EP1606792B1 - Verfahren zur analyse der grundfrequenz, verfahren und vorrichtung zur sprachkonversion unter dessen verwendung - Google Patents

Verfahren zur analyse der grundfrequenz, verfahren und vorrichtung zur sprachkonversion unter dessen verwendung Download PDF

Info

Publication number
EP1606792B1
EP1606792B1 EP04716265A EP04716265A EP1606792B1 EP 1606792 B1 EP1606792 B1 EP 1606792B1 EP 04716265 A EP04716265 A EP 04716265A EP 04716265 A EP04716265 A EP 04716265A EP 1606792 B1 EP1606792 B1 EP 1606792B1
Authority
EP
European Patent Office
Prior art keywords
fundamental frequency
spectral
voice
samples
speaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04716265A
Other languages
English (en)
French (fr)
Other versions
EP1606792A1 (de
Inventor
Taoufik En-Najjary
Olivier Rosec
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
France Telecom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom SA filed Critical France Telecom SA
Publication of EP1606792A1 publication Critical patent/EP1606792A1/de
Application granted granted Critical
Publication of EP1606792B1 publication Critical patent/EP1606792B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/90Pitch determination of speech signals
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/003Changing voice quality, e.g. pitch or formants
    • G10L21/007Changing voice quality, e.g. pitch or formants characterised by the process used
    • G10L21/013Adapting to target pitch
    • G10L2021/0135Voice conversion or morphing
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/03Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
    • G10L25/24Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being the cepstrum

Definitions

  • the present invention relates to a method for analyzing fundamental frequency information contained in voice samples, and to a method and system for voice conversion using this analysis method.
  • the production of speech may involve the vibration of the vocal chords, which is manifested by the presence in the speech signal of a periodic fundamental period structure of which the opposite is called fundamental frequency or "pitch".
  • auditory rendering is essential and to obtain an acceptable quality, it is necessary to master the parameters related to the prosody and among these, the fundamental frequency.
  • the process of the invention shown in figure 1 is implemented from a database of voice samples containing natural speech sequences.
  • the method begins with a step 2 of analyzing the samples by grouping them by frame, in order to obtain for each sample frame, information relating to the spectrum and in particular to the spectral envelope and information relating to the fundamental frequency.
  • this analysis step 2 is based on the use of a model of a sound signal in the form of a sum of a harmonic signal with a noise signal according to a commonly called model.
  • HNM Harmonic plus Noise Model
  • the described embodiment is based on a representation of the spectral envelope by the discrete cepstrum.
  • a cepstral representation makes it possible to separate, in the speech signal, the component relative to the vocal tract of the component resulting from the source, corresponding to the vibrations of the vocal cords and characterized by the fundamental frequency.
  • step 2 of analysis comprises a substep 4 of modeling each voice signal frame into a harmonic portion representing the periodic component of the signal, consisting of a sum of L harmonic sinusoids of amplitude A l and of phase ⁇ l , and a noisy part representing the friction noise and the variation of the glottal excitation.
  • h (n) thus represents the harmonic approximation of the signal s (n).
  • Step 2 then comprises a substep 5 of estimation for each frame, of frequency parameters and in particular of the fundamental frequency, for example by means of an autocorrelation method.
  • this HNM analysis delivers the maximum frequency of voicing.
  • this frequency can be set arbitrarily or estimated by other known means.
  • This substep 5 is followed by a substep 6 of synchronized analysis of each frame on its fundamental frequency, which makes it possible to estimate the parameters of the harmonic part as well as the parameters of the noise of the signal.
  • this synchronized analysis corresponds to the determination of the harmonic parameters by minimizing a weighted least squares criterion between the complete signal and its corresponding harmonic decomposition in the described embodiment, with the estimated noise signal.
  • w (n) is the analysis window and T i is the fundamental period of the current frame.
  • the window of analysis is centered around the mark of the fundamental period and has for duration twice this period.
  • the analysis step 2 finally comprises a sub-step 7 for estimating the parameters of the components of the spectral envelope of the signal by using, for example, a regularized discrete cepstrum method and a Bark scale transformation to reproduce most faithfully possible the properties of the human ear.
  • the analysis step 2 delivers, for each n-rank frame of speech signal samples, a scalar denoted x n comprising fundamental frequency information and a vector denoted y n comprising spectrum information in the form of of a sequence of cepstral coefficients.
  • F 0 Avg corresponds to the average of the fundamental frequency values over the entire database analyzed.
  • This normalization makes it possible to modify the scale of the variations of the fundamental frequency scalars in order to make it coherent with the scale of the variations of the cepstral coefficients.
  • the normalization step is followed by a step 20 of determining a model representing the common cepstrum and fundamental frequency characteristics of all samples analyzed.
  • GMM gaussian density mixing model
  • N (z; ⁇ i ; ⁇ i ) is the probability density of the normal law of mean ⁇ i and of covariance matrix ⁇ i and the coefficients ⁇ i are the coefficients of the mixture.
  • the coefficient ⁇ i corresponds to the probability a priori that the random variable z is generated by the ith Gaussian of the mixture.
  • Step 20 then comprises a sub-step 24 for estimating GMM parameters ( ⁇ , ⁇ , ⁇ ) of the density p (z).
  • This estimation can be performed, for example, using a conventional algorithm of the type called "EM” (Expectation - Maximization), corresponding to an iterative method leading to obtaining a maximum likelihood estimator between the speech sample data and the Gaussian mixing model.
  • EM Exctation - Maximization
  • the determination of the initial parameters of the GMM model is obtained using a conventional vector quantization technique.
  • the model determination step 20 thus delivers the parameters of a mixture of Gaussian densities representative of the common characteristics of the spectra, represented by the cepstral coefficients, and fundamental frequencies of the voice samples analyzed.
  • the method then comprises a step 30 of determining, from the model and the voice samples, a prediction function of the fundamental frequency as a function solely of spectrum information provided by the cepstrum of the signal.
  • This prediction function is determined from an estimator of the realization of the fundamental frequency given the cepstrum of the vocal samples, formed in the described embodiment, by the conditional expectation.
  • step 30 comprises a substep 32 for determining the conditional expectation of the fundamental frequency knowing the spectrum information provided by the cepstrum.
  • P i (y) corresponds to the posterior probability that the vector y of cepstre is generated by the i th component of the Gaussian mixture of the model, defined in step 20 by the covariance matrix ⁇ i and the normal law ⁇ i .
  • the determination of the conditional expectation thus makes it possible to obtain the prediction function of the fundamental frequency from the cepstrum information.
  • the estimator implemented during step 30 may be a criterion of maximum a posteriori, called "MAP", and corresponding to the realization of calculating the expectation only for the model that best represents the source vector.
  • MAP maximum a posteriori
  • the analysis method of the invention makes it possible, from the model and the voice samples, to obtain a function of predicting the fundamental frequency as a function solely of the spectrum information provided, in the embodiment of the invention. described by the cepstrum.
  • Such a prediction function then makes it possible to determine the value of the fundamental frequency for a speech signal, solely on the basis of spectrum information of this signal, thus allowing a relevant prediction of the fundamental frequency, especially for sounds that are not in the voice samples analyzed.
  • Voice conversion consists of modifying the voice signal of a reference speaker called “source speaker” so that the signal produced appears to have been spoken by another speaker named “target speaker”.
  • This method is implemented from a database of voice samples uttered by the source speaker and the target speaker.
  • such a method includes a step 50 of determining a transform function of the spectral characteristics of the source speaker's speech samples to make them look like the spectral characteristics of the target speaker's speech samples.
  • this step 50 is based on an HNM-type analysis making it possible to determine the existing relationships between the characteristics of the spectral envelope of the speech signals of the source and target speakers.
  • Step 50 comprises a substep 52 for modeling voice samples according to an HNM model, the sum of harmonic signals and noise.
  • the substep 52 is followed by a substep 54 of alignment between the source and target signals using, for example, a conventional alignment algorithm called "DTW" (in English “Dynamic Time Warping”). .
  • DTW a conventional alignment algorithm
  • Step 50 then comprises a substep 56 for determining a model such as a GMM type model representing the common characteristics of the spectrums of the speech samples of the source and target speakers.
  • a model such as a GMM type model representing the common characteristics of the spectrums of the speech samples of the source and target speakers.
  • a 64-component GMM model and a single vector containing the cepstral parameters of the source and the target are used, so that a spectral transformation function corresponding to an estimator of the source can be defined.
  • the estimator may be formed of a maximum a posteriori criterion.
  • the function thus defined makes it possible to modify the spectral envelope of a speech signal originating from the source speaker in order to make it look like the spectral envelope of the target speaker.
  • the GMM model parameters representing the common spectral characteristics of the source and the target are initialized, for example, using a vector quantization algorithm.
  • the analysis method of the invention is implemented during a step 60 of analyzing only voice samples of the target speaker.
  • the analysis step 60 makes it possible to obtain, for the target speaker, a prediction function of the fundamental frequency as a function solely of spectral information.
  • the conversion method then comprises a step 65 for analyzing a voice signal to be converted pronounced by the source speaker, which signal to be converted is different from the voice signals used during steps 50 and 60.
  • This analysis step 65 is performed, for example, using a decomposition according to the model HNM for delivering spectrum information in the form of cepstral coefficients, fundamental frequency information as well as phase information and maximum frequency of voicing.
  • This step 65 is followed by a step 70 of transforming the spectral characteristics of the voice signal to be converted by the application of the transformation function determined in step 50, to the cepstral coefficients defined in step 65.
  • This step 70 makes it possible in particular to modify the spectral envelope of the voice signal to be converted.
  • each sample frame of the signal to be converted from the source speaker is thus associated with transformed spectral information whose characteristics are similar to the spectral characteristics of the samples of the target speaker.
  • the conversion method then comprises a step 80 of prediction of the fundamental frequency for the voice samples of the source speaker, by the application of the prediction function determined according to the method of the invention during step 60, to the only information transformed spectrals associated with the voice signal to be converted from the source speaker.
  • the voice samples of the source speaker being associated with transformed spectral information whose characteristics are similar. to those of the target speaker, the prediction function defined in step 60 makes it possible to obtain a relevant prediction of the fundamental frequency.
  • the conversion method then comprises a step 90 of synthesizing the output signal produced, in the example described, by an HNM-type synthesis which directly delivers the converted voice signal from the transformed spectral envelope information. provided by step 70, predicted fundamental frequency information from step 80 and phase and maximum voicing frequency information outputted from step 65.
  • the conversion method implementing the analysis method of the invention thus makes it possible to obtain a voice conversion performing spectral modifications as well as a fundamental frequency prediction, so as to obtain good quality auditory rendering. .
  • the efficiency of such a method can be evaluated from identical voice samples spoken by the source speaker and the target speaker.
  • the voice signal spoken by the source speaker is converted using the method as described and the similarity of the converted signal to the signal spoken by the target speaker is evaluated.
  • this resemblance is calculated as a ratio between the acoustic distance separating the converted signal from the target signal and the acoustic distance separating the target signal from the source signal.
  • the ratio obtained for a signal converted using the method of the invention is of the order from 0.3 to 0.5.
  • FIG 3 there is shown a functional block diagram of a voice conversion system implementing the method described with reference to the figure 2 .
  • This system uses as input a database 100 of voice samples uttered by the source speaker and a database 102 containing at least the same voice samples uttered by the target speaker.
  • a module 104 for determining a spectral characteristic transformation function of the source speaker into spectral characteristics of the target speaker.
  • This module 104 is adapted for the implementation of step 50 of the method as described with reference to FIG. figure 2 and thus allows the determination of a transform function of the spectral envelope.
  • the system comprises a module 106 for determining a fundamental frequency prediction function as a function solely of information relating to the spectrum.
  • the module 106 receives for this purpose the voice samples of the only target speaker, contained in the database 102.
  • the module 106 is adapted for the implementation of step 60 of the method described with reference to the figure 2 and corresponding to the analysis method of the invention as described with reference to the figure 1 .
  • the transformation function delivered by the module 104 and the prediction function delivered by the module 106 are stored for later use.
  • the voice conversion system receives as input a voice signal 110 corresponding to a speech signal spoken by the source speaker and intended to be converted.
  • the signal 110 is introduced into a signal analysis module 112, implementing, for example, an HNM type decomposition and making it possible to dissociate spectrum information from the signal 110 in the form of cepstral coefficients and frequency information. fundamental.
  • the module 112 also delivers phase information and maximum frequency of voicing obtained by applying the model HNM.
  • the module 112 thus implements step 65 of the method described above.
  • cepstral coefficients delivered by the module 112 are then introduced into a transformation module 114 adapted to apply the transformation function determined by the module 104.
  • the transformation module 114 implements step 70 of the method described with reference to FIG. figure 2 and delivers transformed cepstral coefficients whose characteristics are similar to the spectral characteristics of the target speaker.
  • the module 114 thus makes a modification of the spectral envelope of the voice signal 110.
  • the transformed cepstral coefficients delivered by the module 114 are then introduced into a fundamental frequency prediction module 116 adapted to implement the prediction function determined by the module 106.
  • the module 116 implements the step 80 of the method described with reference to the figure 2 and outputs predicted fundamental frequency information from only the transformed spectrum information.
  • the system then comprises a synthesis module 118 receiving as input the transformed cepstral coefficients coming from the module 114 and corresponding to the spectral envelope, the predicted fundamental frequency information coming from the module 116, and the phase and maximum frequency information of voicing delivered by the module 112.
  • the module 118 thus implements the step 90 of the method described with reference to the figure 2 and provides a signal 120 corresponding to the source speaker's voice signal 110, but whose spectrum and fundamental frequency characteristics have been modified to be similar to those of the target speaker.
  • the system described can be implemented in various ways and in particular with the aid of a computer program adapted and connected to material means of sound acquisition.
  • the models HNM and GMM can be replaced by other techniques and models known to those skilled in the art, such as for example the so-called Line Spectral Frequencies (LSF), LPC (Linear Predictive Coding) techniques or even parameters relating to the formants.
  • LSF Line Spectral Frequencies
  • LPC Linear Predictive Coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Machine Translation (AREA)

Claims (18)

  1. Verfahren der Analyse von Informationen der Grundfrequenz, die in Sprachproben enthalten sind, dadurch gekennzeichnet, dass es mindestens Folgendes umfasst:
    - einen Schritt (2) der Analyse der in Rahmen gruppierten Sprachproben, um für jeden Probenrahmen eine Spektralhüllendarstellung, die dazu geeignet ist, im Zuge der Stimmumwandlung zwischen zwei Sprechern transformiert zu werden, und die Grundfrequenz zu erhalten;
    - einen Schritt (20) der Bestimmung eines Modells der gemeinsame Dichtefunktion der Spektralhüllendarstellung und der Grundfrequenz aller Proben; und
    - einen Schritt (30) der Bestimmung auf der Grundlage des Modells und der Sprachproben einer Funktion der Vorhersage der Grundfrequenz ausschließlich als Funktion der Spektralhüllendarstellung.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Spektralhüllendarstellung in Form von Cepstralkoeffizienten ausgedrückt ist.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der Schritt der Analyse (2) Folgendes umfasst:
    - einen Unterschritt (4) der Modellierung der Sprachproben gemäß einer Summe eines harmonischen Signals und eines Rauschsignals;
    - einen Unterschritt (5) der Schätzung von Parametern der Frequenz und mindestens der Grundfrequenz der Sprachproben;
    - einen Unterschritt (6) der synchronisierten Analyse eines jeden Probenrahmens auf seiner Grundfrequenz; und
    - einen Unterschritt (7) der Schätzung der Parameter der Spektralhüllendarstellung eines jeden Probenrahmens.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es ferner einen Schritt (10) der Normalisierung der Grundfrequenz eines jeden Probenrahmens in Bezug auf den Mittelwert der Grundfrequenzen der analysierten Proben umfasst.
  5. Verfahren nach einem der vorangegangenen Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Schritt (20) der Bestimmung eines Modells der Bestimmung eines Modells durch Mischen Gaußscher Dichten entspricht.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der Schritt der Bestimmung (20) eines Modells Folgendes umfasst:
    - einen Unterschritt (22) der Bestimmung eines Modells, das einer Mischung Gaußscher Dichten entspricht; und
    - einen Unterschritt (24) der Schätzung der Parameter der Mischung Gaußscher Dichten auf der Grundlage der Maximum-Likelihood-Schätzung zwischen den Spektral- und den Grundfrequenzinformationen der Proben und des Modells.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Schritt (30) der Bestimmung einer Funktion der Vorhersage auf der Grundlage eines Schätzers der Realisation der Grundfrequenz unter Kenntnis der Spektralinformationen der Proben durchgeführt wird.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der Schritt (30) der Bestimmung der Funktion der Vorhersage der Grundfrequenz einen Unterschritt (32) der Bestimmung der bedingten Erwartung der Realisation der Grundfrequenz unter Kenntnis der Spektralinformationen auf der Grundlage der aposteriorischen Wahrscheinlichkeit, dass die Spektralinformationen auf der Grundlage des Modells erhalten werden, umfasst, wobei die bedingte Erwartung den Schätzer bildet.
  9. Verfahren der Umwandlung eines Sprachsignals, das von einem Ausgangssprecher ausgegeben wird, in ein umgewandeltes Sprachsignal, dessen Eigenschaften jenen eines Zielsprechers ähneln, das mindestens Folgendes umfasst:
    - einen Schritt (50) der Bestimmung einer Funktion der Transformation einer Spektralhüllendarstellung des Ausgangssprechers in eine Spektralhüllendarstellung des Zielsprechers, durchgeführt auf der Grundlage von Sprachproben des Ausgangssprechers und des Zielsprechers; und
    - einen Schritt (70) der Transformation der Spektralinformationen des umzuwandelnden Stimmsignals des Ausgangssprechers mithilfe der Funktion der Transformation,
    dadurch gekennzeichnet, dass es ferner Folgendes umfasst:
    - einen Schritt (60) der Bestimmung einer Funktion der Vorhersage der Grundfrequenz ausschließlich als Funktion einer Spektralhüllendarstellung für den Zielsprecher, wobei die Funktion der Vorhersage mithilfe eines Verfahrens der Analyse nach einem der Ansprüche 1 bis 8 erhalten wird; und
    - einen Schritt (80) der Vorhersage der Grundfrequenz des umzuwandelnden Stimmsignals durch Anwenden der Funktion der Vorhersage der Grundfrequenz auf die transformierte Spektralhüllendarstellung des Stimmsignals des Ausgangssprechers.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der Schritt (50) der Bestimmung einer Funktion der Transformation auf der Grundlage eines Schätzers der Realisation der Zielspektraleigenschaften unter Kenntnis der Ausgangsspektraleigenschaften durchgeführt wird.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass der Schritt (50) der Bestimmung einer Funktion der Transformation Folgendes umfasst:
    - einen Unterschritt (52) der Modellierung der Ausgangs- und Zielsprachproben gemäß einem Summenmodell eines harmonischen Signals und eines Rauschsignals;
    - einen Unterschritt (54) des Abgleichs zwischen den Ausgangs- und den Zielproben; und
    - einen Unterschritt (56) der Bestimmung der Funktion der Transformation auf der Grundlage der Berechnung der bedingten Erwartung der Realisation der Zielspektraleigenschaften unter Kenntnis der Ausgangsspektraleigenschaften, wobei die bedingte Erwartung den Schätzer bildet.
  12. Verfahren nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass die Funktion der Transformation eine Funktion der Transformation einer Spektralhüllendarstellung ist.
  13. Verfahren nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass es ferner einen Schritt (65) der Analyse des umzuwandelnden Stimmsignals umfasst, der dazu geeignet ist, die Informationen bezüglich des Spektrums und der Grundfrequenz bereitzustellen.
  14. Verfahren nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, dass es ferner einen Schritt (90) der Synthese umfasst, der mindestens auf der Grundlage der transformierten Spektralinformationen und der vorhergesagten Informationen der Grundfrequenz die Bildung eines umgewandelten Stimmsignals ermöglicht.
  15. System zur Umwandlung eines Sprachsignals (110), das von einem Ausgangssprecher ausgegeben wird, in ein umgewandeltes Sprachsignal (120), dessen Eigenschaften jenen eines Zielsprechers ähneln, wobei das System mindestens Folgendes aufweist:
    - Mittel (104) der Bestimmung einer Funktion der Transformation von Spektraleigenschaften des Ausgangssprechers in Spektraleigenschaften des Zielsprechers, die am Eingang Sprachproben des Ausgangssprechers (100) und des Zielsprechers (102) empfangen; und
    - Mittel (114) der Transformation der Spektralinformationen des umzuwandelnden Stimmsignals (110) des Ausgangssprechers durch Anwenden der Funktion der Transformation, die von den Mitteln (104) bereitgestellt wurde,
    dadurch gekennzeichnet, dass es ferner Folgendes umfasst:
    - Mittel (106) der Bestimmung einer Funktion der Vorhersage der Grundfrequenz ausschließlich als Funktion von Informationen bezüglich des Spektrums für den Zielsprecher, die dazu geeignet sind, ein Verfahren der Analyse nach einem der Ansprüche 1 bis 8 durchzuführen, auf der Grundlage von Sprachproben (102) des Zielsprechers; und
    - Mittel (116) der Vorhersage der Grundfrequenz des umzuwandelnden Stimmsignals (110) durch Anwenden der Funktion der Vorhersage, die von den Mitteln (106) der Bestimmung einer Funktion der Vorhersage bestimmt wurde, auf die Informationen des transformierten Spektrums, die von den Mitteln der Transformation (114) bereitgestellt wurden.
  16. System nach Anspruch 15, dadurch gekennzeichnet, dass es ferner Folgendes umfasst:
    - Mittel (112) der Analyse des umzuwandelnden Stimmsignals (110), die dazu geeignet sind, Informationen bezüglich des Spektrums und der Grundfrequenz des umzuwandelnden Stimmsignals am Ausgang bereitzustellen; und
    - Mittel (118) der Synthese, die mindestens auf der Grundlage der Informationen des transformierten Spektrums, die von den Mitteln (114) bereitgestellt wurden, und der vorhergesagten Informationen der Grundfrequenz, die von den Mitteln (116) bereitgestellt wurden, die Bildung eines umgewandelten Stimmsignals ermöglichen.
  17. System nach einem der Ansprüche 15 oder 16, dadurch gekennzeichnet, dass die Mittel (104) der Bestimmung einer Funktion der Transformation dazu geeignet sind, eine Funktion der Transformation der Spektralhülle bereitzustellen.
  18. System nach einem der Ansprüche 15 bis 17, dadurch gekennzeichnet, dass es dazu geeignet ist, ein Verfahren der Stimmumwandlung nach einem der Ansprüche 9 bis 12 durchzuführen.
EP04716265A 2003-03-27 2004-03-02 Verfahren zur analyse der grundfrequenz, verfahren und vorrichtung zur sprachkonversion unter dessen verwendung Expired - Lifetime EP1606792B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0303790 2003-03-27
FR0303790A FR2853125A1 (fr) 2003-03-27 2003-03-27 Procede d'analyse d'informations de frequence fondamentale et procede et systeme de conversion de voix mettant en oeuvre un tel procede d'analyse.
PCT/FR2004/000483 WO2004088633A1 (fr) 2003-03-27 2004-03-02 Procede d'analyse d'informations de frequence fondamentale et procede et systeme de conversion de voix mettant en oeuvre un tel procede d'analyse

Publications (2)

Publication Number Publication Date
EP1606792A1 EP1606792A1 (de) 2005-12-21
EP1606792B1 true EP1606792B1 (de) 2008-05-14

Family

ID=32947218

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04716265A Expired - Lifetime EP1606792B1 (de) 2003-03-27 2004-03-02 Verfahren zur analyse der grundfrequenz, verfahren und vorrichtung zur sprachkonversion unter dessen verwendung

Country Status (8)

Country Link
US (1) US7643988B2 (de)
EP (1) EP1606792B1 (de)
JP (1) JP4382808B2 (de)
CN (1) CN100583235C (de)
AT (1) ATE395684T1 (de)
DE (1) DE602004013747D1 (de)
FR (1) FR2853125A1 (de)
WO (1) WO2004088633A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4241736B2 (ja) * 2006-01-19 2009-03-18 株式会社東芝 音声処理装置及びその方法
CN101064104B (zh) * 2006-04-24 2011-02-02 中国科学院自动化研究所 基于语音转换的情感语音生成方法
US20080167862A1 (en) * 2007-01-09 2008-07-10 Melodis Corporation Pitch Dependent Speech Recognition Engine
JP4966048B2 (ja) * 2007-02-20 2012-07-04 株式会社東芝 声質変換装置及び音声合成装置
US8131550B2 (en) * 2007-10-04 2012-03-06 Nokia Corporation Method, apparatus and computer program product for providing improved voice conversion
JP4577409B2 (ja) * 2008-06-10 2010-11-10 ソニー株式会社 再生装置、再生方法、プログラム、及び、データ構造
CN102063899B (zh) * 2010-10-27 2012-05-23 南京邮电大学 一种非平行文本条件下的语音转换方法
CN102664003B (zh) * 2012-04-24 2013-12-04 南京邮电大学 基于谐波加噪声模型的残差激励信号合成及语音转换方法
ES2432480B2 (es) * 2012-06-01 2015-02-10 Universidad De Las Palmas De Gran Canaria Método para la evaluación clínica del sistema fonador de pacientes con patologías laríngeas a través de una evaluación acústica de la calidad de la voz
US9570087B2 (en) * 2013-03-15 2017-02-14 Broadcom Corporation Single channel suppression of interfering sources
CN105551501B (zh) * 2016-01-22 2019-03-15 大连民族大学 谐波信号基频估计算法及装置
WO2018138543A1 (en) * 2017-01-24 2018-08-02 Hua Kanru Probabilistic method for fundamental frequency estimation
CN108766450B (zh) * 2018-04-16 2023-02-17 杭州电子科技大学 一种基于谐波冲激分解的语音转换方法
CN108922516B (zh) * 2018-06-29 2020-11-06 北京语言大学 检测调域值的方法和装置
CN111179902B (zh) * 2020-01-06 2022-10-28 厦门快商通科技股份有限公司 基于高斯模型模拟共鸣腔的语音合成方法、设备及介质
CN112750446B (zh) * 2020-12-30 2024-05-24 标贝(青岛)科技有限公司 语音转换方法、装置和系统及存储介质
CN115148225B (zh) * 2021-03-30 2024-09-03 北京猿力未来科技有限公司 语调评分方法、语调评分系统、计算设备及存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993018505A1 (en) * 1992-03-02 1993-09-16 The Walt Disney Company Voice transformation system
ATE277405T1 (de) * 1997-01-27 2004-10-15 Microsoft Corp Stimmumwandlung

Also Published As

Publication number Publication date
EP1606792A1 (de) 2005-12-21
US20060178874A1 (en) 2006-08-10
DE602004013747D1 (de) 2008-06-26
JP2006521576A (ja) 2006-09-21
ATE395684T1 (de) 2008-05-15
JP4382808B2 (ja) 2009-12-16
WO2004088633A1 (fr) 2004-10-14
US7643988B2 (en) 2010-01-05
CN100583235C (zh) 2010-01-20
FR2853125A1 (fr) 2004-10-01
CN1795491A (zh) 2006-06-28

Similar Documents

Publication Publication Date Title
EP1606792B1 (de) Verfahren zur analyse der grundfrequenz, verfahren und vorrichtung zur sprachkonversion unter dessen verwendung
US7765101B2 (en) Voice signal conversation method and system
US7792672B2 (en) Method and system for the quick conversion of a voice signal
Ris et al. Assessing local noise level estimation methods: Application to noise robust ASR
Helander et al. Voice conversion using dynamic kernel partial least squares regression
US9368103B2 (en) Estimation system of spectral envelopes and group delays for sound analysis and synthesis, and audio signal synthesis system
CN107705801B (zh) 语音带宽扩展模型的训练方法及语音带宽扩展方法
McLoughlin Line spectral pairs
Le Cornu et al. Generating intelligible audio speech from visual speech
Milner et al. Prediction of fundamental frequency and voicing from mel-frequency cepstral coefficients for unconstrained speech reconstruction
EP1526508B1 (de) Verfahren zum Auswählen von Syntheseneinheiten
Khonglah et al. Speech enhancement using source information for phoneme recognition of speech with background music
Motlıcek Feature extraction in speech coding and recognition
Radfar et al. Monaural speech segregation based on fusion of source-driven with model-driven techniques
Al-Radhi et al. Continuous vocoder applied in deep neural network based voice conversion
EP1846918B1 (de) Verfahren zur schätzung einer sprachumsetzungsfunktion
Orphanidou et al. Wavelet-based voice morphing
Ou et al. Probabilistic acoustic tube: a probabilistic generative model of speech for speech analysis/synthesis
Garnaik et al. An approach for reducing pitch induced mismatches to detect keywords in children’s speech
Gupta et al. A new framework for artificial bandwidth extension using H∞ filtering
Lee et al. Classification of stop place in consonant-vowel contexts using feature extrapolation of acoustic-phonetic features in telephone speech
Sreehari et al. Automatic short utterance speaker recognition using stationary wavelet coefficients of pitch synchronised LP residual
Grumiaux et al. Efficient bandwidth extension of musical signals using a differentiable harmonic plus noise model
Orphanidou et al. Voice morphing using the generative topographic mapping
Huang et al. Bandwidth-adjusted LPC analysis for robust speech recognition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050921

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: ROSEC, OLIVIER

Inventor name: EN-NAJJARY, TAOUFIK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G10L 21/00 20060101ALN20070817BHEP

Ipc: G10L 11/04 20060101AFI20070817BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602004013747

Country of ref document: DE

Date of ref document: 20080626

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080825

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081014

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080814

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

BERE Be: lapsed

Owner name: FRANCE TELECOM

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160218

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160223

Year of fee payment: 13

Ref country code: FR

Payment date: 20160219

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004013747

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170302

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170302