EP1610911A1 - Heat exchanger and method for treating the surface of said heat exchanger - Google Patents
Heat exchanger and method for treating the surface of said heat exchangerInfo
- Publication number
- EP1610911A1 EP1610911A1 EP04718294A EP04718294A EP1610911A1 EP 1610911 A1 EP1610911 A1 EP 1610911A1 EP 04718294 A EP04718294 A EP 04718294A EP 04718294 A EP04718294 A EP 04718294A EP 1610911 A1 EP1610911 A1 EP 1610911A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat exchanger
- nanoparticles
- exchanger according
- coating
- oxides
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 10
- 239000002105 nanoparticle Substances 0.000 claims abstract description 49
- 230000005660 hydrophilic surface Effects 0.000 claims abstract description 7
- 239000011248 coating agent Substances 0.000 claims description 39
- 238000000576 coating method Methods 0.000 claims description 39
- 125000003545 alkoxy group Chemical group 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 229910052723 transition metal Inorganic materials 0.000 claims description 8
- 150000003624 transition metals Chemical class 0.000 claims description 8
- 239000006185 dispersion Substances 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 7
- 230000000845 anti-microbial effect Effects 0.000 claims description 5
- 239000011230 binding agent Substances 0.000 claims description 5
- 229910052684 Cerium Inorganic materials 0.000 claims description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 4
- 230000002378 acidificating effect Effects 0.000 claims description 4
- -1 alkoxy radicals Chemical class 0.000 claims description 4
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- 150000005840 aryl radicals Chemical class 0.000 claims description 4
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 claims description 4
- 238000007598 dipping method Methods 0.000 claims description 4
- 150000004677 hydrates Chemical class 0.000 claims description 4
- 150000001247 metal acetylides Chemical class 0.000 claims description 4
- 150000004767 nitrides Chemical class 0.000 claims description 4
- 238000005554 pickling Methods 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 238000005507 spraying Methods 0.000 claims description 3
- 239000002270 dispersing agent Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- 235000021110 pickles Nutrition 0.000 claims 2
- 150000002222 fluorine compounds Chemical class 0.000 claims 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229910052726 zirconium Inorganic materials 0.000 description 6
- 239000000243 solution Substances 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 230000001588 bifunctional effect Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Chemical group 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/04—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by preventing the formation of continuous films of condensate on heat-exchange surfaces, e.g. by promoting droplet formation
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/66—Additives characterised by particle size
- C09D7/67—Particle size smaller than 100 nm
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/66—Additives characterised by particle size
- C09D7/68—Particle size between 100-1000 nm
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
Definitions
- the invention relates to a heat exchanger, in particular for a motor vehicle, according to the preamble of claim 1 and a method for • surface treatment of such.
- the drainage of the condensate from the surface can be supported by a hydrophilic configuration of the surface of the heat exchanger, a thin liquid film being formed as a result of the hydrophilicity, which film can flow continuously from the corrugated fin surface.
- This has a so-called self-cleaning effect or rinsing effect, whereby a permanent accumulation of dust and dirt is reduced, and a settlement of microorganisms on the surface of the heat exchanger is avoided can be.
- the corrugated fin surface dries faster. This will maintain or improve the overall performance of the heat exchanger.
- EP 115 40 42 A1 discloses an agent for chemical surface treatment and of heat exchangers, silicate particles with an average diameter of 5 to 1000 nm and polyvinyl alcohol in aqueous solution being applied to the surface of heat exchangers. To pretreat the surface, it is first subjected to acid cleaning and then a conversion layer containing chrome or zirconium is built up. The heat exchanger prepared in this way is connected to the above. coated with hydrophilic chemicals so that the surface treated accordingly has hydrophilic properties.
- a heat exchanger in particular a heat exchanger for a motor vehicle, is provided with a preferably hydrophilic surface coating which contains nanoparticles, coated nanoparticles and / or grafted-on nanoparticles.
- a hydrophilic surface coating ensures that a thin, closed liquid film forms on the surface, which can flow continuously from the corrugated fin surface or from the washers / tubes of the heat exchanger. This results in a self-cleaning effect or rinsing effect, which reduces the permanent accumulation of dust and dirt and prevents microorganisms from settling on the surface of the heat exchanger. Furthermore, the corrugated fin surface dries faster.
- the surface coating in addition to or instead of the hydrophilic effect, has one or more re other beneficial effects, such as an anti-corrosion or anti-corrosion effect.
- the nanoparticles preferably consist approximately of 100% or completely of oxides.
- coated nanoparticles instead of or in addition to oxides, which are provided at least in the core of the coated nanoparticles, other compounds can also be present in the coating.
- the coating of the nanoparticles can include organic and / or inorganic components, as well as antimicrobial organic and / or inorganic components.
- the grafted-on nanoparticles are nanoparticles with a core with or made of oxides, which carry side groups. These side groups are chemically bound to the surface of the nanoparticle core, e.g. over oxygen or nitrogen bridges.
- side groups are chemically bound to the surface of the nanoparticle core, e.g. over oxygen or nitrogen bridges.
- bifunctional compounds e.g. Diamines and / or dialcohols. This allows the surface properties of a nanoparticle to be varied (e.g. hydrophobic, hydrophilic, stabilization in the dispersion or solution).
- a polymer chain with a reactive side chain e.g. contains an OH or COOH or OR group, or a reactive group not reacted in the polymer network, e.g. OH or COOH or OR, onto which nanoparticles are grafted.
- the nanoparticles preferably contain, for the sake of simplicity, to be understood below as meaning coated and / or grafted-on nanoparticles, unless expressly stated otherwise, oxides and / or oxide hydrates and / or nitrides and / or carbides.
- Oxides of the elements of the II and / or the HI main group and / or oxides of germanium, tin, lead, and oxides of the transition metals, preferably of the IV and V subgroup and / or oxides of zinc and / or or oxides of cerium are provided.
- the oxide hydrates, nitrides and carbides preferably consist of elements from the main group II and / or the main group III and / or the main group IV and / or from transition metals, preferably the subgroup IV and V, and / or from zinc and / or from cerium.
- the nanoparticles are preferably in an aqueous dispersion or solution which preferably contains an organic binder and / or in a dispersion or solution based on organic dispersants or solvents which preferably contains an organic binder, or in a sol which is used for a sol -Gel coating can act as a coating material.
- alkoxy compounds of elements of the III main group are preferred, e.g. Aluminum, boron, indium, and / or elements of the main IV group, i.e. e.g. Silicon, tin, and / or from.
- Transition metals preferably the IV subgroup, such as titanium, zirconium, hafnium and / or the V subgroup, such as vanadium, niobium, tantalum, contain.
- alkoxy compounds part of the hydrolyzable alkoxy radicals is preferably replaced by alkyl and / or aryl radicals or a mixture of pure alkoxy compounds and alkoxy compounds which partly contain alkyl and / or aryl radicals is provided.
- These compounds are preferably halogenated, particularly preferably fluorinated.
- the nanoparticles, coated nanoparticles and the grafted-on nanoparticles preferably have an average diameter of 1 to 1000 nm, in particular between 50 and 500 nm.
- the surface coating preferably has antimicrobial components. These can be part of the nanoparticles, for example in the case of grafted or coated nanoparticles, or they can be contained in the remaining part of the surface coating. Such additives improve the antimicrobial effect of the surface coating and prevent a settlement of microorganisms on the surface of the heat exchanger or at least hinder such.
- the surface coating is preferably applied by dipping, flooding or spraying.
- Pre-treatment is preferably carried out by means of acidic or alkaline pickling with subsequent pickling and / or conversion treatment. This pretreatment is also preferably carried out by dipping, flooding or spraying.
- the conversion treatment is used to build up passivation layers that form a very firm bond with the surface, for example by forming mixed oxides. Such a passivation layer prevents corrosion attack, among other things.
- Drying can take place after the pretreatment and a drying process is necessary after the actual surface coating.
- Fig. 1 shows a section through the near-surface area of a
- Fig. 2 shows a section through the area near the surface of a heat exchanger with a coating according to the invention according to a second embodiment.
- this surface coating 2 is formed from a sol that contains nanoparticles 3 made of essentially pure aluminum oxide.
- the nanoparticles 3 have an average diameter of between 10 and 100 nm and are relatively evenly distributed in the entire surface coating 2.
- the sol has alkoxy compounds of aluminum, using a mixture of pure alkoxy compounds and alkoxy compounds in which part of the hydrolyzable alkoxy radicals has been replaced by alkyl radicals.
- the surface coating 2 is applied after surface cleaning with an acidic stain by immersion in a colloidal sol solution in which aluminum oxide nanoparticles are dispersed. A drying process is then carried out.
- a conversion layer 14 is provided between a hydrophilic surface coating 12, which contains nanoparticles 13.
- the conversion layer 14 has, inter alia, mixed oxides of aluminum and zirconium.
- the nanoparticles 13 are so-called grafted nanoparticles which carry side groups.
- the nanoparticles 13 contain an oxide-containing core which is surrounded by bifunctional organic compounds which are chemically bound to the surface of the nanoparticle core.
- the bifunctional organic compounds have, among other things, antimicrobial side groups.
- the actual surface coating 12 consists of an organic matrix which contains an organic binder. This organic matrix is built up from an organic dispersion or solution in which the grafted-on nanoparticles 13 are distributed.
- the oxide-containing core of the grafted-on nanoparticles 13 essentially consists of zirconium dioxide and titanium dioxide.
- the conversion oxide 14 containing mixed oxides of aluminum and zirconium For this purpose, a chemical containing zirconium is applied by means of immersion - and mixed oxides of aluminum and zirconium are formed, so that a very firm bond with the surface is established.
- the surface coating 12 can be applied after a drying process. The surface coating 12 is applied by dipping with a dispersion containing the nanoparticles 13. Another drying process is then carried out.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Paints Or Removers (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Chemically Coating (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10314701 | 2003-03-31 | ||
PCT/EP2004/002337 WO2004087339A1 (en) | 2003-03-31 | 2004-03-08 | Heat exchanger and method for treating the surface of said heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1610911A1 true EP1610911A1 (en) | 2006-01-04 |
EP1610911B1 EP1610911B1 (en) | 2016-05-11 |
Family
ID=32980885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04718294.4A Expired - Lifetime EP1610911B1 (en) | 2003-03-31 | 2004-03-08 | Heat exchanger and method for treating the surface of said heat exchanger |
Country Status (6)
Country | Link |
---|---|
US (1) | US20060191671A1 (en) |
EP (1) | EP1610911B1 (en) |
JP (1) | JP4653731B2 (en) |
CN (1) | CN100457293C (en) |
DE (1) | DE102004011545A1 (en) |
WO (1) | WO2004087339A1 (en) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1630209A1 (en) * | 2004-08-10 | 2006-03-01 | DSM IP Assets B.V. | Coating composition, coating and object coated with the coating composition |
DE102005003543A1 (en) * | 2005-01-26 | 2006-08-03 | Klingenburg Gmbh | Humidity/heat-exchange device e.g. plate heat exchanger, useful for keeping the area at moderate temperature and for air-conditioning the area, comprises humidity/heat exchange surface |
DE102005023771A1 (en) * | 2005-05-19 | 2006-11-23 | R. Scheuchl Gmbh | Heat exchanger has surfaces of walls provided with coating of dirt deflecting particles in nano-range |
DE102005035704A1 (en) * | 2005-07-27 | 2007-02-01 | Behr Gmbh & Co. Kg | To be soldered surface |
DE112006002090B4 (en) * | 2005-08-12 | 2024-03-14 | GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) | Fuel cell component with a coating containing nanoparticles |
DE102005043730A1 (en) * | 2005-09-14 | 2007-03-22 | Behr Gmbh & Co. Kg | Heat exchanger, in particular exhaust gas heat exchanger |
DE102006009116A1 (en) * | 2006-02-24 | 2007-09-06 | Gerhard Heiche Gmbh | Corrosion-resistant substrate and method for its production |
DE102006023375A1 (en) * | 2006-05-17 | 2007-11-22 | Nano-X Gmbh | coating material |
WO2008098069A1 (en) * | 2007-02-06 | 2008-08-14 | Nanodynamics, Inc. | Directed migration of hydrophobic nanomaterials at surfaces |
DE102009013054A1 (en) * | 2009-03-16 | 2010-09-23 | Behr Gmbh & Co. Kg | heat exchangers |
CN102593083B (en) * | 2011-01-18 | 2016-01-20 | 奇鋐科技股份有限公司 | A kind of heat-sink unit and hydrophilic compounds membrane deposition method with hydrophilic compounds film |
DE102011011688A1 (en) * | 2011-02-18 | 2012-08-23 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Coating heat exchanger structure, comprises producing aqueous dispersion of porous sorbent and binding agent, where dispersion is formed on heat exchanger structure or is applied on it, and carrying out film-forming or crosslinking |
US8997840B2 (en) * | 2011-03-11 | 2015-04-07 | Asia Vital Components Co., Ltd. | Heat-dissipating unit having a hydrophilic compound film and method for depositing a hydrophilic compound film |
US8842435B2 (en) | 2012-05-15 | 2014-09-23 | Toyota Motor Engineering & Manufacturing North America, Inc. | Two-phase heat transfer assemblies and power electronics incorporating the same |
JP6064042B2 (en) * | 2013-04-26 | 2017-01-18 | 日本パーカライジング株式会社 | Aqueous hydrophilic surface treatment agent, hydrophilic film and hydrophilic surface treatment method |
FR3013437B1 (en) * | 2013-11-20 | 2015-12-18 | Valeo Systemes Thermiques | COATING FOR HEAT EXCHANGER |
WO2018067679A1 (en) * | 2016-10-04 | 2018-04-12 | 3M Innovative Properties Company | Methods of making and using heat exchangers |
KR101965246B1 (en) * | 2017-07-04 | 2019-04-03 | 김동식 | Enamel coating tube for heat exchanger |
KR101965247B1 (en) * | 2017-07-04 | 2019-04-03 | 조강증 | A spring for absorbing thermal expansion of plate type heat exchanger |
CN108801031B (en) * | 2018-08-22 | 2024-06-04 | 广东万家乐燃气具有限公司 | Enhanced heat exchange tube and heat exchange system |
CN114752234A (en) * | 2021-01-08 | 2022-07-15 | 杭州三花研究院有限公司 | Composite material and preparation method thereof, heat exchanger and heat management system |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59229197A (en) * | 1983-06-08 | 1984-12-22 | Nippon Parkerizing Co Ltd | Surface treatment procedure for aluminum heat exchanger |
DE19816136A1 (en) * | 1998-04-09 | 1999-10-14 | Inst Neue Mat Gemein Gmbh | Nanostructured moldings and layers and their production via stable water-soluble precursors |
JP2000329495A (en) * | 1999-05-21 | 2000-11-30 | Nissan Motor Co Ltd | Heat exchanger for air conditioner and surface treating method therefor |
WO2001042140A1 (en) * | 1999-12-13 | 2001-06-14 | Jonathan Sherman | Nanoparticulate titanium dioxide coatings, and processes for the production and use thereof |
JP3474866B2 (en) * | 2000-05-12 | 2003-12-08 | 日本ペイント株式会社 | Method of hydrophilizing heat exchanger and heat exchanger hydrophilized |
WO2002014774A2 (en) * | 2000-08-17 | 2002-02-21 | Ocean Power Corporation | Heat exchange element with hydrophilic evaporator surface |
US6649138B2 (en) * | 2000-10-13 | 2003-11-18 | Quantum Dot Corporation | Surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media |
AU780675B2 (en) * | 2001-03-27 | 2005-04-07 | Denso Corporation | Hydrophilic modification method and heat exchanger treated thereby |
US7011145B2 (en) * | 2004-07-12 | 2006-03-14 | Industrial Technology Research Institute | Method for enhancing mobility of working fluid in liquid/gas phase heat dissipating device |
-
2004
- 2004-03-08 JP JP2006504577A patent/JP4653731B2/en not_active Expired - Fee Related
- 2004-03-08 US US10/551,181 patent/US20060191671A1/en not_active Abandoned
- 2004-03-08 CN CNB2004800089664A patent/CN100457293C/en not_active Expired - Lifetime
- 2004-03-08 WO PCT/EP2004/002337 patent/WO2004087339A1/en active Application Filing
- 2004-03-08 EP EP04718294.4A patent/EP1610911B1/en not_active Expired - Lifetime
- 2004-03-08 DE DE200410011545 patent/DE102004011545A1/en not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO2004087339A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN100457293C (en) | 2009-02-04 |
WO2004087339A1 (en) | 2004-10-14 |
JP2006522304A (en) | 2006-09-28 |
JP4653731B2 (en) | 2011-03-16 |
EP1610911B1 (en) | 2016-05-11 |
DE102004011545A1 (en) | 2004-10-14 |
CN1767906A (en) | 2006-05-03 |
US20060191671A1 (en) | 2006-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1611407A2 (en) | Heat exchanger and method for treating the surface of said heat exchanger | |
EP1610911A1 (en) | Heat exchanger and method for treating the surface of said heat exchanger | |
DE102008014465B4 (en) | Optimized Ti / Zr passivation agent for metal surfaces and conversion treatment method | |
DE60224565T2 (en) | COATING METHOD FOR FORMING A TITANIUM OXIDE FILM, METHOD FOR FORMING A TITANIUM OXIDE FILM, AND METAL SUBSTRATE COATED WITH TITANIUM OXIDE FILM | |
EP2134797B1 (en) | Biocidal/hydrophobic inner coating of condenser pipes (of industrial turbines and subsidiary cooling cycles) | |
EP1857567B1 (en) | Method of manufacturing a flat steel product coated with a corrosion protection system | |
DE60132514T2 (en) | Process for the preparation of a hydrophilic heat exchanger and heat exchanger produced thereby | |
EP2907894B1 (en) | Method for production of a substrate with a chromium VI free and cobalt-free passivation | |
DE102008043682B4 (en) | Method for coating metallic surfaces with particles, coating produced by this method and use of the substrates coated by this method | |
DE102011053509A1 (en) | Process for coating surfaces and use of articles coated by this process | |
EP2376674B1 (en) | Method for coating metal surfaces with an activating agent prior to phosphating | |
EP2826887B1 (en) | Method for applying an aqueous treatment solution to the surface of a moving steel strip | |
EP2507408A1 (en) | Multi-stage pre-treatment method for metal components having zinc and iron surfaces | |
DE102004026344A1 (en) | Method for producing a hydrophobic coating, device for carrying out the method and substrate having a hydrophobic coating | |
DE7925067U1 (en) | DEVICE WITH A MEANS FOR THE COMPLETE EXCHANGE OF ENERGY | |
EP2215285B1 (en) | Zirconium phosphating of metal components, in particular iron | |
EP2088223A1 (en) | Phosphated sheet metal and method for producing such a sheet metal | |
EP1690058A2 (en) | Heat exchanger | |
EP1659106B1 (en) | Ceramic article having photocatalytically active coating and method for producing the same | |
EP2151481A1 (en) | Aqueous solution and method for coating metallic surfaces and use of modified silicic acids and concentrate compound for preparing an aqueous coating solution | |
DE3420852A1 (en) | METHOD FOR TREATING HEAT EXCHANGER SURFACES | |
EP1476495B1 (en) | Hydrophilic composite material | |
DE10127494A1 (en) | Production of inorganic layers on metallic, enameled and/or glass substrates used as a scratch resistant coating comprises mixing boron nitride with solvent and inorganic binder, applying substrate, drying and sealing | |
WO2008003273A2 (en) | Corrosion-resistant substrate comprising a cr(vi)-free triple-layer coating, and method for the production thereof | |
WO2001079141A1 (en) | Method for imparting a self-cleaning feature to a surface, and an object provided with a surface of this type |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20051031 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20080129 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MAHLE BEHR GMBH & CO. KG |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20151026 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: MAMBER, OLIVER Inventor name: SEDLMEIR, SABINE Inventor name: BOGER, SNJEZANA Inventor name: ENGLERT, PETER Inventor name: FISCHLE, KLAUS |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 798219 Country of ref document: AT Kind code of ref document: T Effective date: 20160515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502004015194 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160912 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502004015194 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
26N | No opposition filed |
Effective date: 20170214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170308 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170308 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170308 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170308 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170331 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170331 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 798219 Country of ref document: AT Kind code of ref document: T Effective date: 20170308 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170308 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20040308 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160511 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160511 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200401 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230525 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 502004015194 Country of ref document: DE |