EP1606191B1 - Hydrocarbon fluids packaging - Google Patents
Hydrocarbon fluids packaging Download PDFInfo
- Publication number
- EP1606191B1 EP1606191B1 EP04720436A EP04720436A EP1606191B1 EP 1606191 B1 EP1606191 B1 EP 1606191B1 EP 04720436 A EP04720436 A EP 04720436A EP 04720436 A EP04720436 A EP 04720436A EP 1606191 B1 EP1606191 B1 EP 1606191B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- box
- pouch
- layer
- density polyethylene
- container according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 74
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 68
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 68
- 239000004215 Carbon black (E152) Substances 0.000 title claims abstract description 67
- 238000004806 packaging method and process Methods 0.000 title description 33
- 229920001778 nylon Polymers 0.000 claims description 52
- 239000004677 Nylon Substances 0.000 claims description 47
- 229920001281 polyalkylene Polymers 0.000 claims description 39
- 229920000642 polymer Polymers 0.000 claims description 33
- -1 polyethylene Polymers 0.000 claims description 31
- 239000004698 Polyethylene Substances 0.000 claims description 19
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 18
- 229910052782 aluminium Inorganic materials 0.000 claims description 18
- 239000004411 aluminium Substances 0.000 claims description 17
- 229920001903 high density polyethylene Polymers 0.000 claims description 16
- 239000004700 high-density polyethylene Substances 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 16
- 229920000573 polyethylene Polymers 0.000 claims description 16
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 claims description 15
- 239000004715 ethylene vinyl alcohol Substances 0.000 claims description 15
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 14
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 claims description 13
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 13
- 229920001684 low density polyethylene Polymers 0.000 claims description 11
- 239000004702 low-density polyethylene Substances 0.000 claims description 11
- 229920000092 linear low density polyethylene Polymers 0.000 claims description 10
- 239000004707 linear low-density polyethylene Substances 0.000 claims description 10
- 239000005025 cast polypropylene Substances 0.000 claims description 6
- 239000003063 flame retardant Substances 0.000 claims description 6
- 229920001862 ultra low molecular weight polyethylene Polymers 0.000 claims description 6
- 239000010410 layer Substances 0.000 description 102
- 238000003860 storage Methods 0.000 description 9
- 238000000576 coating method Methods 0.000 description 8
- 239000003921 oil Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000010705 motor oil Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 238000004078 waterproofing Methods 0.000 description 3
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 2
- 229920000571 Nylon 11 Polymers 0.000 description 2
- 229920000299 Nylon 12 Polymers 0.000 description 2
- 229920002292 Nylon 6 Polymers 0.000 description 2
- 229920000305 Nylon 6,10 Polymers 0.000 description 2
- 229920002302 Nylon 6,6 Polymers 0.000 description 2
- 239000004687 Nylon copolymer Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229920001807 Urea-formaldehyde Polymers 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- UFRKOOWSQGXVKV-UHFFFAOYSA-N ethene;ethenol Chemical compound C=C.OC=C UFRKOOWSQGXVKV-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229920006012 semi-aromatic polyamide Polymers 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 230000035900 sweating Effects 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- BGJSXRVXTHVRSN-UHFFFAOYSA-N 1,3,5-trioxane Chemical compound C1OCOCO1 BGJSXRVXTHVRSN-UHFFFAOYSA-N 0.000 description 1
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 241000269907 Pleuronectes platessa Species 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- GZCGUPFRVQAUEE-SLPGGIOYSA-N aldehydo-D-glucose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O GZCGUPFRVQAUEE-SLPGGIOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- SWLVFNYSXGMGBS-UHFFFAOYSA-N ammonium bromide Chemical compound [NH4+].[Br-] SWLVFNYSXGMGBS-UHFFFAOYSA-N 0.000 description 1
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 235000021022 fresh fruits Nutrition 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229920006262 high density polyethylene film Polymers 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- XZTOTRSSGPPNTB-UHFFFAOYSA-N phosphono dihydrogen phosphate;1,3,5-triazine-2,4,6-triamine Chemical compound NC1=NC(N)=NC(N)=N1.OP(O)(=O)OP(O)(O)=O XZTOTRSSGPPNTB-UHFFFAOYSA-N 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- XMVONEAAOPAGAO-UHFFFAOYSA-N sodium tungstate Chemical compound [Na+].[Na+].[O-][W]([O-])(=O)=O XMVONEAAOPAGAO-UHFFFAOYSA-N 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D77/00—Packages formed by enclosing articles or materials in preformed containers, e.g. boxes, cartons, sacks or bags
- B65D77/04—Articles or materials enclosed in two or more containers disposed one within another
- B65D77/06—Liquids or semi-liquids or other materials or articles enclosed in flexible containers disposed within rigid containers
- B65D77/062—Flexible containers disposed within polygonal containers formed by folding a carton blank
- B65D77/065—Spouts, pouring necks or discharging tubes fixed to or integral with the flexible container
Definitions
- the invention relates to a packaging for hydrocarbon fluids. More particularly, the invention relates to a container having a flexible pouch within a more rigid exterior container.
- Automobile service centers and other entities having a need for large volumes of hydrocarbon fluids such as motor oil, transmission fluid or brake fluid, generally stock these materials in 55 gallon (208 ⁇ 2 litre) drums or 5 or 6 gallon (18 ⁇ 9 or 22 ⁇ 7 litre) pails or 16 gallon (60 ⁇ 6 litre) kegs.
- 55 gallon (208 ⁇ 2 litre) drums are extremely heavy and difficult to handle.
- the circular shape of the drums gives rise to vacant space during transportation thereby decreasing the efficiency and raising the costs of transporting and delivering these fluids.
- individual one quart plastic containers such as those typically purchased by individual consumers, may be used by larger volume users.
- the use of individual packaging destroys the cost-savings achievable with larger volume packaging.
- large volume use of individual quart bottles would unnecessarily generate large quantities of hydrocarbon-contaminated waste plastics.
- oil residue is left in the quart bottles and such waste could be significant when used by large volume consumers. This last disadvantage is also a problem with 5 quart (5 ⁇ 68 litre) bottles.
- “Bag-in-a-box” containers substantially meet these needs.
- Most such containers utilize polymer pouches, such as polyethylene, as inner pouches which contain the liquid.
- Polymers which may be used as pouches for hydrocarbon fluids must have both good mechanical properties and good resistance towards hydrocarbon fluids. With the latter property there appears to be a correlation between the nature of the hydrocarbon fluid and the polymer composition.
- thin polyethylene films are extremely economical, flexible and transparent and have low moisture vapor permeability, such films are permeable to oil.
- Increasing the thickness of the polyethylene material such that the material becomes practicably impermeable to hydrocarbons fluid is well known. However, to achieve sufficient thickness, flexibility is sacrificed and the resulting product is a rigid polyethylene container.
- US 5 788 121 discloses a prior art bag-in-box usable for hydrocarbon fluids.
- the bag of this package is made of several layers which are not bonded together.
- One method to decrease the permeability of thin polyethylene films to hydrocarbon fluids involves laminating a poly-vinylidene chloride onto the polyethylene film.
- laminates with sufficient thickness to block permeation of hydrocarbon fluids are brittle and easily ruptured.
- Fluorinated polyethylene films are also resistant to hydrocarbon fluids but large scale production of such material is impractical and expensive.
- the hydrocarbon fluids packaging of the invention meets these and other needs.
- the invention provides a "bag-in-a-box" type packaging for hydrocarbon fluids having a flexible, collapsible, sealable interior bag or pouch which prevents leakage and sweating.
- the hydrocarbon fluids packaging further includes a rigid container formed in a shape, such as a solid rectangle.
- the interior bag or pouch is constructed of a polymer laminate which is suitable for the packaging of hydrocarbon fluids which has improved hydrocarbon resistance.
- the polymer laminate is particularly suitable for use with automotive fluids, including for example, motor oils, automatic transmission fluids brake fluids and lube oils.
- the laminate comprises at least three layers having outer layers of an alkylene polymer and at least one inner layer of an oriented nylon polymer,
- the laminate comprises at least three layers having an inside layer of an alkylene polymer, an outer layer of an oriented nylon polymer and at least one inner layer of an oriented nylon polymer or aluminium.
- the pouch is made from a one-ply oriented and cross-linked high density polyethylene film.
- a hydrocarbon fluids container comprises a pouch made of polymer laminate having at least three layers comprising:
- a hydrocarbon fluids container comprises a flexible pouch of oriented and cross laminated high density polyethylene; and a rigid box having at least one face, wherein the pouch is disposed within the rigid box.
- the hydrocarbon fluids packaging comprises an exterior box having sufficient rigidity to support the weight of the packaging contents as well as to withstand normal shipping and storing stacking. Disposed within the exterior box is a pouch comprised of a polymeric film which is resistant to hydrocarbon fluids, thereby preventing leakage, rupture and sweating.
- the hydrocarbon fluids packaging of the invention provides for a readily portable hydrocarbon fluids, storage and transfer system. For packaging hydrocarbon fluids, it is desirable that the package be high in tensile strength, high in elongation at break, high in puncture resistance, low in oxygen transmission, low in moisture transmission, and low in coefficient of friction.
- FIG. 1 a perspective, exterior view of one embodiment of a hydrocarbon fluids packaging is shown.
- the exterior box 1 is illustrated as a solid rectangle having four side faces 2, a bottom face 3 and two opposing top flaps 4 and 5 which, when closed, form a top face 6. These flaps may or may not be interlocking but should come together to form a closed face.
- the exterior box may be in any shape or form as long as it is rigid enough to contain the pouch inside and be useful for protection of the pouch containing the hydrocarbon fluid and ease of transportation (rigid outer box).
- the exterior box may be octagon, hexagon, square or rectangular.
- the exterior box for ease of construction can be rectangle or square of any size useful for storage of hydrocarbon fluid and be readily portable.
- top flaps 4 and 5 may include a die cut or punched opening to serve as a hand hold provided the exterior box is strong enough to withstand handling stresses.
- Fig. 1 only top flap 4 is shown having a handhold opening 7.
- a handhold is not necessary for the box and the box may or may not contain a handhold. If present, handhold is not limited to the opening shown in Fig.1 and can be in any shape or form as long as it can serve as a handhold.
- At least one of side faces 2 includes a valve opening 8.
- Each of handhold openings 7 and valve opening 8 may be entirely removed portions or alternatively, may be cut or punched so as to leave a flap along a perforation such that the flap may be folded in or out in order to create the opening.
- FIG. 8 a perspective, exterior view of another embodiment of a hydrocarbon fluids packaging is shown.
- the exterior box 10 is illustrated as a solid rectangle having four side faces (panels) 11, a bottom face 17, two opposing inner flaps 13 and 18 which, when closed, form an inner top face 70 and inner flap interface line (opening line) 16, and two opposing outer flaps 12 and 19 which, when closed, form an outer top face 71.
- These flaps may or may not be interlocking but should come together to form a closed face with the opposing flaps.
- the flaps 13 and 18, are adjacent to flaps 12 and 19 when the top face is open.
- the exterior box can be rectangle or square of any size useful for storage of hydrocarbon fluid and be readily portable.
- One or more side faces 11 may include a die cut or punched opening to serve as a handhold provided the exterior box is strong enough to withstand handling.
- Fig. 8 no handhold opening is shown.
- the edge of the inner flap or outer flaps that meet with the opposing flaps form can be straight, curved, and/or in angles as long as it closes to form the top face and an opening is created that provides ready access for the pouch.
- top inner flaps 13 and 18 may include a die cut or punched opening to serve as opening for a valve 15.
- both inner top flaps 13 and 15 are shown as together having a valve opening 15.
- At least one of top outer flaps 12 or 19 may include a die cut or punched opening to serve as opening for a valve 14.
- Each of handhold openings if any and valve openings 14 and 15 may be entirely removed portions or alternatively, may be cut or punched so as to leave a flap along a perforation such that the flap may be folded in or out in order to create the opening.
- the valve opening 14 and 15 should be aligned in such a way that when both inner top flap and outer top flaps are closed, they are aligned to permit the pouch fitment to be inserted through both valve openings 14 and 15.
- Box 1 and/or 10 may be made from a unitary blank, which, in its unassembled form, lies flat or substantially flat. Alternatively, box 1 and/or 10 may be made of several separate pieces assembled and joined together to achieve the final desired form or shape. Box 1 and/or 10 may have any enclosed geometry. For convenience of transportation and storage, either a solid rectangle or cube may be used. In one aspect of the invention, box 1 has the dimensions of 11.25 by 9 by 14.25 inches (28 ⁇ 58 by 22 ⁇ 86 by 36 ⁇ 20 cm), but it is one exemplary size that is convenient for a portable hydrocarbon fluid storage and any similar size that is convenient for a portable hydrocarbon fluid can be used.
- Materials of construction of box 1 and/or 10 may include cardboard or other cellulosic, rigid materials or foldable plastic materials. Cardboard may be corrugated.
- the box material may be coated and/or infused with fire-retardant and/or water-proofing additives. Examples of suitable fire-retardant coatings include, for example the intumescent coatings disclosed in U.S. Patent 3,934,066 .
- U.S. Patent 3,934,066 discloses intumescent coating compositions which include resinous or non-resinous carbonifics.
- resinous carbonifics include urea-formaldehyde resin, or resin forming mixtures containing an amino source such as urea, thiourea, melamine and the like; along an aliphatic aldehyde (or a source of aldehyde) such as formaldehyde, paraformaldehyde, trioxane or methylenetetramine, acetaldehyde and the like.
- non-resinous carbonifics examples include carbohydrates such as starch, dextrin, sucrose and lactose; and polyhydroxy compounds such as glycerine, sorbitol, mannitol, pentaerythritol, dipentaerythritol and the like.
- the intumescent composition may also include a spumific material which assists in the production of a thick, heat insulating carbonaceous foam.
- examples of spumific compounds include mono- or di-ammonium phosphate, phosphoric acid, melamine pyrophosphate, ammonium sulfate, ammonium bromide, sodium tungstate and the like.
- Intumescent laminates having a porous sheet material impregnated with an intumescent coating may also be used.
- fire-retardant coatings or additives which are well-known in the art may also be used, such as, for example, salt solutions.
- Water-proofing coatings may also be used and are also well known in the art. For example, wax coatings on cardboard containers is well known in bulk packaging of fresh fruits and vegetables. Any fire-retardant or water-proofing coating or additive appropriate to the material of construction of the box may be used.
- the hydrocarbon fluids packaging includes an exterior box 1, a pouch 21 disposed within the box 1.
- the hydrocarbon fluids packaging further includes a valve opening 8 through which a fitment 22 is shown protruding.
- fitment 22 can be a quill.
- the exterior box 1 can be box 10 as shown in Fig. 8 .
- Such hydrocarbon fluids packaging further includes valve openings 14 and 15 through which a fitment 22 is protruding.
- the container has a valve or a quill affixed to the pouch and extending outwardly therefrom.
- the hydrocarbon fluids packaging includes an exterior box 1, a pouch 21 disposed within the box 1.
- the hydrocarbon fluids packaging further includes a valve opening 8 through which a fitment 22 is shown protruding.
- fitment 22 can be a quill.
- the pouch 21 further includes a filling fitment 23 that is capped once the pouch is filled with hydrocarbon fluids with a cap 24. Any commercially available cap that can fit unto the fitment and can be stable when contacted with the hydrocarbon fluid can be used to cap the pouch fitment 23.
- the exterior box 1 can be box 10 as shown in Fig. 8 .
- Such hydrocarbon fluids packaging further includes valve openings 14 and 15 through which a fitment 22 is protruding.
- the container has a valve or a quill affixed to the pouch and extending outwardly from the valve openings.
- Any commercially available valve or quill that can fit unto the fitment to close the pouch fitment 22 can be used, provided such valve or quill provide the means to take out the hydrocarbon fluid and as long as they are stable for the necessary storage time when contacted with the hydrocarbon fluid.
- Such valves are available, for example, from Scholle, Luquiabox, and Tomlinson.
- the fitment may be enclosed along with the pouch within the box 1 or 10. In such manner, the hydrocarbon fluids packaging retains its regular and convenient shape during shipping and storage.
- the fitment may be passed through valve opening 8 of box 1 thereby making the fitment more easily accessible.
- Pouch 21 can be a polymer laminate having at least three layers comprising an outside layer of a first polyalkylene, an inside layer of a second polyalkylene, at least one middle layer between the outer layer and the inside layer of a first oriented nylon.
- the pouch may further have one or more other polymer layers between the outer layer and inside layer that can be, for example, another polyalkylene, another nylon, polyethylene terephthalate, ethylene vinyl alcohol, polyacetate, or aluminium.
- Pouch 21 can also be a polymer laminate having at least three layers comprising an outer layer of a first oriented nylon, an inside layer of a first polyalkylene, at least one middle layer between the outer layer and the inside layer of a second oriented nylon or aluminium.
- the pouch may further have one or more other polymer layers between the outer layer and inside layer that can be, for example, another polyalkylene, another nylon, polyethylene terephthalate, ethylene vinyl alcohol, polyacetate, or aluminium.
- the inside layer is in contact with the hydrocarbon fluid when pouch is filled.
- the polymer laminate is a three-ply laminate 30 comprising a first polyalkylene layer 31, an oriented nylon layer 32, and a second polyalkylene layer 33.
- the oriented nylon layer 32 is disposed between the first and second polyalkylene layers 31 and 33.
- the polymer laminate is a four-ply laminate 60 comprising a first polyalkylene layer 61, an oriented nylon layer 62, an ethylene vinyl alcohol polymer 63, and a second polyalkylene layer 64.
- the oriented nylon layer 62 and ethylene vinyl alcohol polymer layer 63 are disposed between the first and second polyalkylene layers 61 and 64.
- Each of the first and second polyalkylene layers 31 and 33 may be made of a polymer selected from the group of cast polypropylene, linear low density polyethylene, low density polyethylene, ultra low density polyethylene, high density polyethylene, polyethylene, polyethylene terephthalate, oriented and cross laminated high density polyethylene, a coextrusion of two different density polyethylenes, and a coextrusion of ethylene-vinyl alcohol and low-density polyethylene.
- First and second polyalkylene layers 31 and 33 may be unoriented, uniaxially oriented or biaxially oriented.
- the first and second polyalkylene layers 31 and 33 may be of the same or different polyalkylene material.
- either the first or second polyalkylene layers 31 and 33 may be disposed on the interior of the pouch 21.
- the oriented nylon 32 may be any of the various polyamide or nylon copolymers typically used in the art of making polymeric films, such as nylon 6, nylon 6,6, nylon 6,10, nylon 11, nylon 12, nylon 6,12, amorphous nylons, partially aromatic polyamides, and copolymers of nylon.
- the oriented nylon layer may be either uniaxially or biaxially oriented.
- the outer first and inside second polyalkylene layers, 31 and 33, and oriented nylon layer 32 may be formed into a laminate using any of a number of known techniques, including application of heat and/or pressure and bonding adhesives.
- the thickness of the polymer laminate 30 is such as to retain flexibility. Generally, total laminate thickness may be from 15 microns to 300 microns.
- Each of the first and second polyalkylene layers, 31 and 33, may be from 5 microns to 225 microns thick.
- the oriented nylon layer 32 may be from 5 microns to 225 microns. Each of the total laminate and individual layer thicknesses may be smaller or larger so long as the laminate retains hydrocarbon resistance and flexibility.
- additional layers can be incorporated between the inside first and our second polyalkylene layers in addition to the oriented nylon layer 32 or 62 as long as these layers maintain the flexibility desired and the total polymer laminate thickness for the pouch.
- additional layers can be, for example, another polyalkylene, another nylon, polyethylene terephthalate, ethylene vinyl alcohol polymer, polyacetate, or aluminium.
- the total laminate thickness is from 15 microns to 260 microns
- the first polyalkylene layer is from 5 microns to 225 microns thick, preferably to 150 microns thick
- the oriented nylon layer thickness is from 5 microns to 225 microns, preferably to 150 microns thick
- the second polyalkylene layer is from 5 microns to 225 microns, preferably to 150 microns thick.
- the pouch 21 may be folded or formed using methods known to packaging artisans. Any sealing method providing an inner seal which is resistant to the hydrocarbon fluids. Generally, seals are formed by application, followed by removal, of heat and/or pressure which causes either or both of the polyalkylene layers along the seam line to melt and rebond so as to form a seal. Alternatively, the pouch may be sealed by use of appropriate adhesives.
- the pouch 21 contains at least one fitment 22 for filling and/or dispensing hydrocarbon fluids.
- the fitment 22 is also resistant to hydrocarbon fluids and may be made of any of a variety of suitable materials, including for example, high density polypropylene.
- the fitment 22 may be of any a variety of valves appropriate for the passage of hydrocarbon fluids, including viscous fluids.
- the fitment 22 may be suitable for attaching to pumps or pump hoses.
- the fitment 22 may be permanently attached through an opening in the pouch using either the application of heat and/or pressure or through the use of appropriate bonding adhesives.
- pouch 21 is a three-ply polymer film 40 having a first layer 41, which is comprised of a first oriented nylon, a second layer 42, which is made of either a second oriented nylon or a thin aluminium layer, and a third layer 43 which comprises a polyalkylene.
- the first and second, if present, oriented nylon layers, 41 and 42 may be any of the various polyamide or nylon copolymers typically used in the art of making polymeric films, such as nylon 6, nylon 6,6, nylon 6,10, nylon 11, nylon 12, nylon 6,12, amorphous nylons, partially aromatic polyamides, and copolymers of nylon.
- the oriented nylon layers 41 and 42 may be either uniaxially or biaxially oriented.
- the oriented nylon layers 41 and 42 may be of the same or different nylon material.
- the aluminium thickness may be from 1,27 to 25,4 ⁇ m (0.00005 to 0.001 inches) thick.
- Polyalkylene layer 43 may be made of a polymer selected from the group of cast polypropylene, linear low density polyethylene, low density polyethylene, ultra low density polyethylene, high density polyethylene, polyethylene, polyethylene terephthalate, oriented and cross laminated high density polyethylene, a coextrusion of two different density polyethylenes, and a coextrusion of ethylene-vinyl alcohol and low-density polyethylene.
- the polymer laminate can be another four-ply laminate such as 60 in Fig. 6 , for example, comprising a first oriented nylon layer 61, an oriented nylon layer 62, an aluminium layer 63, and a polyalkylene layer 64.
- the oriented nylon layer 62 and aluminium layer 63 are disposed between the first and second polyalkylene layers 61 and 64.
- the aluminium layer 62 can be substituted with other polymer layers such as, for example, another polyalkylene, another nylon, polyethylene terephtalate, ethylene vinyl alcohol, or polyacetate.
- additional layers can be incorporated between the inside first oriented nylon layer and outer polyalkylene layer in addition to the oriented nylon layer or aluminium layer 42 or 62 as long as these layers maintain the flexibility desired and the total polymer laminate thickness for the pouch.
- additional layers can be, for example, another polyalkylene, another nylon, polyethylene terephthalate, ethylene vinyl alcohol, polyacetate, or aluminium.
- any of the laminates for use in pouch 21, may be formed into a laminate using any of a number of known techniques, including application of heat and/or pressure and bonding adhesives.
- the thickness of the polymer laminate is such as to retain flexibility
- total laminate thickness may be from 50 microns to 300 microns.
- Each of the first and second polyalkylene layers, 31 and 33 may be from 5 microns to 225 microns thick, preferably to 150 microns thick.
- the oriented nylon layer 32 may be from 5 microns to 225 microns, preferably to 150 microns thick.
- Each of the total laminate and individual layer thicknesses may be smaller or larger so long as the laminate retains hydrocarbon resistance and flexibility.
- the total laminate thickness of polymer laminate 40 is from 15 microns to 350 microns, preferably to 260 microns.
- the first layer 41 is from 5 microns to 225 microns thick, preferably to 150 microns thick
- the second layer 42, where that layer is oriented nylon is from 5 microns to 225 microns, preferably to 150 microns thick
- the second layer 42, where that layer is aluminium is from 2,54 to 17,78 ⁇ m (0.00010 to 0.00070 inches thick)
- the third layer 43 is from 5 microns to 225 microns thick, preferably to 150 microns thick.
- pouch 21 is constructed of a single layer 50 of oriented and cross-linked high density polyethylene.
- the thickness of the single layer 50 may be from 50 microns to 250 microns, preferably to 200 microns.
- the pouch 21 may be placed inside (disposed) of the box 1 or 10 before filling the pouch with hydrocarbon fluids.
- the pouch may be filled with the hydrocarbon fluids then placing the pouch inside of the box.
- Shaped and sealed pouches of at least one quart (1,136 l.) were formed of a variety of polymer laminates having the structures listed as (a)-(l) in Table 1.
- the first listed polymer layer constituted the exterior layer of the pouch while the last listed polymer constituted the interior layer of the pouches.
- the pouches were formed by heat sealing the exterior layer and each contained a permanently attached fitment through which they were filled.
- a pouch of each type was filled with each of 10W-30 oil and 2-cycle oil.
- the pouches were tested pursuant to PBI #5, Rev. 1 (1978) of the Plastic Bottle Institute. The pouches were examined for weight loss, stress cracking or rupture, and delamination.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Packages (AREA)
- Bag Frames (AREA)
- Laminated Bodies (AREA)
- Loading And Unloading Of Fuel Tanks Or Ships (AREA)
Abstract
Description
- The invention relates to a packaging for hydrocarbon fluids. More particularly, the invention relates to a container having a flexible pouch within a more rigid exterior container.
- Automobile service centers and other entities having a need for large volumes of hydrocarbon fluids, such as motor oil, transmission fluid or brake fluid, generally stock these materials in 55 gallon (208·2 litre) drums or 5 or 6 gallon (18·9 or 22·7 litre) pails or 16 gallon (60·6 litre) kegs. Each of these containers, however, present significant disadvantages. For example, the 55 gallon (208·2 litre) drums are extremely heavy and difficult to handle. Moreover, the circular shape of the drums gives rise to vacant space during transportation thereby decreasing the efficiency and raising the costs of transporting and delivering these fluids. With each of these containers, it is necessary to use a smaller container in order to dispense and use the fluid thereby creating another contaminated container.
- As an alternative, individual one quart plastic containers, such as those typically purchased by individual consumers, may be used by larger volume users. However, the use of individual packaging destroys the cost-savings achievable with larger volume packaging. Moreover, large volume use of individual quart bottles would unnecessarily generate large quantities of hydrocarbon-contaminated waste plastics. Finally, oil residue is left in the quart bottles and such waste could be significant when used by large volume consumers. This last disadvantage is also a problem with 5 quart (5·68 litre) bottles.
- There remains a need therefore for a hydrocarbon fluids container for large volume users which is economical, uses less storage space, is lighter weight and results in less waste packaging and oil.
- "Bag-in-a-box" containers substantially meet these needs. Most such containers utilize polymer pouches, such as polyethylene, as inner pouches which contain the liquid. Polymers which may be used as pouches for hydrocarbon fluids must have both good mechanical properties and good resistance towards hydrocarbon fluids. With the latter property there appears to be a correlation between the nature of the hydrocarbon fluid and the polymer composition. While thin polyethylene films are extremely economical, flexible and transparent and have low moisture vapor permeability, such films are permeable to oil. Increasing the thickness of the polyethylene material such that the material becomes practicably impermeable to hydrocarbons fluid is well known. However, to achieve sufficient thickness, flexibility is sacrificed and the resulting product is a rigid polyethylene container.
-
US 5 788 121 discloses a prior art bag-in-box usable for hydrocarbon fluids. The bag of this package is made of several layers which are not bonded together. - One method to decrease the permeability of thin polyethylene films to hydrocarbon fluids involves laminating a poly-vinylidene chloride onto the polyethylene film. However, such laminates with sufficient thickness to block permeation of hydrocarbon fluids are brittle and easily ruptured. Fluorinated polyethylene films are also resistant to hydrocarbon fluids but large scale production of such material is impractical and expensive.
- There remains a need therefore for a hydrocarbon fluids container of the bag-in-a-box-type having a pouch constructed of an economical and hydrocarbon-resistant polymer material.
- It has been surprisingly found that the hydrocarbon fluids packaging of the invention meets these and other needs. The invention provides a "bag-in-a-box" type packaging for hydrocarbon fluids having a flexible, collapsible, sealable interior bag or pouch which prevents leakage and sweating. The hydrocarbon fluids packaging further includes a rigid container formed in a shape, such as a solid rectangle.
- The interior bag or pouch is constructed of a polymer laminate which is suitable for the packaging of hydrocarbon fluids which has improved hydrocarbon resistance. The polymer laminate is particularly suitable for use with automotive fluids, including for example, motor oils, automatic transmission fluids brake fluids and lube oils. In one embodiment, the laminate comprises at least three layers having outer layers of an alkylene polymer and at least one inner layer of an oriented nylon polymer, In another embodiment, the laminate comprises at least three layers having an inside layer of an alkylene polymer, an outer layer of an oriented nylon polymer and at least one inner layer of an oriented nylon polymer or aluminium. In another aspect of the invention, the pouch is made from a one-ply oriented and cross-linked high density polyethylene film.
-
Fig. 1 is a perspective exterior view of an embodiment of a hydrocarbon fluids packaging. -
Fig. 2 is a cross-section of an embodiment of a hydrocarbon fluids packaging. -
Fig. 3 is a cross-section view of a three-ply laminate of the pouch of one aspect of the invention. -
Fig 4 is a cross-section view of a three-ply laminate of the pouch of an alternative aspect of the invention. -
Fig. 5 is a cross-section view of a single ply polymer film of the pouch of another alternative aspect of the invention. -
Fig. 6 is a cross-section view of a four-ply laminate of the pouch of an alternative aspect of the invention. -
Fig. 7 is a cross-section of another embodiment of a hydrocarbon fluids packaging. -
Fig. 8a depicts a perspective exterior view of another embodiment of a hydrocarbon fluids packaging where the outer flaps are open. -
Fig. 8b depicts a perspective exterior view of another embodiment of a hydrocarbon fluids packaging where the outer flaps are closed. - A hydrocarbon fluids container according to the present invention comprises
a pouch made of polymer laminate having at least three layers comprising: - an outer layer of a first polyalkylene or a first oriented nylon;
- at least one inner layer of a second oriented nylon or aluminium with the proviso that when the outer layer is a first polyalkylene the at least one inner layer is an oriented nylon; and
- an inside layer of a second polyalkylene; and
- A hydrocarbon fluids container according to the present invention comprises
a flexible pouch of oriented and cross laminated high density polyethylene; and
a rigid box having at least one face, wherein the pouch is disposed within the rigid box. - The hydrocarbon fluids packaging comprises an exterior box having sufficient rigidity to support the weight of the packaging contents as well as to withstand normal shipping and storing stacking. Disposed within the exterior box is a pouch comprised of a polymeric film which is resistant to hydrocarbon fluids, thereby preventing leakage, rupture and sweating. The hydrocarbon fluids packaging of the invention, provides for a readily portable hydrocarbon fluids, storage and transfer system. For packaging hydrocarbon fluids, it is desirable that the package be high in tensile strength, high in elongation at break, high in puncture resistance, low in oxygen transmission, low in moisture transmission, and low in coefficient of friction.
- Referring to
Fig. 1 , a perspective, exterior view of one embodiment of a hydrocarbon fluids packaging is shown. Theexterior box 1 is illustrated as a solid rectangle having four side faces 2, a bottom face 3 and two opposingtop flaps 4 and 5 which, when closed, form a top face 6. These flaps may or may not be interlocking but should come together to form a closed face. The exterior box may be in any shape or form as long as it is rigid enough to contain the pouch inside and be useful for protection of the pouch containing the hydrocarbon fluid and ease of transportation (rigid outer box). For example, the exterior box may be octagon, hexagon, square or rectangular. The exterior box for ease of construction can be rectangle or square of any size useful for storage of hydrocarbon fluid and be readily portable. One or both oftop flaps 4 and 5 may include a die cut or punched opening to serve as a hand hold provided the exterior box is strong enough to withstand handling stresses. InFig. 1 , onlytop flap 4 is shown having ahandhold opening 7. Although shown inFig. 1 , a handhold is not necessary for the box and the box may or may not contain a handhold. If present, handhold is not limited to the opening shown inFig.1 and can be in any shape or form as long as it can serve as a handhold. - At least one of side faces 2 includes a
valve opening 8. Each ofhandhold openings 7 andvalve opening 8 may be entirely removed portions or alternatively, may be cut or punched so as to leave a flap along a perforation such that the flap may be folded in or out in order to create the opening. - Referring to
Fig. 8 , a perspective, exterior view of another embodiment of a hydrocarbon fluids packaging is shown. Theexterior box 10 is illustrated as a solid rectangle having four side faces (panels) 11, a bottom face 17, two opposinginner flaps 13 and 18 which, when closed, form an inner top face 70 and inner flap interface line (opening line) 16, and two opposingouter flaps flaps 13 and 18, are adjacent toflaps Fig. 8 , no handhold opening is shown. The edge of the inner flap or outer flaps that meet with the opposing flaps form can be straight, curved, and/or in angles as long as it closes to form the top face and an opening is created that provides ready access for the pouch. - One or both of top
inner flaps 13 and 18 may include a die cut or punched opening to serve as opening for avalve 15. InFig. 8 , both innertop flaps 13 and 15 are shown as together having avalve opening 15. At least one of topouter flaps valve 14. Each of handhold openings if any andvalve openings valve opening valve openings -
Box 1 and/or 10 may be made from a unitary blank, which, in its unassembled form, lies flat or substantially flat. Alternatively,box 1 and/or 10 may be made of several separate pieces assembled and joined together to achieve the final desired form or shape.Box 1 and/or 10 may have any enclosed geometry. For convenience of transportation and storage, either a solid rectangle or cube may be used. In one aspect of the invention,box 1 has the dimensions of 11.25 by 9 by 14.25 inches (28·58 by 22·86 by 36·20 cm), but it is one exemplary size that is convenient for a portable hydrocarbon fluid storage and any similar size that is convenient for a portable hydrocarbon fluid can be used. - Materials of construction of
box 1 and/or 10 may include cardboard or other cellulosic, rigid materials or foldable plastic materials. Cardboard may be corrugated. The box material may be coated and/or infused with fire-retardant and/or water-proofing additives. Examples of suitable fire-retardant coatings include, for example the intumescent coatings disclosed inU.S. Patent 3,934,066 . - Specifically,
U.S. Patent 3,934,066 discloses intumescent coating compositions which include resinous or non-resinous carbonifics. Examples of resinous carbonifics include urea-formaldehyde resin, or resin forming mixtures containing an amino source such as urea, thiourea, melamine and the like; along an aliphatic aldehyde (or a source of aldehyde) such as formaldehyde, paraformaldehyde, trioxane or methylenetetramine, acetaldehyde and the like. Examples of non-resinous carbonifics include carbohydrates such as starch, dextrin, sucrose and lactose; and polyhydroxy compounds such as glycerine, sorbitol, mannitol, pentaerythritol, dipentaerythritol and the like. The intumescent composition may also include a spumific material which assists in the production of a thick, heat insulating carbonaceous foam. Examples of spumific compounds include mono- or di-ammonium phosphate, phosphoric acid, melamine pyrophosphate, ammonium sulfate, ammonium bromide, sodium tungstate and the like. Intumescent laminates having a porous sheet material impregnated with an intumescent coating may also be used. - Other fire-retardant coatings or additives which are well-known in the art may also be used, such as, for example, salt solutions. Water-proofing coatings may also be used and are also well known in the art. For example, wax coatings on cardboard containers is well known in bulk packaging of fresh fruits and vegetables. Any fire-retardant or water-proofing coating or additive appropriate to the material of construction of the box may be used.
- Referring to
Fig. 2 , a cross section of an embodiment of a hydrocarbon fluids packaging 20 is shown. The hydrocarbon fluids packaging includes anexterior box 1, apouch 21 disposed within thebox 1. The hydrocarbon fluids packaging further includes avalve opening 8 through which afitment 22 is shown protruding. In another embodiment,fitment 22 can be a quill. Theexterior box 1 can bebox 10 as shown inFig. 8 . Such hydrocarbon fluids packaging further includesvalve openings fitment 22 is protruding. The container has a valve or a quill affixed to the pouch and extending outwardly therefrom. - Referring to
Fig. 7 , a cross section of another embodiment of a hydrocarbon fluids packaging 25 is shown. The hydrocarbon fluids packaging includes anexterior box 1, apouch 21 disposed within thebox 1. The hydrocarbon fluids packaging further includes avalve opening 8 through which afitment 22 is shown protruding. In another embodiment,fitment 22 can be a quill. Thepouch 21 further includes a fillingfitment 23 that is capped once the pouch is filled with hydrocarbon fluids with acap 24. Any commercially available cap that can fit unto the fitment and can be stable when contacted with the hydrocarbon fluid can be used to cap thepouch fitment 23. Theexterior box 1 can bebox 10 as shown inFig. 8 . Such hydrocarbon fluids packaging further includesvalve openings fitment 22 is protruding. The container has a valve or a quill affixed to the pouch and extending outwardly from the valve openings. Any commercially available valve or quill that can fit unto the fitment to close thepouch fitment 22 can be used, provided such valve or quill provide the means to take out the hydrocarbon fluid and as long as they are stable for the necessary storage time when contacted with the hydrocarbon fluid. Such valves are available, for example, from Scholle, Luquiabox, and Tomlinson. - During transportation and storage of the hydrocarbon fluids packaging, the fitment may be enclosed along with the pouch within the
box valve opening 8 ofbox 1 thereby making the fitment more easily accessible. -
Pouch 21 can be a polymer laminate having at least three layers comprising an outside layer of a first polyalkylene, an inside layer of a second polyalkylene, at least one middle layer between the outer layer and the inside layer of a first oriented nylon. The pouch may further have one or more other polymer layers between the outer layer and inside layer that can be, for example, another polyalkylene, another nylon, polyethylene terephthalate, ethylene vinyl alcohol, polyacetate, or aluminium.Pouch 21 can also be a polymer laminate having at least three layers comprising an outer layer of a first oriented nylon, an inside layer of a first polyalkylene, at least one middle layer between the outer layer and the inside layer of a second oriented nylon or aluminium. The pouch may further have one or more other polymer layers between the outer layer and inside layer that can be, for example, another polyalkylene, another nylon, polyethylene terephthalate, ethylene vinyl alcohol, polyacetate, or aluminium. The inside layer is in contact with the hydrocarbon fluid when pouch is filled. - Referring to
Fig. 3 , a cross section of one embodiment of a polymer laminate used to construct thepouch 21 is shown. In one aspect of the invention, the polymer laminate is a three-ply laminate 30 comprising afirst polyalkylene layer 31, an orientednylon layer 32, and asecond polyalkylene layer 33. The orientednylon layer 32 is disposed between the first and second polyalkylene layers 31 and 33. - Referring to
Fig. 6 , a cross section of another embodiment of a polymer laminate used to construct thepouch 21 is shown. In one aspect of the invention, the polymer laminate is a four-ply laminate 60 comprising afirst polyalkylene layer 61, an orientednylon layer 62, an ethylenevinyl alcohol polymer 63, and a second polyalkylene layer 64. The orientednylon layer 62 and ethylene vinylalcohol polymer layer 63 are disposed between the first and second polyalkylene layers 61 and 64. - Each of the first and second polyalkylene layers 31 and 33 may be made of a polymer selected from the group of cast polypropylene, linear low density polyethylene, low density polyethylene, ultra low density polyethylene, high density polyethylene, polyethylene, polyethylene terephthalate, oriented and cross laminated high density polyethylene, a coextrusion of two different density polyethylenes, and a coextrusion of ethylene-vinyl alcohol and low-density polyethylene. First and second polyalkylene layers 31 and 33 may be unoriented, uniaxially oriented or biaxially oriented. The first and second polyalkylene layers 31 and 33 may be of the same or different polyalkylene material. Moreover, either the first or second polyalkylene layers 31 and 33 may be disposed on the interior of the
pouch 21. - The oriented
nylon 32 may be any of the various polyamide or nylon copolymers typically used in the art of making polymeric films, such as nylon 6, nylon 6,6,nylon 6,10, nylon 11,nylon 12,nylon 6,12, amorphous nylons, partially aromatic polyamides, and copolymers of nylon. The oriented nylon layer may be either uniaxially or biaxially oriented. - The outer first and inside second polyalkylene layers, 31 and 33, and oriented
nylon layer 32 may be formed into a laminate using any of a number of known techniques, including application of heat and/or pressure and bonding adhesives. The thickness of thepolymer laminate 30 is such as to retain flexibility. Generally, total laminate thickness may be from 15 microns to 300 microns. Each of the first and second polyalkylene layers, 31 and 33, may be from 5 microns to 225 microns thick. The orientednylon layer 32 may be from 5 microns to 225 microns. Each of the total laminate and individual layer thicknesses may be smaller or larger so long as the laminate retains hydrocarbon resistance and flexibility. - Other additional layers can be incorporated between the inside first and our second polyalkylene layers in addition to the oriented
nylon layer - In one aspect of the invention the total laminate thickness is from 15 microns to 260 microns, the first polyalkylene layer is from 5 microns to 225 microns thick, preferably to 150 microns thick, the oriented nylon layer thickness is from 5 microns to 225 microns, preferably to 150 microns thick, and the second polyalkylene layer is from 5 microns to 225 microns, preferably to 150 microns thick.
- The
pouch 21 may be folded or formed using methods known to packaging artisans. Any sealing method providing an inner seal which is resistant to the hydrocarbon fluids. Generally, seals are formed by application, followed by removal, of heat and/or pressure which causes either or both of the polyalkylene layers along the seam line to melt and rebond so as to form a seal. Alternatively, the pouch may be sealed by use of appropriate adhesives. - The
pouch 21 contains at least onefitment 22 for filling and/or dispensing hydrocarbon fluids. Thefitment 22 is also resistant to hydrocarbon fluids and may be made of any of a variety of suitable materials, including for example, high density polypropylene. Thefitment 22 may be of any a variety of valves appropriate for the passage of hydrocarbon fluids, including viscous fluids. In addition thefitment 22 may be suitable for attaching to pumps or pump hoses. Thefitment 22 may be permanently attached through an opening in the pouch using either the application of heat and/or pressure or through the use of appropriate bonding adhesives. - Referring to
Figure 4 , another aspect of the hydrocarbon fluids packaging,pouch 21 is a three-ply polymer film 40 having afirst layer 41, which is comprised of a first oriented nylon, asecond layer 42, which is made of either a second oriented nylon or a thin aluminium layer, and a third layer 43 which comprises a polyalkylene. - The first and second, if present, oriented nylon layers, 41 and 42, may be any of the various polyamide or nylon copolymers typically used in the art of making polymeric films, such as nylon 6, nylon 6,6,
nylon 6,10, nylon 11,nylon 12,nylon 6,12, amorphous nylons, partially aromatic polyamides, and copolymers of nylon. The oriented nylon layers 41 and 42 may be either uniaxially or biaxially oriented. The oriented nylon layers 41 and 42 may be of the same or different nylon material. - Where a thin aluminium layer is utilized as the
second layer 42, the aluminium thickness may be from 1,27 to 25,4 µm (0.00005 to 0.001 inches) thick. - Polyalkylene layer 43 may be made of a polymer selected from the group of cast polypropylene, linear low density polyethylene, low density polyethylene, ultra low density polyethylene, high density polyethylene, polyethylene, polyethylene terephthalate, oriented and cross laminated high density polyethylene, a coextrusion of two different density polyethylenes, and a coextrusion of ethylene-vinyl alcohol and low-density polyethylene.
- In another aspect of the invention, the polymer laminate can be another four-ply laminate such as 60 in
Fig. 6 , for example, comprising a first orientednylon layer 61, an orientednylon layer 62, analuminium layer 63, and a polyalkylene layer 64. The orientednylon layer 62 andaluminium layer 63 are disposed between the first and second polyalkylene layers 61 and 64. Thealuminium layer 62 can be substituted with other polymer layers such as, for example, another polyalkylene, another nylon, polyethylene terephtalate, ethylene vinyl alcohol, or polyacetate. - Other additional layers can be incorporated between the inside first oriented nylon layer and outer polyalkylene layer in addition to the oriented nylon layer or
aluminium layer - Any of the laminates for use in
pouch 21, may be formed into a laminate using any of a number of known techniques, including application of heat and/or pressure and bonding adhesives. The thickness of the polymer laminate is such as to retain flexibility - Generally, total laminate thickness may be from 50 microns to 300 microns. Each of the first and second polyalkylene layers, 31 and 33, may be from 5 microns to 225 microns thick, preferably to 150 microns thick. The oriented
nylon layer 32 may be from 5 microns to 225 microns, preferably to 150 microns thick. Each of the total laminate and individual layer thicknesses may be smaller or larger so long as the laminate retains hydrocarbon resistance and flexibility. - In one aspect of the invention the total laminate thickness of
polymer laminate 40 is from 15 microns to 350 microns, preferably to 260 microns. Thefirst layer 41 is from 5 microns to 225 microns thick, preferably to 150 microns thick, thesecond layer 42, where that layer is oriented nylon, is from 5 microns to 225 microns, preferably to 150 microns thick, thesecond layer 42, where that layer is aluminium, is from 2,54 to 17,78 µm (0.00010 to 0.00070 inches thick), and the third layer 43 is from 5 microns to 225 microns thick, preferably to 150 microns thick. - In yet another aspect of the invention,
pouch 21 is constructed of asingle layer 50 of oriented and cross-linked high density polyethylene. The thickness of thesingle layer 50 may be from 50 microns to 250 microns, preferably to 200 microns. - The
pouch 21 may be placed inside (disposed) of thebox - While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and herein described in detail. It should be understood, that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the scope of the present invention as defined by the appended claims. The present invention will be illustrated by the following illustrative embodiment, which is provided for illustration only and is not to be construed as limiting the claimed invention in any way.
- Shaped and sealed pouches of at least one quart (1,136 l.) were formed of a variety of polymer laminates having the structures listed as (a)-(l) in Table 1. The first listed polymer layer constituted the exterior layer of the pouch while the last listed polymer constituted the interior layer of the pouches. The pouches were formed by heat sealing the exterior layer and each contained a permanently attached fitment through which they were filled. A pouch of each type was filled with each of 10W-30 oil and 2-cycle oil. The pouches were tested pursuant to PBI #5, Rev. 1 (1978) of the Plastic Bottle Institute. The pouches were examined for weight loss, stress cracking or rupture, and delamination. Any of (a) a weight loss of greater than ½%, (b) stress cracking or rupture, or (c) delamination results in a "Failed" rating. The results for both 10W-30 oil and 2-cycle oil are shown in Table 1. The polymeric components of the laminates are indicated by the abbreviations listed in Table 2.
Table 1 Film Material: Outside → Inside Thickness of Film 10W-30 2 Cycle Oil a 50µl LLDPE 50 µ Failed Failed b 50µ HDPE 50µ Failed Failed c 38µ PE/15.2µ BON/63.5µ PE 117µ Passed Passed d 12µ PET/15µ BON/125µ LLDPE 152µ Passed Passed e 12µ PET/15µ BON/80µ CPP 107µ Passed Passed f 12µ PET/15µ BON/125µ LLDPE-White 152µ Failed Failed g 5µ BON/25µ BON/175µ EVOH/LLPE Coextrusion 205µ Failed Failed h 25µ BON/25µ BON/150µ LLDPE 200µ Passed Passed i 25µ BON/25µ BON/175µ LLDPE-LDPE Coextrusion 200µ Failed Failed j 60 gauge BON/0.00035 Aluminum/75µ LLDPE (see previous column) Passed Passed k 75µ OCLHDPE 75µ Passed Passed l 88µ OCLHDPE 88µ Passed Passed Table 2 Abbreviation Compound LLDPE Linear low density polyethylene LDPE Low density polyethylene ULDPE Ultra low density polyethylene HDPE High density polyethylene PE Polyethylene PET Polyethylene terephthalate BON Biaxially oriented nylon SBON Silica coated biaxially oriented nylon CPP Cast polypropylene EVOH Ethylene vinyl alcohol OCLHPE Oriented and cross laminated high density polyethylene - Three types of individual packages were tested using Underwriter Laboratories procedure UL SU2019 (the "Pallet Fire Test"): (1) an untreated cardboard case containing standard high density polyethylene one quart (1.14 litre) bottles for passenger car motor oil ("PCMO"); (2) a hydrocarbon fluids container of the invention in which the outer box is untreated cardboard; and (3) a hydrocarbon fluids container of the invention in which the outer box is cardboard having a fire-retardant intumescent laminate coating. The one quart bottles and the pouches of each hydrocarbon fluids container were filled with PCMO. The first package, (1) above, suffered a breach of the one quart bottles at 2 minutes and 30 seconds following lighting of the wick. The second package, (2) above, suffered a breach of the pouch at 3 minutes, 50 seconds following lighting of the wick. The third package, (3) above, incurred no breach of the pouch and the wick self extinguished twenty-one minutes after lighting.
wherein the pouch is disposed within the rigid box
wherein the container further comprises a valve or a quill affixed to the pouch and extending outwardly therefrom and a valve opening in a face of the box.
Claims (15)
- A hydrocarbon fluids container comprising:a pouch made of polymer laminate having at least three layers comprising:wherein the pouch is disposed within the rigid box andan outer layer of a first polyalkylene or a first oriented nylon;at least one inner layer of a second oriented nylon or aluminium with the proviso that when the outer layer is a first polyalkylene the at least one inner layer is an oriented nylon; andan inside layer of a second polyalkylene; anda rigid outer box having one or more faces;
wherein the container further comprises a valve or a quill affixed to the pouch and extending outwardly therefrom and a valve opening in a face of the box. - The container according to claim 1 wherein the valve opening is located on the top face of the box where the pouch is placed inside the box.
- The container according to claims 1 or 2 wherein the box is made of a cellulosic material.
- The container according to any one of claims 1-3 wherein the box is made of cardboard.
- The container according to claim 4 wherein the cardboard is coated with a fire retardant and/or water-repellant.
- The container according to any of claims 1-5 wherein the first polyalkylene is selected from the group of cast polypropylene, linear low density polyethylene, low density polyethylene, ultra low density polyethylene, high density polyethylene, polyethylene, polyethylene terephthalate, oriented and cross laminated high density polyethylene, a coextrusion of two different density polyethylenes, and a coextrusion of ethylene vinyl alcohol and low density polyethylene.
- The container according to any of claims 1-6 wherein the second polyalkylene is selected from the group of cast polypropylene, linear low density polyethylene, low density polyethylene, ultra low density polyethylene, high density polyethylene, polyethylene, polyethylene terephthalate, oriented and cross laminated high density polyethylene, a coextrusion of two different density polyethylenes and a coextrusion of ethylene vinyl alcohol and low density polyethylene.
- The container according to any of claims 1-7 wherein the oriented nylon is selected from the group of uniaxially oriented nylon and biaxially oriented nylon.
- The container according to any one of claims 1-8 where the total laminate thickness is from 15 microns to 260 microns, the first layer is between 5 and 225 microns thick, the inner oriented nylon layer is between 50 and 250 microns thick, the third layer is between 5 and 225 microns thick, and the aluminium layer is between 0.0001 and 0.00070 inches thick.
- The container according to claim 1 wherein the container comprises an additional inner layer of an ethylene vinyl alcohol polymer layer.
- A hydrocarbon fluids container comprising:a flexible pouch of oriented and cross laminated high density polyethylene; anda rigid box having at least one face, wherein the pouch is disposed within the rigid box.
- The container according to claim 11 wherein the flexible pouch is between 50 to 200 microns thick.
- The container according to claim 11 or 12 further comprising a valve affixed to the pouch and extending outwardly therefrom.
- The container according to claim 13 further comprising a valve opening in a face of the box.
- The container according to claim 13 or 14 wherein the valve opening is located on the top face of the box where the pouch is placed inside the box.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US45495503P | 2003-03-13 | 2003-03-13 | |
US454955P | 2003-03-13 | ||
PCT/US2004/007610 WO2004083070A1 (en) | 2003-03-13 | 2004-03-12 | Hydrocarbon fluids packaging |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1606191A1 EP1606191A1 (en) | 2005-12-21 |
EP1606191B1 true EP1606191B1 (en) | 2008-11-12 |
Family
ID=33029933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04720436A Expired - Lifetime EP1606191B1 (en) | 2003-03-13 | 2004-03-12 | Hydrocarbon fluids packaging |
Country Status (9)
Country | Link |
---|---|
US (1) | US20040211782A1 (en) |
EP (1) | EP1606191B1 (en) |
CN (2) | CN100545052C (en) |
AT (1) | ATE414022T1 (en) |
BR (1) | BRPI0408302B1 (en) |
DE (1) | DE602004017702D1 (en) |
MX (1) | MXPA05009561A (en) |
RU (1) | RU2338674C2 (en) |
WO (1) | WO2004083070A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7894055B2 (en) * | 2004-08-26 | 2011-02-22 | The United States Of America As Represented By The Department Of Health And Human Services | Flow-through, inlet-gas-temperature-controlled, solvent-resistant, thermal-expansion compensated cell for light spectroscopy |
CN101367466B (en) * | 2008-08-15 | 2011-11-23 | 李束为 | Apparatus for storing and transporting oil products |
US9174532B2 (en) * | 2013-08-22 | 2015-11-03 | GM Global Technology Operations LLC | Fuel tank slosh absorber |
CA3076875A1 (en) * | 2017-09-25 | 2019-03-28 | Call2Recycle, Inc. | Thermally protected shipping container |
US12024982B2 (en) | 2021-10-26 | 2024-07-02 | Saudi Arabian Oil Company | Portable absorbent container for recovery of oil field waste liquid |
Family Cites Families (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3087655A (en) * | 1961-01-30 | 1963-04-30 | Scholle Container Corp | Paperboard container with flexible liner therein |
US3570748A (en) * | 1966-06-29 | 1971-03-16 | Standard Packaging Corp | Composite film and method |
GB1316640A (en) * | 1969-06-13 | 1973-05-09 | Rasmussen O B | Cross-laminated film material and methods of producing such material |
US3932693A (en) * | 1970-10-19 | 1976-01-13 | Continental Can Company, Inc. | Laminated packaging film having low vapor and gas permeability |
US3934066A (en) | 1973-07-18 | 1976-01-20 | W. R. Grace & Co. | Fire-resistant intumescent laminates |
CA1014521A (en) * | 1974-04-30 | 1977-07-26 | John D. Stinson | Pouched oil dispenser |
US4096946A (en) * | 1974-09-16 | 1978-06-27 | E.S. & A. Robinson (Canada) Ltd. | Laminate for use in packing oil |
JPS5619087Y2 (en) * | 1976-04-07 | 1981-05-07 | ||
US4054240A (en) * | 1976-10-04 | 1977-10-18 | Interstate Folding Box Company | Carton with integral pouring spout |
US4105139A (en) * | 1977-02-18 | 1978-08-08 | Scholle Corporation | Shell for flexible bag having mounting for spout |
US4246146A (en) * | 1979-03-09 | 1981-01-20 | W. R. Grace & Co. | Fire retardant coating system utilizing polyurethane hydrogel |
USRE32354E (en) * | 1980-07-21 | 1987-02-17 | Scholle Corporation | Container for holding and dispensing fluid |
US4503102A (en) * | 1982-01-20 | 1985-03-05 | Du Pont Of Canada, Inc. | Pouches of ethylene-α-olefin copolymer/ethylene-vinyl acetate copolymer blends |
US4515294A (en) * | 1982-03-31 | 1985-05-07 | Southern Chemical Products Company | Liquid dispenser, valve therefor and process of producing the valve |
US4407874A (en) * | 1982-08-06 | 1983-10-04 | American Can Company | Sterilizable flexible packaging structure |
GB2180217A (en) * | 1985-09-12 | 1987-03-25 | Castrol Ltd | Containers for hydraulic fluids |
CH666459A5 (en) * | 1985-10-03 | 1988-07-29 | Nestle Sa | PACKAGE COMPRISING A RIGID OUTER SHELL AND A FLEXIBLE INNER SHELL. |
US4757940A (en) * | 1986-05-07 | 1988-07-19 | International Paper Company | Ovenable paperboard food tray |
US4762525A (en) * | 1987-06-15 | 1988-08-09 | Wood William P | Prepackaged firebox apparatus for outdoor cooking or the like |
GB2214917A (en) * | 1988-02-16 | 1989-09-13 | Shell Int Research | Containers for liquid hydrocarbons made of co or so2 copolymer |
US5115944A (en) * | 1990-08-14 | 1992-05-26 | Illinois Tool Works Inc. | Fluid dispenser having a collapsible inner bag |
US5324528A (en) * | 1991-10-11 | 1994-06-28 | Champion International Corporation | Method for extending shelf life of juice |
DE69320565T2 (en) * | 1992-02-25 | 1999-04-08 | Toray Industries, Inc., Tokio/Tokyo | BIOXIAL ORIENTED AND LAMINATED POLYESTER FILM |
DE4411924A1 (en) * | 1994-04-07 | 1995-10-12 | Ruediger Haaga Gmbh | container |
TW367297B (en) * | 1994-11-18 | 1999-08-21 | Hosokawa Yoko Kk | Bag for bag-in-box and bag-in-box |
MY113596A (en) * | 1995-04-11 | 2002-04-30 | Daicel Chem | Barrier composite films and method of producing the same |
US5874155A (en) * | 1995-06-07 | 1999-02-23 | American National Can Company | Easy-opening flexible packaging laminates and packaging materials made therefrom |
US5562227A (en) * | 1995-07-31 | 1996-10-08 | Honshu Paper Co., Ltd. | Anti-bulging bag-in-box |
JP3563863B2 (en) * | 1996-02-09 | 2004-09-08 | 大日本印刷株式会社 | Cover tape |
US5814383A (en) * | 1996-07-23 | 1998-09-29 | Continental Plastic Containers, Inc. | Containers with improved crease-crack resistance |
US6066376A (en) * | 1997-06-17 | 2000-05-23 | Pechiney Plastic Packaging, Inc. | High barrier non-foil laminate composition |
GB9714996D0 (en) * | 1997-07-17 | 1997-09-24 | Sankey Product Developments Lt | Containers |
US6070753A (en) * | 1998-02-02 | 2000-06-06 | Exxon Research And Engineering Co. | Liquid container |
TW568829B (en) * | 1998-03-26 | 2004-01-01 | Mitsui Chemicals Inc | Laminated film |
US6045006A (en) * | 1998-06-02 | 2000-04-04 | The Coca-Cola Company | Disposable liquid containing and dispensing package and an apparatus for its manufacture |
US6378733B1 (en) * | 1998-12-23 | 2002-04-30 | Fleurfontein Mountain Estates (Proprietary) Limited | Box |
CN2389138Y (en) * | 1999-09-08 | 2000-07-26 | 吴凯 | Beverage package box |
US20010023572A1 (en) * | 1999-12-14 | 2001-09-27 | Scholle Corporation | Bag-in-container assembly and method |
US6520335B2 (en) * | 2001-02-20 | 2003-02-18 | Daniel E. Moran | Method and container for packaging multi-component polymer coatings and adhesives |
-
2004
- 2004-03-12 CN CNB2004800068140A patent/CN100545052C/en not_active Expired - Lifetime
- 2004-03-12 RU RU2005131608/12A patent/RU2338674C2/en active
- 2004-03-12 US US10/799,984 patent/US20040211782A1/en not_active Abandoned
- 2004-03-12 DE DE602004017702T patent/DE602004017702D1/de not_active Expired - Lifetime
- 2004-03-12 AT AT04720436T patent/ATE414022T1/en not_active IP Right Cessation
- 2004-03-12 EP EP04720436A patent/EP1606191B1/en not_active Expired - Lifetime
- 2004-03-12 CN CN200910164146A patent/CN101618783A/en active Pending
- 2004-03-12 MX MXPA05009561A patent/MXPA05009561A/en active IP Right Grant
- 2004-03-12 WO PCT/US2004/007610 patent/WO2004083070A1/en active Search and Examination
- 2004-03-12 BR BRPI0408302-4A patent/BRPI0408302B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
RU2338674C2 (en) | 2008-11-20 |
CN100545052C (en) | 2009-09-30 |
BRPI0408302B1 (en) | 2018-06-05 |
EP1606191A1 (en) | 2005-12-21 |
DE602004017702D1 (en) | 2008-12-24 |
CN1759048A (en) | 2006-04-12 |
ATE414022T1 (en) | 2008-11-15 |
BRPI0408302A (en) | 2006-03-07 |
US20040211782A1 (en) | 2004-10-28 |
RU2005131608A (en) | 2006-03-20 |
CN101618783A (en) | 2010-01-06 |
MXPA05009561A (en) | 2005-10-19 |
WO2004083070A1 (en) | 2004-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4981739A (en) | Oxygen impermeable leak free container | |
KR950007618B1 (en) | Heat sealable barrier material for improved juice packaging | |
US4983431A (en) | Oxygen impermeable leak free container | |
US4929476A (en) | Oxygen impermeable leak free container | |
US3972467A (en) | Paper-board laminate | |
CN100410071C (en) | Barrier laminate structure for packaging beverages | |
US4940612A (en) | Oxygen impermeable leak free container | |
CA2921920C (en) | Film for flexible packaging for use in bag in box packaging and bags made therefrom | |
EP2956299B1 (en) | A bag-in-box system for use in dispensing a pumpable product | |
JP4888208B2 (en) | Liquid paper container with spout | |
JPS62128752A (en) | Barrier-laminate for holding seesential oil, vitamin and flavor component in citrus fruit drink and manufacture of said barrier-laminate and liquid-tight vessel | |
WO2000007817A1 (en) | Containers prepared from laminate structures having a foamed polymer layer | |
US20190367219A1 (en) | Film for bag in box package and bag made therefrom | |
US20080190918A1 (en) | Shipping container for flowable material and flexible tank therefor | |
KR20060059964A (en) | Plastic gas barrier packaging laminate | |
KR20050072775A (en) | Container closure with a multi-layer oxygen barrier liner | |
CA1156195A (en) | Plastic pouch, and storing and dispensing method using same | |
EP0444835A2 (en) | Collapsible laminated tube for dentifrice | |
AU600477B2 (en) | Barrier laminates for containment of essential oils, flavors,oxygen and vitamins and cartons made therefrom | |
EP1606191B1 (en) | Hydrocarbon fluids packaging | |
JPH0284331A (en) | Oxygen barrier laminated structure | |
KR910009519B1 (en) | Oxygen imysereable leak container | |
JPH09132271A (en) | Bag for bag-in-box | |
US5932305A (en) | Composite sheet and sealed container | |
JP3393809B2 (en) | Sealed container |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20051007 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 602004017702 Country of ref document: DE Date of ref document: 20081224 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081112 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090223 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081112 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081112 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081112 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081112 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081112 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081112 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090212 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081112 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090212 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090413 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081112 |
|
26N | No opposition filed |
Effective date: 20090813 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090331 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090312 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090312 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090312 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090312 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081112 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230110 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230117 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 602004017702 Country of ref document: DE |