EP1601867A2 - PROCEDE DE COMMANDE D’UN MOTEUR A ALLUMAGE PAR COMPRESSION D’UN MELANGE HOMOGENE - Google Patents

PROCEDE DE COMMANDE D’UN MOTEUR A ALLUMAGE PAR COMPRESSION D’UN MELANGE HOMOGENE

Info

Publication number
EP1601867A2
EP1601867A2 EP04720043A EP04720043A EP1601867A2 EP 1601867 A2 EP1601867 A2 EP 1601867A2 EP 04720043 A EP04720043 A EP 04720043A EP 04720043 A EP04720043 A EP 04720043A EP 1601867 A2 EP1601867 A2 EP 1601867A2
Authority
EP
European Patent Office
Prior art keywords
combustion
instant
setpoint
signal
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04720043A
Other languages
German (de)
English (en)
Inventor
Jean-Marc Duclos
Jacky Guezet
Cédric Servant
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP1601867A2 publication Critical patent/EP1601867A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/021Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using an ionic current sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/028Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the combustion timing or phasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0052Feedback control of engine parameters, e.g. for control of air/fuel ratio or intake air amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0015Controlling intake air for engines with means for controlling swirl or tumble flow, e.g. by using swirl valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/141Introducing closed-loop corrections characterised by the control or regulation method using a feed-forward control element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method for controlling a combustion piston engine with compression ignition of a homogeneous mixture, and more particularly for regulating combustion.
  • Document WO 02/48522 proposes a method of regulating an HCCI engine from which a pressure sensor in the cylinder delivers a pressure measurement signal, a computer derives this measurement to detect a first combustion step. The computer then commands an injection of water into the cylinder to delay the start of a second combustion step. Thus, the second combustion step takes place at a chosen period which allows optimum combustion efficiency to be obtained.
  • the pressure sensors inside the cylinder of an engine are expensive. It is therefore an objective of the invention to propose another method of controlling an HCCI engine to regulate combustion by using another type of sensor.
  • the invention relates to a method for controlling a piston engine operating by compression ignition of a homogeneous mixture, the engine comprising a sensor giving combustion information in connection with combustion in the cylinder, process in which the combustion information is processed to determine a combustion instant, the combustion instant is compared with a combustion instant setpoint and an operating parameter of the engine is acted upon so that the instant of combustion and the set point correspond.
  • the sensor is an ionization probe placed in the cylinder and delivering an ionization current as combustion information, the combustion instant corresponding to the instant of maximum pressure in the cylinder.
  • the inventor has noted that the signal from an ionization probe placed in the cylinder varies during combustion in the cylinder, and that it is possible to deduce therefrom information on the way in which the combustion. From the processing of this information, it is possible to deduce the instant at which the pressure is maximum in the cylinder. A setpoint for the instant of maximum pressure is established, and the motor is piloted so that the measurement follows the setpoint, by acting on at least one operating parameter.
  • the operating parameters include a rate of recycling of the exhaust gases. The inventor has found that the adjustment of this recycling rate makes it possible to act effectively on the starting and the development of combustion in the cylinder, and therefore on the instant when the maximum pressure is reached in the cylinder.
  • the operating parameters also include turbulence created by an intake turbulence generator and a variation of the intake or exhaust cycle. All these parameters influence the course of combustion in the cylinder.
  • a recycling signal is determined to control an actuator determining the recycling rate, a signal setpoint being predetermined as a function of the engine operating point, a correction signal for the recycling signal is determined as a function comparison between the combustion instant and the combustion instant instruction, and the correction signal is added to the recycling signal instruction to determine the recycling signal.
  • a set point of the motor operating parameter is first determined as a function of the motor operating point, then action is taken on this parameter by adjusting it with a regulation introducing a correction of its set point.
  • control signal setpoints are determined to control actuators determining the operating parameters, the control signal setpoints being predetermined as a function of the engine operating point, setpoint correction signals are determined of control signals as a function of the comparison between the combustion instant and the combustion instant setpoint, and the correction signals are added to the setpoints to determine the respective control signals.
  • the invention also relates to a piston engine operating by compression ignition of a homogeneous mixture, comprising a sensor giving combustion information in connection with combustion in the cylinder, at least one actuator acting on an operating parameter of the engine, a computer receiving and processing the combustion information to determine a combustion instant, determining a combustion instant setpoint, comparing the combustion instant with the combustion instant setpoint, and controlling the actuator to act on the engine operating parameter so that the combustion instant and the setpoint correspond, characterized in that the sensor is a probe ionization placed in the cylinder and delivering an ionization current as combustion information, the combustion instant corresponding to the instant of maximum pressure in the cylinder.
  • FIG. 1 is an axial section view of a cylinder of an engine according to invention.
  • the reference 1 designates an internal combustion engine known as an HCCI, with compression ignition of a homogeneous mixture composed of air and fuel, such as diesel. Only part of the cylinder head 11 and a cylinder 12 are shown. A piston 13 slides in the cylinder 12 and defines therewith and the cylinder head a combustion chamber 14. The combustion chamber 14 also includes a fuel injector 15 and an ionization probe 5. The piston rotates a crankshaft , not shown, by means of a connecting rod, in a manner known per se. A sensor which is not shown gives information on the angle a of the instantaneous position of the crankshaft as a function of time.
  • the cylinder head 11 has an intake duct 17 opening into the combustion chamber 14 and the opening of which is controlled by an intake valve 9 '.
  • the cylinder head 11 also comprises an exhaust duct 18 opening into the combustion chamber 14 and the opening of which is controlled by an exhaust valve 9.
  • a distribution system comprises an intake actuator 10 ' and an exhaust actuator 10, actuating the intake valve 9 ′, respectively of the exhaust valve 9.
  • the intake duct 17 comprises a turbulence generator 7, actuated by an actuator 8.
  • the engine 1 also includes an exhaust gas recycling circuit 20.
  • the recycling circuit 20 includes a recycling valve 2 controlled by a recycling actuator 21 to open or close the recycling circuit 20.
  • the recycling circuit can transport exhaust gases from the exhaust duct 18 to the duct of admission 17.
  • the engine 1 is controlled by an engine computer 3, for example with a microprocessor.
  • the engine control unit receives information from the engine, and it controls the actuators controlling the engine.
  • the information that the card 3 receives is an ionization signal I (t) as a function of time from the ionization probe, and the position of the crankshaft a.
  • the engine computer 3 controls the valve actuators 10, 10 ′, the actuator 8 of the turbulence generator, the injector 15 and the recycling actuator 21.
  • the engine 1 comprises a four-stroke cycle, that is to say, in a manner known per se, successive phases of admission, compression, expansion then exhaust.
  • air is admitted during the intake phase, and fuel is injected into the combustion chamber during the compression phase, i.e. when the piston shifts from neutral down to a dead center up reducing the volume of the combustion chamber.
  • the fuel is injected while the piston is still close to the position of bottom dead center.
  • the fuel vaporizes during a large part of the compression phase, and thus forms a substantially homogeneous mixture at the end of the compression phase.
  • the mixture of air and fuel contained in the combustion chamber heats up because of the compression which it undergoes, until it reaches a self-ignition temperature, at least locally, when the piston is near top dead center.
  • the combustion then progressively propagates to the entire mixture and the pressure in the combustion chamber increases to a maximum.
  • the piston has passed through the top dead center position, the volume of the combustion chamber increases and the expansion phase begins. The maximum pressure is generally reached in this period.
  • the expansion continues while the burnt gases relax, providing work for the piston. Then the exhaust phase takes place, and a new cycle begins again.
  • the signal I (t) supplied by the ionization probe is processed by the engine computer to determine an instant of maximum pressure aPmax expressed in the form of a position of the crankshaft.
  • the applicant for this patent application has already developed a method for determining this maximum pressure instant from an ionization signal I (t) ⁇ ssu from an ionization probe. This method is described in publication FR 2 813 920 and is not reproduced here. It can apply here in the same way.
  • the engine computer contains in a memory control signal setpoint tables for the engine actuators such as the distribution system, 10, 10 ′, the turbulence generator, the injector or the recycling actuator.
  • the control signal setpoints are determined according to the engine operating point. They correspond to compromises between consumption, the emission of polluting products such as nitrogen oxides, unburnt hydrocarbons, soot, and the emission of noise.
  • the control signal setpoint tables are determined during the development of the engine.
  • the engine control unit also contains in a memory a table of maximum pressure instant setpoint values aPmaxC.
  • the setpoint aPmaxC is determined as a function of the engine operating point, from information received by the computer. It is expressed in the form of a crankshaft position angle, which is equivalent to an instant when the position of the crankshaft is related to its speed of rotation.
  • the setpoint aPmaxC and the maximum pressure instant aPmax are entered into a comparison algorithm which generates correction signals for the control of the motor actuators. The correction signals are added to the control signals and thus make it possible to regulate in a closed loop the instant of maximum pressure.
  • the comparison algorithm only makes it possible to act on the recycling of the exhaust gases, by delivering a Tegr recycling signal. This is the case for example when the engine is devoid of variable timing and turbulence generator.
  • a CorrTegr correction of the piloting of the position of the recycling valve is added to a TegrC recycling piloting instruction to determine the Tegr piloting signal.
  • the CorrTegr correction is for example proportional to the difference between the setpoint aPmaxC and the maximum pressure instant Pmax.
  • the valve control setpoint is corrected so that the maximum pressure instant corresponds to an optimum which is defined by the setpoint aPmaxC.
  • the comparison algorithm generates several correction signals, intended for the different actuators.
  • several parameters act simultaneously to correct the instant of maximum pressure.
  • the distribution of the correction is also stored in a table and determined as a function of the point of operation. The table is established during the development of the engine and aims not to disturb the compromises established for each operating point.
  • the invention is not limited to the embodiments described only by way of example.
  • the engine may for example comprise a turbocharger or several injectors, and on which the method according to the invention can act.
  • the fuel can be of any kind, such as natural gas or gasoline.
  • the correction signal can be determined by other control algorithms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

Un moteur à pistons fonctionnant par allumage par compression d'un mélange homogène, comporte une sonde d'ionisation (5) donnant un signal d'ionisation I(t) en lien avec la combustion dans un cylindre (12), et au moins un actionneur (7, 21, 10, 10') agissant sur un paramètre de fonctionnement du moteur. Selon un procédé de commande du moteur : - on traite le signal d'ionisation (I(t)) pour déterminer un instant de pression maximale (alphaPmax) , - on compare l'instant de pression maximale (alphaPmax) avec une consigne d'instant de pression maximale (alphaPmaxC) et, - on agit sur au moins un paramètre de fonctionnement du moteur pour que l'instant de pression maximale (alphaPmax) et la consigne (alphaPmaxC) correspondent.

Description

Procédé de commande d'un moteur à allumage par compression d'un mélange homogène.
L ' invention concerne un procédé de commande d'un moteur thermique à pistons à allumage par compression d'un mélange homogène, et plus particulièrement de régulation de la combustion.
Dans ce type de moteur, un mélange d'air et de carburant est introduit dans un cylindre bien avant qu'un piston coulissant dans le cylindre n'atteigne le point mort haut. L'inflammation du mélange est obtenue par la compression du mélange et par l'augmentation de température qui en résulte. Ces moteurs se caractérisent par une faible émission de particules et d'oxydes d'azote. Ils sont connus sous le sigle anglais HCCI (Homogenous Charge Compression Ignition) .
Cependant, un problème se pose pour maîtriser la période de combustion du mélange, c'est-à-dire à la fois le début de la combustion et la vitesse de combustion. Le document WO 02/48522 propose une méthode de régulation d'un moteur HCCI de laquelle un capteur de pression dans le cylindre délivre un signal de mesure de la pression, un calculateur dérive cette mesure pour détecter une première étape de combustion. Le calculateur commande alors une injection d'eau dans le cylindre pour retarder le début d'une deuxième étape de combustion. Ainsi, la deuxième étape de combustion intervient à une période choisie qui permet d'obtenir une efficacité optimale de la combustion. Les capteurs de pression à l'intérieur du cylindre d'un moteur sont onéreux. C'est donc un objectif de l'invention de proposer une autre méthode de commande d'un moteur HCCI pour réguler la combustion en utilisant un autre type de capteur.
Avec cet objectif en vue, l'invention a pour objet un procédé de commande d'un moteur à pistons fonctionnant par allumage par compression d'un mélange homogène, le moteur comportant un capteur donnant une information de combustion en lien avec la combustion dans le cylindre, procédé dans lequel on traite l'information de combustion pour déterminer un instant de combustion, on compare l'instant de combustion avec une consigne d'instant de combustion et on agit sur un paramètre de fonctionnement du moteur pour que l'instant de combustion et la consigne correspondent. Selon l'invention, le capteur est une sonde d'ionisation placée dans le cylindre et délivrant un courant d'ionisation comme information de combustion, l'instant de combustion correspondant à l'instant de pression maximale dans le cylindre.
En effet, l'inventeur a constaté que le signal d'une sonde d'ionisation placée dans le cylindre varie lors de la combustion dans le cylindre, et qu'il est possible d'en déduire des informations sur la façon dont se déroule la combustion. A partir du traitement de cette information, il est possible d'en déduire l'instant auquel la pression est maximale dans le cylindre. On établit une consigne de l'instant de pression maximale, et on pilote le moteur pour que la mesure suive la consigne, en agissant sur au moins un paramètre de fonctionnement. De préférence, les paramètres de fonctionnement comprennent un taux de recyclage des gaz d'échappement. L'inventeur a constaté que l'ajustage de ce taux de recyclage permet d'agir efficacement sur le démarrage et le développement de la combustion dans le cylindre, et donc sur l'instant où la pression maximale est atteinte dans le cylindre.
Les paramètres de fonctionnement comprennent aussi une turbulence créée par un générateur de turbulence d'air à l'admission et une variation du cycle d'admission ou d'échappement. Tous ces paramètres ont une influence sur le déroulement de la combustion dans le cylindre.
Selon un premier mode de réalisation, on détermine un signal de recyclage pour commander un actionneur déterminant le taux de recyclage, une consigne de signal étant prédéterminée en fonction du point de fonctionnement du moteur, on détermine un signal de correction du signal de recyclage en fonction de la comparaison entre l'instant de combustion et la consigne d'instant de combustion, et on ajoute le signal de correction à la consigne de signal de recyclage pour déterminer le signal de recyclage. Ainsi, une consigne du paramètre de fonctionnement du moteur est d'abord déterminée en fonction du point de fonctionnement du moteur, puis on agit sur ce paramètre en l'ajustant par une régulation introduisant une correction de sa consigne.
II est avantageux d'agir sur plusieurs paramètres de fonctionnement simultanément. De cette manière, en plus du déroulement de la combustion dans le temps, on peut agir sur la pression maximale et sur la température atteintes dans le cylindre, ce qui influe sur le rendement de la combustion, le bruit émis et la production de produits polluants.
Selon un deuxième mode de réalisation, on détermine des consignes de signaux de pilotage pour commander des actionneurs déterminant les paramètres de fonctionnement, les consignes de signaux de pilotage étant prédéterminées en fonction du point de fonctionnement du moteur, on détermine des signaux de correction des consignes de signaux de pilotage en fonction de la comparaison entre l'instant de combustion et la consigne d'instant de combustion, et on ajoute les signaux de correction aux consignes pour déterminer les signaux de pilotage respectifs.
L'invention a aussi pour objet un moteur à pistons fonctionnant par allumage par compression d'un mélange homogène, comportant un capteur donnant une information de combustion en lien avec la combustion dans le cylindre, au moins un actionneur agissant sur un paramètre de fonctionnement du moteur, un calculateur recevant et traitant l'information de combustion pour déterminer un instant de combustion, déterminant une consigne d'instant de combustion, comparant l'instant de combustion avec la consigne d'instant de combustion, et pilotant l' actionneur pour agir sur le paramètre de fonctionnement du moteur pour que l'instant de combustion et la consigne correspondent, caractérisé en ce que le capteur est une sonde d'ionisation placée dans le cylindre et délivrant un courant d'ionisation comme information de combustion, l'instant de combustion correspondant à l'instant de pression maximale dans le cylindre.
L'invention sera mieux comprise et d'autres particularités et avantages apparaîtront à la lecture de la description qui va suivre, la description faisant référence à la figure 1 qui est une vue en coupe axiale d'un cylindre d'un moteur selon l'invention.
Sur la figure 1, la référence 1 désigne un moteur à combustion interne dit HCCI, à allumage par compression d'un mélange homogène composé d'air et de carburant, comme du gazole. Seuls une partie de la culasse 11 et un cylindre 12 sont représentés. Un piston 13 coulisse dans le cylindre 12 et définit avec celui-ci et la culasse une chambre de combustion 14. La chambre de combustion 14 comporte également un injecteur 15 de carburant et une sonde d'ionisation 5. Le piston entraîne en rotation un vilebrequin, non représenté, par l'intermédiaire d'une bielle, d'une manière connue en soi. Un capteur non représenté donne une information d'angle a de position instantanée du vilebrequin en fonction du temps.
La culasse 11 comporte un conduit d'admission 17 débouchant dans la chambre de combustion 14 et dont l'ouverture est contrôlée par une soupape d'admission 9'. La culasse 11 comporte également un conduit d'échappement 18 débouchant dans la chambre de combustion 14 et dont l'ouverture est contrôlée par une soupape d'échappement 9. Un système de distribution comporte un actionneur d'admission 10' et un actionneur d'échappement 10, actionnant la soupape d'admission 9', respectivement d'échappement 9. Le conduit d'admission 17 comporte un générateur de turbulences 7, actionné par un actionneur 8.
Le moteur 1 comporte également un circuit de recyclage 20 de gaz d'échappement. Le circuit de recyclage 20 comporte une vanne de recyclage 2 pilotée par un actionneur de recyclage 21 pour ouvrir ou fermer le circuit de recyclage 20. Ainsi, le circuit de recyclage peut transporter des gaz d'échappement du conduit d'échappement 18 vers le conduit d'admission 17.
Le moteur 1 est piloté par un calculateur de moteur 3, par exemple à microprocesseur. Le calculateur de moteur reçoit des informations en provenance du moteur, et il pilote les actionneurs contrôlant le moteur. Parmi les informations que la carte 3 reçoit se trouvent un signal d'ionisation I(t) en fonction du temps en provenance de la sonde d'ionisation, et la position du vilebrequin a. Le calculateur de moteur 3 pilote les actionneurs de soupapes 10, 10', l' actionneur 8 du générateur de turbulence, l'injecteur 15 et l' actionneur de recyclage 21.
Le moteur 1 comporte un cycle à quatre temps, c'est-à-dire, d'une manière connue en soi, des phases successives d'admission, de compression, de détente puis d'échappement. Pour le moteur 1, de l'air est admis pendant la phase d'admission, et du carburant est injecté dans la chambre de combustion pendant la phase de compression, c'est-à-dire quand le piston passe d'un point mort bas vers un point mort haut en réduisant le volume de la chambre de combustion. Pour obtenir un mélange homogène, le carburant est injecté alors que le piston est encore à proximité de la position du point mort bas. Ainsi, le carburant se vaporise pendant une grande partie de la phase de compression, et forme ainsi un mélange sensiblement homogène à la fin de la phase de compression.
Lors de la compression, le mélange d'air et de carburant contenu dans la chambre de combustion s'échauffe à cause de la compression qu'il subit, jusqu'à atteindre une température d'auto- inflammation, au moins localement, lorsque le piston est à proximité du point mort haut. La combustion se propage alors progressivement à l'ensemble du mélange et la pression dans la chambre de combustion augmente jusqu'à un maximum. Lorsque le piston est passé par la position du point mort haut, le volume de la chambre de combustion augmente et la phase de détente débute. Le maximum de pression est atteint en général dans cette période. La détente se poursuit pendant que les gaz brûlés se détendent en fournissant un travail au piston. Puis la phase d'échappement a lieu, et un nouveau cycle recommence.
Le signal I(t) fourni par la sonde d'ionisation est traité par le calculateur de moteur pour déterminer un instant de pression maximale aPmax exprimé sous la forme d'une position du vilebrequin. Le déposant de cette demande de brevet a déjà développé une méthode de détermination de cet instant de pression maximal à partir d'un signal d'ionisation I(t)±ssu d'une sonde d'ionisation. Cette méthode est exposée dans la publication FR 2 813 920 et n'est pas reproduite ici. Elle peut s'appliquer ici de la même manière.
Le calculateur de moteur contient dans une mémoire des tables de consignes de signaux de pilotage pour les actionneurs du moteur tels que le système de distribution, 10, 10', le générateur de turbulence, l'injecteur ou 1 ' actionneur de recyclage. Les consignes de signaux de pilotage sont déterminées en fonction du point de fonctionnement du moteur. Ils correspondent à des compromis entre la consommation, l'émission de produits polluants tels que les oxydes d'azote, les hydrocarbures imbrûlés, les suies, et l'émission de bruit. Les tables de consignes de signaux de pilotage sont déterminées lors de la mise au point du moteur.
Le calculateur de moteur contient également dans une mémoire une table de valeurs de consigne d'instant de pression maximale aPmaxC. La consigne aPmaxC est déterminée en fonction du point de fonctionnement du moteur, à partir des informations reçues par le calculateur. Elle est exprimée sous la forme d'un angle de position de vilebrequin, ce qui équivalent à un instant lorsque l'on rapporte la position du vilebrequin à sa vitesse de rotation. La consigne aPmaxC et l'instant de pression maximale aPmax sont entrés dans un algorithme de comparaison qui génère des signaux de correction du pilotage des actionneurs du moteur. Les signaux de correction sont ajoutés aux signaux de pilotage et permettent ainsi de réguler en boucle fermée l'instant de pression maximale.
Dans un premier mode de réalisation, l'algorithme de comparaison ne permet d'agir que sur le recyclage des gaz d'échappement, en délivrant un signal de recyclage Tegr. C'est le cas par exemple lorsque le moteur est dépourvu de distribution variable et de générateur de turbulence. Une correction CorrTegr du pilotage de la position de la vanne de recyclage est ajoutée à une consigne de pilotage de recyclage TegrC pour déterminer le signal de pilotage Tegr. La correction CorrTegr est par exemple proportionnelle à la différence entre la consigne aPmaxC et l'instant de pression maximale Pmax. Ainsi, la consigne de pilotage de la vanne est corrigée pour que l'instant de pression maximale corresponde à un optimum qui est défini par la consigne aPmaxC.
Dans un autre mode de réalisation, l'algorithme de comparaison génère plusieurs signaux de corrections, à destination des différents actionneurs. Ainsi, plusieurs paramètres agissent simultanément pour corriger l'instant de pression maximale. La répartition de la correction est également mémorisée dans une table et déterminée en fonction du point de onctionnement. La table est établie lors de la mise au point du moteur et vise à ne pas perturber les compromis établis pour chaque point de fonctionnement.
L'invention n'est pas limitée aux modes de réalisation décrits uniquement à titre d'exemple. Le moteur peut comporter par exemple un turbocompresseur ou plusieurs injecteurs, et sur lesquels le procédé selon l'invention peut agir. Le carburant peut être de nature quelconque, tel que du gaz naturel ou de l'essence. Le signal de correction peut être déterminé par d'autres algorithmes de régulation.

Claims

REVENDICATIONS
1. Procédé de commande d'un moteur à pistons fonctionnant par allumage par compression d'un mélange homogène, le moteur (1) comportant un capteur (5) donnant une information de combustion (I(t) ) en lien avec la combustion dans un cylindre (12) , procédé dans lequel : on traite l'information de combustion (I(t)) pour déterminer un instant de combustion ( aPmax) , on compare l'instant de combustion ( aPmax) avec une consigne d'instant de combustion ( aPmaxC) et on agit sur au moins un paramètre de fonctionnement du moteur pour que 1 ' instant de combustion ( cPmax) et la consigne { aPmaxC) correspondent, caractérisé en ce que le capteur est une sonde d'ionisation (5) placée dans le cylindre (12) et délivrant un courant d'ionisation (I(t) ) comme information de combustion, l'instant de combustion correspondant à l'instant de pression maximale ( ccPmax) dans le cylindre.
2. Procédé de commande selon la revendication 1, caractérisé en ce que les paramètres de fonctionnement comprennent un taux de recyclage des gaz d'échappement.
3. Procédé de commande selon la revendication 2, caractérisé en ce qu'on détermine un signal de recyclage Tegr pour commander un actionneur (21) déterminant le taux de recyclage, une consigne de signal TegrC étant prédéterminée en fonction du point de fonctionnement du moteur, on détermine un signal de correction du signal de recyclage CorrTegr en fonction de la comparaison entre l'instant de combustion ( aPmax) et la consigne d'instant de combustion ( aPmaxC) , et on ajoute le signal de correction CorrTegr à la consigne de signal de recyclage TegrC pour déterminer le signal de recyclage Tegr .
4. Procédé de commande selon la revendication 2, caractérisé en ce que les paramètres de fonctionnement comprennent en outre une turbulence créée par un générateur de turbulence (7) d'air à l'admission et une variation du cycle d'admission ou d'échappement.
5. Procédé de commande selon la revendication 1, caractérisé en ce qμ'on agit sur plusieurs paramètres de fonctionnement simultanément.
6. Procédé de commande selon la revendication 5, caractérisé en ce qu'on détermine des consignes de signaux de pilotage pour commander des actionneurs déterminant les paramètres de fonctionnement, les consignes de signaux de pilotage étant prédéterminées en fonction du point de fonctionnement du moteur, on détermine des signaux de correction des consignes de signaux de pilotage en fonction de la comparaison entre l'instant de combustion et la consigne d'instant de combustion, et on ajoute les signaux de correction aux consignes pour déterminer les signaux de pilotage respectifs.
7. Moteur à pistons fonctionnant par allumage par compression d'un mélange homogène, comportant un capteur (5) donnant une information de combustion I(t) en lien avec la combustion dans un cylindre (12) , au moins un actionneur (7, 21, 10, 10') agissant sur un paramètre de fonctionnement du moteur, un calculateur (3) recevant et traitant 1 ' information de combustion I(t) pour déterminer un instant de combustion ( aPmax) , déterminant une consigne d'instant de combustion ( ccPmaxC) , comparant l'instant de combustion ( aPmax) avec la consigne d'instant de combustion ( aPmaxC) , et pilotant l'actionneur (7, 21, 10, 10') pour agir sur le paramètre de fonctionnement du moteur pour que l'instant de combustion ( ccPmax) et la consigne ( aPmaxC) correspondent, caractérisé en ce que le capteur est une sonde d'ionisation (5) placée dans le cylindre (12) et délivrant un courant d'ionisation I(t) comme information de combustion, l'instant de combustion correspondant à l'instant de pression maximale ( ccPmax) dans le cylindre.
EP04720043A 2003-03-12 2004-03-12 PROCEDE DE COMMANDE D’UN MOTEUR A ALLUMAGE PAR COMPRESSION D’UN MELANGE HOMOGENE Withdrawn EP1601867A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0303037 2003-03-12
FR0303037A FR2852355B1 (fr) 2003-03-12 2003-03-12 Procede de commande d'un moteur a allumage par compression d'un melange homogene
PCT/FR2004/000615 WO2004083612A2 (fr) 2003-03-12 2004-03-12 Procede de commande d’un moteur a allumage par compression d’un melange homogene

Publications (1)

Publication Number Publication Date
EP1601867A2 true EP1601867A2 (fr) 2005-12-07

Family

ID=32893230

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04720043A Withdrawn EP1601867A2 (fr) 2003-03-12 2004-03-12 PROCEDE DE COMMANDE D’UN MOTEUR A ALLUMAGE PAR COMPRESSION D’UN MELANGE HOMOGENE

Country Status (5)

Country Link
US (1) US20070038359A1 (fr)
EP (1) EP1601867A2 (fr)
JP (1) JP4444280B2 (fr)
FR (1) FR2852355B1 (fr)
WO (1) WO2004083612A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10359053A1 (de) * 2003-12-17 2005-07-21 Daimlerchrysler Ag Verfahren zum Betrieb einer Brennkraftmaschine
FR2882399B1 (fr) * 2005-02-18 2010-09-03 Peugeot Citroen Automobiles Sa Systeme de controle du fonctionnement d'un moteur diesel de vehicule automobile equipe de moyens de recirculation de gaz d'echappement
EP1744037A1 (fr) * 2005-07-14 2007-01-17 Ford Global Technologies, LLC Méthode de commande de la demarrage de la combsution d'un moteur à combustion interne
US10208651B2 (en) 2016-02-06 2019-02-19 Prometheus Applied Technologies, Llc Lean-burn pre-combustion chamber

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE503171C2 (sv) * 1994-08-11 1996-04-15 Mecel Ab Metod för reglering av tändtidpunkten i en förbränningsmotor
AU4082997A (en) * 1996-08-23 1998-03-26 Cummins Engine Company Inc. Homogeneous charge compression ignition engine with optimal combustion control
US5875743A (en) * 1997-07-28 1999-03-02 Southwest Research Institute Apparatus and method for reducing emissions in a dual combustion mode diesel engine
GB2353070A (en) * 1999-08-13 2001-02-14 Ford Global Tech Inc I.c. engine with pre-mixed intake charge and controlled auto-ignition under part-load conditions
US6443104B1 (en) 2000-12-15 2002-09-03 Southwest Research Institute Engine and method for controlling homogenous charge compression ignition combustion in a diesel engine
FR2827338A1 (fr) * 2001-07-10 2003-01-17 Siemens Ag Moteur a combustion interne a auto-allumage de melange homogene et procede de commande ou de regulation d'un tel moteur
DE60236815D1 (de) * 2001-08-17 2010-08-05 Tiax Llc Verfahren zur regelung einer verbrennungskraftmaschine mit kompressionszündung und kraftstoff-luftvormischung
US6805099B2 (en) * 2002-10-31 2004-10-19 Delphi Technologies, Inc. Wavelet-based artificial neural net combustion sensing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004083612A2 *

Also Published As

Publication number Publication date
JP4444280B2 (ja) 2010-03-31
FR2852355A1 (fr) 2004-09-17
WO2004083612A2 (fr) 2004-09-30
JP2006519955A (ja) 2006-08-31
FR2852355B1 (fr) 2006-07-21
WO2004083612A3 (fr) 2005-02-10
US20070038359A1 (en) 2007-02-15

Similar Documents

Publication Publication Date Title
JP3588999B2 (ja) ディーゼルエンジンの冷間・暖機中の制御装置
US7251557B2 (en) Method for auto-ignition operation and computer readable storage device for use with an internal combustion engine
US20050235952A1 (en) Homogeneous charge compression ignition engine and method for operating homogeneous charge compression ignition engine
KR20060051868A (ko) 엔진
FR2903144A1 (fr) Procede de commande d'un moteur a combustion interne a auto-allumage par compression
FR2891308A1 (fr) Procede de gestion d'un moteur a combustion a auto-allumage controle
JP2008088899A (ja) 予混合圧縮自着火エンジンの制御装置及び制御方法
EP1601867A2 (fr) PROCEDE DE COMMANDE D’UN MOTEUR A ALLUMAGE PAR COMPRESSION D’UN MELANGE HOMOGENE
EP0980973A2 (fr) Dispositif de commande d'injection de carburant pour moteur à combustion interne
FR2870887A1 (fr) Procede de gestion d'un moteur a combustion interne
EP1435445A1 (fr) Moteur à combustion interne, méthode de fonctionnement en auto-allumage et support d'enregistrement lisible par ordinateur
JP2004257316A (ja) 内燃機関の制御装置
US11225919B2 (en) Supercharging pressure setting apparatus
FR2856432A1 (fr) Procede de controle d'un systeme de motorisation a moteur diesel et piege a oxydes d'azote
FR2687190A1 (fr) Procede pour commander la charge d'un moteur a quatre temps a compression de melange.
US11873770B1 (en) Supercharger pressure ratio and temperature limiting scheme to protect hardware
FR2792682A1 (fr) Appareil de commande pour moteur a combustion interne
FR2816660A1 (fr) Procede et dispositif de commande du fonctionnement d'un moteur a combustion interne a auto-allumage
JP2006299832A (ja) ディーゼルエンジンにおける燃料噴射制御装置
FR3140909A1 (fr) Moteur à combustion interne et procédé de pilotage d’un tel moteur
EP1300569B1 (fr) Procédé et dispositif de commande d'un moteur à combustion interne
FR2806128A1 (fr) Procede de mise en oeuvre d'un moteur a combustion interne
FR2874967A1 (fr) Procede de regeneration d'un systeme a filtre a particules
FR2893985A1 (fr) Procede de gestion d'un moteur a combustion interne et moyen pour sa mise en oeuvre
WO2009034277A2 (fr) Procede de commande d'un injecteur d'air carbure dans une chambre de combustion d'un moteur a combustion interne suralimente

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050906

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100928

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20111110