EP1807675A2 - Gyrolaser a milieu solide semi-conducteur a structure verticale - Google Patents

Gyrolaser a milieu solide semi-conducteur a structure verticale

Info

Publication number
EP1807675A2
EP1807675A2 EP05804595A EP05804595A EP1807675A2 EP 1807675 A2 EP1807675 A2 EP 1807675A2 EP 05804595 A EP05804595 A EP 05804595A EP 05804595 A EP05804595 A EP 05804595A EP 1807675 A2 EP1807675 A2 EP 1807675A2
Authority
EP
European Patent Office
Prior art keywords
cavity
mirror
gyrolaser
medium
gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05804595A
Other languages
German (de)
English (en)
Inventor
Gilles Feugnet
Jean-Paul Pocholle
Sylvain Schwartz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1807675A2 publication Critical patent/EP1807675A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1071Ring-lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon

Definitions

  • the field of the invention is that of solid state gyrolasers used in particular in inertial units. This type of equipment is used, for example, for aeronautical applications.
  • the laser gyro developed about 30 years ago, is widely marketed and used today. Its operating principle is based on the Sagnac effect, which induces a difference in frequency ⁇ v between the two optical transmission modes propagating in opposite directions, said counterpropagating, of a bidirectional ring laser cavity animated by a movement of rotation.
  • the frequency difference ⁇ v induced between the two optical modes by the rotational movement is equal to:
  • the amplifying medium is a gaseous mixture of helium and neon atoms in appropriate proportion.
  • the gaseous nature of the amplifying medium is a source of technical complications during the production of the laser gyro, in particular because of the high purity of gas required and the premature wear of the cavity during its use due, in particular, to leakage. of gases and deterioration of the high voltage electrodes used to establish the population inversion.
  • a solid state laser gyrolaser operating in the visible or the near infra-red using, for example, a medium an amplifier based on crystals doped with rare-earth ions such as neodymium, orbium or interbium instead of the helium-neon gas mixture; the optical pumping being then provided by laser diodes operating in the near infra-red. This removes, de facto, all the problems inherent to the gaseous state of the amplifying medium.
  • the object of the invention is a solid-state gyrolaser comprising a semiconductor medium with an external cavity and consisting of assembled discrete elements, thus offering the possibility of making cavities of large size making it possible at the same time to reach the accuracies. and insert optical elements into the cavity.
  • the subject of the invention is a gyrolaser comprising at least one ring optical cavity and a solid state amplifier medium arranged so that two optical waves of average wavelength ⁇ 0 can propagate in the opposite direction to the interior of the cavity, characterized in that the dimensions of the cavity are substantially greater than those of the amplifying medium and that said amplifying medium is a semiconductor medium of average optical index n, with a vertical structure comprising a stack of zones gain flat and parallel to each other.
  • the semiconductor medium comprises a plane mirror disposed under the gain zones and parallel to said zones so that the two optical waves propagating inside the cavity are reflected by said mirror, after crossing the zones of gain.
  • the optical waves propagating inside the cavity are reflected by the mirror at an oblique incidence i
  • the mirror is a so-called Bragg stack optimized to be totally reflective at the average wavelength ⁇ o and under said oblique incidence i
  • the stack of the gain zones comprises on the surface opposite to that of the mirror an antireflection treatment at the length of mean wave ⁇ 0 and under the oblique incidence i.
  • the amplifying medium is arranged in such a way that the intensity maxima of the interference pattern obtained by the optical waves propagating inside the semiconductor medium are located in the planes of the gain zones, said zones of gains are then distant from each other by - ⁇ ,. .
  • the laser gyro comprises means for photo-detecting the intensity of the counter-propagating waves, the intensity modulations of said waves constituting the signal for measuring the speed or the angular position of the laser gyro.
  • the invention also relates to an angular measurement system or angular velocity, comprising at least one laser gyro according to the invention.
  • the cavities of the gyrolasers of the measurement system are oriented so as to perform measurements in three independent directions.
  • FIG. 1 represents a diagram of a laser gyro according to the invention
  • FIG. 2 represents the geometry of a semiconductor laser medium in the form of a ribbon
  • FIG. 3 represents the geometry of a semiconductor laser medium with a vertical structure
  • FIGS. 4 and 5 show the geometry of the standing wave created in a structure by an incident wave and by its reflection on a mirror disposed under said structure;
  • FIG. 6 represents the state of polarization of the incident and reflected waves in the case of FIG. 4;
  • FIG. 7 represents the geometry of the standing wave created in a structure by two incident waves propagating in the opposite direction and by their reflections on a mirror disposed under said structure;
  • FIG. 8 represents the variations of intensity of the standing wave in the configuration of FIG. 7.
  • FIG. 1 represents the block diagram of a laser gyro according to the invention. He understands :
  • a cavity 1 made of a first material and comprising a plurality of reflecting mirrors 3 and 4, and a partially reflecting mirror 5;
  • a semiconductor amplifier medium 2 comprising: optical elements 6 and 7 shown in dashed lines, used, for example, to eliminate the blind zone or to introduce thermal compensations;
  • the assembly being arranged so that two optical waves can propagate in two opposite directions inside the cavity. These two waves are represented by a double line in Figure 1. These waves pass through the various optical elements arranged in the cavity;
  • an optoelectronic measuring device 8 represented in dashed lines making it possible to calculate the angular parameter measured from the interference pattern of the two counterpropagating waves issuing from the partially reflecting mirror 5.
  • the main choices concerning the semiconductor medium are:
  • FIG. 2 represents such a structure 2.
  • the active zone 21 in which the stimulated emission takes place is continuous.
  • the emission of the optical beam 22 is by one of the side faces 23.
  • the optical mode 22 propagating in this structure can be multimode.
  • the geometry of the beam is asymmetrical as indicated in FIG. 2.
  • the height of the mode corresponding to its dimension along the so-called fast AR axis is then generally a few microns and its width corresponding to its dimension along the axis AL. said slow is several tens of microns.
  • the optical mode propagating in this structure can also be monomode. It is then symmetrical. We then speak of so-called transverse monomode structures.
  • transverse single-mode ribbon For gyrometric applications, the use of a semiconductor laser medium in the form of transverse single-mode ribbon is complicated. Indeed, it is necessary that the mode has a diameter of a few microns inside the cavity of the ribbon, and a diameter of several tens of microns outside the cavity. The propagation of the mode in the active zone must also be guided. The use of a transverse non-monomode ribbon is not easier since the mode in addition to being focused and guided on the slow axis must be highly elliptical.
  • FIG. 3 shows such a structure.
  • the active medium is then discontinuous. It is composed of a stack of 24 thin active zones whose thickness is typically about ten nanometers separated by thicknesses equal to ⁇ / 2n.
  • the light is then emitted by the top faces 26 or below 27 and the mode propagating in this type of cavity has a symmetry of revolution.
  • These structures are called VCSEL, Vertical Cavity Surface Emitting Laser's acronym, when the laser is completely monolithic, the gain zones then being sandwiched between two Bragg stacks, one totally reflective and the other, the output mirror, having a transmission of about 0.1%.
  • VECSEL the English acronym for Vertical External Cavity Surface Emitting Laser.
  • the totally reflective mirror can be a mirror of Bragg or a dielectric mirror attached to the structure.
  • the treatment of the face of the structure opposite to the mirror may include antireflection treatment. It is also possible, by adjusting its reflection coefficient, to promote the monomode emission of these structures.
  • the use of a vertical structure is more appropriate, since the gain zones may have a diameter of one hundred microns, close to the dimensions of the optical beam circulating in the cavity, which also allows propagation of the unguided wave.
  • the intensity therefore evolves temporally between a maximum and a minimum with a pulsation equal to ( ⁇ + - ⁇ _), so that it seems that the wave is moving relative to this point.
  • the intensity maxima may be superimposed on the gain zones.
  • the standing wave is then no longer free to move under the effect of a rotation. This results in a "gain frequency lock" which renders the device unusable as a laser gyro.
  • the operation in reflection of these vertical structures makes it possible to overcome the above disadvantages.
  • Figure 4 shows a vertical structure 2 sectional view operating in reflection. For simplicity, it is considered that the structure is comparable to an active medium 28 of index n, on which a mirror 29 is deposited.
  • the incident wave 30 and the reflected wave 31 by the mirror 29 interfere in the active medium 28.
  • This interference zone 32 is shown in Figure 4 by a hatched triangular area.
  • the field E + representative of the incident wave is:
  • the scalar product E 0+ .E 0 + r depends on the polarization of the incident wave.
  • FIG. 6 represents a base of possible states of linear polarization of the incident wave and of the reflected wave, called perpendicular and parallel states, depending on whether the representative vector of the electric field of the wave is in the plane of incidence. or he is perpendicular. These vectors are denoted E + // , E + r // , E +1 , E + ri in FIG.
  • the interference pattern corresponding to the intensity It is fixed. It is composed of a network of plane interference fringes, equidistant ⁇ n and parallel to the mirror with a step of
  • FIG. 5 shows the structure of the interference fringes 33 in the reference (O, Ox, Oy, Oz). Each parallelepiped represents the position of the intensity maxima.
  • Figure 7 shows a vertical structure 2 sectional view operating in reflection.
  • the structure is comparable to an active medium 28 of index n, on which a mirror 29 is deposited.
  • Co is k, ⁇ .7 - fi> + - ⁇ - H + -t PRP -%) - ⁇ P + - ⁇ + P ⁇ Po E n
  • the medium is composed of a stack of thin active zones, making these lines coincide with the active zones, the operation of the laser is optimized.
  • the progressive wave introduces at most a variation of a maximum, negligible variation.
  • a light beam with an average diameter of 100 microns has 140 maxima.
  • the modulation of the gain is at most 1 maximum on 140 or 0.7%.
  • Such low modulation does not result in gain lock. It causes a slight modulation of the output power which can advantageously be used as a read signal.
  • the totally reflecting mirror is a so-called Bragg stack or a dielectric mirror reported optimized for the desired incidence. This stack or mirror achieves reflection coefficients close to 100%.
  • the gain zones, made on top of this stack, ⁇ must be well positioned. For this, their step is - ⁇ - and the
  • another stack can be manufactured with a greater or lesser reflection coefficient if it is desired to benefit in the gain zone of a sub-cavity effect increasing the effective gain seen by the cavity of the laser gyro.
  • the stack traversed by the pump beam can also be made to be anti-reflective at the wavelength of said pump beam.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Gyroscopes (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Le domaine de l'invention est celui des gyrolasers à état solide utilisés dans les centrales inertielles. Ce type d'équipement est notamment utilisé pour les applications aéronautiques. Il est possible de réaliser un gyrolaser à état solide à partir de milieux semi-conducteurs pompés optiquement ou électriquement. Les gyrolasers actuels de ce dernier type sont monolithiques et sont de dimensions réduites. Ils ne permettent pas d'une part d'atteindre des précisions comparables à celles des gyrolasers gazeux et d'autres part d'implémenter des méthodes optiques pour supprimer le couplage en fréquence à faibles vitesses de rotations ou les dérives en température. L'objet de l'invention est un gyrolaser à état solide comportant un milieu semi-conducteur et constitué d'éléments discrets assemblés, offrant ainsi la possibilité de réaliser des cavités de grande dimension permettant d'atteindre les précisions voulues. Plus précisément, le gyrolaser comporte une cavité optique en anneau et un milieu amplificateur semi-conducteur à cavité externe à structure verticale comportant un empilement de zones de gain planes et parallèles entre elles, les dimensions de la cavité étant sensiblement supérieures à celles du milieu amplificateur, ledit milieu amplificateur étant utilisé en réflexion.

Description

GYROLASER A MILIEU SOLIDE SEMI-CONDUCTEUR A STRUCTURE VERTICALE
Le domaine de l'invention est celui des gyrolasers à état solide utilisés notamment dans les centrales inertielles. Ce type d'équipement est utilisé, par exemple, pour les applications aéronautiques.
Le gyrolaser, mis au point il y a une trentaine d'année, est largement commercialisé et utilisé de nos jours. Son principe de fonctionnement est fondé sur l'effet Sagnac, qui induit une différence de fréquence Δv entre les deux modes optiques d'émission se propageant en sens opposé dits contre-propageants d'une cavité laser en anneau bidirectionnelle animée d'un mouvement de rotation. Classiquement, la différence de fréquence Δv induite entre les deux modes optiques par le mouvement de rotation est égale à :
Δv = 4AΩ /XL
où L et A sont respectivement la longueur et l'aire de la cavité ; λ est la longueur d'onde d'émission laser hors effet Sagnac ; Ω est la vitesse de rotation de l'ensemble. La mesure de Δv, obtenue par analyse spectrale du battement des deux faisceaux émis, permet de connaître la valeur de Ω avec une très grande précision.
Dans les gyrolasers usuels, le milieu amplificateur est un mélange gazeux d'atomes d'Hélium et de Néon en proportion appropriée. Le caractère gazeux du milieu amplificateur est toutefois une source de complications techniques lors de la réalisation du gyrolaser, notamment en raison de la grande pureté de gaz requise et de l'usure prématurée de la cavité lors de son utilisation due, en particulier, aux fuites de gaz et aux détériorations des électrodes haute tension utilisées pour établir l'inversion de population.
Il est possible de réaliser un gyrolaser à état solide fonctionnant dans le visible ou le proche infra-rouge en utilisant, par exemple, un milieu amplificateur à base de cristaux dopés avec des ions de type terre rare comme le Néodyme, Œrbium ou lΥtterbium à la place du mélange gazeux Hélium-Néon ; le pompage optique étant alors assuré par des diodes lasers fonctionnant dans le proche infra-rouge. On supprime ainsi, de facto, tous les problèmes inhérents à l'état gazeux du milieu amplificateur.
Il est également possible de réaliser un gyrolaser à état solide à partir de milieux semi-conducteurs pompés optiquement ou électriquement. Les gyrolasers actuels de ce dernier type sont monolithiques et sont de dimensions réduites. Ils ne permettent pas d'une part d'atteindre des précisions comparables à celles des gyrolasers gazeux et d'autre part d'implémenter des méthodes optiques soit pour supprimer le couplage en fréquence à faibles vitesses de rotation, phénomène dit de la zone aveugle, soit pour compenser des phénomènes de bruit d'origine thermique.
L'objet de l'invention est un gyrolaser à état solide comportant un milieu semi-conducteur à cavité externe et constitué d'éléments discrets assemblés, offrant ainsi la possibilité de réaliser des cavités de grande dimension permettant à la fois d'atteindre les précisions voulues et d'insérer des éléments optiques dans la cavité.
Plus précisément, l'invention a pour objet un gyrolaser comportant au moins une cavité optique en anneau et un milieu amplificateur à l'état solide agencés de façon que deux ondes optiques de longueur d'onde moyenne λ0 puissent se propager en sens contraire à l'intérieur de la cavité, caractérisé en ce que les dimensions de la cavité sont sensiblement supérieures à celles du milieu amplificateur et que ledit milieu amplificateur est un milieu semi-conducteur d'indice optique moyen n, à structure verticale comportant un empilement de zones de gain planes et parallèles entre elles. Avantageusement, le milieu semi-conducteur comporte un miroir plan, disposé sous les zones de gain et parallèle aux dites zones de façon que les deux ondes optiques se propageant à l'intérieur de la cavité sont réfléchies par ledit miroir, après traversée des zones de gain.
Avantageusement, les ondes optiques se propageant à l'intérieur de la cavité sont réfléchies par le miroir sous une incidence oblique i, le miroir est un empilement dit de Bragg optimisé pour être totalement réfléchissant à la longueur d'onde moyenne λo et sous ladite incidence oblique i et l'empilement des zones de gain comporte sur la surface opposée à celle du miroir un traitement antireflet à la longueur d'onde moyenne λ0 et sous l'incidence oblique i.
Avantageusement, le milieu amplificateur est agencé de façon que les maxima d'intensité de la figure d'interférence obtenue par les ondes optiques se propageant à l'intérieur du milieu semi-conducteur sont situés dans les plans des zones de gain, lesdites zones de gains sont alors distantes entre elles de — ^ , . .
2« cos(/)
Avantageusement, le gyrolaser comporte des moyens de photo¬ détection de l'intensité des ondes contre-propagatives, les modulations d'intensité desdites ondes constituant le signal de mesure de vitesse ou de position angulaire du gyrolaser. L'invention a également pour objet un système de mesure angulaire ou de vitesse angulaire, comportant au moins un gyrolaser selon l'invention.
Avantageusement, les cavités des gyrolasers du système de mesure sont orientées de façon à réaliser des mesures dans trois directions indépendantes.
L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description qui va suivre donnée à titre non limitatif et grâce aux figures annexées parmi lesquelles : • la figure 1 représente un schéma d'un gyrolaser selon l'invention ;
• la figure 2 représente la géométrie d'un milieu laser à semi conducteur en forme de ruban ;
• la figure 3 représente la géométrie d'un milieu laser à semi conducteur à structure verticale ;
• les figures 4 et 5 représentent la géométrie de l'onde stationnaire créée dans une structure par une onde incidente et par sa réflexion sur un miroir disposé sous ladite structure ; • la figure 6 représente l'état de polarisation des ondes incidente et réfléchie dans le cas de la figure 4 ;
• la figure 7 représente la géométrie de l'onde stationnaire créée dans une structure par deux ondes incidentes se propageant en sens inverse et par leurs réflexions sur un miroir disposé sous ladite structure ;
• la figure 8 représente les variations d'intensité de l'onde stationnaire dans la configuration de la figure 7.
La figure 1 représente le schéma de principe d'un gyrolaser selon l'invention. Il comprend :
• une cavité 1 réalisé dans un premier matériau et comprenant plusieurs miroirs de renvoi 3 et 4, et un miroir partiellement réfléchissant 5 ;
• un milieu amplificateur à semi-conducteur 2 ; • éventuellement, des éléments optiques 6 et 7 représentés en pointillés, utilisés, par exemple, pour éliminer la zone aveugle ou pour introduire des compensations thermiques ;
• l'ensemble étant agencé de sorte que deux ondes optiques puissent se propager dans deux directions opposées à l'intérieur de la cavité. Ces deux ondes sont représentés par un trait double sur la figure 1. Ces ondes traversent les différents éléments optiques disposés dans la cavité ;
• et un dispositif de mesure opto-électronique 8 représenté en pointillés permettant de calculer le paramètre angulaire mesuré à partir de la figure d'interférence des deux ondes contre- propageantes issues du miroir partiellement réfléchissant 5.
Indépendamment des matériaux mis en œuvre et des longueurs d'onde d'utilisation, les choix principaux concernant le milieu semi- conducteur sont :
• sa structure ;
• et son mode de fonctionnement en transmission ou en réflexion. Les milieux semi-conducteurs sont disponibles principalement sous deux types de structure :
• en ruban. La figure 2 représente une telle structure 2. La zone active 21 dans laquelle à lieu l'émission stimulée est continue. L'émission du faisceau optique 22 se fait par une des faces latérales 23. Le mode optique 22 se propageant dans cette structure peut être multimode. Dans ce cas, la géométrie du faisceau est dissymétrique comme indiqué sur la figure 2. La hauteur du mode correspondant à sa dimension selon l'axe AR dit rapide est alors généralement de quelques microns et sa largeur correspondant à sa dimension selon l'axe AL dit lent est de plusieurs dizaines de microns. Le mode optique se propageant dans cette structure peut également être monomode. Il est alors symétrique. On parle alors de structures dites monomode transverse. Pour les applications en gyrométrie, l'utilisation d'un milieu laser semi-conducteur en forme de ruban monomode transverse est compliquée. En effet, il faut que le mode ait un diamètre de quelques microns à l'intérieur de la cavité du ruban, et un diamètre de plusieurs dizaines de microns à l'extérieur de la cavité. La propagation du mode dans la zone active doit aussi être guidée. L'utilisation d'un ruban non monomode transverse n'est pas plus aisée puisque le mode en plus d'être focalisé et guidé sur l'axe lent doit être fortement elliptique.
• Verticale. La figure 3 représente une telle structure. Le milieu actif est alors discontinu. Il est composé d'un empilement de zones actives 24 fines, dont l'épaisseur vaut typiquement une dizaine de nanomètres séparées par des épaisseurs 25 égale à λ/2n. La lumière est alors émise par les faces de dessus 26 ou de dessous 27 et le mode se propageant dans ce type de cavité possède une symétrie de révolution. Ces structures sont dites VCSEL, acronyme anglo-saxon de Vertical Cavity Surface Emitting Laser, lorsque le laser est complètement monolithique, les zones de gains étant alors prises en sandwich entre deux empilements de Bragg, l'un totalement réfléchissant et l'autre, le miroir de sortie, ayant une transmission d'environ 0.1 %. Lorsque le miroir de sortie est un élément discret, ces cavités sont dites VECSEL, acronyme anglo-saxon de Vertical External Cavity Surface Emitting Laser. Sur la figure 3, seul l'empilement de zones actives est représenté. Le miroir totalement réfléchissant peut être un miroir de Bragg ou un miroir diélectrique rapporté sur la structure. Le traitement de la face de la structure opposée au miroir peut comporter un traitement antireflet. Il est également possible, en ajustant son coefficient de réflexion, de favoriser l'émission monomode de ces structure.
Pour les applications en gyrométrie, l'utilisation d'une structure verticale est plus appropriée, dans la mesure où les zones de gain peuvent avoir un diamètre d'une centaine de microns, proche des dimensions du faisceau optique circulant dans la cavité, ce qui permet également une propagation de l'onde non guidée.
Cependant, ces structures verticales ne peuvent pas être simplement utilisées en transmission dans un gyrolaser. En effet, soit deux ondes contre-propageantes dont les vecteurs champ électrique sont notées ÎL + et É avec E+ = Ë0+ei(^t+φJ et E^ = Ë0^ei(^F"ûJ+φ-> k représentant classiquement le vecteur d'onde de l'onde, ω sa pulsation, φ sa phase à l'origine. Les signes + et - indiquent le sens de propagation de l'onde. Dans la cavité du gyrolaser, le champ électrique total Et provenant de l'interférence des deux ondes vaut:
C _ Ë oi(k.r-ω+t+φ+ ) , p -K-k.r-ω.t+φ ) et l'intens
I, = Ëtt * -ω_)t + φ+ -φ_)
Pour un point fixe dans la cavité, l'intensité évolue donc temporellement entre un maximum et un minimum avec une pulsation égale à (ω+ - ω_), si bien qu'il semble que l'onde se déplace par rapport à ce point. Si on dispose dans la cavité une structure verticale fonctionnant en transmission, les maxima d'intensité peuvent se superposer aux zones de gain. L'onde stationnaire n'est alors plus libre de se déplacer sous l'effet d'une rotation. On obtient ainsi un «verrouillage en fréquence par le gain» qui rend de fait le dispositif inutilisable en tant que gyrolaser. Le fonctionnement en réflexion de ces structures verticales permet de s'affranchir des inconvénients précédents.
La figure 4 représente une structure verticale 2 vue en coupe fonctionnant en réflexion. Pour simplifier, on considère que la structure est assimilable à un milieu actif 28 d'indice n, sur lequel est déposé un miroir 29.
Lorsqu'elle est éclairée par une seule onde, l'onde incidente 30 et l'onde réfléchie 31 par le miroir 29 interfèrent dans le milieu actif 28. Cette zone d'interférence 32 est représentée sur la figure 4 par une zone triangulaire hachurée. On indicera par le signe + les paramètres liés à l'onde incidente et par le signe +r les paramètres liés à l'onde réfléchie. On note également i l'angle d'incidence.
Dans le repère (O, Ox, Oy) de la figure 4, les vecteurs propagations k+ et k+r des ondes incidente et réfléchie s'écrivent dans le milieu actif, respectivement :
r 2π sιn(ι) - 2π sir© k, = n )\ et k+r = --n λ cos(ι) λ0 ;os(i)
Le champ E+ représentatif de l'onde incidente vaut :
E _ P oi(k+.r'4t + φ+ ) c+ — I-o+ et le champ É_ représentatif de l'onde incidente réfléchie s'écrit, si le coefficient de réflexion vaut VRe"Po : É_ = jR ÉÇ)+ré'rr →J +ψ< +φ«)
Dans la zone où les deux ondes se superposent, le champ électrique total Etota|, au point r est donné par :
E _ F r -ωft + φ( ) , /π" E Ql(k.r.r -θ)( t + φ(0 ) total - H)+ + vκ to+re et l'intensité totale lt qui vaut classiquement Êωtalt * otal est égale à :
Soit encore, en remplaçant les vecteurs d'onde par leurs expressions en fonction de la longueur d'onde λo :
Le produit scalaire E0+0+r dépend de la polarisation de l'onde incidente. La figure 6 représente une base d'états possibles de polarisation linéaire de l'onde incidente et de l'onde réfléchie, états appelés perpendiculaire et parallèle selon que le vecteur représentatif du champ électrique de l'onde se trouve dans le plan d'incidence ou lui est perpendiculaire. Ces vecteurs sont notés E+//, E+r//, E+1, E+ri sur la figure 6.
Dans le cas où l'onde est dans un état de polarisation parallèle, le produit scalaire E0+.E0+r vaut ^0+r co^π-2i). Dans le cas où l'onde est dans un état de polarisation perpendiculaire, le produit scalaire E0+ .E0+1. vaut
EΛE0+r
Pour simplifier les expressions, on choisit E0+ et E0+r réels et R, coefficient de réflexion en intensité égal à 1. L'intensité totale se réécrit alors:
La figure d'interférence correspondante à l'intensité It est fixe. Elle est composée d'un réseau de franges d'interférences planes, équidistantes λn et parallèles au miroir avec un pas de
2n cos(i)
La figure 5 représente la structure des franges d'interférence 33 dans le repère (O, Ox, Oy, Oz). Chaque parallélépipède représente la position des maxima d'intensité.
La figure 7 représente une structure verticale 2 vue en coupe fonctionnant en réflexion. Pour simplifier, on considère que la structure est assimilable à un milieu actif 28 d'indice n, sur lequel est déposé un miroir 29. Lorsqu'elle est éclairée par deux ondes contre-propagatives de fréquences différentes, 4 ondes 30, 31 , 35 et 36 interfèrent alors:
• Une première onde incidente 30 circulant dans un premier sens noté + qui vaut, avec les mêmes notations que précédemment, i(k+.r -ω.t + φ.J
E0+e' l'onde réfléchie 31 correspondant à cette première onde incidente qui vaut VRE0+e i'(-k_.r - ωft + q>(0 )
• une seconde onde incidente 35 circulant dans le sens opposé noté - qui vaut É0_ei(S F) t+φ ) , • l'onde réfléchie 36 correspondante à cette seconde onde incidente qui vaut ; Le champ total Etota| s'écrit alors :
E _ C αKk, r-ω.t+φj fθ C βK-k_.r-ω+t+φτ0 ) total ~ "-0+^ + V r\ C0+C
+ £ gi(k_.r-(0-t+φ-) _|_ /p | gi(-k+.r-ω_t+(p +φ0 )
Comme précédemment, pour simplifier les calculs, on choisit de prendre les modules des champs électriques réels et égaux, et R, coefficient de réflexion en intensité égal à 1. Le champ total s'écrit alors:
— (φ+ +φ_ +φ0+ -ω t)
' F-'total = 2 ώec 2
co is kl, .7 τ — fi>+ -β- -tH + PrP- -% ) - <P+ -<P- + <Po En
Com
Alors
On a :
A partir de l'expression du champ total, on calcule la valeur de l'intensité totale Itotaie qui vaut :
Ainsi, lorsque deux ondes circulent dans le milieu d'indice n, comme c'est le cas lorsque l'on est en présence d'émission bidirectionnelle dans un gyrolaser, l'intensité maximale est localisée selon des lignes fixes parallèles au miroir. La figure 8 illustre cette figure d'interférence.
Si le milieu est composé d'un empilement de zones actives fines, en faisant coïncider ces lignes avec les zones actives, on optimise ainsi le fonctionnement du laser. II existe bien une onde progressive le long de ces lignes, mais elle n'introduit qu'une faible modulation de la saturation du gain. En effet, i! existe généralement un grand nombre de maxima à l'intérieur des faisceaux optiques interférant. L'onde progressive introduit au plus une variation d'un maximum, variation négligeable.
A titre d'exemple, pour une longueur d'onde λo égale à 1 micron, pour une incidence moyenne i de 45 degrés et un indice optique moyen n de 3, deux maxima de l'onde progressive se déplaçant dans le plan des miroirs selon Ox sont séparés d'une distance d égale à : d = \ , ≈ λ° ≈ Q.l μm 2n sin(/j 2«x0.23
Par conséquent, un faisceau lumineux d'un diamètre moyen de 100 microns comportent 140 maxima. Ainsi, et sans tenir compte du profil gaussien du mode qui renforce le rôle du centre du faisceau par rapport à ses bords, la modulation du gain vaut au plus 1 maximum sur 140 soit 0.7%.
Une modulation aussi faible n'entraîne pas de verrouillage par le gain. Elle entraîne une légère modulation de la puissance de sortie qui peut avantageusement être utilisée comme signal de lecture.
Pour optimiser ce fonctionnement, le miroir totalement réfléchissant est un empilement dit de Bragg ou un miroir diélectrique reporté optimisé pour l'incidence voulue. Cet empilement ou ce miroir permet d'atteindre des coefficients de réflexion proches de 100%.
Les zones de gains, fabriquées par-dessus cet empilement, λ doivent être bien positionnées. Pour cela, leur pas est de — ^- et la
2n cos(i) position de la première zone par rapport à l'empilement est optimisée de façon à tenir compte des déphasages fixes éventuels de façon à ce que toutes les zones de gain coïncident avec les lignes parallèles au plan de la structure pour laquelle l'intensité est maximale.
Sur la face de sortie, un autre empilement peut être fabriqué avec un coefficient de réflexion plus ou moins important si on désire bénéficier dans la zone de gain d'un effet de sous cavité augmentant le gain effectif vu par la cavité du gyrolaser. Dans le cas de l'utilisation d'un faisceau de pompe, l'empilement traversé par le faisceau de pompe peut aussi être réalisé pour être antireflet à la longueur d'onde dudit faisceau de pompe.
On remarque aussi que les possibilités d'émission multimode par saturation non uniforme du gain, encore appelée en terminologie ang!o~ saxonne « spatial hole burning » sont réduites. En effet, le pas de la figure d'interférence évolue peu en fonction de la longueur d'onde. Ainsi, pour un semi-conducteur émettant à 1 micron et de largeur de gain de 1 nanomètre, le pas évolue au plus de 0,1 %. Par conséquent, la seule façon pour une onde d'exploiter une zone de gain non saturée serait d'avoir une longueur d'onde très différente, ce qui est impossible à cause de la largeur spectrale du gain.

Claims

REVENDICATIONS
1. Gyrolaser comportant au moins une cavité optique (1 ) en anneau et un milieu amplificateur (2) à l'état solide agencés de façon que deux ondes optiques de longueur d'onde moyenne λo puissent se propager en sens contraire à l'intérieur de la cavité, caractérisé en ce que les dimensions de la cavité sont sensiblement supérieures à celles du milieu amplificateur et que ledit milieu amplificateur est un milieu semi-conducteur d'indice optique moyen n, à structure verticale comportant un empilement de zones de gain (24) planes et parallèles entre elles.
2. Gyrolaser selon la revendication 1 , caractérisé en ce que le milieu semi-conducteur comporte un miroir plan (29), disposé sous les zones de gain et parallèle aux dites zones de façon que les deux ondes optiques se propageant à l'intérieur de la cavité sont réfléchies par ledit miroir après traversée des zones de gain.
3. Gyrolaser selon la revendication 2, caractérisé en ce que les ondes optiques se propageant à l'intérieur de la cavité sont réfléchies par le miroir plan (29) sous une incidence oblique i.
4. Gyrolaser selon la revendication 3, caractérisé en ce que le miroir (29) est un empilement dit de Bragg optimisé pour être totalement réfléchissant à la longueur d'onde moyenne λ0 et sous l'incidence oblique i.
5. Gyrolaser selon la revendication 3, caractérisé en ce que le miroir (29) est un miroir rapporté sous les zones de gain et conçu pour être totalement réfléchissant à la longueur d'onde moyenne λ0 et sous l'incidence oblique i.
6. Gyrolaser selon l'une des revendications 3 à 5, caractérisé en ce que l'empilement des zones de gain comporte sur la surface opposée à celle du miroir un traitement optique à la longueur d'onde moyenne λo et sous l'incidence oblique i.
7. Gyrolaser selon la revendication 6, caractérisé en ce que l'empilement des zones de gain comporte sur la surface opposée à celle du miroir un traitement antireflet à la longueur d'onde moyenne λ0 et sous l'incidence oblique i.
8. Gyrolaser selon l'une des revendications 3 à 7, caractérisé en ce que le milieu amplificateur est agencé de façon que les maxima d'intensité de la figure d'interférence obtenue par les ondes optiques se propageant à l'intérieur du milieu semi-conducteur sont situés dans les plans des zones de gain.
9. Gyrolaser selon la revendication 8, caractérisé en ce que les zones de gains sont distantes entre elles de "^
2n cos(z)
10 Gyrolaser selon l'une des revendications précédentes, caractérisé en ce que le gyrolaser comporte des moyens de photo-détection de l'intensité des ondes contre-propagatives, les modulations d'intensité desdites ondes constituant le signal de mesure de vitesse angulaire ou de position angulaire du gyrolaser.
11. Système de mesure angulaire ou de vitesse angulaire, caractérisé en ce qu'il comporte au moins un gyrolaser selon l'une des revendications précédentes.
12. Système de mesure selon la revendication 11 , caractérisé en ce qu'il comporte trois gyrolasers dont les cavités sont orientées de façon à réaliser des mesures dans trois directions indépendantes.
EP05804595A 2004-11-05 2005-10-26 Gyrolaser a milieu solide semi-conducteur a structure verticale Withdrawn EP1807675A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0411816A FR2877775B1 (fr) 2004-11-05 2004-11-05 Gyrolaser a milieu solide semi-conducteur a structure verticale
PCT/EP2005/055574 WO2006048398A2 (fr) 2004-11-05 2005-10-26 Gyrolaser a milieu solide semi-conducteur a structure verticale

Publications (1)

Publication Number Publication Date
EP1807675A2 true EP1807675A2 (fr) 2007-07-18

Family

ID=34954071

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05804595A Withdrawn EP1807675A2 (fr) 2004-11-05 2005-10-26 Gyrolaser a milieu solide semi-conducteur a structure verticale

Country Status (7)

Country Link
US (1) US7663763B2 (fr)
EP (1) EP1807675A2 (fr)
JP (1) JP2008519251A (fr)
CN (1) CN101061369A (fr)
FR (1) FR2877775B1 (fr)
RU (1) RU2381450C2 (fr)
WO (1) WO2006048398A2 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005249547A (ja) * 2004-03-03 2005-09-15 Advanced Telecommunication Research Institute International 半導体レーザジャイロ
FR2894663B1 (fr) * 2005-12-13 2008-02-08 Thales Sa Gyrolaser a etat solide active optiquement par biais alternatif
JP2007271354A (ja) * 2006-03-30 2007-10-18 Advanced Telecommunication Research Institute International リングレーザジャイロ
FR2905005B1 (fr) * 2006-08-18 2008-09-26 Thales Sa Gyrolaser a etat solide avec milieu a gain active mecaniquement.
FR2925153B1 (fr) * 2007-12-18 2010-01-01 Thales Sa Gyrolaser multioscillateur a etat solide utilisant un milieu a gain cristallin coupe a 100
US8319973B2 (en) * 2009-04-08 2012-11-27 Honeywell International Inc. VCSEL enabled active resonator gyroscope

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743485A (en) * 1980-08-13 1982-03-11 Agency Of Ind Science & Technol Semiconductor ring laser device
JPS5743486A (en) * 1980-08-13 1982-03-11 Agency Of Ind Science & Technol Semiconductor ring laser device
DE19504373C2 (de) * 1995-02-10 2000-06-15 Daimler Chrysler Ag Diodengepumpter Festkörper-Ringlaserkreisel
FR2825463B1 (fr) * 2001-05-30 2003-09-12 Thales Sa Gyrometre laser etat solide comportant un bloc resonateur

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006048398A2 *

Also Published As

Publication number Publication date
JP2008519251A (ja) 2008-06-05
FR2877775B1 (fr) 2008-06-06
RU2381450C2 (ru) 2010-02-10
US7663763B2 (en) 2010-02-16
WO2006048398A2 (fr) 2006-05-11
WO2006048398A3 (fr) 2006-07-06
FR2877775A1 (fr) 2006-05-12
US20090073452A1 (en) 2009-03-19
CN101061369A (zh) 2007-10-24
RU2007120755A (ru) 2008-12-10

Similar Documents

Publication Publication Date Title
EP1393017B1 (fr) Gyrometre laser etat solide comportant un bloc resonateur
EP1807675A2 (fr) Gyrolaser a milieu solide semi-conducteur a structure verticale
WO2007068654A1 (fr) Gyrolaser a etat solide a modes contre-propagatifs orthogonaux
JPH09500720A (ja) 固体媒質の光学的リング状レーザー回転センサー
FR3059776A1 (fr) Systeme de surveillance a capteur reparti a fibre optique
WO2004094952A1 (fr) Gyrolaser a etat solide stabilise
FR3003095A1 (fr) Dispositif de mesure interferometrique a fibre optique comportant un resonateur en anneau, gyrometre et centrale d&#39;attitude ou de navigation inertielle comportant un tel dispositif
EP3338330B1 (fr) Laser térahertz, source térahertz et utilisation d&#39;un tel laser térahertz
EP2385345B1 (fr) Gyrolaser a etat solide multioscillateur stabilise passivement par un dispositif a cristal doubleur de frequence
EP2342535A1 (fr) Gyrolaser à milieu amplificateur à état solide et à cavité optique en anneau
WO2005085759A1 (fr) Gyroscope employant un laser semi-conducteur
WO2004102120A1 (fr) Gyrolaser a etat solide stabilise par des dispositifs acousto-optiques
FR2938641A1 (fr) Gyrolaser a etat solide a pompage optique controle
FR2863702A1 (fr) Gyrolaser a etat solide stabilise et a milieu laser anisotrope
FR2756672A1 (fr) Dispositif amplificateur de lumiere a deux faisceaux incidents
WO2009077314A1 (fr) Gyrolaser multioscillateur a etat solide utilisant un milieu a gain cristallin coupe a &lt;100&gt;
EP2267408B1 (fr) Gyrolaser à état solide stabilisé
EP0331581A1 (fr) Miroir piézoélectrique pour gyromètre à laser
US9476713B2 (en) Ring mirror optical rotation sensor
WO2006037932A1 (fr) Systeme optique a extension de propagation de faisceau
WO2009141221A2 (fr) Gyrolaser a grand facteur d&#39;échelle
WO2024115447A1 (fr) Dispositif à émission de surface, système optique et procédé associé
EP0413713A1 (fr) Miroir piezoelectrique compense pour gyrometre a laser
CA2457771A1 (fr) Source laser en optique guidee
JP2002243452A (ja) ジャイロ装置及びその駆動方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070503

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE GB

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE GB

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120501