide lengths can be significantly reduced, whereby the length of the servo valve and the space occupied by this significantly decreases. As a result, a very compact servo valve can be realized for controlling a fuel injector having a pressure intensifier.

Das als 3/2-Ventil ausgebildete Servoventil kann als Sitz-Sitz-Ventil ausgebildet werden. Dazu wird das Ventil mit einem einteiligen Servoventilkolben und einem mehrteiligen Ventilkörper ausgeführt. Bei Ausführung eines Dichtsitzes am Servoventil lässt sich ein Achsversatz eines mehrteilig ausgebildeten Servoventilgehäuses ausgleichen. Durch die vorgeschlagene Bauform des 3/2-Servoventiles als Sitz-Sitz-Ventil können die bei Einsatz von Schieberdichtungen mit kleinen Überdeckungslängen auftretenden Verschleiß- und Toleranzprobleme umgangen werden. Durch die gute Zugänglichkeit der Ventilsitze wird eine einfache Fertigbarkeit erreicht.The trained as 3/2 valve servo valve can be designed as a seat-seat valve. For this purpose, the valve is designed with a one-piece servo valve piston and a multi-part valve body. When executing a sealing seat on the servo valve, an axial offset of a multi-part servo valve housing can be compensated. The proposed design of the 3/2-Servoventiles as a seat-seat valve, the occurring when using slide seals with small overlap lengths wear and tolerance problems can be avoided. The easy accessibility of the valve seats ensures easy manufacturability.

Zeichnungdrawing

Anhand der Zeichnung wird die Erfindung nachstehend eingehender beschrieben.With reference to the drawing, the invention will be described below in more detail.

Es zeigt:

Figur 1
eine Ausführungsvariante eines Servoventiles mit leckagefrei ausgebildetem Servoventilkolben, welches einem Kraftstoffinjektor mit Druckübersetzer zugeordnet ist und
Figur 2
eine weitere konstruktive Ausführungsvariante eines Servoventiles mit einem als Kegelsitz ausgebildeten Dichtsitz und einteiligem Ventilgehäuse.
It shows:
FIG. 1
an embodiment of a servo valve with leak-free trained Servoventilkolben, which is associated with a fuel injector with pressure booster and
FIG. 2
a further constructive embodiment of a servo valve with a conical seat formed as a sealing seat and one-piece valve body.

Ausführungsvariantenvariants

Über eine Druckquelle 1, die als Hochdrucksammelraum einer Kraftstoffeinspritzanlage ausgebildet werden kann, wird eine Hochdruckleitung 2 mit unter hohem Druck stehenden Kraftstoff beaufschlagt. Die Hochdruckleitung 2 mündet in einen Arbeitsraum 5 eines Druckübersetzers 3. Der Arbeitsraum 5 ist permanent mit dem unter hohem Druck stehenden Kraftstoff der Druckquelle 1 beaufschlagt. Der Arbeitsraum 5 des Druckübersetzers 3 ist über einen Übersetzerkolben 4 von einem Differenzdruckraum 6 (Rückraum) des Druckübersetzers 3 getrennt. Der Übersetzerkolben 4 des Druckübersetzers 3 ist über eine Rückstellfeder 8 beaufschlagt, die sich an einer Stützscheibe 7 abstützt, die ihrerseits in einem Injektorkörper 19 des Kraftstoffinjektors 18 aufgenommen ist. Mittels des Übersetzerkolbens 4 des Druckübersetzers 3 wird ein Kompressionsraum 9 des Druckübersetzers 3 beaufschlagt. Der Übersetzerkolben 4 umfasst an seinem dem Kompressionsraum 9 zuweisenden Ende eine Stirnfläche 20, die bei Aktivierung des Druckübersetzers 3 in den Kompressionsraum 9 des Druckübersetzers 3 einfährt und den in diesem enthaltenen Kraftstoff komprimiert.Via a pressure source 1, which can be formed as a high-pressure accumulation chamber of a fuel injection system, a high-pressure line 2 is acted upon by high-pressure fuel. The high pressure line 2 opens into a working space 5 of a pressure booster 3. The working space 5 is permanently acted upon by the high pressure fuel of the pressure source 1. The working space 5 of the pressure booster 3 is separated by a booster piston 4 from a differential pressure chamber 6 (back space) of the pressure booster 3. The booster piston 4 of the pressure booster 3 is acted upon by a return spring 8, which is supported on a support plate 7, which in turn is received in an injector 19 of the fuel injector 18. By means of the booster piston 4 of the pressure booster 3, a compression chamber 9 of the pressure booster 3 is acted upon. The booster piston 4 comprises, at its end facing the compression space 9, an end face 20 which, upon activation of the pressure booster 3, enters the compression space 9 of the pressure booster 3 and compresses the fuel contained therein.

Der Differenzdruckraum 6 (Rückraum) des Druckübersetzers 3 steht über eine Überströmleitung 10 mit einem ein Einspritzventil 14 beaufschlagenden Steuerraum 12 in Verbindung. In der Überströmleitung 10 zwischen dem Differenzdruckraum 6 (Rückraum) und dem Steuerraum 12 für das Einspritzventilglied 14 ist eine erste Drosselstelle 11, in Strömungsrichtung des Kraftstoffes vor dem Steuerraum 12 liegend, angeordnet. Darüber hinaus steht der Steuerraum 12 für das Einspritzventilglied 14 über eine eine zweite Drosselstelle 15 enthaltende Leitung mit dem Kompressionsraum 9 des Druckübersetzers 3 in Verbindung. Innerhalb des Steuerraumes 12 für das Einspritzventilglied 14 ist eine Feder 13 aufgenommen, welche die obere Stirnseite des nadelförmig ausgebildeten Einspritzventilgliedes 14 beaufschlagt. Das Einspritzventilglied 14 umfasst eine Druckstufe, die von einem in einem Düsenkörper ausgebildeten Düsenraum 16 umschlossen ist. Vom Steuerraum 16 strömt das über einen Düsenraumzulauf 17 vom Kompressionsraum 9 in den Düsenraum 16 eintretende Kraftstoffvolumen entlang eines Ringspaltes am brennraumseitigen Ende des Einspritzventilgliedes 14 Einspritzöffnungen zu und wird bei Freigabe der Einspritzöffnungen durch das nadelförmig ausgebildete Einspritzventilglied 14 in den Brennraum der Brennkraftmaschine eingespritzt.The differential pressure chamber 6 (back space) of the pressure booster 3 is connected via an overflow 10 with an injection valve 14 acting on a control chamber 12 in connection. In the overflow line 10 between the differential pressure chamber 6 (back space) and the control chamber 12 for the injection valve member 14 is a first throttle point 11, lying in the flow direction of the fuel in front of the control chamber 12, respectively. In addition, the control chamber 12 is for the injection valve member 14 via a second throttle body 15 containing line with the compression chamber 9 of the pressure booster 3 in combination. Within the control chamber 12 for the injection valve member 14, a spring 13 is received, which acts on the upper end face of the needle-shaped injection valve member 14. The injection valve member 14 comprises a pressure stage, which is enclosed by a nozzle chamber 16 formed in a nozzle body. From the control chamber 16, the volume of fuel entering via a nozzle chamber inlet 17 from the compression chamber 9 into the nozzle chamber 16 flows along an annular gap at the combustion chamber end of the injection valve member 14 injection ports and is injected into the combustion chamber of the internal combustion engine upon release of the injection openings through the needle-shaped injection valve member 14.

Neben der Überströmleitung 10 zweigt vom Differenzdruckraum 6 (Rückraum) des Druckübersetzers eine Absteuerleitung 21 ab. Diese verläuft durch den Injektorkörper 19 des Kraftstoffinjektors 18 und mündet in einem zweiten hydraulischen Raum 38, der oberhalb des Druckübersetzers 3 liegt. Oberhalb des Injektorkörpers 19 des Kraftstoffinjektors 18 befindet sich ein Servoventil 22, welches in der in Figur 1 dargestellten Ausführungsvariante einen Ventilkörper 26 aufweist, der ein erstes Ventilkörperteil 27 sowie ein zweites Ventilkörperteil 28 umfasst. Der Ventilkörper 26 umschließt einen Servoventilkolben 23, mit welchem ein erster Dichtsitz 24 sowie ein zweiter Dichtsitz 25 freigeb- bzw. verschließbar ist. In der Darstellung gemäß Figur 1 ist am ersten Ventilkörperbauteil 27 eine Dichtkante 29 ausgebildet, an welche eine Kegelfläche 33 des Servoventilkolbens 23 dichtend anstellbar ist, wodurch der zweite Dichtsitz 25 dargestellt wird. An dem dem Steuerraum 36 des Servoventiles 22 gegenüberliegenden Ende weist der Servoventilkolben 23 einen hier als Flachsitz ausgebildeten 1. Dichtsitz 24 aus, mit welchem ein Ablaufsteuerraum 35, von dem ein erster Rücklauf 30 abzweigt, freigeb- bzw. verschließbar ist. Die Betätigung des Servoventilkolbens 23 des Servoventiles 22 erfolgt über ein Schaltventil 32, welches einen zweiten Rücklauf 31 zu einem in Figur 1 nicht dargestellten Kraftstoffreservoir freigibt bzw. verschließt. Das im Steuerraum 36 des Servoventiles 22 enthaltene Kraftstoffvolumen beaufschlagt eine Stirnfläche 39 des Servoventilkolbens 23. Die Befüllung sowohl des Steuerraumes 36 als auch eines ersten hydraulischen Raumes 37 im ersten Ventilkörperteil 27 erfolgt über eine Druckleitung, die vom Arbeitsraum 5 des Druckübersetzers 3 abzweigt. Vor der Einmündung dieser Druckleitung in den Steuerraum 36 des Servoventiles 22 ist eine Drosselstelle 47 vorgesehen.In addition to the overflow 10 branches off the differential pressure chamber 6 (back space) of the pressure booster from a Absteuerleitung 21. This runs through the injector 19 of the fuel injector 18 and opens into a second hydraulic chamber 38 above of the pressure booster 3 is located. Above the injector body 19 of the fuel injector 18 is a servo valve 22 which, in the embodiment variant shown in FIG. 1, has a valve body 26 which comprises a first valve body part 27 and a second valve body part 28. The valve body 26 encloses a servo valve piston 23 with which a first sealing seat 24 and a second sealing seat 25 can be released or closed. In the illustration according to FIG. 1, a sealing edge 29 is formed on the first valve body component 27, to which a conical surface 33 of the servo valve piston 23 can be made to seal, whereby the second sealing seat 25 is represented. At the end opposite the control chamber 36 of the servo valve 22, the servo valve piston 23 has a first sealing seat 24 designed here as a flat seat, with which a flow control chamber 35 from which a first return 30 branches off can be released or closed. The actuation of the servo valve piston 23 of the servo valve 22 via a switching valve 32, which releases a second return 31 to a fuel reservoir, not shown in Figure 1 or closes. The fuel volume contained in the control chamber 36 of the servo valve 22 acts on an end face 39 of the servo valve piston 23. The filling of both the control chamber 36 and a first hydraulic chamber 37 in the first valve body part 27 via a pressure line, which branches off from the working space 5 of the pressure booster 3. Before the confluence of this pressure line in the control chamber 36 of the servo valve 22, a throttle point 47 is provided.

Der Servoventilkolben 23 weist in der in Figur 1 dargestellten Ausführungsvariante einen pilzförmig konfigurierten Abschnitt auf, dessen Oberseite durch die Kegelfläche 33 gebildet ist. Der pilzförmige Abschnitt wird auf der der Kegelfläche 33 gegenüberliegenden Seite durch eine Ringfläche 34 begrenzt.In the embodiment variant shown in FIG. 1, the servo valve piston 23 has a mushroom-shaped configured section, the upper side of which is formed by the conical surface 33. The mushroom-shaped portion is bounded on the conical surface 33 opposite side by an annular surface 34.

Der in Figur 1 dargestellte Servoventilkolben 23 des Servoventiles 22 wird an der Stirnfläche 39 durch das im Steuerraum 36 des Servoventiles 22 enthaltene Kraftstoffvolumen beaufschlagt. Im Ruhezustand des Servoventiles 22 ist dieses geschlossen, d.h. der zweite Dichtsitz 25 ist geöffnet, während der erste Dichtsitz 24 zum Ablaufsteuerraum 35 geschlossen ist. Der Servoventilkolben 23 ist im ersten Ventilkörperteil 27 des Ventilkörpers 26 hochdruckdicht geführt bezogen auf den Steuerraum 36 und den ersten hydraulischen Raum 37. An diesem Führungsbereich liegt im Ruhezustand des Servoventiles 22 Systemdruck an; d.h. sowohl der Steuerraum 36 als auch der erste hydraulische Raum 37 weisen gleichen Druck auf, so dass kein Leckagestrom in Richtung auf den ersten Rücklauf 30 auftritt. Der gesamte Bereich des Servoventilkolbens 23 des Servoventiles 22 gemäß der in Figur 1 dargestellten Ausführungsvariante liegt in Bezug auf den Steuerraum 36, den ersten und zweiten hydraulischen 37 bzw. 38 sowie den zweiten Dichtsitz 25 unter Systemdruck.The servovalve piston 23 of the servo valve 22 shown in FIG. 1 is acted on at the end face 39 by the fuel volume contained in the control chamber 36 of the servo valve 22. In the idle state of the servo valve 22, this is closed, ie, the second sealing seat 25 is opened, while the first sealing seat 24 is closed to the flow control chamber 35. The servo valve piston 23 is guided in the first valve body part 27 of the valve body 26 high pressure-tight with respect to the control chamber 36 and the first hydraulic chamber 37. At this guide area is in the idle state of the servo valve 22 system pressure; ie both the control chamber 36 and the first hydraulic chamber 37 have the same pressure, so that no leakage flow in the direction of the first return 30 occurs. The entire area of the servo valve piston 23 of the servo valve 22 according to the embodiment variant shown in FIG. 1 is under system pressure with respect to the control chamber 36, the first and second hydraulic 37 and 38 and the second sealing seat 25.

Aufgrund des geschlossenen ersten Dichtsitzes 24 oberhalb des Ablaufsteuerraumes 35 ist dieses System leckagefrei gegen den ersten Rücklauf 30 abgedichtet.Due to the closed first sealing seat 24 above the drain control space 35, this system is leak-proof sealed against the first return 30.

Figur 2 ist eine Ausführungsvariante des ersten Dichtsitzes des Servoventiles zu entnehmen, der in dieser Ausführungsvariante als Kegeldichtsitz ausgebildet ist, während der weitere Dichtsitz des Servoventilkolbens als Schieberdichtung ausgebildet ist.Figure 2 shows a variant of the first sealing seat of the servo valve, which is designed in this embodiment as a conical sealing seat, while the further sealing seat of the servo valve piston is designed as a slide seal.

Im Unterschied zur in Figur 1 dargestellten Ausführungsvariante des Servoventiles ist der Servoventilkolben 46 gemäß Figur 2 im Bereich seines ersten Dichtsitzes 24 oberhalb des Ablaufsteuerraumes 35 zum ersten Rücklauf 30 mit einer Kegelfläche 40 versehen, welche mit einer in einem einteiligen Ventilkörper 41 ausgebildeten Dichtkante oberhalb des Ablaufsteuerraumes 35 zusammenwirkt. Der Servoventilkolben 46 des Servoventiles 22 gemäß Figur 2 weist einen Schieberabschnitt 43 auf, der im Durchmesser identisch zum Kolbenteil des Servoventilkolbens 46 ausgebildet ist, der den Steuerraum 36 im ersten hydraulischen Raum 37 trennt. Der erste hydraulische Raum 37 sowie der Steuerraum 36 im einteiligen Ventilkörper 41 werden vom Arbeitstraum 5 des Druckübersetzers 3 - analog zur Darstellung gemäß Figur 1 - mit Kraftstoff versorgt. Im Steuerraum 36 und im ersten hydraulischen Raum 37 im einteiligen Ventilkörper 41 des Servoventiles 22 steht Systemdruck an. Auch gemäß dieser Ausführungsvariante tritt kein Leckagestrom zwischen den genannten hydraulischen Räumen 36 bzw. 37 auf. Auch gemäß dieser Ausführungsvariante ist der gesamte Bereich des Servoventilkolbens 46, d.h. der Steuerraum 36, der erste hydraulische Raum 37 sowie der zweite hydraulische Raum 38 sowie der zweite Dichtsitz 25 von Systemdruck beaufschlagt. Ist der erste Dichtsitz 24 des Servoventiles 22 geschlossen, tritt auch gemäß dieser Ausführungsvariante des Servoventiles 22 keine Leckage gegen den ersten Rücklauf 30, der vom Ablaufsteuerraum 35 abzweigt, auf.In contrast to the embodiment variant of the servo valve shown in FIG. 1, the servo valve piston 46 in FIG. 2 is provided in the region of its first sealing seat 24 above the flow control space 35 for the first return 30 with a conical surface 40 which has a sealing edge formed above the flow control chamber in a one-piece valve body 41 35 interacts. The servo valve piston 46 of the servo valve 22 according to FIG. 2 has a slide portion 43, which is formed in the same diameter as the piston part of the servo valve piston 46, which separates the control chamber 36 in the first hydraulic chamber 37. The first hydraulic chamber 37 and the control chamber 36 in the one-piece valve body 41 are supplied from the work dream 5 of the pressure booster 3 - analogous to the representation of Figure 1 - with fuel. In the control chamber 36 and the first hydraulic chamber 37 in the one-piece valve body 41 of the servo valve 22 is at system pressure. Also, according to this embodiment, no leakage current occurs between said hydraulic chambers 36 and 37, respectively. Also according to this embodiment, the entire area of the servo valve piston 46, i. the control chamber 36, the first hydraulic chamber 37 and the second hydraulic chamber 38 and the second sealing seat 25 acted upon by system pressure. If the first sealing seat 24 of the servo valve 22 is closed, leakage does not occur according to this embodiment of the servo valve 22 against the first return 30, which branches off from the outlet control chamber 35.

Der am Servoventilkolben 46 ausgebildete Schieberabschnitt 43 weist eine Schieberkante 45 auf, die mit einer Schieberkante 44 am einteiligen Ventilkörper 41 des Servoventiles 22 zusammenwirkt.The trained on the servo valve piston 46 slide portion 43 has a slide edge 45 which cooperates with a slide edge 44 on the one-piece valve body 41 of the servo valve 22.

Anstelle der in Figur 1 bzw. Figur 2 dargestellten Ausführungsvarianten des ersten Dichtsitzes 24 als Flachsitz (Figur 1) oder als Kegelsitz (Figur 2 Bezugszeichen 40) bzw. des zweiten Dichtsitzes 25 als mit einer Dichtkante 29 zusammenwirkender Kegelfläche 33 bzw. als Schieberdichtung 44, 45 können Kombinationen aus Flachsitz, Kegelsitz, Kugelsitz oder Schieberkanten in beliebiger Anordnung eingesetzt werden. Zur Unterstützung der Hubbewegung des Servoventilkolbens 23 bzw. 46 können auch in den Figuren 1 und 2 nicht explizit dargestellte Federelemente zum Einsatz gelangen.Instead of the embodiment variants of the first sealing seat 24 shown in FIG. 1 or FIG. 2 as a flat seat (FIG. 1) or as a conical seat (FIG. 2 reference 40) or of the second sealing seat 25 as a conical surface 33 cooperating with a sealing edge 29 or as a slide seal 44, 45 combinations of flat seat, conical seat, ball seat or slide edges can be used in any arrangement. To support the lifting movement of the servo valve piston 23 and 46, spring elements not explicitly shown in FIGS. 1 and 2 can also be used.

Gemäß der Darstellung in Figur 1 ist bei Ausbildung des Servoventilkolbens 23 mit einem pilzförmigen Abschnitt, eine Kegelfläche 33 aufweisend, ein zweiteiliges Servoventilgehäuse 26, ein erstes Ventilkörperteil 27 sowie ein zweites Ventilkörperteil 28 umfassend, von Vorteil. Dies erleichtert die Montage. Wird der erste Dichtsitz 24 gemäß der Ausführungsvariante in Figur 1 als Flachsitz ausgebildet, können Fertigungstoleranzen im Achsversatz der beiden Ventilkörperteile 27 bzw. 28 zueinander ausgeglichen werden. Der in der Ausführungsvariante gemäß Figur 1 in seine Schließstellung gestellte erste Dichtsitz 24 - hier als Flachsitz ausgebildet - wird durch die im Steuerraum 36 des Servoventiles 22 herrschende große hydraulische Kraft dichtend an das zweite Ventilkörperteil 28 angestellt, so dass eine Dichtheit bei heute erreichbaren Fertigungsgenauigkeiten für unter sehr hohem Druck stehenden Kraftstoff gegen den ersten Rücklauf 30 gewährleistet ist.As shown in FIG. 1, when the servo valve piston 23 is formed with a mushroom-shaped portion having a conical surface 33, a two-part servo valve housing 26 including a first valve body portion 27 and a second valve body portion 28 is advantageous. This facilitates the assembly. If the first sealing seat 24 according to the embodiment in FIG. 1 is designed as a flat seat, manufacturing tolerances in the axial offset of the two valve body parts 27 and 28 can be compensated for one another. The asked in the embodiment of Figure 1 in its closed position first sealing seat 24 - formed here as a flat seat - is hired by the prevailing in the control chamber 36 of the servo valve 22 large hydraulic force sealingly against the second valve body part 28, so that a tightness in today achievable manufacturing accuracies for is ensured under very high pressure fuel against the first return 30.

Die Funktionsweise des in den Figuren 1 und 2 dargestellten Kraftstoffinjektors mit einem im Ruhezustand leckagefreien Servoventil 22 sei anhand der in Figur 1 dargestellten Ausführungsvariante näher beschrieben:The mode of operation of the fuel injector shown in FIGS. 1 and 2 with a servo valve 22 which is leak-free in idle state will be described in more detail with reference to the embodiment variant shown in FIG.

Der Druckübersetzer 3 - hier in den Injektorkörper 19 des Kraftstoffinjektors 18 integriert - weist den Arbeitsraum 5 sowie den Differenzdruckraum 6 (Rückraum) auf, die voneinander durch den Übersetzerkolben 4 getrennt sind. Die Rückstellkraft auf den Übersetzerkolben wird durch eine Rückstellfeder 8 aufgebracht, die sich an der injektorkörperseitig vorgesehenen Abstützscheibe 7 abstützt. Die Stirnfläche 20 des Übersetzerkolbens 4 beaufschlagt einen Kompressionsraum 9, von welchem der Düsenraumzulauf 17 zum Düsenraum 16 in diesem Körper des Kraftinjektors 8 abzweigt. Im deaktivierten Ruhezustand ist der Differenzdruckraum (Rückraum) des Druckübersetzers über den geöffneten ersten Dichtsitz 25 sowie die vom Arbeitsraum 5 des Druckübersetzers 3 abzweigende, zum ersten hydraulischen Raum 37 sowie zum Steuerraum 36 führende Leitung mit demselben Systemdruck beaufschlagt, unter welchem der Arbeitsraum 5 des Druckübersetzers 3 steht. In diesem Ruhezustand ist der Druckübersetzer 3 druckausgeglichen und es findet keine Druckverstärkung statt.The pressure booster 3 - here integrated in the injector 19 of the fuel injector 18 - has the working space 5 and the differential pressure chamber 6 (back space), which are separated from each other by the booster piston 4. The restoring force on the booster piston is applied by a restoring spring 8, which is supported on the support body 7 provided on the injector body side. The end face 20 of the booster piston 4 acts on a compression chamber 9, from which the nozzle chamber inlet 17 branches off to the nozzle chamber 16 in this body of the force injector 8. In the deactivated state of rest of the differential pressure chamber (back space) of the pressure booster on the open first sealing seat 25 and the branching off from the working space 5 of the pressure booster 3, leading to the first hydraulic chamber 37 and the control chamber 36 line is subjected to the same system pressure, under which the working space 5 of the pressure booster 3 stands. In this state of rest of the pressure booster 3 is pressure balanced and there is no pressure gain instead.

Zur Aktivierung des Druckübersetzers 3 wird der Differenzdruckraum 6 (Rückraum) des Druckübersetzers 3 druckentlastet. Dazu erfolgt eine Ansteuerung des Schaltventiles 32, welches geöffnet wird, so dass der Steuerraum 36 des Servoventiles 22 in den zweiten Rücklauf 31 druckentlastet wird. Aufgrund dessen bewegt sich der Servoventilkolben 23 bedingt durch die im zweiten hydraulischen Raum 38 anstehende Druckkraft, welche an der Ringfläche 34 angreift und die Kegelfläche 33 an die Dichtkante 29 des ersten Ventilkörperteiles 27 anstellt, nach oben und schließt den zweiten Dichtsitz 25, während bei dieser Aufwärtsbewegung des Servoventilkolbens 23 der erste Dichtsitz 24 öffnet. Der Öffnungsgrad des ersten Dichtsitzes 24 ist so bemessen, dass auch im geöffneten Zustand des ersten Dichtsitzes 24 ein Restdruck im zweiten hydraulischen Raum 38 erhalten bleibt. Dadurch ist sichergestellt, dass der Servoventilkolben 23 des Servoventils 22 in seiner geöffneten Stellung verbleibt und der zweite Dichtsitz 25 stets geschlossen ist.To activate the pressure booster 3, the differential pressure chamber 6 (back space) of the pressure booster 3 is depressurized. For this purpose, a control of the switching valve 32, which is opened, so that the control chamber 36 of the servo valve 22 is relieved of pressure in the second return 31. Due to this, due to the pressure force applied in the second hydraulic space 38, which acts on the annular surface 34 and adjusts the conical surface 33 to the sealing edge 29 of the first valve body part 27, the servo valve piston 23 moves upwardly and closes the second sealing seat 25, while in the latter Upward movement of the servo valve piston 23, the first sealing seat 24 opens. The opening degree of the first sealing seat 24 is dimensioned so that a residual pressure in the second hydraulic chamber 38 is maintained even in the open state of the first sealing seat 24. This ensures that the servo valve piston 23 of the servo valve 22 remains in its open position and the second sealing seat 25 is always closed.

Bei geöffnetem ersten Dichtsitz 24 wird der Differenzdruckraum 6 (Rückraum) des Druckübersetzers 3 vom über den Hochdruckspeicher 1 anstehenden Hochdruck abgekoppelt und über die Absteuerleitung 21, den Absteuerraum 35 in den ersten Rücklauf 30 druckentlastet. Aufgrund dessen steigt im Kompressionsraum 9 des Druckübersetzers 3 der Druck entsprechend des Übersetzungsverhältnisses des Druckübersetzers 3 an. Über den Düsenraumzulauf 17 steht dieser übersetzte Druck im Düsenraum 16 an. Aufgrund des im Düsenraum 16 anstehenden übersetzten Druckes, welcher an der Druckstufe des Einspritzventilgliedes 14 angreift, öffnet dieses, wodurch die in den Brennraum der Verbrennungskraftmaschine mündenden Einspritzöffnungen freigegeben werden und der Einspritzvorgang beginnt. Bei vollständig geöffnetem Einspritzventilglied 14 wird die zweite Drosselstelle 15 geschlossen, so dass während des Einspritzvorganges kein Verluststrom auftritt.When the first sealing seat 24 is opened, the differential pressure chamber 6 (back space) of the pressure booster 3 is decoupled from the high pressure accumulator 1 pending high pressure and pressure relief via the Absteuerleitung 21, the Absteuerraum 35 in the first return 30. Due to this, in the compression space 9 of the pressure booster 3, the pressure corresponding to the transmission ratio of the pressure booster 3 increases. About the nozzle space inlet 17 is this translated pressure in the nozzle chamber 16 at. Due to the translated in the nozzle chamber 16 translated pressure, which acts on the compression stage of the injection valve member 14, this opens, whereby the opening into the combustion chamber of the internal combustion engine injection openings are released and the injection process begins. When fully open injection valve member 14, the second throttle point 15 is closed, so that no leakage current occurs during the injection process.

Zur Beendigung des Einspritzvorganges wird das Schaltventil 32 des Servoventiles 22 geschlossen, wodurch sich im Steuerraum 36 des Servoventiles 22 Systemdruck aufbaut. Der Systemdruck 36 wirkt auf die Stirnfläche 39 des Servoventiles 23 und bewegt den Servoventilkolben 23 nach unten in seine Ausgangsstellung, wodurch der zweite Dichtsitz 25 geöffnet und der erste Dichtsitz 24 zum Ablaufsteuerraum 35 und zum ersten Rücklauf 30 wieder verschlossen wird.To complete the injection process, the switching valve 32 of the servo valve 22 is closed, whereby 22 system pressure builds up in the control chamber 36 of the servo valve. The system pressure 36 acts on the end face 39 of the servo valve 23 and moves the servo valve piston 23 down to its initial position, whereby the second sealing seat 25 is opened and the first sealing seat 24 to the drain control chamber 35 and the first return 30 is closed again.

Über den geöffneten zweiten Dichtsitz 25 erfolgt ein Druckaufbau im Differenzdruckraum 6 über den zweiten hydraulischen Raum 38 sowie die Absteuerleitung 21. Ferner baut sich der in der Druckquelle 1 herrschende Druck über den Arbeitsraum 5, den ersten hydraulischen Raum 37, den zweiten hydraulischen Raum 38, die Absteuerleitung 21, den Differenzdruckraum 6 sowie die Überströmleitung 10 auch im Steuerraum 12 für das Einspritzventilglied 14 auf. Dadurch fällt der Druck im Kompressionsraum 9 sowie im Düsenraum 16, die über den Düsenraumzulauf 17 hydraulisch miteinander in Verbindung stehen. Aufgrund des Abfalles des übersetzten Druckes im Düsenraum 16 sowie im Kompressionsraum 9 wird das Einspritzventilglied 14 unterstützt durch die Wirkung der Feder 13 geschlossen, wodurch die Einspritzung beendet wird.A pressure build-up in the differential pressure chamber 6 via the second hydraulic chamber 38 and the discharge line 21 takes place via the opened second sealing seat 25. Furthermore, the pressure prevailing in the pressure source 1 builds up over the working chamber 5, the first hydraulic chamber 37, the second hydraulic chamber 38, the diversion line 21, the differential pressure chamber 6 and the overflow line 10 also in the control chamber 12 for the injection valve member 14. As a result, the pressure in the compression chamber 9 and in the nozzle chamber 16, which are hydraulically connected to each other via the nozzle chamber inlet 17, falls. Due to the drop of the translated pressure in the nozzle chamber 16 and the compression chamber 9, the injection valve member 14 is supported by the action of the spring 13 is closed, whereby the injection is terminated.

Der erste und der zweite Dichtsitz 24 bzw. 25 können als Kombinationen aus Flachsitz, Kegelsitz, Kugelsitz oder Schiebersitzen (vgl. Darstellung gemäß Figur 2) ausgebildet werden.The first and the second sealing seat 24 or 25 may be formed as combinations of flat seat, conical seat, ball seat or slide seats (see illustration according to FIG.

Die erfindungsgemäß vorgeschlagene Lösung eines Servoventiles 22 ohne Führungsleckage kann bei allen Kraftstoffinjektoren mit Druckübersetzern 3 eingesetzt werden, die über eine Druckänderung des Differenzdruckraumes 6 (Rückraum) gesteuert werden.The inventively proposed solution of a servo valve 22 without pilot leakage can be used in all fuel injectors with pressure booster 3, which are controlled by a pressure change of the differential pressure chamber 6 (back space).

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Druckquelle (Hochdruckspeicherraum)Pressure source (high-pressure reservoir)
22
HochdruckleitungHigh-pressure line
33
DruckübersetzerPressure intensifier
44
ÜbersetzerkolbenBooster piston
55
Arbeitsraumworking space
66
Differenzdruckraum (Rückraum)Differential pressure chamber (backspace)
77
Stützscheibesupport disc
88th
RückstellfederReturn spring
99
Kompressionsraumcompression chamber
1010
Überströmleitungoverflow
1111
erste Drosselstellefirst throttle point
1212
Steuerraum EinspritzventilgliedControl chamber injection valve member
1313
Federfeather
1414
EinspritzventilgliedInjection valve member
1515
zweite Drosselstellesecond throttle point
1616
Düsenraumnozzle chamber
1717
DüsenraumzulaufNozzle chamber inlet
1818
Kraftstoffinjektorfuel injector
1919
Injektorkörperinjector
2020
Stirnfläche ÜbersetzerkolbenEnd face of the booster piston
2121
Absteuerleitungdiversion line
2222
Servoventilservo valve
2323
Servoventilkolben (1. Variante)Servo valve piston (1st variant)
2424
erster Dichtsitzfirst sealing seat
2525
zweiter Dichtsitzsecond sealing seat
2626
Ventilkörpervalve body
2727
erstes Ventilkörperteilfirst valve body part
2828
zweites Ventilkörperteilsecond valve body part
2929
Dichtkantesealing edge
3030
erster Rücklauffirst return
3131
zweiter Rücklaufsecond return
3232
Schaltventilswitching valve
3333
Kegelflächeconical surface
3434
Ringflächering surface
3535
Absteuerraumdiversion chamber
3636
Steuerraum ServoventilControl room Servovalve
3737
erster hydraulischer Raumfirst hydraulic room
3838
zweiter hydraulischer Raumsecond hydraulic room
3939
Stirnfläche ServoventilkolbenFace servovalve piston
4040
Kegelflächeconical surface
4141
einteiliger Ventilkörperone-piece valve body
4242
Anschlagattack
4343
Schieberabschnittslide portion
4444
Schieberkante GehäuseSlide edge housing
4545
Schieberkante ServoventilkolbenSlide edge Servo valve piston
4646
Servoventilkolben (2. Variante)Servo valve piston (2nd variant)
4747
Drosselstellerestriction

Claims (11)

  1. Fuel injector (18) for injecting fuel into a combustion chamber of an internal combustion engine, having a pressure booster (3) whose booster piston (4) separates a working space (5), which is acted on permanently with fuel via a pressure source (1, 2), from a differential pressure space (6) which can be relieved of pressure, with a pressure variation in the differential pressure space (6) taking place by means of an actuation of a servo valve (22) whose control space (36) can be relieved of pressure by means of a switching valve (32) and which opens or closes off a hydraulic connection (21, 38, 30) of the differential pressure space (6) to a first low-pressure-side return (30), with a servo valve piston (23, 46) having a first sealing seat (24) which opens or closes off the first return (30), and a second sealing seat (25) which opens or closes off the first hydraulic space (37), and with a high-pressure region, which encompasses the control space (36), a first hydraulic space (37) and a second hydraulic space (38), of the servo valve (22) being sealed off from a low-pressure-side return (30) by means of the first sealing seat (24) in the deactivated state of the pressure booster (3), characterized in that the first sealing seat (24), which opens or closes off the first return (30), is formed on the servo valve piston (23) at the opposite end from the control space (36).
  2. Fuel injector according to Claim 1, characterized in that the actuation of the servo valve (22) takes place by means of the switching valve (32) which connects the control space (36) to a second return (31).
  3. Fuel injector according to Claim 1, characterized in that the control space (36) of the servo valve (22) and the first hydraulic space (37) are connected to a pressure source (1) via the working space (5) of the pressure booster (3).
  4. Fuel injector according to Claim 1, characterized in that the second hydraulic space (38) is connected via a shutoff line (21) to the differential pressure space (6), by means of which shutoff line (21) said differential pressure space (6) can be connected to a first low-pressure-side return (30).
  5. Fuel injector according to Claim 1, characterized in that the first sealing seat (24) is designed as a flat seat or conical seat (40).
  6. Fuel injector according to Claim 1, characterized in that the first sealing seat (24) is designed as a conical seat or slide seal.
  7. Fuel injector according to Claim 1, characterized in that the second sealing seat (25) is designed as a conical seat (29, 33).
  8. Fuel injector according to Claim 1, characterized in that the second sealing seat (25) is provided as a slide seal (43, 44, 45).
  9. Fuel injector according to Claim 4, characterized in that the servo valve piston (23) has a section which is enclosed by the second hydraulic space (38) and which has an annular face (34) against which is applied a residual pressure, which adjusts the servo valve piston (23) into its second sealing seat (25), when the first sealing seat (24) is open.
  10. Fuel injector according to Claim 5, characterized in that the servo valve piston (23) is held with a first sealing seat (24), which is designed as a flat seat, in a valve body (26; 27, 28) which is of two-part design and compensates an axial offset.
  11. Fuel injector according to Claim 1, characterized in that the servo valve piston (23, 46) is of single-part design.
EP04717029A 2003-04-02 2004-03-04 Fuel injector provided with a servo leakage free valve Expired - Fee Related EP1613855B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10315016A DE10315016A1 (en) 2003-04-02 2003-04-02 Fuel injector with a leak-free servo valve
PCT/DE2004/000412 WO2004088121A1 (en) 2003-04-02 2004-03-04 Fuel injector provided with a servo leakage free valve

Publications (2)

Publication Number Publication Date
EP1613855A1 EP1613855A1 (en) 2006-01-11
EP1613855B1 true EP1613855B1 (en) 2007-11-28

Family

ID=33038853

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04717029A Expired - Fee Related EP1613855B1 (en) 2003-04-02 2004-03-04 Fuel injector provided with a servo leakage free valve

Country Status (4)

Country Link
US (1) US7188782B2 (en)
EP (1) EP1613855B1 (en)
DE (2) DE10315016A1 (en)
WO (1) WO2004088121A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI117805B (en) * 2003-06-17 2007-02-28 Waertsilae Finland Oy Arrangement in the fuel supply system
DE102004002088A1 (en) * 2004-01-15 2005-08-04 Robert Bosch Gmbh Pressure-controlled CR injector for fuel injection into combustion chambers of internal combustion engines, in particular diesel engines
DE102004022268A1 (en) * 2004-05-06 2005-12-01 Robert Bosch Gmbh A driving method for influencing the opening speed of a control valve on a fuel injector
JP3994990B2 (en) * 2004-07-21 2007-10-24 株式会社豊田中央研究所 Fuel injection device
DE102004057610A1 (en) * 2004-11-29 2006-06-01 Fev Motorentechnik Gmbh Fuel injection method for e.g. piston internal combustion engine, involves closing and opening injection nozzle by pressure in pressure chamber under movement of locking piece that acts on nozzle by hydraulically-controlled pressure change
JP4286770B2 (en) * 2004-12-02 2009-07-01 株式会社日本自動車部品総合研究所 Control valve and fuel injection valve having the same
DE102006009659A1 (en) * 2005-07-25 2007-02-01 Robert Bosch Gmbh Fuel injection device for internal combustion engine, has valve unit arranged in housing and composed of several parts including control piston and nozzle needle, where piston and needle are coupled to each other via hydraulic coupler
DE102007001363A1 (en) * 2007-01-09 2008-07-10 Robert Bosch Gmbh Injector for injecting fuel into combustion chambers of internal combustion engines
DE102007018040A1 (en) * 2007-04-13 2008-10-16 Robert Bosch Gmbh Fuel injector with integrated pressure booster
US7980224B2 (en) * 2008-02-05 2011-07-19 Caterpillar Inc. Two wire intensified common rail fuel system
ATE546636T1 (en) * 2009-08-26 2012-03-15 Delphi Tech Holding Sarl FUEL INJECTOR
US9500170B2 (en) 2012-10-25 2016-11-22 Picospray, Llc Fuel injection system
US9228550B2 (en) * 2013-03-11 2016-01-05 Stanadyne Llc Common rail injector with regulated pressure chamber
US9291134B2 (en) * 2013-03-11 2016-03-22 Stanadyne Llc Anti-cavitation throttle for injector control valve
EP3455498B1 (en) 2016-05-12 2024-07-03 Briggs & Stratton, LLC Fuel delivery injector
US10947940B2 (en) 2017-03-28 2021-03-16 Briggs & Stratton, Llc Fuel delivery system
WO2020077181A1 (en) 2018-10-12 2020-04-16 Briggs & Stratton Corporation Electronic fuel injection module

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19540155C2 (en) * 1995-10-27 2000-07-13 Daimler Chrysler Ag Servo valve for an injection nozzle
DE19910970A1 (en) * 1999-03-12 2000-09-28 Bosch Gmbh Robert Fuel injector
DE19949848A1 (en) * 1999-10-15 2001-04-19 Bosch Gmbh Robert Pressure converter for fuel injection system includes compensation for hydraulic forces acting between injections on the low pressure side
DE10001828A1 (en) * 2000-01-18 2001-07-19 Fev Motorentech Gmbh Direct-control fuel injection device for combustion engine has valve body with actuator to move it in opening direction to let fuel flow from high pressure channel to connecting channel
DE10015268A1 (en) * 2000-03-28 2001-10-04 Siemens Ag Injector with bypass throttle
DE10040526A1 (en) * 2000-08-18 2002-03-14 Bosch Gmbh Robert Fuel injection system
DE10060089A1 (en) * 2000-12-02 2002-06-20 Bosch Gmbh Robert Fuel injection system
DE10063545C1 (en) * 2000-12-20 2002-08-01 Bosch Gmbh Robert Fuel injection system
DE10218904A1 (en) * 2001-05-17 2002-12-05 Bosch Gmbh Robert Fuel injection system
DE10123914B4 (en) * 2001-05-17 2005-10-20 Bosch Gmbh Robert Fuel injection device with pressure booster device and pressure booster device
DE10141110A1 (en) * 2001-08-22 2003-03-20 Bosch Gmbh Robert Fuel injection device for internal combustion engines
DE10229419A1 (en) * 2002-06-29 2004-01-29 Robert Bosch Gmbh Pressure-translated fuel injector with rapid pressure reduction at the end of injection
DE10229418A1 (en) 2002-06-29 2004-01-29 Robert Bosch Gmbh Device for damping the needle stroke on fuel injectors
DE10247903A1 (en) * 2002-10-14 2004-04-22 Robert Bosch Gmbh Pressure-reinforced fuel injection device for internal combustion engine has central control line acting on pressure transmission piston
DE10315015B4 (en) * 2003-04-02 2005-12-15 Robert Bosch Gmbh Fuel injector with pressure booster and servo valve with optimized control quantity
DE10337574A1 (en) * 2003-08-14 2005-03-10 Bosch Gmbh Robert Fuel injection device for internal combustion engines

Also Published As

Publication number Publication date
WO2004088121A1 (en) 2004-10-14
DE10315016A1 (en) 2004-10-28
US20060011735A1 (en) 2006-01-19
EP1613855A1 (en) 2006-01-11
US7188782B2 (en) 2007-03-13
DE502004005606D1 (en) 2008-01-10

Similar Documents

Publication Publication Date Title
EP1654455B1 (en) Control valve for a fuel injector that contains a pressure intensifier
EP1613856B1 (en) Fuel injector provided with a pressure transmitter controlled by a servo valve
EP1593839B1 (en) Fuel injector for combustion engines with a multi-stage control valve
EP1613855B1 (en) Fuel injector provided with a servo leakage free valve
EP1520096B1 (en) Common rail injection system comprising a variable injector and booster device
EP1654456B1 (en) Fuel injection device for an internal combustion engine
DE10315015B4 (en) Fuel injector with pressure booster and servo valve with optimized control quantity
EP2183476A1 (en) Fuel injection valve with improved tightness on the sealing seat of a pressure-compensated control valve
EP1379775A1 (en) Valve for controlling liquids
DE102007021330A1 (en) Fuel injector for an internal combustion engine with common rail injection system
EP1651862B1 (en) Control valve for a fuel injector comprising a pressure exchanger
EP1910663B1 (en) Fuel injection device for an internal combustion engine using direct fuel injection
EP1651861B1 (en) Control valve with pressure compensation for a fuel injector comprising a pressure intensifier
EP1925812B1 (en) Fuel injector valve for combustion engines
EP1682769B1 (en) Fuel injector with a multipart, directly controlled injection valve element
DE102007021326A1 (en) Pressure boosting system for at least one fuel injector
EP2147206B1 (en) Fuel injector with a magnetic valve
DE102008042227A1 (en) Fuel injector, particularly common rail injector for injecting fuel into combustion chamber of internal-combustion engine, comprises injection valve element, which is adjustable between closing position and opening position
DE10325620A1 (en) Servo-controlled fuel injector with pressure intensifier
DE10066102B4 (en) Control valve for an injection injector
DE102007001365A1 (en) Common rail injector, for injecting e.g. petrol, into combustion chamber of internal combustion engine, has switching chamber connected with low pressure area by connecting channel that is closed and opened by control valve
EP2133552B1 (en) Fuel injector
DE10342567A1 (en) Device for injecting fuel
DE102006026160A1 (en) Fuel injection device e.g. for internal combustion engine, has housing and two coaxial valve elements with outer valve element has outer nozzle needle and external coupler pistons
DE102005040370A1 (en) Pump-nozzle unit for fuel injection system, has control valve interrupting and opening hydraulic connections between pressure chamber and supply line and control chamber and supply line, respectively, in three different switching positions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20061023

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004005606

Country of ref document: DE

Date of ref document: 20080110

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080227

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080829

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090324

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090318

Year of fee payment: 6

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100304

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140523

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004005606

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151001