EP1606584A1 - Gyrolaser a etat solide stabilise - Google Patents

Gyrolaser a etat solide stabilise

Info

Publication number
EP1606584A1
EP1606584A1 EP04722577A EP04722577A EP1606584A1 EP 1606584 A1 EP1606584 A1 EP 1606584A1 EP 04722577 A EP04722577 A EP 04722577A EP 04722577 A EP04722577 A EP 04722577A EP 1606584 A1 EP1606584 A1 EP 1606584A1
Authority
EP
European Patent Office
Prior art keywords
cavity
optical
reciprocal effect
reciprocal
counter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04722577A
Other languages
German (de)
English (en)
Inventor
Sylvain Thales Intellectual Property SCHWARTZ
Gilles Thales Intellectual Property FEUGNET
Jean-Paul Thales Intellectual Property POCHOLLE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1606584A1 publication Critical patent/EP1606584A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/66Ring laser gyrometers
    • G01C19/661Ring laser gyrometers details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0604Crystal lasers or glass lasers in the form of a plate or disc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0606Crystal lasers or glass lasers with polygonal cross-section, e.g. slab, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0619Coatings, e.g. AR, HR, passivation layer
    • H01S3/0621Coatings on the end-faces, e.g. input/output surfaces of the laser light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0627Construction or shape of active medium the resonator being monolithic, e.g. microlaser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08059Constructional details of the reflector, e.g. shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/083Ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/136Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/139Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length

Definitions

  • the field of the invention is that of solid-state gyrolasers used for the measurement of rotational speeds. This type of equipment is used in particular for aeronautical applications.
  • the laser gyrolaser developed around thirty years ago, is widely marketed and used today. Its operating principle is based on the Sagnac effect, which induces a frequency difference ⁇ v between the two optical emission modes propagating in opposite directions, called counter-propagating, of a laser cavity in bidirectional ring animated by a rotational movement. Conventionally, the difference in frequency ⁇ v is equal to:
  • ⁇ v 4A ⁇ ⁇ .L
  • L and A are respectively the length and the area of the cavity
  • is the laser emission wavelength excluding the Sagnac effect
  • is the rotational speed of the assembly.
  • the condition for observing the beat, and therefore for operating the laser gyro is the stability and the relative equality of the intensities emitted in the two directions. Obtaining it is not a priori easy because of the phenomenon of competition between modes, which means that one of the two counter-propagating modes can tend to monopolize the gain available, to the detriment of the other mode.
  • This problem is resolved in conventional gyrolasers by the use of a gaseous amplification medium, generally a mixture of Helium-Neon, operating at ambient temperature.
  • the gain curve of the gas mixture has a Doppler enlargement due to the thermal agitation of the atoms.
  • the only atoms capable of providing gain to a given frequency mode are thus those whose speed induces a Doppler shift of the transition frequency which brings the atom to resonance with the mode in question.
  • the atoms which can contribute to the gain in one of the two directions have opposite speeds to those of the atoms which can contribute to the gain in the opposite direction. Everything therefore happens as if there were two independent amplifying media, one for each direction.
  • the gaseous nature of the amplifying medium is however a source of technical complications during the production of the laser gyro (in particular because of the high purity of gas required) and of premature wear during its use (gas leakage, deterioration of the electrodes, high voltage used to establish population inversion ).
  • a solid state gyrolaser operating in the visible or near infrared using, for example, an amplifying medium based on YAG crystals (Yttrium-Aluminum-Garnet) doped with Neodymium. of the helium-neon gas mixture, the optical pumping then being ensured by laser diodes operating in the near infrared.
  • a semiconductor material, a crystal matrix or a glass doped with ions belonging to the rare earth class (Erbium, Ytterbium ...) can also be used as the amplifying medium. This eliminates, de facto, all the problems inherent in the gaseous state of the amplifying medium.
  • a technical solution consists in attenuating the effects of the competition between counter-propagating modes in a solid state ring laser by introducing into the cavity optical losses dependent on the direction of propagation of the optical mode and its intensity.
  • the principle is to modulate these losses by a slaving device according to the difference in intensity between the two modes emitted in order to favor the weakest mode to the detriment of the other, so as to constantly enslave the intensity of the two counter propagating modes with a common value.
  • FIG. 1 The principle of this servo device is illustrated in FIG. 1. It consists in introducing into a ring cavity 1, consisting of 3 mirrors 11, 12 and 13 and an amplifying medium 19, a cptic assembly arranged on the path of the counter-propagating optical modes 5 and 6, said assembly consisting of a polarizing element 71 and a Faraday effect optical bar 72 surrounded by an induction coil 73. At the exit of the cavity, the two optical modes 5 and 6 are sent on a photodiode of measure 3. A portion of these beams 5 and 6 is taken by means of the two semi-reflective plates 43 and sent to the two photodetectors 42. The signals from these two photodetectors are representative of the light intensity of the two optical modes against propagating 5 and 6.
  • Said signals are sent to an electronic servo module 4, which generates an electric intensity proportional to the difference in light intensity between the two optical modes.
  • This electrical intensity determines the value of the losses inflicted on each of the counter propagating modes 5 and 6. If one of the beams has a light intensity greater than the other, its intensity will be more attenuated, so as to bring the output beams to the same intensity level. This stabilizes the bidirectional intensity regime.
  • a solid state laser gyro can only function, according to this principle, if the parameters of the servo device are adapted to the dynamics of the system. In order for the servo device to give correct results, three conditions must be met:
  • the reaction speed of the servo device must be greater than the speed of variation of the intensities of the modes emitted so that the servo operates satisfactorily. s Finally, the feedback force of the servo device must be sufficient for the effect induced in the cavity to effectively compensate for variations in intensity.
  • dN / df W - (N i) - (a / T ⁇ ) NI E ⁇ e lk + E 2 e ta I 2 or indices 1 and 2 are representative of the two counter-propagating optical modes;
  • is the laser emission frequency excluding the Sagnac effect;
  • Q ⁇ , 2 are the quality factors of the cavity in the two directions of propagation;
  • m ⁇ , 2 are the backscatter coefficients of the cavity in the two directions of propagation;
  • is the cross section of laser emission;
  • I is the length of gain medium crossed;
  • W is the pumping rate
  • Ti is the lifetime of the excited level
  • a saturation parameter, is equal to ⁇ Ti / 8p? ⁇ .
  • the second member of Equation 1 has four terms.
  • the first term corresponds to the variation of the field due to losses of the cavity
  • the second term corresponds to the variation of the field induced by the backscattering from one mode to the other mode in pieence of diffusing elements present inside the cavity
  • the third term corresponds to the variation of the field due to the Sagnac effect
  • the fourth term corresponds to the variation of the field due to the presence of the amplifying medium.
  • This fourth term has two components, the first corresponds to the stimulated emission, the second to the backscatter from one mode to the other mode in the presence of a population inversion network within the amplifying medium.
  • the second member of equation 2 has three terms, the first term corresponds to the change in population inversion density due to optical pumping, the second term corresponds to the change in population inversion density due to l stimulated emission and the third term corresponds to the variation in the population inversion density due to spontaneous emission.
  • the losses introduced by the control devices PA must be of the same order of magnitude as these average losses Pc. These losses are generally in the order of one percent.
  • the response speed of the servo device can be characterized by the bandwidth ⁇ of said servo device.
  • an optical frequency ⁇ of 18.10 14 for a relative pumping rate ⁇ of 10%, an optical frequency ⁇ of 18.10 14 , a quality factor O ⁇ , 2 of 10 7 , a frequency difference ⁇ v of 15 kHz and a lifetime of the excited level
  • the bandwidth ⁇ must be greater than 40 kHz.
  • the parameter q must be greater than 1 / ( ⁇ vT- ⁇ ) 2 for the servo device to function properly.
  • the object of our invention is to provide a stabilizing device for solid state laser gyro, which consists of a servo system inflicting optical losses depending on the direction of propagation based on the combination of three physical effects: rotation reciprocal, non-reciprocal rotation and polarization.
  • the stabilizing device according to the invention makes it possible to obtain the conditions necessary for the proper functioning of the laser gyro.
  • the subject of the invention is a laser gyro comprising at least one ring optical cavity comprising at least three mirrors, an amplifying medium in the solid state and a servo system, the cavity and the amplifying medium being such that two so-called counter-propagating optical modes can propagate in opposite directions to each other inside said optical cavity, the servo system making it possible to maintain quasi-equality d intensity of the two counter-propagating modes, the servo system comprising at least, inside the cavity, an optical assembly comprising a polarizing element, a non-reciprocal effect device acting on the state of polarization of the counter modes - propagating, characterized in that said optical assembly also comprises a reciprocal effect device also acting on the polarization state of the counter-propagating modes, the control system comprising adjustment means making it possible to adjust at least one of the effects of said reciprocal and non-reciprocal devices.
  • Figure 2b shows the general principle of the device for inducing losses dependent on the direction of propagation according to the invention.
  • Figure 3 shows the general diagram of the servo device according to the invention.
  • Figure 4 shows the general principle of the reciprocal effect introduced by a non-planar cavity.
  • Figure 5 shows the general view of a monolithic cavity.
  • Figure 6 shows the general view of a laser gyro comprising a monolithic cavity.
  • Figure 7 shows the block diagram of a non-planar, monolithic cavity.
  • Figures 8a and 8b show the block diagrams of the creation of a variable magnetic field in a monolithic cavity with Faraday effect.
  • Figure 9 shows the block diagram of the creation of a fixed magnetic field in a monolithic Faraday effect cavity.
  • Figure 10 shows the block diagram of a gyrolaser cavity made from optical fibers.
  • FIG. 2b The principle of the combination of a reciprocal optical effect and a non-reciprocal optical effect is illustrated in the example of FIG. 2b in the case where the reciprocal and non-reciprocal effects are simply rotations of the linear polarization.
  • the two diagrams of this figure represent a part of a ring cavity in which two counter-propagating optical beams 5 and 6 can circulate.
  • This cavity comprises, inter alia, an optical assembly consisting of a linear polarizer 71, a first element with reciprocal effect 7 acting on the direction of polarization of the linearly polarized light and a second element with non-reciprocal effect 8 also acting on the direction of polarization of light.
  • the part of the cavity comprising this optical assembly has been shown in line.
  • the indication of the direction of polarization of the optical beams has been represented by an arrow.
  • the first element 7 rotates the polarization of the light by an angle ⁇ in the direct direction and the second element 8 rotates the polarization by an angle ⁇ also in the direct direction.
  • the element 7 can in particular be a half-wave plate whose axis is rotated by an angle of ⁇ / 2 relative to the axis of polarization of the linear polarizer 71.
  • the element 8 can be a Faraday rotator as previously cited. Or a first optical beam 5 linearly polarized by the linear polarizer 71 and passing through successively the first and the second element as illustrated in the diagram at the top of FIG.
  • T ⁇ verse C0S 2 ( ⁇ - ⁇ ).
  • Pirwerse ( ⁇ - ⁇ ) 2 obtained by making a development limited to the second order of the cosine function.
  • the preceding example can be generalized to any combination of reciprocal effect and non-reciprocal effect acting on the state of polarization of light such that said combination can be transformed into variation of light intensity by a polarizing element.
  • different types of components can influence the state of polarization of the optical beams as well as their intensity.
  • Jones matrices This consists in representing the influence of a component on the state of polarization by a 2x2 matrix referenced in a plane perpendicular to the direction of propagation of the beams.
  • the axes of the reference frame chosen correspond to the main axes of an intra-cavity polarizer, which facilitates mathematical representation.
  • the resulting polarization after a full revolution is a linear polarization inclined by an angle ⁇ + ⁇ relative to the polarization axis of the polarizer and the intensity transmission through the polarizer is cos (a + ⁇ ) 2 .
  • FIG. 3 represents the overall diagram of a laser gyro according to the invention. It comprises a ring cavity 1 made up of at least 3 mirrors 11, 12 and 13, an amplifying medium 19 in the solid state and an optical assembly arranged in the path of the counter-propagating optical modes 5 and 6 , said assembly consisting of a polarizing element 71, a device 7 with reciprocal effect acting on the state of polarization of the counter-propagating modes and a device 8 with non-reciprocal effect also acting on the state of polarization of the modes counter-propagating, at least one of the effects of said devices being adjustable.
  • the two optical modes 5 and 6 are sent to a measuring photodiode 3.
  • a portion of these beams 5 and 6 is taken by means of the two semi-reflecting plates 43 and sent to the two photodetectors 42.
  • the signals from these two photodetectors are representative of the light intensity of the two counter-propagating optical modes 5 and 6.
  • Said signals are sent to an electronic servo module 4 which controls, as a function of the intensity of the signals received, the variable effect device (dotted arrows in the diagram). This will result in variations in the polarization states of the two counter propagating beams. These variations in polarization state thus lead to different optical losses on the counter-propagating optical modes 5 and 6 each time after having completed a complete rotation the modes again pass through the polarizing element 71. These losses are a function of the intensity of the output beams. If one of the beams has a higher light intensity than the other, its intensity will be more attenuated, so as to bring the output beams to the same level of intensity. This stabilizes the bidirectional intensity regime.
  • the polarizing element can in particular be a linear polarizer. It can also be obtained by treatment on one of the mirrors of the cavity. he is also possible to use the properties of the reflection on the interface between two media of different indices, for example by placing in the cavity a glass slide inclined at the Brewster angle relative to the direction of propagation of modes 5 and 6 or by cutting at the Brewster incidence on one side of one of the elements present in the cavity (in particular the amplifying medium or the non-reciprocal effect device).
  • a non-planar cavity Either a cavity 1 comprising at least four mirrors 11, 12, 13 and 14, it is possible to arrange them, as indicated in FIG. 4a, so that the counter-propagating beams propagate in a plane (plane (X, Y) of Figure 4a). In this case, the cavity does not induce reciprocal rotation on the modes which propagate there. It is also possible to arrange them so that the counter-propagating beams no longer propagate in a plane, as indicated, for example, in FIG.
  • the reciprocal rotation angle a is equal to the angle formed by the two axes of the polarizing elements.
  • this blade is a blade half-wave
  • the angle of rotation a is then twice the angle formed by the axis of the half-wave plate with that of the polarizing element.
  • this half-wave plate can be made integral with one of the mirrors of the cavity, so as to simplify the production of the device.
  • Pockels cells whose phase shift is modified by changing the applied voltage (typically 1 kV so that the phase shift obtained is equal to p / 2).
  • These cells made up of KDP or Lithium Niobate, for example, are identical to those used to trigger a laser. They have thicknesses of one to two centimeters and zero insertion losses.
  • magneto-optical devices for example with Faraday effect
  • These Faraday effect elements can in particular be produced directly on the mirrors of the cavity by means of layers of magneto-optical material. If one wishes to obtain a fixed non-reciprocal effect, it suffices to produce a permanent magnetic field by means of magnetic circuits based on magnets. If you want to achieve a non reciprocal variable, it then suffices to create a variable magnetic field, for example, by means of an induction coil surrounding the Faraday effect material.
  • Neodymium-YAG which is used as an amplifying medium for lasers operating in the near infrared, is capable of generating enough Faraday effect to be used as such.
  • Vernet constant is worth approximately 103T 1 m "1 , which is sufficient to induce Faraday rotations of the order of a degree for a thickness crossed not exceeding a few centimeters in the presence of a magnetic field less than Tesla.
  • a solid state laser according to the invention is produced from a monolithic cavity as indicated in FIG. 5. This configuration has several advantages.
  • the cavity can then be produced directly in the material serving as an amplifying medium.
  • the faces of the cavity can be used as mirrors of the cavity or as support faces of the mirrors of the cavity, which facilitates the production operations and ensures greater geometric stability and better resistance to thermal and vibratory environments.
  • Figure 6 shows an embodiment of a laser gyro according to the invention using a cavity of this type.
  • the mirrors 1 1, 12 and 13 are directly deposited on the faces of the monolithic cavity.
  • the material 19 of the cavity also serves as an amplifying medium.
  • This material is in particular based on Neodymium-YAG (Yttrium - Aluminum - Garnet).
  • the optical pumping is carried out by means of a laser diode 2 whose beam 22 is focused inside the amplifying medium by means of a lens 21.
  • the monolithic cavity may also not be planar as indicated in FIG. 7.
  • the reciprocal effect is thus obtained directly by the very shape of the cavity.
  • the cavity is a thick strip having two plane and parallel faces 195 and 196 between them and four inclined side faces 191, 192, 193 and 194.
  • the general shape of the blade is that of a truncated corner.
  • the inclination of the lateral faces is chosen so that the light beams travel through the cavity in a broken diamond as shown in FIG. 7.
  • One of the other advantages of the monolithic cavity is to use the amplifying medium 19 as the Faraday effect medium.
  • a variable magnetic field is obtained by surrounding the monolithic cavity with an induction coil 73 as illustrated in FIG. 8a. It is also possible, in order to improve the efficiency of the Faraday effect, to surround only part of the cavity with one or more induction coils as illustrated in FIG. 8b, so that the field magnetic is always parallel to the direction of propagation. In this case, the cavity must be drilled to let pass the electrical wires constituting the induction coils.
  • a fixed magnetic field can be obtained by placing permanent magnets 74 on the monolithic cavity as illustrated in FIG. 9.
  • FIG. 10 illustrates this principle.
  • the cavity essentially comprises an optical fiber 100 in a ring, the optical fiber possibly being partially doped to act as an amplifying medium. All fiber geometries can be envisaged: single-core, double-core (to facilitate coupling of the optical pumping beam), polarization maintenance.
  • Y couplers 101 make it possible to extract the two counter-propagating beams 5 and 6.
  • a third coupler 101 makes it possible to inject the pump optical beam 102 into the optical fiber.
  • the optical pumping is carried out, for example, by a pump laser diode, not shown in FIG. 10.
  • the reciprocal optical effect can be easily obtained, for example by applying local mechanical deformations to the fiber, symbolized by the rectangle 7
  • Non-reciprocal effects can also be obtained by Faraday effect, symbolized by the rectangle 8.
  • These insulators include non-reciprocal elements which rotate the direction of polarization of linearly polarized light by 45 °.
  • These insulators can be modified to introduce a different non-reciprocal rotation by modifying either their geometric characteristics or the magnetic fields which are applied to them.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Lasers (AREA)
  • Gyroscopes (AREA)

Abstract

Un des problèmes majeurs inhérents aux gyrolasers à état solide est que leur cavité optique est par nature fortement instable. Pour réduire cette instabilité, l'invention propose d'introduire dans la cavité (1) des pertes optiques contrôlées dépendantes du sens de propagation par la mise en place d'un ensemble optique comprenant un élément à effet réciproque (7) agissant sur la polarisation de l'onde et un second élément à effet non réciproque (8) agissant également sur la polarisation de l'onde, au moins l'un de ces deux effets étant variable, et d'asservir électroniquement ces pertes à la différence d'intensité entre les modes contre-propageants. Plusieurs dispositifs sont décrits mettant en oeuvre soit des effets réciproques fixes associés à des effets non réciproques variables, soit l'inverse. Ces dispositifs s'appliquent notamment aux lasers à cavités monolithiques et, en particulier, aux lasers de type Néodyme-YAG ainsi qu'aux lasers à cavités fibrées.

Description

GYROLASER A ETAT SOLIDE STABILISE
Le domaine de l'invention est celui des gyrolasers à état solide utilisés pour la mesure des vitesses de rotation. Ce type d'équipement est notamment utilisé pour les applications aéronautiques.
Le gyrolaser, mis au point il y a une trentaine d'années, est largement commercialisé et utilisé de nos jours. Son principe de fonctionnement est fondé sur l'effet Sagnac, qui induit une différence de fréquence Δv entre les deux modes optiques d'émission se propageant en sens opposé, dits contre-propageants, d'une cavité laser en anneau bidirectionnelle animée d'un mouvement de rotation. Classiquement, la différence de fréquence Δv est égale à :
Δv = 4AΩ Λ.L où L et A sont respectivement la longueur et l'aire de la cavité ; λ est la longueur d'onde d'émission laser hors effet Sagnac ; Ω est la vitesse de rotation de l'ensemble.
La mesure de Δv obtenue par analyse spectrale du battement des deux faisceaux émis permet de connaître la valeur de Ω avec une très grande précision.
On démontre également que le gyrolaser ne fonctionne correctement qu'au-delà d'une certaine vitesse de rotation nécessaire pour diminuer l'influence du couplage entre modes. La plage de vitesse de rotation située en deçà de cette limite est appelée classiquement zone aveugle.
La condition d'observation du battement, et donc de fonctionnement du gyrolaser, est la stabilité et la relative égalité des intensités émises dans les deux directions. Son obtention n'est pas a priori chose aisée en raison du phénomène de compétition entre modes, qui fait que l'un des deux modes contre-propageants peut avoir tendance à monopoliser le gain disponible, au détriment de l'autre mode. Ce problème est résolu dans les gyrolasers usuels par l'utilisation d'un milieu d'amplification gazeux, généralement un mélange d'Hélium-Néon, fonctionnant à température ambiante. La courbe de gain du mélange gazeux présente un élargissement Doppler dû à l'agitation thermique des atomes. Les seuls atomes susceptibles de fournir du gain à un mode de fréquence donnée sont ainsi ceux dont la vitesse induit un décalage Doppler de la fréquence de transition qui amène l'atome à résonance avec le mode en question. En forçant l'émission laser à avoir lieu ailleurs qu'au centre de la courbe de gain (par ajustement piézoélectrique de la longueur du chemin optique), on s'assure que les atomes à résonance avec la cavité ont une vitesse non nulle. Ainsi, les atomes pouvant contribuer au gain dans l'une des deux directions ont des vitesses opposées à celles des atomes pouvant contribuer au gain dans la direction opposée. Tout se passe donc comme s'il y avait deux milieux amplificateurs indépendants, un pour chaque direction. La compétition entre les modes ayant ainsi disparu, on obtient une émission bidirectionnelle stable et équilibrée (en pratique, pour pallier d'autres problèmes, on utilise un mélange de deux isotopes différents du Néon).
Le caractère gazeux du milieu amplificateur est toutefois une source de complications techniques lors de la réalisation du gyrolaser (notamment en raison de la grande pureté de gaz requise) et d'usure prématurée lors de son utilisation (fuite de gaz, détérioration des électrodes, haute tension utilisées pour établir l'inversion de population...).
Actuellement, il est possible de réaliser un gyrolaser à état solide fonctionnant dans le visible ou le proche infra-rouge en utilisant, par exemple, un milieu amplificateur à base de cristaux de YAG (Yttrium- Aluminium-Grenat) dopé au Néodyme à la place du mélange gazeux Hélium- Néon, le pompage optique étant alors assuré par des diodes laser fonctionnant dans le proche infra-rouge. On peut également utiliser comme milieu amplificateur un matériau semi -conducteur, une matrice cristalline ou un verre dopé avec des ions appartenant à la classe des terres rares (Erbium, Ytterbium...). On supprime ainsi, de facto, tous les problèmes inhérents à l'état gazeux du milieu amplificateur. Toutefois, une telle réalisation est rendue très difficile par le caractère homogène de l'élargissement de la courbe de gain des milieux solides qui induit une très forte compétition entre modes et l'existence d'un grand nombre de régimes de fonctionnement différents, parmi lesquels le régime bidirectionnel équilibré en intensité (dit "régime de battement") est un cas particulier très instable (N. Kravtsov, E. Lariotsev, Self-modulation oscillations and relaxations processes in solid-state ring lasers, Quantum Electronics 24 (10) 841-856 (1994)). Cet obstacle physique majeur a fortement limité jusqu'à maintenant le développement des gyrolasers à état solide.
Pour pallier cet inconvénient, une solution technique consiste à atténuer les effets de la compétition entre modes contre-propageants dans un laser en anneau à état solide en introduisant dans la cavité des pertes optiques dépendantes du sens de propagation du mode optique et de son intensité. Le principe est de moduler par un dispositif d'asservissement ces pertes en fonction de la différence d'intensité entre les deux modes émis afin de favoriser le mode le plus faible au détriment de l'autre, de façon à constamment asservir l'intensité des deux modes contre-propageants à une valeur commune.
En 1984, il a été proposé de réaliser un dispositif d'asservissement dans lequel les pertes étaient obtenues au moyen d'un ensemble optique composé essentiellement d'un élément à effet Faraday variable et d'un élément polarisant (A.V. Dotsenko, E.G. Lariontsev, Use of a feedback circuit for the improvement of the characteristics of a solid-state ring laser, Soviet Journal of Quantum Electronics 14 (1 ) 117-1 18 (1984) — A.V. Dotsenko, L.S. Komienko, N.V. Kravtsov, E.G. Lariontsev, O.E. Nanii, A.N. Shelaev, Use of a feedback loop for the stabilization of a beat régime in a solid-state ring laser, Soviet Journal of Quantum Electronics 16 (1 ) 58-63 (1986)).
Le principe de ce dispositif d'asservissement est illustré en figure 1. Il consiste à introduire dans une cavité 1 en anneau, constituée de 3 miroirs 11 , 12 et 13 et d'un milieu amplificateur 19, un ensemble cptique disposé sur le trajet des modes optiques contre-propageants 5 et 6, ledit ensemble étant constitué d'un élément polarisant 71 et d'un barreau optique 72 à effet Faraday entouré d'une bobine d'induction 73. A la sortie de la cavité, les deux modes optiques 5 et 6 sont envoyés sur une photodiode de mesure 3. Une partie de ces faisceaux 5 et 6 est prélevée au moyen des deux lames semi -réfléchissantes 43 et envoyée sur les deux photodétecteurs 42. Les signaux issus de ces deux photodétecteurs sont représentatifs de l'intensité lumineuse des deux modes optiques contre-propageants 5 et 6. Lesdits signaux sont envoyés à un module électronique d'asservissement 4, qui génère une intensité électrique proportionnelle à la différence d'intensité lumineuse entre les deux modes optiques. Cette intensité électrique détermine la valeur des pertes infligées à chacun des modes contre- propageants 5 et 6. Si un des faisceaux a une intensité lumineuse supérieure à l'autre, son intensité sera plus atténuée, de façon à ramener les faisceaux de sortie au même niveau d'intensité. On stabilise ainsi le régime bidirectionnel en intensité.
Un gyrolaser à état solide ne peut fonctionner, selon ce principe, que si les paramètres du dispositif d'asservissement sont adaptés à la dynamique du système. Pour que le dispositif d'asservissement puisse donner des résultats corrects, trois conditions doivent être remplies :
° Les pertes supplémentaires introduites dans la cavité par le dispositif d'asservissement doivent être du même ordre de grandeur que les pertes propres de la cavité.
• La vitesse de réaction du dispositif d'asservissement doit être supérieure à la vitesse de variation des intensités des modes émis de façon que l'asservissement fonctionne de façon satisfaisante. s Enfin, la force de rétroaction du dispositif d'asservissement doit être suffisante pour que l'effet induit dans la cavité compense efficacement les variations d'intensité.
Les équations dites de Maxwell-Bloch permettent de connaître les amplitudes complexes E- ,2 des champs des modes optiques contre- propageants, ainsi que la densité N d'inversion de population. Elles sont obtenues en utilisant un modèle semi -classique (N. Kravtsov, E. Lariotsev, Self-modulation oscillations and relaxations processes in solid-state ring lasers, Quantum Electronics 24(10) 841 -856 (1994)). Ce sont : Equation 1 : dEι,2/df= - (ω/201,2)Eι,2 + i(mι,2/2) E2,ι ± i(Δv/2) Eι,2 +
(σ/2T)(Eι,2 Ndx + E2,ι J1 Ne^d ) Equation 2 : dN/df = W - (N i) - (a/Tι)N I Eιe lk + E2eta I 2 ou les indices 1 et 2 sont représentatifs des deux modes optiques contre-propageants ; ω est la fréquence d'émission laser hors effet Sagnac ; Qι,2 sont les facteurs de qualité de la cavité dans les deux sens de propagation ; mι,2 sont les coefficients de rétrodiffusion de la cavité dans les deux sens de propagation ; σ est la section efficace d'émission laser ; I est la longueur de milieu à gain traversée ; T = L/c est le temps de parcours de chaque mode de la cavité ; k = 2p/? est la norme du vecteur d'onde ;
W est le taux de pompage , Ti est la durée de vie du niveau excité ; a, paramètre de saturation, est égal à σTi /8p ? ω.
Le second membre de l'équation 1 comprend quatre termes. Le premier terme correspond à la variation du champ due aux pertes de la cavité, le second terme correspond à la variation du champ induit par la rétrodiffusion d'un mode sur l'autre mode en piésence d'éléments diffusants présents à l'intérieur de la cavité, le troisième terme correspond à la variation du champ due à l'effet Sagnac et le quatrième terme correspond à la variation du champ due à la présence du milieu amplificateur. Ce quatrième terme a deux composantes, la première correspond à l'émission stimulée, la seconde à la rétrodiffusion d'un mode sur l'autre mode en présence d'un réseau d'inversion de population au sein du milieu amplificateur. Le second membre de l'équation 2 comprend trois termes, le premier terme correspond à la variation de la densité d'inversion de population due au pompage optique, le second terme correspond à la variation de la densité d'inversion de population due à l'émission stimulée et le troisième terme correspond à la variation de la densité d'inversion de population due à l'émission spontanée.
Les pertes moyennes Pc dues à la cavité après une rotation complète du mode optique valent par conséquent :
Pc = ωT/2Qι,2 selon le premier terme du second membre de l'équation 1.
Les pertes introduites par les dispositifs d'asservissement PA doivent être du même ordre de grandeur que ces pertes moyennes Pc. Ces pertes sont généralement de l'ordre du pour cent.
La vitesse de réaction du dispositif d'asservissement peut être caractérisée par la bande passante γ dudit dispositif d'asservissement. On démontre, en utilisant les équations 1 et 2 (A.V. Dotsenko, E.G. Lariontsev, Use of a feedback circuit for the improvement of the characteristics of a solid- state ring laser, Soviet Journal of Quantum Electronics 14 (1 ) 1 17-1 18 (1984) — A.V. Dotsenko, L.S. Komienko, N.V. Kravtsov, E.G. Lariontsev, O.E. Nanii, A.N. Shelaev, Use of a feedback loop for the stabilization of a beat régime in a solid-state ring laser, Soviet Journal of Quantum Electronics 16 (1 ) 58-63 (1986)), qu'une condition suffisante d'établissement du régime bidirectionnel stable au-delà de la vitesse de rotation peut s'écrire : γ » ηω/[Oι,2(ΔvT1)2] avec η = (W-Wseuιi) W. η correspond au taux relatif de pompage au-dessus du seuil WseUιi-
A titre d'exemple, pour un taux relatif de pompage η de 10%, une fréquence optique ω de 18.1014, un facteur de qualité Oι,2 de 107, une différence de fréquence Δv de 15 kHz et une durée de vie du niveau excité
Ti de 0,2 ms, la bande passante γ doit être supérieure à 40 kHz.
Pour que la boucle fonctionne correctement, la relation suivante doit également être vérifiée : (ΔvTι)2 »1 .
Classiquement, la force de rétroaction du dispositif d'asservissement q est définie de la façon suivante : q = [(Oι - Q>)/( Oi + Q>)] / [(I2- Il )/(I2 + Ii)] avec Ii , I2 intensités lumineuses des deux modes contre- propageants. Dans ce type d'application, on démontre que le paramètre q doit être supérieur à 1/(ΔvT-ι)2 pour que le dispositif d'asservissement puisse fonctionner correctement.
L'objet de notre invention est de proposer un dispositif stabilisateur pour gyrolaser à état solide, qui est constitué d'un système d'asservissement infligeant des pertes optiques dépendant du sens de propagation en se fondant sur la combinaison de trois effets physiques : la rotation réciproque, la rotation non réciproque et la polarisation. Le dispositif stabilisateur selon l'invention permet d'obtenir les conditions nécessaires au bon fonctionnement du gyrolaser.
Il y a effet optique non réciproque dans un composant optique lorsque, la lumière ayant un état de polarisation initial, l'état de polarisation de la lumière est différent de cet état initial après un aller-retour dans ledit composant. Les matériaux à effet Faraday sont des matériaux qui, brsqu'ils sont soumis à un champ magnétique, font tourner la direction de polarisation d'un faisceau polarisé linéairement qui les traverse. Cet effet n'est pas réciproque. Ainsi, le même faisceau venant en sens inverse subira une rotation de sa direction de polarisation dans le même sens. Ce principe est illustré en figure 2a. La direction de polarisation 51 du faisceau 5 polarisé linéairement subit une rotation d'un angle β lorsqu'elle traverse le composant à effet Faraday 8 dans le sens direct (schéma sψérieur de la figure 2a). Si l'on réinjecte dans le composant à effet Faraday un faisceau identique 6 se propageant dans le sens opposé et dont la direction de polarisation est initialement tournée de β, sa direction de polarisation 51 tourne à nouveau de l'angle β en traversant le composant, l'angle de rotation total faisant alors 2β après un aller-retour (schéma central de la figure 2a). Dans un composant classique à effet réciproque 7, la direction de polarisation 51 aurait tourné de - β, de façon à retrouver sa position initiale (schéma inférieur de la figure 2a).
Plus précisément, l'invention a pour objet un gyrolaser comportant au moins une cavité optique en anneau comprenant au moins trois miroirs, un milieu amplificateur à l'état solide et un système d'asservissement, la cavité et le milieu amplificateur étant tels que deux modes optiques dits contre-propageants peuvent se propager en sens inverse l'un de l'autre à l'intérieur de ladite cavité optique, le système d'asservissement permettant de maintenir la quasi-égalité d'intensité des deux modes contre-propageants, le système d'asservissement comportant au moins, à l'intérieur de la cavité, un ensemble optique comprenant un élément polarisant, un dispositif à effet non réciproque agissant sur l'état de polarisation des modes contre- propageants, caractérisé en ce que ledit ensemble optique comporte également un dispositif à effet réciproque agissant également sur l'état de polarisation des modes contre-propageants, le système d'asservissement comportant des moyens de réglage permettant de régler au moins l'un des effets desdits dispositifs à effet réciproque et non réciproque.
Deux grands choix techniques sont alors possibles : ° Soit l'effet réciproque est fixe, dans ce cas, l'effet non réciproque doit être réglable pour que le dispositif d'asservissement puisse fonctionner. o Soit l'effet non réciproque est fixe, dans ce cas, l'effet réciproque doit être réglable pour que le dispositif d'asservissement puisse fonctionner.
L'invention sera mieux comprise et d'autres avantages apparaîtiont à la lecture de la description qui va suivre donnée à titre non limitatif et grâce aux figures annexées parmi lesquelles : • La figure 1 représente le principe de fonctionnement du dispositif d'asservissement selon l'art antérieur.
• La figure 2a représente le principe de l'effet Faraday, non réciproque.
• La figure 2b représente le principe général du dispositif permettant d'induire des pertes dépendantes du sens de propagation selon l'invention.
• La figure 3 représente le schéma général du dispositif d'asservissement selon l'invention.
• La figure 4 représente le principe général de l'effet réciproque introduit par une cavité non planaire. • La figure 5 représente la vue générale d'une cavité monolithique.
• La figure 6 représente la vue générale d'un gyrolaser comprenant une cavité monolithique. « La figure 7 représente le schéma de principe d'une cavité non planaire et monolithique.
• Les figures 8a et 8b représentent les schémas de principe de la création d'un champ magnétique variable dans une cavité monolithique à effet Faraday. « La figure 9 représente le schéma de principe de la création d'un champ magnétique fixe dans une cavité monolithique à effet Faraday.
• La figure 10 représente le schéma de principe d'une cavité gyrolaser réalisée à base de fibres optiques.
Le principe de la combinaison d'un effet optique réciproque et d'un effet optique non réciproque est illustré sur l'exemple de la figure 2b dans le cas où les effets réciproques et non réciproques sont simplement des rotations de la polarisation linéaire. Les deux schémas de cette figure représentent une partie d'une cavité en anneau dans laquelle peuvent circuler deux faisceaux optiques contre-propageants 5 et 6. Cette cavité comporte, entre autres, un ensemble optique constitué d'un polariseur linéaire 71 , d'un premier élément à effet réciproque 7 agissant sur la direction de polarisation de la lumière polarisée linéairement et d'un second élément à effet non réciproque 8 agissant également sur la direction de la polarisation de la lumière. Pour des raisons de clarté, la partie de la cavité comprenant cet ensemble optique a été représentée en ligne. L'indication de direction de polarisation des faisceaux optiques a été représentée par une flèche. Le premier élément 7 fait tourner la polarisation de la lumière d'un angle α dans le sens direct et le second élément 8 fait tourner la polarisation d'un angle β également dans le sens direct. L'élément 7 peut notamment être une lame demi-onde dont l'axe est tourné d'un angle de α/2 par rapport à l'axe de polarisation du polariseur linéaire 71. L'élément 8 peut être un rotateur de Faraday comme précédemment cité. Soit un premier faisceau optique 5 polarisé linéairement par le polariseur linéaire 71 et traversant successivement le premier et le second élément comme illustré sur le schéma du haut de la figure 2b, après la traversée du premier élément, sa direction de polarisation a tourné d'un angle α et, après la traversée du second élément, sa direction de polarisation a tourné d'un angle θdirect égal à +β. Lorsque ce faisceau passe de nouveau, après un tour complet, à travers le polariseur linéaire 71 , sa transmission Tdιre_te relative sera de :
Td,recte = COS2(α+β).
Soit encore, dans le cas où les angles de rotation ont des valeurs faibles, une perte Pdirecte relative d'intensité de : Pdirecte = ( +β)2obtenue en faisant un développement limité au second ordre de la fonction cosinus.
Soit un second faisceau optique 6 polarisé linéairement et traversant successivement en sens opposé par rapport au premier faisceau 5 le second puis le premier élément comme illustré sur le schéma du bas de la figure 2b, après la traversée du second élément, sa direction de polarisation a tourné d'un angle β et, après la traversée du premier élément, sa direction de polarisation a tourné d'un angle θm erse égal à -α+β. Lorsque ce faisceau passe à travers un polariseur linéaire dont l'axe est orienté parallèlement à la direction de polarisation initiale du faisceau, sa transmission nverse relative sera de :
Tιπverse = C0S2(β-α).
Soit encore, dans le cas où les angles de rotation ont des valeurs faibles, une perte Piπverse relative d'intensité de :
Pirwerse = (β-α)2 obtenue en faisant un développement limité au second ordre de la fonction cosinus.
Par conséquent, les pertes dans le sens inverse de propagation sont différentes de celles enregistrées dans le sens direct, ce qui correspond bien au résultat recherché. Il est ainsi possible de faire varier de façon différente les intensités des modes contre-propageants en faisant varier un des deux angles de rotation α ou β.
Bien entendu, l'exemple précédent peut être généralisé à toute combinaison d'effet réciproque et d'effet non réciproque agissant sur l'état de polarisation de la lumière telle que ladite combinaison puisse être transformée en variation d'intensité lumineuse par un élément polarisant. Dans une cavité réelle, différents types de composants (miroirs de la cavité, milieu amplificateur, polariseurs...) peuvent influencer l'état de polarisation des faisceaux optiques ainsi que leur intensité. Pour connaître exactement l'état de polarisation des faisceaux contre-propageants après un tour complet de la cavité, on utilise le formalisme des matrices de Jones. Celui-ci consiste à représenter l'influence d'un composant sur l'état de polarisation par une matrice 2x2 référencée dans un plan perpendiculaire à la direction de propagation des faisceaux. En général, les axes du repère choisi correspondent aux axes principaux d'un polariseur intra-cavité, ce qui facilite la représentation mathématique. Pour connaître l'influence résultante de l'ensemble des composants intra-cavité, il suffit alors de déterminer les états propres du produit des différentes matrices représentatives de ces composants. Ce produit n'étant pas forcément commutatif, l'influence pourra être différente selon le sens de propagation des faisceaux.
Dans l'exemple illustré en figure 2b, la matrice de Jones Mdirecte d'une cavité comportant le polariseur 71 , l'élément à effet réciproque 7 et l'élément à effet non réciproque 8 s 'écrit dans le sens direct :
La polarisation résultante après un tour complet est une polarisation linéaire inclinée d'un angle α+β par rapport à l'axe de polarisation du polariseur et la transmission en intensité à travers le polariseur vaut cos(a + β)2.
La matrice de Jones Mmdirecte de la même cavité comportant le polariseur 71 , l'élément à effet réciproque 7 et l'élément à effet non réciproque 8 s 'écrit dans le sens indirect :
IVliπdir* La polarisation résultante après un tour complet est une polarisation linéaire inclinée d'un angle -α+β par rapport à l'axe de polarisation du polariseur et la transmission à travers le polariseur en intensité vaut cos(- a + β)2.
La figure 3 représente le schéma d'ensemble d'un gyrolaser selon l'invention. Il comprend une cavité 1 en anneau constituée d'au moins 3 miroirs 11 , 12 et 13, d'un milieu amplificateur 19 à l'état solide et d'un ensemble optique disposé sur le trajet des modes optiques contre- propageants 5 et 6, ledit ensemble étant constitué d'un élément polarisant 71 , d'un dispositif 7 à effet réciproque agissant sur l'état de polarisation des modes contre-propageants et un dispositif 8 à effet non réciproque agissant également sur l'état de polarisation des modes contre-propageants, au moins l'un des effets desdits dispositifs étant réglable. A la sortie de la cavité, les deux modes optiques 5 et 6 sont envoyés sur une photodiode de mesure 3. Une partie de ces faisceaux 5 et 6 est prélevée au moyen des deux lames semi-réfléchissantes 43 et envoyée sur les deux photodétecteurs 42. Les signaux issus de ces deux photodétecteurs sont représentatifs de l'intensité lumineuse des deux modes optiques contre-propageants 5 et 6. Lesdits signaux sont envoyés à un module électronique d'asservissement 4 qui pilote, en fonction de l'intensité des signaux reçus, le dispositif à effet variable (flèches en pointillés sur le schéma). Cela va se traduire par des variations des états de polarisation des deux faisceaux contre-propageants. Ces variations d'état de polarisation entraînent ainsi des pertes optiques différentes sur les modes optiques contre-propageants 5 et 6 chaque fois qu'après avoir effectué une rotation complète les modes traversent de nouveau l'élément polarisant 71. Ces pertes sont fonction de l'intensité des faisceaux de sortie. Si l'un des faisceaux a une intensité lumineuse supérieure à l'autre, son intensité sera plus atténuée, de façon à ramener les faisceaux de sortie au même niveau d'intensité. On stabilise ainsi le régime bidirectionnel en intensité.
Il existe différents types d'éléments polarisants 71. L'élément polarisant peut être notamment un polariseur linéaire. Il peut être également obtenu par traitement sur un des miroirs de la cavité. Il est également possible d'utiliser les propriétés de la réflexion sur l'interface entre deux milieux d'indices différents, par exemple en plaçant dans la cavité une lame de verre inclinée à l'angle de Brewster par rapport à la direction de propagation des modes 5 et 6 ou en taillant à l'incidence de Brewster tne face de l'un des éléments présents dans la cavité (notamment le milieu amplificateur ou le dispositif à effet non réciproque).
Il existe différentes méthodes pour réaliser des dispositifs optiques à effet réciproque fixe. On peut notamment utiliser, comme il est décrit sur les figures 4a et 4b, une cavité non planaire. Soit une cavité 1 comportant au moins quatre miroirs 11 , 12, 13 et 14, il est possible de les disposer, comme indiqué sur la figure 4a, de telle sorte que les faisceaux contre-propageants se propagent dans un plan (plan (X,Y) de la figure 4a). Dans ce cas, la cavité n'induit pas de rotation réciproque sur les modes qui s'y propagent. Il est également possible de les disposer de telle sorte que les faisceaux contre-propageants ne se propagent plus dans un plan, comme il est indiqué, par exemple, sur la figure 4b, où le miroir 12 a été déplacé sur l'axe des Z. Dans ce cas, on démontre que la direction de polarisation des faisceaux contre-propageants a tourné d'un angle dépendant de la géométrie de la cavité lorsque le faisceau a fait un tour complet de la cavité (A.C. Nilsson, E.K.Gustafson and R.L.Byer - Eigenpolarization Theory of Monolithic Nonplanar Ring Oscillators - IEEE Journal of Quantum Electronics 25 (4) 767-790 (1989)). En d'autres termes, une cavité non planaire peut induire un effet de rotation réciproque sur les modes qui s'y propagent, cet effet étant fixe et dépendant de la géométrie de la cavité.
Il est également possible de réaliser un dispositif à effet réciproque fixe en ajoutant dans la cavité un polariseur linéaire dont la direction de polarisation n'est pas parallèle à celle de l'élément polarisant initial. Dans ce cas, l'angle de rotation réciproque a est égal à l'angle formé par les deux axes des éléments polarisants.
Enfin, il est possible d'obtenir l'effet réciproque fixe en ajoutant dans la cavité une lame optique biréfringente. Si cette lame est une lame demi-onde, l'angle de rotation a est alors le double de l'angle formé par l'axe de la lame demi-onde avec celui de l'élément polarisant. Bien entendu, cette lame demi-onde peut être rendue solidaire d'un des miroirs de la cavité, de façon à simplifier la réalisation du dispositif.
Pour réaliser un dispositif à effet réciproque variable, une solution possible consiste à utiliser un dispositif à biréfringence contrôlable. Pour induire une biréfringence contrôlable, on peut utiliser :
• des céramiques au Plomb, Lantane, Zircinuim et Titane (Pbi- xLaχZrι-yTiyθ3), dont on peut contrôler à la fois l'orientation des axes neutres et la biréfringence dans une zone en l'entourant d'électrodes et en appliquant un champ électrique de quelques centaines de volts. Ces céramiques ont des épaisseurs de moins d'un millimètre, sont transmissives dans le proche infrarouge, ont des tensions de commandes de quelques centaines de volts et un temps de réponse de l'ordre de la microseconde compatible avec la bande passante nécessaire évaluée de quelques dizaines de kHz ;
° des valves à cristaux liquide d'un millimètre d'épaisseur environ (dont la zone active a une épaisseur d'environ 20 microns) ayant des tensions de commande d'une centaine de volts ;
• des cellules de Pockels, dont on modifie le déphasage en changeant la tension appliquée (typiquement 1 kV pour que le déphasage obtenu soit égal à p/2). Ces cellules, constituées de KDP ou de Niobate de Lithium, pai exemple, sont identiques à celles utilisées pour déclencher un laser. Elles ont des épaisseurs de un à deux centimètres et des pertes d'insertions nulles.
Pour réaliser un dispositif à effet non réciproque, on utilise généralement des dispositifs magnéto -optiques, par exemple à effet Faraday, qui nécessitent pour fonctionner la génération d'un champ magnétique. Ces éléments à effet Faraday peuvent être notamment réalisés directement sur les miroirs de la cavité au moyen de couches de matériau magnéto -optiques. Si l'on souhaite obtenir un effet non réciproque fixe, il suffit de réaliser un champ magnétique permanent au moyen de circuits magnétiques à base d'aimants. Si l'on souhaite obtenir un effet non réciproque variable, il suffit alors de créer un champ magnétique variable, par exemple, au moyen d'une bobine d'induction entourant le matériau à effet Faraday.
Lorsque le milieu s'y prête, il est avantageux d'utiliser le milieu amplificateur comme milieu à effet Faraday. On simplifie de façon importante la réalisation de la cavité. Ainsi, le Néodyme-YAG, qui est utilisé comme milieu amplificateur pour les lasers fonctionnant dans le proche infrarouge, est susceptible de générer suffisamment d'effet Faraday pour être utilisé en tant que tel. En effet, sa constante de Vernet vaut environ 103T1m"1, ce qui est suffisant pour induire des rotations Faraday de l'ordre du degré pour une épaisseur traversée ne dépassant pas quelques centimètres en présence d'un champ magnétique inférieur au Tesla.
Avantageusement, un laser à état solide selon l'invention est réalisé à partir d'une cavité monolithique comme indiqué sur la figure 5. Cette configuration présente plusieurs avantages.
La cavité peut alors être réalisée directement dans le matériau servant de milieu amplificateur. Les faces de la cavité peuvent être utilisées comme miroirs de la cavité ou comme faces de supports des miroirs de la cavité, ce qui facilite les opérations de réalisation et assure une plus grande stabilité géométrique et une meilleure tenue aux environnements thermiques et vibratoires. La figure 6 montre un schéma de réalisation d'un gyrolaser selon l'invention utilisant une cavité de ce type. Les miroirs 1 1 , 12 et 13 sont directement déposés sur les faces de la cavité monolithique. Le matériau 19 de la cavité sert également de milieu amplificateur. Ce matériau est notamment à base de Néodyme-YAG (Yttrium - Aluminium - Grenat). Dans ce cas, le pompage optique est réalisé au moyen d'une diode laser 2 dont le faisceau 22 est focalisé à l'intérieur du milieu amplificateur au moyen d'une lentille 21.
La cavité monolithique peut également ne pas être planaire comme indiqué sur la figure 7. On obtient ainsi directement l'effet réciproque par la forme même de la cavité. Dans cet exemple, la cavité est une lame épaisse comportant deux faces planes et parallèles 195 et 196 entre elles et quatre faces latérales inclinées 191 , 192, 193 et 194. La forme générale de la lame est celle d'un coin tronqué. L'inclinaison des faces latérales est choisie de sorte que les faisceaux lumineux parcourent la cavité suivant un losange brisé comme indiqué sur la figure 7.
Un des autres avantages de la cavité monolithique est d'utiliser le milieu amplificateur 19 comme milieu à effet Faraday. Dans ce cas, l'obtention d'un champ magnétique variable est réalisée en entourant la cavité monolithique d'une bobine d'induction 73 comme illustré en figure 8a. Il est également possible, afin d'améliorer l'efficacité de l'effet Faraday, de n'entourer qu'une partie de la cavité avec une ou plusieurs bobines d'induction comme illustré en figure 8b, de manière à ce que le champ magnétique soit toujours parallèle à la direction de propagation. Dans ce cas, la cavité doit être percée pour laisser passet les fils électriques constituant les bobines d'induction.
Un champ magnétique fixe peut être obtenu en disposant sur la cavité monolithique des aimants permanents 74 comme illustré en figure 9.
Il est également possible de réaliser un gyrolaser selon l'invention à partir d'une cavité en fibres optiques. La figure 10 illustre ce principe. La cavité comprend essentiellement une fibre optique 100 en anneau, la fibre optique pouvant être en partie dopée pour agir comme milieu amplificateur. Toutes les géométries de fibres sont envisageables : à simple cœur, à double cœur (pour faciliter le couplage du faisceau de pompage optique), à maintien de polarisation. Des coupleurs Y 101 permettent d'extraire les deux faisceaux contre-propageants 5 et 6. Un troisième coupleur 101 permet d'injecter le faisceau optique de pompe 102 dans la fibre optique. Plusieurs techniques, notamment développées pour es télécommunications optiques, permettent d'effectuer ce couplage (technique dite en Vgroove, par exemple). Le pompage optique est réalisé, par exemple, par une diode laser de pompe, non représentée sur la figure 10. L'effet optique réciproque peut être obtenu facilement, par exemple en appliquant à la fibre des déformations mécaniques locales, symbolisées par le rectangle 7. Les effets non réciproques peuvent également être obtenus par effet Faraday, symbolisés par le rectangle 8. Grâce au développement des technologies de télécommunication, il existe des isolateurs de Faraday tout fibres, à entrée et sortie possédant un connecteur à fibre optique. Ces isolateurs comprennent des éléments non réciproques qui font tourner la direction de polarisation de la lumière polarisée linéairement de 45°. Ces isolateurs peuvent être modifiés pour introduire une rotation non réciproque différente en modifiant soit leurs caractéristiques géométriques soit les champs magnétiques qui leur sont appliqués.

Claims

REVENDICATIONS
1. Gyrolaser comportant au moins une cavité optique (1) en anneau comprenant au moins trois miroirs (11 , 12, 13), un milieu amplificateur (19) à l'état solide et un système d'asservissement (4, 42, 43), la cavité (1) et le milieu amplificateur (19) étant tels que deux modes optiques (5, 6) dits contre-propageants peuvent se propager en sens inverse l'un de l'autre à l'intérieur de ladite cavité optique, le système d'asservissement permettant de maintenir la quasi-égalité d'intensité des deux modes contre-propageants, le système d'asservissement comportant au moins, à l'intérieur de la cavité, un ensemble optique comprenant un élément polarisant (71 ), un dispositif à effet non réciproque (8) agissant sur l'état de polarisation des modes contre-propageants, caractérisé en ce que ledit ensemble optique comporte également un dispositif à effet réciproque (7) agissant également sur l'état de polarisation des modes contre- propageants, le système d'asservissement comportant des moyens de réglage permettant de régler au moins l'un des effets desdits dispositifs (7) ou (8).
2. Gyrolaser selon la revendication 1 , caractérisé en ce que l'élément polarisant (71) est un polariseur linéaire.
3. Gyrolaser selon la revendication 1 , caractérisé en ce que l'élément polarisant (71 ) est au moins un des miroirs (11 , 12, 13) de la cavité.
4. Gyrolaser selon la revendication 1 , caractérisé en ce que l'élément polarisant (71 ) est au moins soit une lame de verre inclinée, l'angle d'inclinaison sur les modes optiques (5, 6) étant alors environ égal à l'angle de Brewster, soit l'une des faces d'un élément de la cavité (7, 8 ou 19) taillée à l'incidence de Brewster.
5. Gyrolaser selon l'une des revendications 1 à 4, caractérisé en ce que, lorsque le dispositif à effet réciproque (7) est un second polariseur linéaire dont la direction de polarisation n'est pas parallèle à celle du premier polariseur, le système d'asservissement comporte des moyens permettant de régler l'effet non réciproque du dispositif à effet non réciproque (8).
6. Gyrolaser selon l'une des revendications 1 à 4, caractérisé en ce que, lorsque le dispositif à effet réciproque (7) est une lame optique biréfringente, le système d'asservissement comporte des moyens permettant de régler l'effet non réciproque du dispositif à effet non réciproque (8).
7. Gyrolaser selon l'une des revendications 1 à 4, caractérisé en ce que, lorsque la cavité optique est non planaire, le système d'asservissement comporte des moyens permettant de régler l'effet non réciproque du dispositif à effet non réciproque (8).
8. Gyrolaser selon l'une des revendications 1 à 4, caractérisé en ce que le dispositif à effet réciproque (7) est une lame optique à biréfringence électriquement contrôlée.
9. Gyrolaser selon l'une des revendications 1 à 4, caractérisé en ce que, lorsque le dispositif à effet non réciproque (8) comprend un matériau à effet Faraday polarisé par un aimant permanent, le système d'asservissement comporte des moyens permettant de régler l'effet réciproque du dispositif à effet réciproque (7).
10. Gyrolaser selon l'une des revendications 1 à 4, caractérisé en ce que le dispositif à effet non réciproque (8) comprend un matériau à effet Faraday polarisé par une bobine d'induction (73) commandée par une intensité électrique réglable.
1 1. Gyrolaser selon les revendications 9 ou 10, caractérisé en ce que le milieu amplificateur et le matériau à effet Faraday sont réalisés dans le même matériau.
12. Gyrolaser selon l'une des revendications précédentes, caractérisé en ce que la cavité (1) est monolithique, les modes optiques (5, 6) dits contre-propageants se propageant, à l'intérieur de la cavité, uniquement dans un matériau solide.
13. Gyrolaser selon l'une des revendications précédentes, caractérisé en ce que le milieu amplificateur (19) est à base de Néodyme- YAG (Yttrium - Aluminium - Grenat).
14. Gyrolaser selon l'une des revendications précédentes, caractérisé en ce que le pompage optique de la cavité (1 ) est assuré par au moins une diode laser (2).
15. Gyrolaser selon l'une des revendications 1 à 1 1 , caractérisé en ce que la cavité comprend au moins une fibre optique (100) en anneau comportant des coupleurs optiques (101) permettant l'entrée et la sortie des faisceaux contre-propageants et d'au moins un faisceau optique de pompage optique (102).
EP04722577A 2003-03-25 2004-03-23 Gyrolaser a etat solide stabilise Withdrawn EP1606584A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0303645A FR2853061B1 (fr) 2003-03-25 2003-03-25 Gyrolaser a etat solide stabilise
FR0303645 2003-03-25
PCT/EP2004/050349 WO2004094952A1 (fr) 2003-03-25 2004-03-23 Gyrolaser a etat solide stabilise

Publications (1)

Publication Number Publication Date
EP1606584A1 true EP1606584A1 (fr) 2005-12-21

Family

ID=32947152

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04722577A Withdrawn EP1606584A1 (fr) 2003-03-25 2004-03-23 Gyrolaser a etat solide stabilise

Country Status (7)

Country Link
US (1) US7548572B2 (fr)
EP (1) EP1606584A1 (fr)
JP (1) JP2006521545A (fr)
CN (1) CN1764825B (fr)
FR (1) FR2853061B1 (fr)
RU (1) RU2331846C2 (fr)
WO (1) WO2004094952A1 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2863702B1 (fr) 2003-12-12 2006-03-03 Thales Sa Gyrolaser a etat solide stabilise et a milieu laser anisotrope
FR2894663B1 (fr) * 2005-12-13 2008-02-08 Thales Sa Gyrolaser a etat solide active optiquement par biais alternatif
FR2894662B1 (fr) 2005-12-13 2008-01-25 Thales Sa Gyrolaser a etat solide a modes contre-propagatifs orthogonaux
FR2905005B1 (fr) * 2006-08-18 2008-09-26 Thales Sa Gyrolaser a etat solide avec milieu a gain active mecaniquement.
US7793543B2 (en) * 2007-05-04 2010-09-14 Baker Hughes Incorporated Method of measuring borehole gravitational acceleration
FR2925153B1 (fr) * 2007-12-18 2010-01-01 Thales Sa Gyrolaser multioscillateur a etat solide utilisant un milieu a gain cristallin coupe a 100
JP5263659B2 (ja) * 2008-06-09 2013-08-14 株式会社リコー 周回光路装置及び3軸リングレーザジャイロ
FR2937739B1 (fr) * 2008-10-28 2010-11-19 Thales Sa Gyrolaser a milieu amplificateur a etat solide et a cavite optique en anneau
FR2938641B1 (fr) * 2008-11-18 2010-11-26 Thales Sa Gyrolaser a etat solide a pompage optique controle
FR2947047B1 (fr) * 2009-06-22 2011-06-24 Thales Sa Gyrolaser a etat solide stabilise
FR2959811B1 (fr) 2010-05-07 2013-03-01 Thales Sa Gyrolaser a etat solide multioscillateur stabilise passivement par un dispositif a cristal doubleur de frequence
US8361917B2 (en) * 2010-08-05 2013-01-29 Schott Corporation Rare earth aluminoborosilicate glass composition
US8486850B2 (en) * 2010-09-13 2013-07-16 Schott Corporation Aluminophosphate glass composition
RU2531028C1 (ru) * 2013-04-19 2014-10-20 Открытое акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" (ОАО "НИИ "Полюс" им. М.Ф. Стельмаха") Способ измерения угловых перемещений лазерным гироскопом
RU2525648C1 (ru) * 2013-04-19 2014-08-20 Открытое акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" (ОАО "НИИ "Полюс" им. М.Ф. Стельмаха") Способ измерения угловых перемещений лазерным гироскопом
RU2531027C1 (ru) * 2013-04-19 2014-10-20 Открытое акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" (ОАО "НИИ "Полюс" им. М.Ф. Стельмаха") Способ измерения угловых перемещений лазерным гироскопом со знакопеременной частотной подставкой
RU2530481C1 (ru) * 2013-04-19 2014-10-10 Открытое акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" (ОАО "НИИ "Полюс" им. М.Ф. Стельмаха") Способ измерения угловых перемещений лазерным гироскопом
KR101809402B1 (ko) 2017-03-03 2017-12-14 국방과학연구소 단일 광선을 이용한 원자 스핀 자이로스코프
RU180911U1 (ru) * 2018-02-22 2018-06-29 Акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Устройство частотной подставки для зеемановских лазерных гироскопов
KR102126448B1 (ko) * 2019-03-25 2020-06-24 국방과학연구소 원자 스핀을 이용한 회전측정 장치
US11476633B2 (en) 2020-07-20 2022-10-18 Honeywell International Inc. Apparatus and methods for stable bidirectional output from ring laser gyroscope

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862803A (en) * 1968-09-27 1975-01-28 United Aircraft Corp Differential laser gyro system
US3649931A (en) * 1969-11-03 1972-03-14 Sperry Rand Corp Compensated frequency biasing system for ring laser
US3867034A (en) * 1973-11-16 1975-02-18 Honeywell Inc Laser angular rate sensor biasing apparatus
US4494873A (en) * 1981-02-17 1985-01-22 Raytheon Company Electromagnetic wave reflections absorber
US5347360A (en) * 1982-08-27 1994-09-13 Ratheon Company Ring laser gyro
JPS5944021A (ja) * 1982-09-06 1984-03-12 Nippon Telegr & Teleph Corp <Ntt> 非相反位相器
US4673293A (en) * 1985-01-31 1987-06-16 Honeywell Inc. Passive cavity gyro bias eliminator
US5007065A (en) * 1988-08-19 1991-04-09 Hewlett-Packard Company Bilithic unidirectional ring laser
US4955034A (en) * 1989-03-01 1990-09-04 Electro-Optics Technology, Inc. Planar solid state laser resonator
EP0393968A3 (fr) * 1989-04-19 1992-08-05 British Aerospace Public Limited Company Gyroscope à interféromètre à fibre optique du type résonateur
JPH02310980A (ja) * 1989-05-26 1990-12-26 Nippon Telegr & Teleph Corp <Ntt> リングレーザ装置
WO1991010273A1 (fr) * 1989-12-28 1991-07-11 The Board Of Trustees Of The Leland Stanford Junior University Laser annulaire plan monolithique undirectionnel a birefringence
US5177764A (en) * 1989-12-28 1993-01-05 Harmonic Lightwaves, Inc. Unidirectional, planar ring laser with birefringence
JP2835468B2 (ja) * 1990-10-18 1998-12-14 株式会社トキメック リングレーザジャイロ装置
JP2835874B2 (ja) * 1990-10-18 1998-12-14 株式会社トキメック リングレーザジャイロ装置
US5465149A (en) * 1994-03-10 1995-11-07 Honeywell Inc. Lightwave phase control for reduction of resonator fiber optic gyroscope Kerr effect error
DE19504373C2 (de) * 1995-02-10 2000-06-15 Daimler Chrysler Ag Diodengepumpter Festkörper-Ringlaserkreisel
FR2825463B1 (fr) 2001-05-30 2003-09-12 Thales Sa Gyrometre laser etat solide comportant un bloc resonateur
US6731423B1 (en) * 2001-08-15 2004-05-04 Neumann Information Systems Inc Optical amplifier and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004094952A1 *

Also Published As

Publication number Publication date
FR2853061B1 (fr) 2006-01-20
RU2005132627A (ru) 2007-04-27
FR2853061A1 (fr) 2004-10-01
JP2006521545A (ja) 2006-09-21
RU2331846C2 (ru) 2008-08-20
CN1764825A (zh) 2006-04-26
CN1764825B (zh) 2010-05-26
US7548572B2 (en) 2009-06-16
WO2004094952A1 (fr) 2004-11-04
US20060256828A1 (en) 2006-11-16

Similar Documents

Publication Publication Date Title
EP1606584A1 (fr) Gyrolaser a etat solide stabilise
EP2795354B1 (fr) Magnétomètre à pompage optique intégré et isotrope
WO2007068654A1 (fr) Gyrolaser a etat solide a modes contre-propagatifs orthogonaux
EP1890107B1 (fr) Gyrolaser à état solide avec milieu à gain active mécaniquement
EP1393017B1 (fr) Gyrometre laser etat solide comportant un bloc resonateur
CA2497205A1 (fr) Gyrolaser a etat solide stabilise a quatre modes sans zone aveugle
FR2863702A1 (fr) Gyrolaser a etat solide stabilise et a milieu laser anisotrope
WO2004102120A1 (fr) Gyrolaser a etat solide stabilise par des dispositifs acousto-optiques
CA2497202A1 (fr) Gyrolaser a etat solide stabilise sans zone aveugle
FR2492522A1 (fr) Gyroscope a laser en anneau comportant une egalisation de dispersion
FR2826191A1 (fr) Source laser stabilisee en frequence et adaptee pour etre utilisee comme etalon de frequence en particulier dans le domaine des telecommunications
EP1807675A2 (fr) Gyrolaser a milieu solide semi-conducteur a structure verticale
WO2009077314A1 (fr) Gyrolaser multioscillateur a etat solide utilisant un milieu a gain cristallin coupe a &lt;100&gt;
EP0467939A1 (fr) Laser a anneau.
FR2527329A1 (fr) Gyroscope a laser en anneau
EP1960738A1 (fr) Gyrolaser a etat solide active optiquement par biais alternatif
FR2589290A1 (fr) Laser a doublement de frequence par accord de phase de type ii
FR2833417A1 (fr) Resonateur optique en anneau sans surface, appareil de telecommunication et/ou de projection video correspondant
WO2024115378A1 (fr) Systeme optique pour resonateur
Zhang et al. Investigation of the system configuration for micro optic gyros
FR3042073A1 (fr) Utilisation d&#39;une source laser a balayage en frequence rapide pour la manipulation d&#39;atomes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050912

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE GB

17Q First examination report despatched

Effective date: 20100208

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100819