EP1600602B1 - Vorrichtung und Verfahren zum hydraulischen Bohren - Google Patents

Vorrichtung und Verfahren zum hydraulischen Bohren Download PDF

Info

Publication number
EP1600602B1
EP1600602B1 EP05010058A EP05010058A EP1600602B1 EP 1600602 B1 EP1600602 B1 EP 1600602B1 EP 05010058 A EP05010058 A EP 05010058A EP 05010058 A EP05010058 A EP 05010058A EP 1600602 B1 EP1600602 B1 EP 1600602B1
Authority
EP
European Patent Office
Prior art keywords
liquid
swing arm
soil
cutting
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05010058A
Other languages
English (en)
French (fr)
Other versions
EP1600602A2 (de
EP1600602A3 (de
Inventor
Dominik Hartmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bauer Spezialtiefbau GmbH
Original Assignee
Bauer Spezialtiefbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bauer Spezialtiefbau GmbH filed Critical Bauer Spezialtiefbau GmbH
Publication of EP1600602A2 publication Critical patent/EP1600602A2/de
Publication of EP1600602A3 publication Critical patent/EP1600602A3/de
Application granted granted Critical
Publication of EP1600602B1 publication Critical patent/EP1600602B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/29Obtaining a slurry of minerals, e.g. by using nozzles
    • E21B43/292Obtaining a slurry of minerals, e.g. by using nozzles using steerable or laterally extendable nozzles
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/18Drilling by liquid or gas jets, with or without entrained pellets

Definitions

  • the invention relates to an apparatus and a method for processing the soil.
  • a drill head has a surrounding duct, at the end there are radially outwardly hinged pivot arms, which rest in the rest position in recesses of the drill head. If a drilling fluid is introduced under high pressure into the duct, the arms are folded out.
  • DE 2 035 934 discloses a hydraulic-pneumatic method for removing a solid wall in liquids. In order to reduce the density, gas is injected into the surrounding liquid at the point of decomposition.
  • the object of the invention is to provide a device and a method with which soil material of certain soil layers can be processed efficiently.
  • At least one pivoting arm is arranged with a jet pipe at a bottom end of the tubular body, which is movable from a rest position on the tubular body in a Ausstellposition in which the pivot arm projects laterally on the tubular body, and that for generating a liquid cutting jet, the jet pipe opens substantially straight into a jet nozzle.
  • soil material can be purposefully released and processed in a defined soil layer within the soil by means of a cutting jet.
  • a cutting jet can not only be pivoted but also, for example telescopically extendable.
  • a basic idea of the invention lies in the arrangement of a substantially straight, long jet pipe, which opens straight into the jet nozzle. In contrast to nozzles introduced transversely into a pipe, a jet pipe with a length of at least 10 cm results in an exact, highly effective cutting jet.
  • the swivel arm which is suitably arranged in a lower, bottom-side region of the tubular body, can be brought into a rest position on the tubular body supporting it.
  • the swivel arm may, for example, lie flat against the green body, be received in a receiving recess provided on the outside of the tubular body, or be arranged inside the tubular body.
  • the swing arm in the rest position with the tubular body forms a continuous surface.
  • the longitudinal axis of the pivot arm may be arranged approximately parallel to the longitudinal axis of the tubular body.
  • the swivel arm As long as the swivel arm is in the rest position, it may be advantageous to block a fluid passage through the swivel arm. However, it may be useful to provide a fluid passageway thereby also in the rest position of the swaying arm, whereby a generated liquid jet may then assist, for example, a propulsion of the tubular body into the ground.
  • the pivot arm From the rest position on the tubular body of the swivel arm according to the invention is pivotable in a Ausstellposition in which it protrudes laterally from the tubular body.
  • the longitudinal axis of the pivot arm with the longitudinal axis of the tubular body in the deployed position ⁇ include a deployment angle, which is suitably 45 ° to 120 °, in particular about 90 °.
  • the pivot arm can be released for a fluid passage and thereby at least approximately radially directed to the tubular body liquid jet can be generated.
  • the swivel arm of the liquid jet occurs only at a certain radial distance from the tubular body, which is why a particularly high range of the liquid jet is achieved in the soil and thus a particularly large mining area can be edited.
  • the Ausstellposition can also be provided at least one intermediate position of the pivot arm, in which the fluid passage can be released or locked.
  • the at least one swivel arm nozzle for generating the liquid jet is arranged on the front side of the swivel arm such that the generated liquid jet is directed at least approximately in the longitudinal direction of the swivel arm, ie parallel to its longitudinal axis.
  • the front side protrudes from the arm, which are at the exit of the Fluid from the swing arm occurring reaction forces also directed mainly in the longitudinal direction of the swing arm and thus can be particularly well received by this.
  • substantially no reaction forces occur in the pivoting direction of the pivoting arm, whereby a pivoting drive of the pivoting arm is relieved.
  • the design of the swivel arm for an approximately longitudinal liquid jet thus allows the use of particularly high liquid pressures for liquid jet generation, thus a particularly high beam range and a particularly large mining area.
  • the swivel drive can basically be arranged on the bottom side of the tubular body, in particular near the swivel arm, as well as on the top side of the tubular body, ie near its end remote from the bottom end.
  • the pivoting drive can have, for example, at least one hydraulic cylinder and / or at least one pneumatic cylinder, which in particular can be articulated directly on the pivoting arm.
  • the pivot drive may comprise at least one drive rod which extends parallel to the longitudinal axis of the tubular body upwards.
  • the pivoting drive may in particular comprise axially displaceable, suitably concentrically arranged tubes, of which in particular one of the tubular bodies may be.
  • the pivot drive can also have a rotary gear, a rotary motor and / or a rack with pinion.
  • the pivot drive is controllable from above. If a hydraulic rotary actuator is provided, hydraulic lines can be provided which run upwards in the tubular body. In a pneumatic rotary actuator can be provided according to pneumatic lines in the tubular body.
  • the jet pipe is advantageously straight, i. designed with straight longitudinal axis.
  • the jet pipe is designed in particular with an approximately circular outer cross section.
  • a plurality of pivot arms may be provided with jet tubes.
  • the different pivot arms may preferably have different lengths, so that the respective Schwenkarmdüsen in Ausstellposition have different radial distances from the tubular body.
  • the at least one swivel arm has a length of about 50 cm to 4 m, in particular a length of about 2 m, wherein a large part of the length is formed by the jet pipe.
  • At least one pre-cutting device for producing a further pre-cutting liquid jet is provided on the tubular body, in particular above the swivel arm.
  • This pre-cutting device can be arranged offset by, for example, 180 ° to the swivel arm.
  • soil material in particular can be loosened and / or loosened in a pre-cutting area.
  • the pre-cutting area is dimensioned such that the swivel arm can be accommodated therein in its deployed position.
  • the appropriately arranged outside of the tubular body Vorschneide beautiful may have a Vorschneidüse, which may be arranged in particular directly on the outer wall of the tubular body.
  • the pre-cutting nozzle can also be arranged on a Vorschneiderohr, which protrudes radially from the tubular body.
  • the pre-cutting tube a shorter length than the swivel arm.
  • the pre-cutting device is designed so that the pre-cutting liquid jet extends approximately radially to the tubular body.
  • the arrangement of the pre-cutting device above the swivel arm can in particular include that the pre-cutting nozzle and thus the exit point of the further pre-cutting liquid jet is arranged above the swivel arm nozzle.
  • Such an arrangement is particularly advantageous if the liquid is injected into the soil during the pulling of the tubular body via the pre-cutting device.
  • a change in the outlet characteristic of the liquid in the sense of the method according to the invention can be understood in particular to mean that the liquid is first injected by means of the precutting device and then additionally or alternatively by means of the pivoting arm.
  • a particularly advantageous development of the device according to the invention is characterized in that on the outside of the tubular body, in particular above the pivoting arm and / or the precutting device, at least one centering device is provided for centering the tubular body in the borehole.
  • a device configured in this way is particularly well suited for absorbing reaction forces which arise when the liquid jet emerges.
  • the development thus allows the use of particularly high liquid pressures and thus particularly high beam ranges.
  • the centering means suitably comprises a spacer which projects radially from the tubular body and which supports the tubular body against the borehole wall.
  • a centering device can in particular be provided when a comparison with the tubular body diameter larger hole is made before the introduction of the tubular body in the ground by means of a drilling tool or cutting jet.
  • a particularly useful device is further characterized in that an elastic line for supplying the Schwenkarmdüse is provided with liquid on the pivot arm.
  • This elastic conduit is suitably arranged inside the tubular body, where it is particularly well protected by the pending soil.
  • the elastic line can be provided to supply the Schwenkarmdüse also a hinge connection and / or a deflection connection.
  • the pipe connects in a single arc the pipe body with the jet pipe, so that only a small pressure loss arises.
  • a particularly reliable device can be obtained by providing a position sensor for determining the swivel position of the swivel arm, wherein the position sensor is in particular connected to a control device with which a liquid supply can be controlled by means of a pump to the swivel arm nozzle.
  • the control device is suitably provided at the top of the tubular body.
  • the position sensor can in particular serve to determine the swivel angle ⁇ and / or to determine the deployed position.
  • the control means is arranged so that the liquid supply to the Schwenkarmdüse is given only when the pivot arm is in the raised position.
  • the control device may be in communication, for example, with the pump or with a control valve.
  • the device can be used for special foundations for the creation of foundations or for particularly effective extraction of raw materials.
  • it may be useful to provide a discharge device for removing raw material-containing suspension from the tubular body for extracting the pipe material at the bottom surface.
  • the discharge device is designed for the extraction of suspension from the borehole.
  • the raw material extraction may in particular include a separation of the raw material grains from the liquid.
  • a particularly advantageous apparatus for the mining of solid mineral raw materials is further characterized in that at least one line for common or separate supply of Vorschneide gifted and the Schwenkarmdüse is provided with liquid on the tubular body.
  • the pre-cutting device and / or the swivel arm may preferably have a liquid valve. If the line is designed for separate supply, the pre-cutting device and the swivel arm suitably have separate lines.
  • the at least one conduit has the elastic conduit.
  • the tillage method according to the invention is characterized in that a bore is produced in a first step, which extends at least into a soil layer to be processed, and that in the bore of the soil cultivation device is introduced, with which soil material of the soil layer is released.
  • a basic idea of the invention can be seen in the introduction of a liquid in soil layers by means of the device, whereby soil material is purposefully released from the soil. With further supply of liquid, the solids-enriched liquid is displaced from the soil and discharged to the soil surface.
  • the method according to the invention is suitable not only for use in special civil engineering but also for the mining of a large number of solid mineral raw materials.
  • Particularly useful is the process for the degradation of clay minerals, especially kaolin. But other clay minerals such. Bentonite, talc, smectite or mica can be broken down.
  • the mineral raw materials may in particular be sheet silicates.
  • Particularly useful is the process for the degradation of ceramic raw materials.
  • the liquid is selected so that the raw material grains to be degraded are insoluble therein. However, it can also be provided that the raw material grains are at least partially soluble in the liquid.
  • a suspension according to the invention can be understood in particular a slurry of insoluble solid particles in the liquid.
  • the suspension may also be referred to as a grain suspension from a conglomerate.
  • Particularly useful method of the invention for the mining of natural resources which are stored at a depth of about 20 to 100 m.
  • the layer thickness of the raw material deposit can be for example 40 m and the raw material content in the soil about 10 to 30% by volume.
  • the inventive method allows in a particularly simple way, the reduction of such deeper lying deposits of raw materials without basically a costly Schachtewolf would be necessary.
  • the decomposing rod length can basically be introduced into the soil from the earth's surface. But it is also possible to introduce the mining boom, starting from a tunnel or a shaft of a civil engineering in the ground. Also, the mining boom can be introduced from the bottom of an open pit in the soil, whereby an increase in the depth of excavation can be achieved without increasing the diameter of the mining vessel.
  • the degradation rod according to the invention is designed so that the injected fluid has a reach in the radial direction to the degradation boom of 2 to 8 m, in particular of about 10 m, with respect to the longitudinal axis of the mining boom or an outlet opening.
  • raw material grains can be degraded in an approximately cylindrical mining area with a radius of the order of magnitude.
  • the raw material-containing suspension is suitably discharged on the outside of the degradation boom. This is particularly advantageous when the extraction rod length is introduced into a bore which is larger in diameter than the degradation rod itself. In principle, however, it is also possible, the raw material-containing suspension inside the mining boom upwards, i. in the direction of the earth's surface.
  • the removal of the raw material-containing suspension along the degradation rod can basically be done solely due to a displacement effect by the further injected into the soil liquid.
  • pumping means can be provided which assist in the removal of the raw material-containing suspension upwards.
  • a particularly suitable development of the method according to the invention is characterized in that an injection rate for the liquid is set in such a way that a flow velocity of the suspension along the degradation rod length is less than a rate of descent of undesired poor grains.
  • the rate of descent can also be referred to as the return flow rate and the flow rate as the ascent rate.
  • the injection rate i. the per unit of time in the ground supplied amount of liquid, so chosen so that the undesirable bad grains fall faster than they are discharged upward and thus remain in the ground.
  • the bad grains may in particular be coarse particles. In principle, however, the bad grains may also be other undesired admixtures and impurities, for example foreign material additions of material. These may, for example, due to a different density or different surface properties have a different from the rate of desorption of raw material grains different sinking rate.
  • the injection rate is set in such a way that raw material grains having a particle size which is above a certain maximum particle size remain in the soil. In this way, it can be ensured that only fines are removed from the soil, but coarse particles remain in the soil or sink down again and support a cavity which arises during the mining of the raw materials in the mining area. Under fines are understood raw material grains whose particle size is below the largest grain size.
  • the largest grain size can be in particular 1000 .mu.m, preferably 500 .mu.m.
  • the rate of injection of the liquid is adjusted so that the rate of descent of particles of size above the largest grain size greater than the flow rate of the slurry and the rate of descent of particles below the largest grain size is less than the flow rate of the slurry along the degradation length.
  • the flow rate and the rate of descent can be medium values, so that, if appropriate, even a small residual amount of undesired bad grains and / or coarse particles can reach the top.
  • the injection rate to be selected for a certain maximum particle size may also depend, in particular, on an outer diameter of the excavation string and / or an inner diameter of a borehole in which the degradation string is received.
  • the liquid can be chosen arbitrarily.
  • the liquid is water.
  • a particularly rapid and effective extraction of raw materials can be ensured by the fact that the liquid is injected into the soil under high pressure, which can be between 300 and 1500 bar in particular.
  • An injection rate for the liquid is suitably 100 to 2500 l per minute, in particular 400 to 2000 l per minute.
  • the liquid is injected into the soil during the penetration of the extraction stabilizer into the soil, ie during its axial advancing movement, and / or during axial standstill of the decomposition support. It is particularly advantageous, however, that the liquid is injected into the soil during the pulling of the removal rod. In this case, already dissolved soil parts, which are not carried away with the suspension upwards, in a range sink below a cutting jet of the injected liquid, where they do not hinder the cutting jet further. This ensures a particularly effective extraction of raw materials.
  • the degradation boom is repeatedly lowered and at least partially pulled, in particular, an outlet characteristic of the liquid is changed from the degradation boom.
  • an outlet characteristic of the liquid is changed from the degradation boom.
  • the discharge characteristic of the liquid for example, the shape of at least one cutting jet can be changed.
  • the fluid pressure and / or the injection rate can also be changed.
  • the outlet characteristic it is also possible to change at least one exit point of the liquid from the degradation boom.
  • a first injection nozzle for a fluid passage can be opened and a second injection nozzle can be blocked.
  • additional exit points of the liquid can be released to change the exit characteristic.
  • a particularly complete extraction of raw materials can be achieved according to the invention by rotating the degradation rod during the injection of the liquid.
  • an at least approximately cylindrical raw material extraction area can be set in the ground.
  • the degradation rod is also moved during the rotation in the axial direction, in particular pulled. The rotation can be done with the same direction of rotation or alternately.
  • the tubular body and / or the swivel arm is caused to vibrate via a vibration exciter.
  • the applied vibrations are preferably in a range between 10 and 100 Hz the abrasive action of the cutting jet can be increased and the tubular body can be rotated with less force, in particular when the swivel arm is swiveled out.
  • a drilling device for releasing the pending soil is provided at the front end at the lower end of the mining rod.
  • a particularly useful method is that first by means of a drilling tool, a preferably at least partially cased borehole is made in the ground, in which then the mining boom is introduced. In this case, the hole is thus not made by the mining boom itself, but by the drilling tool or by pre-cutting.
  • the drilling tool can in particular have a drill string with a bottom-side arranged drill head.
  • the at least partial piping of the bore can be provided in particular for burglary-prone soils.
  • FIG. 1 A device 60 according to the invention with a disassembly rod 50 is shown in FIG.
  • the degradation rod 50 has a tubular body 2, which is introduced into a borehole 18 in the bottom 40. face side a drilling device 3 is arranged on the tubular body 2, which can be configured, for example, as a drill bit, as a drill head and / or as a displacer head.
  • the drilling device 3 is not mandatory in all cases.
  • a pivoting arm 9 is provided with an end-side jet pipe 8, which opens into a Schwenkarmdüse 10.
  • the swivel arm is shown in an open position, the reference numeral 8a in a rest position on the tubular body 2. While in the rest position, a longitudinal axis of the pivot arm 9 extends approximately parallel to a longitudinal axis 26 of the tubular body 2, includes the longitudinal axis of the pivot arm 9 in the Ausstellposition with the longitudinal axis 26 of the tubular body 2 a pivot angle ⁇ of 90 °.
  • the pivot arm 9 is articulated to a pivot axis 13.
  • the pivot axis 13 extends approximately radially to the longitudinal axis 26 of the tubular body 2.
  • the degradation rod 50 has a pivot drive with a hydraulic cylinder 11 which is articulated on one side on the tubular body 2.
  • piston-side side of the hydraulic cylinder 11 is attached to a rear lever arm 14 of the pivot arm 9 beyond the pivot axis 13.
  • the pivot arm 9 of the hydraulic cylinder 11 is extended, whereby the pivot arm 9 with the Schwenkarmdüse 10, as shown by the broken arrow, in a circular path is pivoted upward.
  • a precutting device 46 is provided on the outside of the tubular body 2.
  • the pre-cutting device 46 has a Vorschneiderohr 6 extending radially to the longitudinal axis 26 of the tubular body 2, on the front side of a Vorschneidüse 7 is arranged.
  • the Schwenkarmdüse 10 is further radially spaced from the longitudinal axis 26 of the tubular body 2 as the Vorschneidüse 7.
  • an exit point for liquid from the Vorschneide issued 46 opposite to a discharge point for liquid from the swing arm 9 is set back ,
  • a first line 4 is arranged.
  • This line 4 is connected via a designed as a piece of hose elastic line 12 with the relatively long, straight jet pipe 8.
  • liquid, in particular water is introduced into the line 4 in the direction of the arrow 16.
  • an annular space is formed in the tubular body 2, which forms a second conduit 5 for the supply of liquid to Vorschneide sensible 46. If liquid in the direction of arrow 15 is fed into this second line 5, then a precutting liquid jet (not shown in FIG. 1) emerges from the precutting nozzle 7.
  • centering devices 21 are provided on the outside of the tubular body 2 above the Vorschneide pain. These as spacers Centering devices 21 formed with an external sliding shoe support the tubular body 2 radially on a borehole wall 1 of the borehole 18.
  • the length of the precut tube 6 is selected so that it is smaller than a borehole radius 23 of the borehole 18 and the excavation rod 50 can thus be introduced unhindered into the borehole 18.
  • the Vorschneide Schemeradius 24 is suitably chosen so that in Vorschneide Scheme 34 pivoting of the pivoting arm 9 is possible in the Ausstellposition, i. the rough cutting region radius 24 is suitably selected to be greater than a radial distance of the swivel arm nozzle 10 from the longitudinal axis 26 of the tubular body 2.
  • the liquid which is injected into the bottom 40 via the jet pipe 8 and / or the precutting device 46, is thereby enriched with soil material, in particular with raw material particles, and then discharged externally on the tubular body 2 in the annular space between the borehole wall 1 and the wall of the tubular body 2 in the direction of arrow 17 upwards.
  • the drilling device 3 can in particular be designed so that it protrudes in the radial direction over the pivot arm 9 in its rest position and thus protects it from pending soil material.
  • FIGS. 2 to 6 Various process stages of an exemplary embodiment of a method according to the invention using the mining rod 50 shown in FIG. 1 are shown in FIGS. 2 to 6. The same reference numerals as in Fig. 1 are used.
  • a borehole 18 is first sunk down to a final depth 38 by means of a drilling tool, not shown, in the bottom 40.
  • the borehole 18 can be formed cased in an upper area.
  • the borehole 18 is configured in such a diameter larger than the tubular body 2, that this can be inserted unimpeded centric into the borehole 18 and lowered therein with the radially projecting Vorschneide issued 46 pivoted arm 9 in a next step.
  • the tubular body 2 After the inserted tubular body 2 rests with its drilling device 3 arranged on the bottom side at the bottom of the borehole 18, the tubular body 2 is initially inserted further into the ground until the precutting device 46 is located just above the final depth 38.
  • ablation effect of the drilling device 3 at the bottom of the hole which can be generated in particular by a rotation of the tubular body 2, a feed hole 31 is thereby produced centrally and smaller diameter to the wellbore 18.
  • liquid may optionally be supplied via the line 4 to the pivoted-in swivel arm 14, the liquid then emerging from the swivel-arm nozzle 10 near the drilling device 3.
  • liquid is supplied under pressure to the pre-cutting device 46 via the line 5, thereby generating a pre-cutting liquid jet 43 in the radial direction to the longitudinal axis 26 of the tubular body 2.
  • the tubular body 2 is rotated and pulled in the direction of arrow 30. Due to the action of the precut liquid jet 43, soil material in the precut area 34 is released and / or loosened.
  • This process stage is shown in FIG. During the entire process, the liquid introduced into the bottom 40 via the lines 4, 5 and enriched there with soil material is discharged upward in the direction of the arrow 17 on the outside of the tubular body 2.
  • the tubular body 2 is then re-inserted into the ground without further supply of liquid until the exhibited pivot arm 9 has reached about the final depth 38.
  • To facilitate the feed tube body 2 can also be rotated.
  • both the precutting device 46 and the jet pipe 8 are supplied with liquid under pressure, whereby the precutting liquid jet 43 again adjusts itself to the precutting device 46 and a liquid jet 41 at the jet pipe 8.
  • the tubular body 2 is set in rotation again and pulled in the axial direction. This process stage is shown in FIG.
  • the approximately radially to the tubular body 2 directed liquid jet 41 has a greater range than the Vorschneide liquid jet 43 and loosens and / or dissolves raw material-containing soil in comparison with the Vorschneide Society 34 larger diameter excavation area 35.
  • the height of the excavation area 35 is increased.
  • the Vorschneiderohr 6 and / or the Vorschneidüse 7 is arranged offset in the circumferential direction of the tubular body 2 with respect to the pivoted-out pivot arm 9.
  • the drawing with activated liquid jet 41 and simultaneously activated Vorschneide liquid jet 43 can be continued in particular until the swing arm 9 has reached the upper end of a raw material-containing soil layer, wherein continuously enriched Liquid is discharged in the direction of arrow 17. After reaching the upper end of the raw material-containing soil layer of the liquid jet 41 and the Vorschneide liquid jet 43 are deactivated, pivoted the pivot arm 9 in the rest position and the degradation boom 50 completely pulled.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Earth Drilling (AREA)
  • Drilling And Boring (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum Bearbeiten des Bodens.
  • Es ist bekannt, Kaolin und sonstige Tonvorkommen im Tagebau abzubauen. Bei tiefer liegenden Tonvorkommen ist der Tageabbau jedoch nur bedingt geeignet, da in diesem Fall entsprechend durchmessergroße Abbaukessel benötigt werden. Darüber hinaus ist es bekannt, tiefer liegende Tonvorkommen im Tiefbau aus Schächten zu fördern. Dieses Verfahren ist jedoch vergleichsweise aufwändig und kostenintensiv.
  • In der US 5,363,927 A ist eine Vorrichtung und ein Verfahren zum hydraulischen Bohren offenbart. Ein Bohrkopf weist einen umgebenden Leitungskanal auf, an dessen Ende befinden sich radial nach außen klappbare Schwenkarme, die in der Ruhestellung in Aussparungen des Bohrkopfes anliegen. Wird ein Bohrfluid unter Hochdruck in den Leitungskanal eingeleitet, werden die Arme ausgeklappt.
  • In der DE 2 035 934 wird ein hydraulisch-pneumatisches Verfahren zum Abtragen einer Feststoffwand in Flüssigkeiten offenbart. Zur Verringerung der Dichte wird an der Abbaustelle in die umgebende Flüssigkeit Gas eingeblasen.
  • Dadurch soll ein durch hohen Druck beschleunigter Wasserstrahl auch bei großen Abstand zwischen Düse und Abbaustelle noch Material abtragen. Diese Verringerung der Dichte wird durch Verschluss des Schachtes erhöht, wodurch ein Entweichen des Gases in die Umgebung verhindert wird.
  • Aufgabe der Erfindung ist es, eine Vorrichtung und ein Verfahren anzugeben, mit welchen Bodenmaterial bestimmter Bodenschichten effizient abgearbeitet werden können.
  • Die Aufgabe wird erfindungsgemäß durch eine Vorrichtung mit den Merkmalen des Anspruchs 1 sowie durch ein Verfahren mit den Merkmalen des Anspruchs 11 gelöst. Bevorzugte Ausführungsformen sind in den jeweils abhängigen Ansprüchen angegeben.
  • Bei der erfindungsgemäßen Vorrichtung ist an einem bodenseitigen Ende des Rohrkörpers mindestens ein Schwenkarm mit einem Strahlrohr angeordnet,
    der aus einer Ruheposition am Rohrkörper in eine Ausstellposition bewegbar ist, in welcher der Schwenkarm seitlich am Rohrkörper vorsteht, und dass zum Erzeugen eines Flüssigkeitsschneidstrahles das Strahlrohr im Wesentlichen geradlinig in eine Strahldüse mündet.
  • Durch den ausstellbaren Schwenk-Schneidstrahlarm kann in einer definierten Bodenschicht innerhalb des Bodens durch einen Schneidstrahl Bodenmaterial gezielt gelöst und abgearbeitet werden. Zur Ausstellung des Schwenkarmes kann dieser nicht nur verschwenkbar sondern auch beispielsweise teleskopartig ausfahrbar sein. Ein Grundgedanke der Erfindung beruht in der Anordnung eines im Wesentlichen geraden, langen Strahlrohres, welches geradlinig in die Strahldüse mündet. Im Gegensatz zu quer in ein Rohr eingebrachten Düsen führt ein Strahlrohr mit einer Länge von zumindest 10 cm zu einem exakten, hochwirksamen Schneidstrahl.
  • Der Schwenkarm, der geeigneterweise in einem unteren, bodenseitigen Bereich des Rohrkörpers angeordnet ist, kann zum einen in eine Ruheposition am ihn tragenden Rohrkörper gebracht werden. In dieser Ruheposition am Rohrkörper kann der Schwenkarm beispielsweise flach am Rohkörper anliegen, in einer außenseitig am Rohrkörper vorgesehenen Aufnahmemulde aufgenommen sein oder im Inneren des Rohrkörpers angeordnet sein. Nützlicherweise bildet der Schwenkarm in der Ruheposition mit dem Rohrkörper eine durchgängige Oberfläche. Insbesondere kann in der Ruheposition die Längsachse des Schwenkarms etwa parallel zur Längsachse des Rohrkörpers angeordnet sein. Mit dem Schwenkarm in seiner Ruheposition kann der Rohrkörper somit in besonders einfacher Weise unmittelbar in den Boden oder in ein im Boden vorgegesehenes Bohrloch eingebracht werden.
  • Solange sich der Schwenkarm in der Ruheposition befindet, kann es vorteilhaft sein, einen Flüssigkeitsdurchgang durch den Schwenkarm zu sperren. Es kann aber nützlich sein, auch in der Ruheposition des Schwankarms einen Flüssigkeitsdurchgang hierdurch vorzusehen, wobei ein erzeugter Flüssigkeitsstrahl dann beispielsweise einen Vortrieb des Rohrkörpers in den Boden unterstützen kann.
  • Von der Ruheposition am Rohrkörper ist der Schwenkarm erfindungsgemäß in eine Ausstellposition schwenkbar, in welcher dieser seitlich vom Rohrkörper hervorsteht. Insbesondere kann die Längsachse des Schwenkarms mit der Längsachse des Rohrkörpers in der Ausstellposition einen Ausstellwinkel α einschließen, der geeigneterweise 45° bis 120°, insbesondere etwa 90° beträgt. In dieser Ausstellposition kann der Schwenkarm für einen Flüssigkeitsdurchgang freigegeben und dabei ein zumindest annähernd radial zum Rohrkörper gerichteter Flüssigkeitsstrahl erzeugt werden.
    In der Ausstellposition des Schwenkarms tritt der Flüssigkeitsstrahl dabei erst in einem gewissen radialen Abstand vom Rohrkörper hervor, weshalb eine besonders hohe Reichweite des Flüssigkeitsstrahls im Boden erzielt wird und somit ein besonders großer Abbaubereich bearbeitet werden kann. Neben der Ruheposition und der Ausstellposition kann zudem auch mindestens eine Zwischenposition des Schwenkarms vorgesehen sein, in welcher der Flüssigkeitsdurchgang freigegeben oder auch gesperrt sein kann.
  • Erfindungsgemäß ist die mindestens eine Schwenkarmdüse zum Erzeugen des Flüssigkeitsstrahls so stirnseitig am Schwenkarm angeordnet, dass der erzeugte Flüssigkeitsstrahl zumindest annähernd in Längsrichtung des Schwenkarms, d.h. parallel zu dessen Längsachse gerichtet ist. Bei einem solchen längsgerichteten Flüssigkeitsstrahl, der stirnseitig aus dem Schwenkarm hervortritt, sind die beim Austritt der Flüssigkeit aus dem Schwenkarm auftretenden Reaktionskräfte ebenfalls hauptsächlich in Längsrichtung des Schwenkarms gerichtet und können somit von diesem besonders gut aufgenommen werden. Insbesondere treten im Wesentlichen keine Reaktionskräfte in Schwenkrichtung des Schwenkarms auf, wodurch ein Schwenkantrieb des Schwenkarms entlastet wird. Die Ausführung des Schwenkarms für einen etwa längsgerichteten Flüssigkeitsstrahl erlaubt somit die Verwendung besonders hoher Flüssigkeitsdrücke zur Flüssigkeitsstrahlerzeugung, mithin eine besonders hohe Strahlreichweite und einen besonders großen Abbaubereich.
  • Zum Verschwenken des Schwenkarms zwischen der Ausstellposition und der Ruheposition kann der Schwenkantrieb grundsätzlich sowohl bodenseitig am Rohrkörper, insbesondere nahe dem Schwenkarm, als auch obenseitig am Rohrkörper, d.h. nahe seinem vom bodenseitigen Ende beabstandeten Ende, angeordnet sein. Der Schwenkantrieb kann beispielsweise mindestens einen Hydraulikzylinder und/oder mindestens einen Pneumatikzylinder aufweisen, der insbesondere direkt am Schwenkarm angelenkt sein kann. Alternativ oder zusätzlich kann der Schwenkantrieb mindestens eine Antriebsstange aufweisen, die parallel zur Längsachse des Rohrkörpers nach oben verläuft. Der Schwenkantrieb kann insbesondere axial zueinander verschiebbare, geeigneterweise konzentrisch angeordnete Rohre aufweisen, von denen insbesondere eines der Rohrkörper sein kann. Bevorzugterweise kann der Schwenkantrieb auch ein Drehgetriebe, einen Drehmotor und/oder eine Zahnstange mit Ritzel aufweisen. Vorteilhafterweise ist der Schwenkantrieb von, oben aus steuerbar. Sofern ein hydraulischer Schwenkantrieb vorgesehen ist, können Hydraulikleitungen vorgesehen sein, die im Rohrkörper nach oben laufen. Bei einem pneumatischen Schwenkantrieb können entsprechend Pneumatikleitungen im Rohrkörper vorgesehen sein.
  • Das Strahlrohr ist vorteilhafterweise gerade, d.h. mit gerader Längsachse ausgeführt. Nützlicherweise ist das Strahlrohr, insbesondere mit etwa kreisförmigem Außenquerschnitt ausgeführt. Insbesondere zur Vergrößerung des Abtragungsbereiches und/oder zur Erhöhung der Abbaugeschwindigkeit können mehrere Schwenkarme mit Strahlrohren vorgesehen sein. In diesem Fall können die unterschiedlichen Schwenkarme bevorzugt unterschiedliche Längen aufweisen, so dass die jeweiligen Schwenkarmdüsen in Ausstellposition unterschiedliche radiale Abstände vom Rohrkörper aufweisen. Besonders brauchbar ist es, dass der mindestens eine Schwenkarm eine Länge von etwa 50 cm bis 4 m, insbesondere eine Länge von ca. 2 m aufweist, wobei ein Großteil der Länge durch das Strahlrohr gebildet ist.
  • Nach der Erfindung ist vorgesehen, dass am Rohrkörper, insbesondere oberhalb des Schwenkarms, mindestens eine Vorschneideeinrichtung zum Erzeugen eines weiteren Vorschneide-Flüssigkeitsstrahls vorgesehen ist. Diese Vorschneideeinrichtung kann um beispielsweise 180° versetzt zum Schwenkarm angeordnet sein. Mittels dieser Vorschneideeinrichtung kann insbesondere Bodenmaterial in einem Vorschneidebereich gelockert und/oder gelöst werden. Geeigneterweise ist der Vorschneidebereich dabei so dimensioniert, dass der Schwenkarm darin in seiner Ausstellposition aufgenommen werden kann. Hierdurch wird ein besonders einfaches und wenig kräfteaufwendiges Ausschwenken des Schwenkarms im Boden in die Ausstellposition ermöglicht. Die geeigneterweise außen am Rohrkörper angeordnete Vorschneideeinrichtung kann eine Vorschneidedüse aufweisen, die insbesondere unmittelbar an der Außenwand des Rohrkörpers angeordnet sein kann. Die Vorschneidedüse kann aber auch an einem Vorschneiderohr angeordnet sein, das radial aus dem Rohrkörper hervorsteht. Vorteilhafterweise weist das Vorschneiderohr eine geringere Länge als der Schwenkarm auf. Nützlicherweise ist die Vorschneideeinrichtung so ausgeführt, dass der Vorschneide-Flüssigkeitsstrahl etwa radial zum Rohrkörper verläuft.
  • Die Anordnung der Vorschneideeinrichtung oberhalb des Schwenkarms kann insbesondere beinhalten, dass die Vorschneidedüse und somit der Austrittspunkt des weiteren Vorschneide-Flüssigkeitsstrahls oberhalb der Schwenkarmdüse angeordnet ist. Eine solche Anordnung ist besonders dann von Vorteil, wenn die Flüssigkeit beim Ziehen des Rohrkörpers über die Vorschneideeinrichtung in den Boden injiziert wird. Unter einer Veränderung der Austrittscharakteristik der Flüssigkeit im Sinne des erfindungsgemäßen Verfahrens kann insbesondere verstanden werden, dass die Flüssigkeit zunächst mittels der Vorschneideeinrichtung und daraufhin zusätzlich oder alternativ mittels des Schwenkarms injiziert wird.
  • Eine besonders vorteilhafte Weiterbildung der erfindungsgemäßen Vorrichtung ist dadurch gekennzeichnet, dass außenseitig am Rohrkörper, insbesondere oberhalb des Schwenkarmes und/oder der Vorschneideeinrichtung, mindestens eine Zentriereinrichtung zum Zentrieren des Rohrkörpers im Bohrloch vorgesehen ist. Eine derart ausgestaltete Vorrichtung ist zur Aufnahme von Reaktionskräften, die beim Austreten des Flüssigkeitsstrahls entstehen, besonders gut geeignet. Die Weiterbildung erlaubt somit die Verwendung besonders hoher Flüssigkeitsdrücke und somit besonders hoher Strahlreichweiten. Die Zentriereinrichtung weist geeigneterweise einen Abstandshalter auf, der radial vom Rohrkörper hervorsteht, und der den Rohrkörper an der Bohrlochwandung abstützt. Eine Zentriereinrichtung kann insbesondere dann vorgesehen sein, wenn ein verglichen mit dem Rohrkörper durchmessergrößeres Bohrloch vor dem Einbringen des Rohrkörpers in den Boden mittels eines Bohrwerkzeuges oder Schneidstrahles hergestellt wird.
  • Eine besonders brauchbare Vorrichtung ist ferner dadurch gekennzeichnet, dass am Schwenkarm eine elastische Leitung zur Versorgung der Schwenkarmdüse mit Flüssigkeit vorgesehen ist. Diese elastische Leitung ist geeigneterweise im Inneren des Rohrkörpers angeordnet, wo sie besonders gut vom anstehenden Boden geschützt ist. Alternativ oder zusätzlich zur elastischen Leitung können zur Versorgung der Schwenkarmdüse auch eine Gelenkverbindung und/oder eine Umlenkungsverbindung vorgesehen sein. Die Leitung verbindet in einem einzigen Bogen den Rohrkörper mit dem Strahlrohr, so dass nur ein geringer Druckverlust entsteht.
  • Eine besonders zuverlässige Vorrichtung kann dadurch erhalten werden, dass ein Stellungssensor zur Bestimmung der Schwenkposition des Schwenkarmes vorgesehen ist, wobei der Stellungssensor insbesondere mit einer Steuerungseinrichtung verbunden ist, mit welcher eine Flüssigkeitszufuhr mittels einer Pumpe zur Schwenkarmdüse steuerbar ist. Die Steuerungseinrichtung ist geeigneterweise oben am Rohrkörper vorgesehen. Der Stellungssensor kann insbesondere zur Bestimmung des Schwenkwinkels α und/oder zum Feststellen der Ausstellposition dienen. Geeigneterweise ist die Steuerungseinrichtung so ausgebildet, dass die Flüssigkeitszufuhr zur Schwenkarmdüse lediglich dann gegeben ist, wenn sich der Schwenkarm in der Ausstellposition befindet. Zur Steuerung der Flüssigkeitszufuhr kann die Steuereinrichtung beispielsweise mit der Pumpe oder mit einem Steuerungsventil in Verbindung stehen.
  • Die Vorrichtung kann zum Spezialtiefbau zur Erstellung von Gründungen oder auch zur besonders effektiven Rohstoffgewinnung eingesetzt werden. Hierzu kann es nützlich sein, dass an der Bodenoberfläche eine Abfördereinrichtung zum Abfördern rohstoffhaltiger Suspension vom Rohrkörper zur Rohrstoffextraktion vorgesehen ist. Vorteilhafterweise ist die Abfördereinrichtung zum Absaugen von Suspension aus dem Bohrloch ausgebildet. Die Rohstoffextraktion kann insbesondere eine Abtrennung der Rohstoffkörner von der Flüssigkeit beinhalten.
  • Eine besonders vorteilhafte Vorrichtung für den Abbau von festen mineralischen Rohstoffen ist ferner dadurch gekennzeichnet, dass am Rohrkörper mindestens eine Leitung zum gemeinsamen oder getrennten Versorgen der Vorschneideeinrichtung und der Schwenkarmdüse mit Flüssigkeit vorgesehen ist. Sofern die Leitung zum gemeinsamen Versorgen vorgesehen ist, kann die Vorschneideeinrichtung und/oder der Schwenkarm bevorzugt ein Flüssigkeitsventil aufweisen. Sofern die Leitung zum getrennten Versorgen ausgebildet ist, weisen die Vorschneideeinrichtung und der Schwenkarm geeigneterweise getrennte Leitungen auf. Geeigneterweise weist die mindestens eine Leitung die elastische Leitung auf.
  • Das erfindungsgemäße Bodenbearbeitungsverfahren ist dadurch gekennzeichnet, dass in einem ersten Arbeitsschritt eine Bohrung hergestellt wird, die mindestens bis in eine zu bearbeitende Bodenschicht reicht, und dass in die Bohrung die Bodenbearbeitungsvorrichtung eingebracht wird, mit welcher Bodenmaterial der Bodenschicht gelöst wird.
  • Bei dem erfindungsgemäßen Bodenbearbeitungsverfahren ergeben sich die Vorteile beim Einsatz der vorbeschriebenen erfindungsgemäßen Vorrichtung.
  • Ein Grundgedanke der Erfindung kann darin gesehen werden, mittels der Vorrichtung eine Flüssigkeit in Bodenschichten einzubringen, wodurch Bodenmaterial gezielt aus dem Boden gelöst wird. Unter weiterer Zufuhr von Flüssigkeit wird die so feststoffangereicherte Flüssigkeit aus dem Boden verdrängt und zur Bodenoberfläche abgeführt.
  • Grundsätzlich ist das erfindungsgemäße Verfahren neben dem Einsatz zum Spezialtiefbau auch für den Abbau einer Vielzahl von festen mineralischen Rohstoffen geeignet. Besonders nützlich ist das Verfahren für den Abbau von Tonmineralien, insbesondere von Kaolin. Aber auch andere Tonmineralien wie z.B. Bentonit, Talk, Smektit oder Glimmer können abgebaut werden. Bei den mineralischen Rohstoffen kann es sich insbesondere um Schichtsilikate handeln. Besonders nützlich ist das Verfahren zum Abbau keramischer Rohstoffe. Vorteilhafterweise wird die Flüssigkeit so gewählt, dass die abzubauenden Rohstoffkörner darin unlöslich sind. Es kann aber auch vorgesehen sein, dass die Rohstoffkörner zumindest teilweise in der Flüssigkeit löslich sind.
  • Unter einer Suspension kann erfindungsgemäß insbesondere eine Aufschlämmung unlöslicher Feststoffkörner in der Flüssigkeit verstanden werden. Die Suspension kann auch als Körnersuspension aus einem Konglomerat bezeichnet werden.
  • Besonders brauchbar ist das erfindungsgemäße Verfahren für den Abbau von Rohstoffvorkommen, die in einer Tiefe von ca. 20 bis 100 m gelagert sind. Die Schichtstärke des Rohstoffvorkommens kann dabei beispielsweise 40 m betragen und der Rohstoffanteil im Boden ca. 10 bis 30 Vol%. Das erfindungsgemäße Verfahren erlaubt in besonders einfacher Weise den Abbau solch tiefer liegender Rohstoffvorkommen, ohne dass grundsätzlich eine kostenintensive Schachterstellung notwendig wäre.
  • Gemäß dem erfindungsgemäßen Verfahren kann das Abbaugestänge grundsätzlich von der Erdoberfläche aus in den Boden eingebracht werden. Es ist aber auch möglich, das Abbaugestänge ausgehend von einem Stollen oder einem Schacht eines Tiefbaus in den Boden einzubringen. Auch kann das Abbaugestänge vom Grund eines Tagebaus in den Boden eingebracht werden, wodurch eine Vergrößerung der Abbautiefe ohne Durchmesservergrößerung des Abbaukessels erreicht werden kann.
  • Vorteilhafterweise ist das erfindungsgemäße Abbaugestänge so ausgebildet, dass die injizierte Flüssigkeit eine Reichweite in Radialrichtung zum Abbaugestänge von 2 bis 8 m, insbesondere von etwa 10 m, bezüglich der Längsachse des Abbaugestänges oder einer Austrittsöffnung hat. Hierdurch können Rohstoffkörner in einem etwa zylindrischen Abbaubereich mit einem Radius in der genannten Größenordnung abgebaut werden. Die rohstoffhaltige Suspension wird geeigneterweise außenseitig am Abbaugestänge abgeführt. Dies ist insbesondere dann von Vorteil, wenn das Abbaugestänge in eine Bohrung eingebracht wird, die durchmessergrößer als das Abbaugestänge selbst ist. Grundsätzlich ist es aber auch möglich, die rohstoffhaltige Suspension im Inneren des Abbaugestänges nach oben, d.h. in Richtung Erdoberfläche, abzuführen.
  • Das Abführen der rohstoffhaltigen Suspension entlang dem Abbaugestänge kann grundsätzlich allein aufgrund einer Verdrängungswirkung durch die weiterhin in den Boden injizierte Flüssigkeit erfolgen. Alternativ oder zusätzlich können jedoch Pumpeinrichtungen vorgesehen sein, die das Abführen der rohstoffhaltigen Suspension nach oben unterstützen.
  • Eine besonders geeignete Weiterbildung des erfindungsgemäßen Verfahrens ist dadurch gekennzeichnet, dass eine Injektionsrate für die Flüssigkeit derart eingestellt wird, dass eine Fließgeschwindigkeit der Suspension entlang dem Abbaugestänge kleiner als eine Sinkgeschwindigkeit unerwünschter Schlechtkörner ist. Die Sinkgeschwindigkeit kann dabei auch als Rückstromgeschwindigkeit und die Fließgeschwindigkeit als Aufsteiggeschwindigkeit bezeichnet werden. Gemäß dieser vorteilhaften Weiterbildung der Erfindung wird die Injektionsrate, d.h. die pro Zeiteinheit in den Boden zugeführte Flüssigkeitsmenge, also so gewählt, dass die unerwünschten Schlechtkörner schneller absinken als sie nach oben abgeführt werden und diese somit im Boden zurückbleiben. Bei den Schlechtkörnern kann es sich insbesondere um Grobteile handeln. Grundsätzlich kann es sich bei den Schlechtkörnern aber auch um andere unerwünschte Beimischungen und Verunreinigungen, beispielsweise um materialfremde Rohstoffbeimengungen handeln. Diese können beispielsweise aufgrund einer unterschiedlichen Dichte oder unterschiedlicher Oberflächeneigenschaften eine von der Sinkgeschwindigkeit erwünschter Rohstoffkörner unterschiedliche Sinkgeschwindigkeit aufweisen.
  • Besonders vorteilhaft ist es, dass die Injektionsrate derart eingestellt wird, dass Rohstoffkörner mit einer Korngröße, die oberhalb einer bestimmten Größtkorngröße liegt, im Boden verbleiben. Hierdurch kann gewährleistet werden, dass lediglich Feinteile aus dem Boden abgefüht werden, Grobteile hingegen im Boden zurückbleiben oder wieder nach unten sinken und einen beim Rohstoffabbau im Abbaubereich entstehenden Hohlraum abstützen. Unter Feinteilen werden dabei Rohstoffkörner verstanden, deren Teilchengröße unterhalb der Größtkorngröße liegt. Die Größtkorngröße kann dabei insbesondere 1000µm, bevorzugterweise 500µm betragen. Vorteilhafterweise wird die Injektionsrate für die Flüssigkeit so eingestellt, dass die Sinkgeschwindigkeit von Teilchen mit einer Größe oberhalb der Größtkorngröße größer als die Fließgeschwindigkeit der Suspension und die Sinkgeschwindigkeit von Teilchen mit einer Größe unterhalb der Größtkorngröße kleiner als die Fließgeschwindigkeit der Suspension entlang dem Abbaugestänge ist. Dabei wurde erkannt, dass es sich bei der Fließgeschwindigkeit und bei der Sinkgeschwindigkeit um mittlere Werte handeln kann, so dass gegebenenfalls auch ein geringer Restanteil unerwünschter Schlechtkörner und/oder Grobteile nach oben gelangen kann. Bei der vorteilhaften Ausführungsform kann die bei einer bestimmten Größtkorngröße zu wählende Injektionsrate insbesondere auch von einem Außendurchmesser des Abbaugestänges und/oder einem Innendurchmesser eines Bohrlochs, in dem das Abbaugestänge aufgenommen ist, abhängen.
  • Grundsätzlich kann die Flüssigkeit beliebig gewählt werden. Vorteilhafterweise handelt es sich bei der Flüssigkeit jedoch um Wasser. Ein besonders schneller und wirkungsvoller Rohstoffabbau kann dadurch gewährleistet werden, dass die Flüssigkeit unter hohem Druck, der insbesondere zwischen 300 und 1500 bar liegen kann, in den Boden injiziert wird. Eine Injektionsrate für die Flüssigkeit beträgt geeigneterweise 100 bis 2500 1 pro Minute, insbesondere 400 bis 2000 1 pro Minute.
  • Grundsätzlich ist es möglich, die Flüssigkeit beim Eindringen des Abbaugestänges in den Boden, d.h. bei dessen axialer Vorschubbewegung, und/oder bei axialem Stillstand des Abbaugestänges in den Boden zu injizieren. Besonders vorteilhaft ist es jedoch, dass die Flüssigkeit beim Ziehen des Abbaugestänges in den Boden injiziert wird. In diesem Fall können bereits gelöste Bodenteile, die nicht mit der Suspension nach oben abgefördert werden, in einen Bereich unterhalb eines Schneidstrahls der injizierten Flüssigkeit sinken, wo sie den Schneidstrahl nicht weiter behindern. Hierdurch wird ein besonders wirkungsvoller Rohstoffabbau gewährleistet.
  • Besonders vorteilhaft ist es ferner, dass das Abbaugestänge wiederholt abgesenkt und zumindest teilweise gezogen wird, wobei insbesondere eine Austrittscharakteristik der Flüssigkeit aus dem Abbaugestänge geändert wird. Hierdurch wird ein besonders gründlicher und vollständiger Rohstoffabbau gewährleistet. Zum Verändern der Austrittscharakteristik der Flüssigkeit kann beispielsweise die Form mindestenst eines Schneidstrahles verändert werden. Alternativ oder zusätzlich kann auch der Flüssigkeitsdruck und/oder die Injektionsrate geändert werden. Zum Ändern der Austrittscharakteristik ist es aber auch möglich, mindestens einen Austrittspunkt der Flüssigkeit aus dem Abbaugestänge zu verändern. Beispielsweise kann hierzu eine erste Injektionsdüse für einen Flüssigkeitsdurchgang geöffnet und eine zweite Injektionsdüse gesperrt werden. Ferner können zum Ändern der Austrittscharakteristik auch zusätzliche Austrittspunkte der Flüssigkeit freigegeben werden.
  • Ein besonders vollständiger Rohstoffabbau kann erfindungsgemäß dadurch erzielt werden, dass das Abbaugestänge während der Injektion der Flüssigkeit gedreht wird. Hierdurch kann sich insbesondere ein zumindest annähernd zylindrischer Rohstoffabbaubereich im Boden einstellen. Geeigneterweise wird das Abbaugestänge während der Drehung auch in Axialrichtung bewegt, insbesondere gezogen. Die Drehung kann mit gleichbleibender Drehrichtung oder alternierend erfolgen.
  • In einer weitere Variante wird der Rohrkörper und/oder der Schwenkarm über einen Schwingungserreger in Schwingungen gebracht. Die aufgebrachten Schwingungen liegen dabei bevorzugt in einem Bereich zwischen 10 und 100 Hz. Hierdurch kann die Abtragungswirkung des Schneidstrahls erhöht werden und der Rohrkörper läßt sich, insbesondere bei ausgeschwenktem Schwenkarm, unter geringerem Kraftaufwand drehen.
  • Grundsätzlich ist es möglich, das Abbaugestänge unmittelbar in den unbearbeiteten Boden einzubringen, wobei dann geeigneterweise stirnseitig am unteren Ende des Abbaugestänges eine Bohreinrichtung zum Lösen des anstehenden Bodens vorgesehen ist. Ein besonders brauchbares Verfahren besteht jedoch darin, dass zunächst mittels eines Bohrwerkzeuges ein vorzugsweise zumindest teilweise verrohrtes Bohrloch im Boden hergestellt wird, in das anschließend das Abbaugestänge eingebracht wird. In diesem Fall wird die Bohrung also nicht durch das Abbaugestänge selbst, sondern durch das Bohrwerkzeug oder durch Vorschneiden hergestellt. Das Bohrwerkzeug kann dabei insbesondere ein Bohrgestänge mit einem bodenseitig angeordneten Bohrkopf aufweisen. Die zumindest teilweise Verrohrung der Bohrung kann insbesondere bei einbruchsgefährdeten Böden vorgesehen sein.
  • Die Erfindung wird nachfolgend anhand bevorzugter Ausführungsbeispiele näher erläutert, die schematisch in den Figuren dargestellt sind. In den Figuren zeigen:
  • Fig. 1
    einen schematischen Längsschnitt einer erfindungsgemäßen Vorrichtung; und
    Fig. 2 bis Fig. 6
    die Vorrichtung aus Fig. 1 in verschiedenen Stadien des erfindungsgemäßen Verfahrens.
  • Eine erfindungsgemäße Vorrichtung 60 mit einem Abbaugestänge 50 ist in Fig. 1 dargestellt.
  • Das Abbaugestänge 50 weist einen Rohrkörper 2 auf, der in ein Bohrloch 18 im Boden 40 eingebracht ist. Stirnseitig ist am Rohrkörper 2 eine Bohreinrichtung 3 angeordnet, die beispielsweise als Bohrkrone, als Bohrkopf und/oder als Verdrängerkopf ausgebildet sein kann. Die Bohreinrichtung 3 ist dabei nicht in allen Fällen zwingend erforderlich.
  • Bodenseitig am Rohrkörper 2, d.h. nahe seinem unteren Ende, ist ein Schwenkarm 9 mit einem endseitigen Strahlrohr 8 vorgesehen, welches in einer Schwenkarmdüse 10 mündet. Beim Bezugszeichen 9 ist der Schwenkarm dabei in einer Ausstellposition, beim Bezugszeichen 8a in einer Ruheposition am Rohrkörper 2 dargestellt. Während in der Ruheposition eine Längsachse des Schwenkarms 9 etwa parallel zu einer Längsachse 26 des Rohrkörpers 2 verläuft, schließt die Längsachse des Schwenkarms 9 in dessen Ausstellposition mit der Längsachse 26 des Rohrkörkörpers 2 einem Schwenkwinkel α von 90° ein.
  • Zum Verschwenken ist der Schwenkarm 9 an einer Schwenkachse 13 angelenkt. Die Schwenkachse 13 verläuft dabei etwa radial zur Längsachse 26 des Rohrkörpers 2. Zum angetriebenen Verschwenken weist das Abbaugestänge 50 einen Schwenkantrieb mit einem Hydraulikzylinder 11 auf, der an einer Seite am Rohrkörper 2 angelenkt ist. Auf seiner anderen, kolbenseitigen Seite ist der Hydraulikzylinder 11 an einem rückwärtigen Hebelarm 14 des Schwenkarms 9 jenseits der Schwenkachse 13 angebracht. Zum Ausschwenken des Schwenkarms 9 wird der Hydraulikzylinder 11 ausgefahren, wodurch der Schwenkarm 9 mit der Schwenkarmdüse 10, wie mit dem unterbrochenen Pfeil dargestellt, in einer Kreisbahn nach oben augeschwenkt wird.
  • Oberhalb des Schwenkarms 9 ist außenseitig am Rohrkörper 2 eine Vorschneideeinrichtung 46 vorgesehen. Die Vorschneideeinrichtung 46 weist ein radial zur Längsachse 26 des Rohrkörpers 2 verlaufendes Vorschneiderohr 6 auf, an dem stirnseitig eine Vorschneidedüse 7 angeordnet ist. Bei ausgeschwenktem Schwenkarm 9, d.h. bei Vorliegen der Ausstellposition, ist die Schwenkarmdüse 10 radial weiter von der Längsachse 26 des Rohrkörpers 2 beabstandet als die Vorschneidedüse 7. Dabei ist ein Austrittspunkt für Flüssigkeit aus der Vorschneideeinrichtung 46 gegenüber einem Austrittspunkt für Flüssigkeit aus dem Schwenkarm 9 zurückversetzt.
  • Zur Versorgung des Strahlrohres 8 und der Schwenkarmdüse 10 mit Flüssigkeit ist koaxial im Rohrkörper 2 eine erste Leitung 4 angeordnet. Diese Leitung 4 ist über eine als Schlauchstück ausgeführte elastische Leitung 12 mit dem relativ langen, geraden Strahlrohr 8 verbunden. Zum Erzeugen eines in Fig. 1 nicht dargestellten Flüssigkeitsstrahls aus der Schwenkarmdüse 10 wird Flüssigkeit, insbesondere Wasser, in Pfeilrichtung 16 in die Leitung 4 eingeleitet. Zwischen der Wandung der Leitung 4 und der Wandung des Rohrkörpers 2 ist im Rohrkörper 2 ein Ringraum ausgebildet, der eine zweite Leitung 5 für die Flüssigkeitszufuhr zur Vorschneideeinrichtung 46 bildet. Wird in diese zweite Leitung 5 Flüssigkeit in Pfeilrichtung 15 zugeführt, so tritt aus der Vorschneidedüse 7 ein in Fig. 1 nicht dargestellter Vorschneide-Flüssigkeitsstrahl aus.
  • Zur Zentrierung des Rohrkörpers 2 im Bohrloch 18 und insbesondere zur Aufnahme von radial gerichteten Reaktionskräften beim Austritt von Flüssigkeitsstrahlen aus der Vorschneidedüse 7 oder aus der Schwenkarmdüse 10 sind außenseitig am Rohrkörper 2 oberhalb der Vorschneideeinrichtung 46 Zentriereinrichtungen 21 vorgesehen. Diese als Abstandshalter mit außenliegendem Gleitschuh ausgebildeten Zentriereinrichtungen 21 stützen den Rohrkörper 2 radial an einer Bohrlochwandung 1 des Bohrlochs 18 ab.
  • Die Länge des Vorschneiderohrs 6 ist so gewählt, dass diese kleiner als ein Bohrlochradius 23 des Bohrlochs 18 ist und das Abbaugestänge 50 somit ungehindert in das Bohrloch 18 eingeführt werden kann. Durch Flüssigkeitsausstoß aus der Vorschneidedüse 7 und gleichzeitiger axialer Bewegung und Drehung des Rohrkörpers 2 in Drehrichtung 28 wird durch die erfindungsgemäße Vorrichtung Boden in einem zylindrischen Vorschneidebereich 34 mit einem Vorschneidebereichradius 24 gelockert und/oder gelöst. Der Vorschneidebereichradius 24 wird dabei geeigneterweise so gewählt, dass im Vorschneidebereich 34 ein Ausschwenken des Schwenkarms 9 in die Ausstellposition möglich ist, d.h. der Vorschneidebereichradius 24 wird geeigneterweise größer als ein radialer Abstand der Schwenkarmdüse 10 von der Längsachse 26 des Rohrkörpers 2 gewählt.
  • Durch Flüssigkeitsausstoß aus der ausgeschwenkten Schwenkarmdüse 10 bei gleichzeitiger Axialbewegung und Drehung des Rohrkörpers 2 in Drehrichtung 28 wird in einem etwa zylindrischen Abbaubereich 35 mit einem Abbaubereichradius 25 und einer Höhe 20 Bodenmaterial gelockert und/oder gelöst. Wird beim Ziehen des Rohrkörpers 2 gleichzeitig Wasser aus dem Strahlrohr 8 und aus der Vorschneideeinrichtung 46 ausgestoßen, so besteht aufgrund der obenseitigen Anordnung der Vorschneideeinrichtung 46 bezüglich dem Schwenkarm 9 zwischen dem Vorschneidebereich 34 und dem Abbaubereich 35 eine Höhendifferenz 19.
  • Die Flüssigkeit, die über das Strahlrohr 8 und/oder die Vorschneideeinrichtung 46 in den Boden 40 injiziert wird, wird dabei mit Bodenmaterial, insbesondere mit Rohstoffteilchen, angereichert und sodann außenseitig am Rohrkörper 2 im Ringraum zwischen Bohrlochwandung 1 und der Wandung des Rohrkörpers 2 in Pfeilrichtung 17 nach oben abgeführt.
  • Die Bohreinrichtung 3 kann insbesondere so ausgebildet sein, dass sie über den Schwenkarm 9 in dessen Ruheposition in Radialrichtung hervorsteht und diesen somit vor anstehendem Bodenmaterial schützt.
  • Verschiedene Verfahrensstadien eines Ausführungsbeispiels eines erfindungsgemäßen Verfahrens unter Verwendung des in Fig. 1 dargestellten Abbaugestänges 50 sind in den Fig. 2 bis 6 dargestellt. Dabei werden dieselben Bezugszeichen wie in Fig. 1 verwendet.
  • In einem ersten Schritt des dargestellten Verfahrens wird mittels eines nicht dargestellten Bohrwerkzeuges im Boden 40 zunächst ein Bohrloch 18 bis zu einer Endtiefe 38 abgeteuft. Zur Stützung von Rollkies kann das Bohrloch 18 dabei in einem oberen Bereich verrohrt ausgebildet werden. Das Bohrloch 18 wird derart durchmessergrößer als der Rohrkörper 2 ausgestaltet, dass dieser mit der radial vorstehenden Vorschneideeinrichtung 46 bei eingeschwenktem Schwenkarm 9 in einem nächsten Schritt ungehindert zentrisch in das Bohrloch 18 eingeführt und hierin abgesenkt werden kann.
  • Nachdem der eingeschobene Rohrkörper 2 mit seiner bodenseitig angeordneten Bohreinrichtung 3 am Grund des Bohrlochs 18 aufliegt, wird der Rohrkörper 2 zunächst solange weiter in den Boden eingeschoben, bis sich die Vorschneideeinrichtung 46 knapp oberhalb der Endtiefe 38 befindet. Durch Abtragungswirkung der Bohreinrichtung 3 am Bohrlochgrund, die insbesondere durch eine Drehung des Rohrkörpers 2 erzeugt werden kann, wird hierbei mittig und durchmesserkleiner zum Bohrloch 18 ein Vorschubbohrloch 31 erzeugt. Zur Unterstützung der Wirkung der Bohreinrichtung 3 kann dabei gegebenenfalls Flüssigkeit über die Leitung 4 an den eingeschwenkten Schwenkarm 14 zugeführt werden, wobei die Flüssigkeit dann nahe der Bohreinrichtung 3 aus der Schwenkarmdüse 10 hervortritt.
  • Nachdem die Vorschneideeinrichtung 46 auf der Endtiefe 38 angelangt ist, wird über die Leitung 5 Flüssigkeit unter Druck zur Vorschneideeinrichtung 46 zugeführt und dabei ein Vorschneide-Flüssigkeitsstrahl 43 in Radialrichtung zur Längsachse 26 des Rohrkörpers 2 erzeugt. Gleichzeitig wird der Rohrkörper 2 gedreht und in Pfeilrichtung 30 gezogen. Durch die Wirkung des Vorschneide-Flüssigkeitsstrahls 43 wird Bodenmaterial im Vorschneidebereich 34 gelöst und/oder gelockert. Dieses Verfahrensstadium ist in Fig. 2 dargestellt. Während des gesamten Verfahrens wird die über die Leitungen 4, 5 in den Boden 40 eingebrachte und dort mit Bodenmaterial angereicherte Flüssigkeit in Pfeilrichtung 17 außen am Rohrkörper 2 nach oben abgeführt.
  • Unter Höhenzunahme des Vorschneidebereichs 34 wird der Rohrkörper 2 unter Drehung um seine eigene Achse weiter gezogen, bis der Schwenkarm 9 vollständig aus dem Vorschubbohrloch 31 herausgezogen ist. Dieser Zustand ist in Fig. 3 dargestellt.
  • Im Anschluss wird der Schwenkarm 9 aus seiner Ruheposition in seine Ausstellposition ausgeschwenkt, wobei gleichzeitig der Vorschneide-Flüssigkeitsstrahl 43 deaktiviert wird. Dieses Verfahrensstadium ist in Fig. 4 dargestellt. Während des Ausschwenkens des Schwenkarms 9 wird vorteilhafterweise eine Drehung des Rohrkörpers 2 gestoppt.
  • Der Rohrkörper 2 wird daraufhin ohne weitere Flüssigkeitszufuhr solange wieder in den Boden eingeschoben, bis der ausgestellte Schwenkarm 9 etwa die Endtiefe 38 erreicht hat. Zur Erleichterung des Vorschubs kann der Rohrkörper 2 dabei auch gedreht werden. Anschließend werden sowohl der Vorschneideeinrichtung 46 als auch dem Strahlrohr 8 Flüssigkeit unter Druck zugeführt, wodurch sich an der Vorschneideeinrichtung 46 wieder der Vorschneide-Flüssigkeitsstrahl 43 und am Strahlrohr 8 ein Flüssigkeitsstrahl 41 einstellt. Gleichzeitig wird der Rohrkörper 2 wieder in Drehung versetzt und in Axialrichtung gezogen. Dieses Verfahrensstadium ist in Fig. 5 dargestellt.
  • Der etwa radial zum Rohrkörper 2 gerichtete Flüssgkeitsstrahl 41 weist eine größere Reichweite als der Vorschneide-Flüssigkeitsstrahl 43 auf und lockert und/oder löst rohstoffhaltiges Bodenmaterial im verglichen mit dem Vorschneidebereich 34 durchmessergrößeren Abbaubereich 35. Durch weiteres Ziehen des Rohrkörpers 2 wird, wie in Fig. 6 dargestellt, die Höhe des Abbaubereiches 35 vergrößert. Aufgrund der in Axialrichtung vorauseilenden Vorschneideeinrichtung 46 wird dabei sichergestellt, dass sich der Schwenkarm 9 stets im Vorschneidebereich 34 befindet. Hierzu kann es insbesondere nützlich sein, dass das Vorschneiderohr 6 und/oder die Vorschneidedüse 7 in Umfangsrichtung des Rohrkörpers 2 versetzt bezüglich dem ausgeschwenkten Schwenkarm 9 angeordnet ist.
  • Das Ziehen bei aktiviertem Flüssigkeitsstrahl 41 und gleichzeitig aktiviertem Vorschneide-Flüssigkeitsstrahl 43 kann insbesondere solange fortgeführt werden, bis der Schwenkarm 9 am oberen Ende einer rohstoffhaltigen Bodenschicht angelangt ist, wobei kontinuierlich angereicherte Flüssigkeit in Pfeilrichtung 17 abgeführt wird. Nach Erreichen des oberen Endes der rohstoffhaltigen Bodenschicht werden der Flüssigkeitsstrahl 41 und der Vorschneide-Flüssigkeitsstrahl 43 deaktiviert, der Schwenkarm 9 in Ruheposition eingeschwenkt und das Abbaugestänge 50 vollständig gezogen.

Claims (16)

  1. Bodenbearbeitungsvorrichtung, insbesondere zum Abbau von festen mineralischen Rohstoffen, mit einem in den Boden einbringbaren Rohrkörper (2), wobei an einem bodenseitigen Ende des Rohrkörpers (2) mindestens ein Schwenkarm (9) mit einem Strahlrohr (8) angeordnet ist, der aus einer Ruheposition am Rohrkörper (2) in eine Ausstellposition bewegbar ist, in welcher der Schwenkarm (9) seitlich vom Rohrkörper (2) vorsteht, und zum Erzeugen eines Flüssigkeitsschneidstrahls das Strahlrohr (8) im Wesentlichen geradlinig in eine Strahldüse (10) mündet,
    dadurch gekennzeichnet,
    dass am Rohrkörper (2)beabstandet von dem mindestens einen Schwenkarm (9) mindestens eine Vorschneideeinrichtung (46) zum Erzeugen eines Vorschneide-Flüssigkeitsstrahls (43) vorgesehen ist, welcher quer zur Achse des Rohrkörpers (2) gerichtet ist.
  2. Vorrichtung nach Anspruch 1,
    dadurch gekennzeichnet
    dass außenseitig am Rohrkörper (2), insbesondere oberhalb des Schwenkarmes (9, 14) und/oder der Vorschneideeinrichtung (46), mindestens eine Zentriereinrichtung (21) zum Zentrieren des Rohrkörpers (2) in einem Bohrloch (18) vorgesehen ist.
  3. Vorrichtung nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet,
    dass die Richtung des Vorschneide-Flüssigkeitsstrahls (43) der Vorschneideeinrichtung (46) im Grundriss gegenüber der Richtung des Flüssigkeitsschneidstrahls (41) des Strahlrohres (8) verschwenkt ist.
  4. Vorrichtung nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass am Schwenkarm (9) eine elastische Leitung (12) zur Versorgung der Schwenkarmdüse (10) mit Flüssigkeit vorgesehen ist.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass ein Sensor in dem Schwenkarm (9) angeordnet ist, welcher Daten, insbesondere zur Stellung des Schwenkarmes (9), zur Bodenoberfläche überträgt.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass das Ausschwenken des Schwenkarmes (9) durch eine Verstellvorrichtung (11) am unteren Teil des Rohrkörpers (2) erfolgt, die von der Bodenoberfläche aus betätigbar ist.
  7. Vorrichtung nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    dass das Ausschwenken des Schwenkarmes (9) dadurch erfolgt, dass parallel zum Rohrkörper (2) eine Antriebsstange oder ein umhüllendes Rohr relativ verschoben wird.
  8. Vorrichtung nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet,
    dass der Schwenkwinkel α des Flüssigkeitsschneid-strahles (41) in einem Bereich von 45°-120° liegt und insbesondere einen Winkel von etwa 90° einnimmt.
  9. Vorrichtung nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet,
    dass an der Bodenoberfläche eine Abfördereinrichtung zum Abfördern rohstoffhaltiger Suspension vom Rohrkörper (2) zur Rohstoffextraktion vorgesehen ist.
  10. Vorrichtung nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet,
    dass ein Schwingungserreger vorgesehen ist, mit dem der Rohrkörper (2) und/oder der Schwenkarm (9) in Schwingung versetzbar ist.
  11. Bodenbearbeitungsverfahren mit einer Bodenbearbeitungsvorrichtung (60) nach einem der Ansprüche 1 bis 10, bei dem
    - in einem ersten Arbeitsschritt eine Bohrung (18) hergestellt wird, die mindestens bis in eine zu bearbeitende Bodenschicht reicht, und
    - in der Bohrung (18) durch Ausschwenken mindestens eines Schwenkarmes (9) einer Bodenbearbeitungsvorrichtung (60) mit einem Flüssigkeitsstrahl (41) Bodenmaterial der Bodenschicht gelöst wird,
    dadurch gekennzeichnet,
    - dass vor dem Ausschwenken des Schwenkarmes (9) ein Radius (23) der Bohrung (18) durch einen Vorschneide-Flüssigkeitsstrahl (43) einer Vorschneideeinrichtung (46) auf einen Zwischenradius (24) aufgeschnitten wird, der so groß ist, dass der Schwenkarm (9) in eine Querstellung zur Achse des Rohrkörpers (2) gebracht werden kann.
  12. Verfahren nach Anspruch 11,
    dadurch gekennzeichnet,
    dass spätestens nach Erreichen einer Querstellung des Schwenkarmes (9) mit einem Flüssigkeitsstrahl (41) der Durchmesser der Bohrung auf einen Abbauradius (25) vergrößert wird.
  13. Verfahren nach Anspruch 11 oder 12,
    dadurch gekennzeichnet,
    dass zum Abbau und zur Gewinnung mineralischer Rohstoffe, insbesondere Tonmineralien, die Suspension aus Schneidflüssigkeit und gelösten, mineralischen Rohstoffen durch die Bohrung (18) zur Bodenoberfläche gefördert wird, wobei der Förderstrom dadurch aufrecht erhalten wird, dass über die Schwenkarmdüse (10) und/oder die Vorschneideeinrichtung (46) weitere Schneidflüssigkeit nachgefüllt wird.
  14. Verfahren nach einem der Ansprüche 11 bis 13,
    dadurch gekennzeichnet,
    dass der Rohrkörper (2) in der Bohrung (18) zum Zwecke der Aufnahme von Rückstoßkräften und Vergrößerung des Abbauradiuses (25) des Flüssigkeitsschneidstrahles (41) zentriert wird.
  15. Verfahren nach einem der Ansprüche 13 oder 14,
    dadurch gekennzeichnet,
    dass der Radius (23) der Bohrung (18) im Verhältnis zur Querschnittsfläche des Rohrkörpers (2) so gewählt wird, dass sich eine Strömungsgeschwindigkeit nach oben in der Bohrung (18) einstellt, die so groß ist, dass nur ein vorbestimmter Feinkorndurchmesser aus dem abgebauten mineralischen Rohstoff in Suspension nach oben gefördert wird, während das unerwünschte Großkorn in den unteren Bereich der Bohrung (18) absinkt.
  16. Verfahren nach einem der Ansprüche 11 bis 15,
    dadurch gekennzeichnet,
    dass zunächst mittels eines Bohrwerkzeuges ein zumindest teilweise verrohrtes Bohrloch (18) im Boden (40) hergestellt wird, in das anschließend das Abbbaugestänge (50) eingebracht wird.
EP05010058A 2004-05-28 2005-05-09 Vorrichtung und Verfahren zum hydraulischen Bohren Active EP1600602B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004026234 2004-05-28
DE102004026234A DE102004026234B3 (de) 2004-05-28 2004-05-28 Vorrichtung und Verfahren zur Bearbeitung des Bodens

Publications (3)

Publication Number Publication Date
EP1600602A2 EP1600602A2 (de) 2005-11-30
EP1600602A3 EP1600602A3 (de) 2006-03-01
EP1600602B1 true EP1600602B1 (de) 2006-12-27

Family

ID=34936299

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05010058A Active EP1600602B1 (de) 2004-05-28 2005-05-09 Vorrichtung und Verfahren zum hydraulischen Bohren

Country Status (3)

Country Link
EP (1) EP1600602B1 (de)
AT (1) ATE349599T1 (de)
DE (2) DE102004026234B3 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008056261B4 (de) * 2008-11-06 2011-06-16 Bauer Spezialtiefbau Gmbh Ventilzentrierung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2217360A (en) * 1938-05-18 1940-10-08 Shell Dev Hydraulic disruption of solids
DE2035934A1 (de) * 1970-07-20 1972-02-03 Dedegil, Yavuz, Dipl.-Ing.; Weber, Manfred, Dr.-Ing.; 7500 Karlsruhe Hydraulisch-pneumatisches Verfahren zum Abtragen oder Abbauen von Feststoffen unter Wasser oder sonstigen Flüssigkeiten
US5181578A (en) * 1991-11-08 1993-01-26 Lawler O Wayne Wellbore mineral jetting tool
US5363927A (en) * 1993-09-27 1994-11-15 Frank Robert C Apparatus and method for hydraulic drilling

Also Published As

Publication number Publication date
EP1600602A2 (de) 2005-11-30
ATE349599T1 (de) 2007-01-15
DE102004026234B3 (de) 2005-10-06
DE502005000254D1 (de) 2007-02-08
EP1600602A3 (de) 2006-03-01

Similar Documents

Publication Publication Date Title
EP2562310B1 (de) Unterwasser-Bohranordnung und Verfahren zum Erstellen einer Bohrung in einem Gewässergrund
EP2562346B1 (de) Unterwasser-Bohranordnung und Verfahren zum Erstellen einer Bohrung
DE3419517C2 (de) Verfahren zum unterirdischen Einbau von Rohrleitungen und Vorrichtung zur Durchführung des Verfahrens
DE1533644C3 (de) Verfahren und Vorrichtung zum annähernd waagerechten Durchbohren von Dämmen aus Erd- oder Gesteinsschichten
DE102007002399B4 (de) Verfahren und Vorrichtung zur Herstellung einer verrohrten Strangbohrung
DE2641453B2 (de) Verfahren und Vorrichtung zum Brechen von Gestein
EP3087298B1 (de) Verfahren und vorrichtung zum grabenlosen verlegen von rohrleitungen
DE3920392A1 (de) Verfahren zum abbau und zur foerderung einer unter wasser lagernden bodenschicht und vorrichtung zur durchfuehrung des verfahrens
EP2703596B1 (de) Bohrvorrichtung und Verfahren zum Erstellen einer Bohrung
EP1600602B1 (de) Vorrichtung und Verfahren zum hydraulischen Bohren
EP2246482B1 (de) Verfahren und Vorrichtung zum Erstellen eines bereichsweise reibungsarmen Gründungselements
DE3728270C2 (de)
DE19533281C2 (de) Vorrichtung zum Vortrieb von Hohlprofilen in den Baugrund
DE2758385C3 (de) Schlag-Bohreinrichtung für Großlochbohrungen
EP3631149B1 (de) Abrasiv-suspensions-erodier-system
DE4121394C2 (de)
DE102007008373A1 (de) Verfahren und Einrichtung zur Erzeugung von tiefen Bohrungen
DE2406030A1 (de) Verfahren zum herstellen von bohrungen im erdboden durch spuelbohren und maschine zur durchfuehrung des verfahrens
EP3361040B1 (de) Bodenbearbeitungswerkzeug und verfahren zum herstellen einer bohrung im boden
AT409007B (de) Herstellung von aushöhlungen und deren verfüllung im untergrund zum zweck der bodenstabilisierung
DE10336315A1 (de) Vertikalbohrvorrichtung sowie Verfahren zur Erstellung im wesentlichen vertikal ausgerichteter Grossbohrungen in Grundformationen
AT522402B1 (de) Verfahren und Vorrichtung zum Bohren von Löchern in Boden- oder Gesteinsmaterial
DE19608815C1 (de) Vorrichtung und Verfahren zur Herstellung einer Dichtsohle im Boden
DE2014368A1 (de) Verfahren und Vorrichtung zum Herstellen einer dünnen, filtrierenden oder nicht filtrierenden, von einem senkrechten Bohrloch ausgehenden Wand im Erdboden
EP1785580B1 (de) Verfahren zum Verlegen von Rohren, Räumer, Bohrgerät und Rohr

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20060330

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20061227

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005000254

Country of ref document: DE

Date of ref document: 20070208

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070327

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070528

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20061227

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

26N No opposition filed

Effective date: 20070928

BERE Be: lapsed

Owner name: BAUER SPEZIALTIEFBAU G.M.B.H.

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070328

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070509

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070628

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061227

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005000254

Country of ref document: DE

Representative=s name: WUNDERLICH & HEIM PATENTANWAELTE PARTNERSCHAFT, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200526

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005000254

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211201