EP1598523B1 - Wall structure for hollow gas turbine blades to increase the heat transfer - Google Patents

Wall structure for hollow gas turbine blades to increase the heat transfer Download PDF

Info

Publication number
EP1598523B1
EP1598523B1 EP05290838.1A EP05290838A EP1598523B1 EP 1598523 B1 EP1598523 B1 EP 1598523B1 EP 05290838 A EP05290838 A EP 05290838A EP 1598523 B1 EP1598523 B1 EP 1598523B1
Authority
EP
European Patent Office
Prior art keywords
blade
cooling
cooling cavity
cavity
indentations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05290838.1A
Other languages
German (de)
French (fr)
Other versions
EP1598523A1 (en
Inventor
Stéphan Daux
Chantal Giot
Hugues Joubert
Benjamin Sauthier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP1598523A1 publication Critical patent/EP1598523A1/en
Application granted granted Critical
Publication of EP1598523B1 publication Critical patent/EP1598523B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface

Definitions

  • the present invention relates to the general field of turbomachine gas turbine blade cooling. It is more particularly intended to improve the cooling of a blade provided with a high form ratio cooling cavity.
  • air which is generally introduced into the blade by its foot, passes through the latter along a path formed by cavities formed in the blade before being ejected by orifices. opening on the surface of dawn.
  • cooling circuits are unsuitable for so-called "fine and long" blades, ie blades having a width (maximum distance separating the intrados of the upper surface of the blade) much lower than their height. radial (distance separating the foot from the top of the blade).
  • the main purpose of the present invention is thus to overcome such drawbacks by proposing a cooling circuit for a gas turbine blade, and more particularly a blade of "fine and long” type, allowing an effective cooling of the blade and which is easy to manufacture.
  • depressions are recessed patterns material. Such depressions thus make it possible to disturb the internal flow without obstructing it.
  • the cooling circuit of the blade according to the invention also makes it possible to obtain an efficient cooling of the blade, with lower pressure losses and with low stress concentrations and therefore with better mechanical strength. The manufacture of such a blade is further simplified since its cooling circuit can be easily obtained from foundry.
  • the walls of the cooling cavity are devoid of spherical or bridle-type added material flow disruptors. Indeed, the presence of the depressions on at least one of the walls of the cooling cavity is sufficient to disturb the internal flow of the air flowing in it.
  • the cooling circuit may be devoid of air emissions on the faces of the blade. In this case, the evacuation of the air flowing in the cooling cavity takes place at the blade tip.
  • the present invention is preferably applied to a blade having a ratio between its width and its radial height between the foot and the apex of between 0.01 and 0.25.
  • the blade may also have a ratio between the depth of the depressions and the width of the cooling cavity of between 0.15 and 0.65.
  • the depressions can be made on the walls of the cooling cavity on the intrados and on the extrados side of the blade. They may be substantially aligned along a radial axis of the blade or arranged in staggered relation to this same axis. Moreover, they can be practiced only on a part of the blade, for example on a lower part thereof.
  • the recesses of the cooling cavity may have a substantially spherical or conical cross section.
  • the blade 10 of radial axis XX 'represented on the Figures 1 and 2 is a moving blade of high-pressure turbomachine turbine.
  • the invention can also be applied to other blades of the turbomachine, for example to the blades of the low-pressure turbine thereof.
  • the blade 10 comprises an aerodynamic surface (or blade) which extends radially between a blade root 12 and a blade tip 14.
  • the blade root 12 is intended to be mounted on a disk 16 of the rotor of the rotor.
  • the high-pressure turbine As illustrated on the figure 1 , the blade tip 14 may comprise sealing strips 17 arranged facing an abradable coating 19 mounted on the casing (not shown) of the high-pressure turbine.
  • the aerodynamic surface has four distinct zones: a leading edge 18 disposed facing the flow of hot gases from the combustion chamber of the turbomachine, a trailing edge 20 opposite to the leading edge 18, a side face intrados 22 and an extrados side face 24, these lateral faces 22, 24 connecting the leading edge 18 to the trailing edge 20.
  • the blade 10 is provided with a cooling circuit comprising at least one high-aspect ratio cooling cavity 26 extending radially between the base 12 and the blade tip 14 and at least one inlet opening of air 28 at a lower radial end of the cavity 26 (that is to say at the level of the blade root 12) to supply it with cooling air
  • high form ratio cavity is meant a cavity which has, in cross-section, a dimension (length L1 ) at least three times, and preferably at least five times, greater than the other (width 11 ). This characteristic of the cavity 26 is particularly visible on the figure 2 .
  • the cooling cavity 26 is delimited by an intrados wall 26a disposed on the intrados side 22 of the dawn and an extrados wall 26b disposed on the extrados side 24 of the blade. These walls 26a, 26b meet at the two axial ends of the cavity 26 and the distance between them represents the width 11 of the cavity.
  • the cooling circuit of dawn 10 Figures 1 and 2 has a single cavity 26 which extends axially from the leading edge 18 to the trailing edge 20 of the blade 10.
  • the blade has a plurality of high form ratio cooling cavities.
  • At least one of the walls 26a, 26b of the cooling cavity 26 of the blade 10 is provided with a plurality of depressions 30 so as to disturb the flow of cooling air in said cavity and increase heat exchange.
  • the recesses 30 are disrupting flow patterns with removed material, that is to say they require no addition of material.
  • both walls 26a, 26b of the cavity 26 are provided with depressions 30.
  • the recesses are made only on one of them.
  • the walls 26a, 26b of the cooling cavity 26 are devoid of added matter flow-disrupting patterns.
  • the walls 26a, 26b of the cavity 26 do not include any type of disturbance pins or bridges.
  • the unique presence of the depressions 30 is sufficient to ensure effective cooling of the blade 10.
  • the cooling circuit of the blade is devoid of air emissions on the faces of the blade 10 (that is to say on the lateral faces 22 and extrados 24, as well as on the leading edges 18 and leakage 20 thereof).
  • the cooling air circulating in the cavity 26 of the cooling circuit is entirely evacuated by the blade tip 14, for example at the level of the sealing strips 17.
  • the cooling circuit comprises several high form ratio cavities, these are preferably independent of each other: they are all individually supplied with air by the blade root 12 and the air circulating in them is entirely evacuated by the blade tip 14.
  • the invention is preferably applied to a blade 10 called "thin and long" as illustrated on the figure 1 , ie having a ratio between its width l 2 (maximum distance separating the intrados face 22 of the extrados face 24 of the blade, figure 2 , also called master torque) and its radial height h ( figure 1 ) between the foot 12 and the blade tip 14 between 0.01 and 0.25.
  • the blade 10 has a ratio between the depth P of the depressions 30 ( Figures 5 and 6 ) and the width 11 of the cooling cavity 26 ( figure 2 ) between 0.15 and 0.65.
  • the depressions 30 of the cooling cavity 26 of the blade 10 may be arranged in staggered relation to the radial axis XX 'of the blade ( figures 1 and 3 ). Alternatively, the depressions 30 of the cooling cavity 26 may be substantially aligned along the radial axis XX 'of the blade ( figure 4 ).
  • the depressions 30 of the cooling cavity 26 may be made only at a lower part of the blade 10, for example at a radial height representing approximately 30% of the total radial height h of the blade between its foot 12 and its top 14.
  • the depressions can also be practiced over all or part of the radial height of the blade.
  • the depressions 30 of the cooling cavity 26 may have a substantially spherical cross-section ( figure 5 ) or substantially conical ( figure 6 ).
  • a substantially spherical cross-section figure 5
  • substantially conical figure 6
  • any other form for their section square, cylindrical, teardrop-shaped, etc.
  • the size, the depth P and the spacing between two adjacent depressions is also variable depending on the level of disturbance that is sought to obtain.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Arrière-plan de l'inventionBackground of the invention

La présente invention se rapporte au domaine général du refroidissement d'aubes de turbine à gaz de turbomachine. Elle vise plus particulièrement à améliorer le refroidissement d'une aube munie d'une cavité de refroidissement à rapport de forme élevé.The present invention relates to the general field of turbomachine gas turbine blade cooling. It is more particularly intended to improve the cooling of a blade provided with a high form ratio cooling cavity.

Il est connu de munir les aubes mobiles d'une turbine à gaz de turbomachine, telles que les turbines haute et basse pression, de circuits internes de refroidissement leur permettant de supporter sans dommages les températures très élevées auxquelles elles sont soumises pendant le fonctionnement de la turbomachine. Par exemple, dans le cas d'une turbine haute-pression, les températures des gaz issus de la chambre de combustion atteignent des valeurs largement supérieures à celles que peuvent supporter sans dommages les aubes mobiles de la turbine, ce qui a pour conséquence de limiter leur durée de vie.It is known to provide the blades of a turbomachine gas turbine, such as high and low pressure turbines, internal cooling circuits allowing them to withstand without damage the very high temperatures to which they are subjected during operation of the turbine engine. For example, in the case of a high-pressure turbine, the temperatures of the gases from the combustion chamber reach values much higher than those which can withstand without damage the moving blades of the turbine, which has the consequence of limiting their lifespan.

Grâce aux circuits internes de refroidissement, de l'air, qui est généralement introduit dans l'aube par son pied, traverse celle-ci en suivant un trajet formé par des cavités pratiquées dans l'aube avant d'être éjecté par des orifices s'ouvrant à la surface de l'aube.Thanks to the internal cooling circuits, air, which is generally introduced into the blade by its foot, passes through the latter along a path formed by cavities formed in the blade before being ejected by orifices. opening on the surface of dawn.

Toutefois, ces circuits de refroidissement sont inadaptés à des aubes dites « fines et longues », c'est à dire des aubes présentant une largeur (distance maximale séparant l'intrados de l'extrados de l'aube) nettement plus faible que leur hauteur radiale (distance séparant le pied du sommet d'aube).However, these cooling circuits are unsuitable for so-called "fine and long" blades, ie blades having a width (maximum distance separating the intrados of the upper surface of the blade) much lower than their height. radial (distance separating the foot from the top of the blade).

En effet, l'une des contraintes liées à de telles aubes est le faible débit d'air alloué à leur refroidissement. Ceci impose l'adoption d'une cavité de refroidissement fine, c'est à dire à rapport de forme élevé, afin d'augmenter les vitesses d'écoulement interne de l'air, et donc les coefficients d'échange. Une telle modification n'étant pas suffisante pour assurer le refroidissement de l'aube, il est également nécessaire de perturber l'écoulement interne, par exemple à l'aide de perturbateurs de type picots ou pontets.Indeed, one of the constraints related to such blades is the low air flow allocated to their cooling. This requires the adoption of a thin cooling cavity, that is to say a high aspect ratio, in order to increase the internal flow rates of the air, and therefore the exchange coefficients. Such a modification is not sufficient to ensure the cooling of the blade, it is also necessary to disrupt the internal flow, for example using disrupters type pins or bridges.

Cependant, l'utilisation de perturbateurs classiques est rendue impossible de par la finesse de la cavité de refroidissement équipant ces aubes. En particulier, la présence de picots dans la cavité de refroidissement provoque une obturation trop importante de l'écoulement 5 d'air circulant dans celle-ci et engendre une tenue mécanique moindre qui est à la source d'amorces de criques. Quant aux pontets, ils posent des problèmes de fabrication par fonderie des aubes.However, the use of conventional disrupters is made impossible by the fineness of the cooling cavity equipping these blades. In particular, the presence of spikes in the cooling cavity causes excessive clogging of the flow of air flowing in it and generates a lower mechanical resistance which is the source of crack initiation. As for the jumpers, they pose manufacturing problems by blade foundry.

On reconnaît aussi de US 6,644,921 des cavités de refroidissement formées par des passages à section circulaire munis de concavités.We also recognize US 6,644,921 cooling cavities formed by circular section passages provided with concavities.

Objet et résumé de l'inventionObject and summary of the invention

La présente invention a donc pour but principal de pallier de tels inconvénients en proposant un circuit de refroidissement pour une aube de turbine à gaz, et plus particulièrement une aube de type « fine et longue », permettant un refroidissement efficace de l'aube et qui est de fabrication aisée.The main purpose of the present invention is thus to overcome such drawbacks by proposing a cooling circuit for a gas turbine blade, and more particularly a blade of "fine and long" type, allowing an effective cooling of the blade and which is easy to manufacture.

A cet effet il est prévu une aube de turbine à gaz de turbomachine selon la revendication 1.For this purpose there is provided a turbomachine gas turbine blade according to claim 1.

A la différence des perturbateurs classiques de type picots ou pontets, les enfoncements sont des motifs à évidements de matière. De tels enfoncements permettent ainsi de perturber l'écoulement interne sans pour autant l'obstruer. Le circuit de refroidissement de l'aube selon l'invention permet également d'obtenir un refroidissement efficace de l'aube, à moindres pertes de charge et à faibles concentrations de contraintes donc à meilleure tenue mécanique. La fabrication d'une telle aube est en outre simplifiée puisque son circuit de refroidissement peut être facilement obtenu de fonderie.Unlike conventional disrupters type pins or bridges, depressions are recessed patterns material. Such depressions thus make it possible to disturb the internal flow without obstructing it. The cooling circuit of the blade according to the invention also makes it possible to obtain an efficient cooling of the blade, with lower pressure losses and with low stress concentrations and therefore with better mechanical strength. The manufacture of such a blade is further simplified since its cooling circuit can be easily obtained from foundry.

Les parois de la cavité de refroidissement sont dépourvues de motifs perturbateurs d'écoulement à matière ajoutée de type picots ou pontets. En effet, la présence des enfoncements sur au moins l'une des parois de la cavité de refroidissement est suffisante pour perturber l'écoulement interne de l'air circulant dans celle-ci.The walls of the cooling cavity are devoid of spherical or bridle-type added material flow disruptors. Indeed, the presence of the depressions on at least one of the walls of the cooling cavity is sufficient to disturb the internal flow of the air flowing in it.

De façon plus particulière, le circuit de refroidissement peut être dépourvu d'émissions d'air sur les faces de l'aube. Dans ce cas, l'évacuation de l'air circulant dans la cavité de refroidissement s'effectue au niveau du sommet d'aube.More particularly, the cooling circuit may be devoid of air emissions on the faces of the blade. In this case, the evacuation of the air flowing in the cooling cavity takes place at the blade tip.

La présente invention s'applique de préférence à une aube présentant un rapport entre sa largeur et sa hauteur radiale entre le pied et le sommet compris entre 0,01 et 0,25.The present invention is preferably applied to a blade having a ratio between its width and its radial height between the foot and the apex of between 0.01 and 0.25.

L'aube peut également présenter un rapport entre la profondeur des enfoncements et la largeur de la cavité de refroidissement compris entre 0,15 et 0,65.The blade may also have a ratio between the depth of the depressions and the width of the cooling cavity of between 0.15 and 0.65.

Afin d'assurer un refroidissement homogène, les enfoncements peuvent être pratiqués sur les parois de la cavité de refroidissement du côté intrados et du côté extrados de l'aube. Ils peuvent être sensiblement alignés selon un axe radial de l'aube ou bien disposés en quinconce par rapport à ce même axe. Par ailleurs, ils peuvent être pratiqués seulement sur une partie de l'aube, par exemple sur une partie inférieure de celle-ci.In order to ensure homogeneous cooling, the depressions can be made on the walls of the cooling cavity on the intrados and on the extrados side of the blade. They may be substantially aligned along a radial axis of the blade or arranged in staggered relation to this same axis. Moreover, they can be practiced only on a part of the blade, for example on a lower part thereof.

Les enfoncements de la cavité de refroidissement peuvent présenter une section transversale sensiblement sphérique ou conique.The recesses of the cooling cavity may have a substantially spherical or conical cross section.

Brève description des dessinsBrief description of the drawings

D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins annexés qui en illustrent un exemple de réalisation dépourvu de tout caractère limitatif. Sur les figures :

  • la figure 1 est une vue en coupe longitudinale d'une aube de turbine selon l'invention ;
  • la figure 2 est une vue en coupe transversale de l'aube de la figure 1 ;
  • les figures 3 et 4 montrent des dispositions différentes des enfoncements du circuit de refroidissement de l'aube selon l'invention ; et
  • les figures 5 et 6 illustrent en coupe transversale différentes formes d'enfoncements du circuit de refroidissement de l'aube selon l'invention.
Other features and advantages of the present invention will emerge from the description given below, with reference to the accompanying drawings which illustrate an embodiment having no limiting character. In the figures:
  • the figure 1 is a longitudinal sectional view of a turbine blade according to the invention;
  • the figure 2 is a cross-sectional view of the dawn of the figure 1 ;
  • the Figures 3 and 4 show different provisions of the depressions of the cooling circuit of the blade according to the invention; and
  • the Figures 5 and 6 illustrate in cross section different forms of depressions of the cooling circuit of the blade according to the invention.

Description détaillée d'un mode de réalisationDetailed description of an embodiment

L'aube 10 d'axe radial XX' représentée sur les figures 1 et 2 est une aube mobile de turbine haute-pression de turbomachine. Bien entendu, l'invention peut également s'appliquer à d'autres aubes de la turbomachine, par exemple aux aubes de la turbine basse-pression de celle-ci.The blade 10 of radial axis XX 'represented on the Figures 1 and 2 is a moving blade of high-pressure turbomachine turbine. Of course, the invention can also be applied to other blades of the turbomachine, for example to the blades of the low-pressure turbine thereof.

L'aube 10 comporte une surface aérodynamique (ou pale) qui s'étend radialement entre un pied d'aube 12 et un sommet d'aube 14. Le pied d'aube 12 est destiné à être monté sur un disque 16 du rotor de la turbine haute-pression. Comme illustré sur la figure 1, le sommet d'aube 14 peut comporter des léchettes d'étanchéité 17 disposées en regard d'un revêtement abradable 19 monté sur le carter (non représenté) de la turbine haute-pression.The blade 10 comprises an aerodynamic surface (or blade) which extends radially between a blade root 12 and a blade tip 14. The blade root 12 is intended to be mounted on a disk 16 of the rotor of the rotor. the high-pressure turbine. As illustrated on the figure 1 , the blade tip 14 may comprise sealing strips 17 arranged facing an abradable coating 19 mounted on the casing (not shown) of the high-pressure turbine.

La surface aérodynamique présente quatre zones distinctes : un bord d'attaque 18 disposé en regard de l'écoulement des gaz chauds issus de la chambre de combustion de la turbomachine, un bord de fuite 20 opposé au bord d'attaque 18, une face latérale intrados 22 et une face latérale extrados 24, ces faces latérales 22, 24 reliant le bord d'attaque 18 au bord de fuite 20.The aerodynamic surface has four distinct zones: a leading edge 18 disposed facing the flow of hot gases from the combustion chamber of the turbomachine, a trailing edge 20 opposite to the leading edge 18, a side face intrados 22 and an extrados side face 24, these lateral faces 22, 24 connecting the leading edge 18 to the trailing edge 20.

L'aube 10 est munie d'un circuit de refroidissement comportant au moins une cavité de refroidissement 26 à rapport de forme élevé s'étendant radialement entre le pied 12 et le sommet d'aube 14 et au moins une ouverture d'admission d'air 28 à une extrémité radiale inférieure de la cavité 26 (c'est à dire au niveau du pied d'aube 12) pour alimenter celle-ci en air de refroidissementThe blade 10 is provided with a cooling circuit comprising at least one high-aspect ratio cooling cavity 26 extending radially between the base 12 and the blade tip 14 and at least one inlet opening of air 28 at a lower radial end of the cavity 26 (that is to say at the level of the blade root 12) to supply it with cooling air

Par cavité à rapport de forme élevé, on entend une cavité qui présente, en coupe transversale, une dimension (longueur L1) au moins trois fois, et de préférence au moins cinq fois, supérieure à l'autre (largeur l1). Cette caractéristique de la cavité 26 est notamment visible sur la figure 2.By high form ratio cavity is meant a cavity which has, in cross-section, a dimension (length L1 ) at least three times, and preferably at least five times, greater than the other (width 11 ). This characteristic of the cavity 26 is particularly visible on the figure 2 .

Comme illustré sur la figure 2, la cavité de refroidissement 26 est délimitée par une paroi intrados 26a disposée du côté intrados 22 de l'aube et par une paroi extrados 26b disposée du côté extrados 24 de l'aube. Ces parois 26a, 26b se rejoignent aux deux extrémités axiales de la cavité 26 et la distance les séparant représente la largeur l1 de la cavité.As illustrated on the figure 2 , the cooling cavity 26 is delimited by an intrados wall 26a disposed on the intrados side 22 of the dawn and an extrados wall 26b disposed on the extrados side 24 of the blade. These walls 26a, 26b meet at the two axial ends of the cavity 26 and the distance between them represents the width 11 of the cavity.

Le circuit de refroidissement de l'aube 10 des figures 1 et 2 comporte une seule cavité 26 qui s'étend axialement depuis le bord d'attaque 18 vers le bord de fuite 20 de l'aube 10. On peut toutefois imaginer que l'aube comporte plusieurs cavités de refroidissement à rapport de forme élevé.The cooling circuit of dawn 10 Figures 1 and 2 has a single cavity 26 which extends axially from the leading edge 18 to the trailing edge 20 of the blade 10. However, it can be imagined that the blade has a plurality of high form ratio cooling cavities.

Selon l'invention, au moins l'une des parois 26a, 26b de la cavité de refroidissement 26 de l'aube 10 est munie d'une pluralité d'enfoncements 30 de façon à perturber l'écoulement d'air de refroidissement dans ladite cavité et à augmenter les échanges de chaleur. Les enfoncements 30 (ou évidements) sont des motifs perturbateurs d'écoulement à matière enlevée, c'est à dire qu'ils ne nécessitent aucun ajout de matière.According to the invention, at least one of the walls 26a, 26b of the cooling cavity 26 of the blade 10 is provided with a plurality of depressions 30 so as to disturb the flow of cooling air in said cavity and increase heat exchange. The recesses 30 (or recesses) are disrupting flow patterns with removed material, that is to say they require no addition of material.

Sur l'exemple de la figure 2, les deux parois 26a, 26b de la cavité 26 sont munies d'enfoncements 30. On peut toutefois imaginer que les renfoncements ne soient pratiqués que sur l'une d'entre elles.On the example of the figure 2 both walls 26a, 26b of the cavity 26 are provided with depressions 30. However, it can be imagined that the recesses are made only on one of them.

Selon une caractéristique particulièrement avantageuse de l'invention, les parois 26a, 26b de la cavité de refroidissement 26 sont dépourvues de motifs perturbateurs d'écoulement à matière ajoutée. Par exemple, les parois 26a, 26b de la cavité 26 ne comportent aucun perturbateur de type picots ou pontets. La présence unique des enfoncements 30 suffit à assurer un refroidissement efficace de l'aube 10.According to a particularly advantageous characteristic of the invention, the walls 26a, 26b of the cooling cavity 26 are devoid of added matter flow-disrupting patterns. For example, the walls 26a, 26b of the cavity 26 do not include any type of disturbance pins or bridges. The unique presence of the depressions 30 is sufficient to ensure effective cooling of the blade 10.

Selon une autre caractéristique avantageuse de l'invention, le circuit de refroidissement de l'aube est dépourvu d'émissions d'air sur les faces de l'aube 10 (c'est à dire sur les faces latérales intrados 22 et extrados 24, ainsi que sur les bords d'attaque 18 et de fuite 20 de celle-ci).According to another advantageous characteristic of the invention, the cooling circuit of the blade is devoid of air emissions on the faces of the blade 10 (that is to say on the lateral faces 22 and extrados 24, as well as on the leading edges 18 and leakage 20 thereof).

Dans cette configuration, l'air de refroidissement circulant dans la cavité 26 du circuit de refroidissement est entièrement évacué par le sommet d'aube 14, par exemple au niveau des léchettes d'étanchéité 17. De plus, si le circuit de refroidissement comporte plusieurs cavités à rapport de forme élevé, celles-ci sont de préférence indépendantes les unes des autres : elles sont toutes alimentées individuellement en air par le pied d'aube 12 et l'air circulant dans celles-ci est entièrement évacué par le sommet d'aube 14.In this configuration, the cooling air circulating in the cavity 26 of the cooling circuit is entirely evacuated by the blade tip 14, for example at the level of the sealing strips 17. In addition, if the cooling circuit comprises several high form ratio cavities, these are preferably independent of each other: they are all individually supplied with air by the blade root 12 and the air circulating in them is entirely evacuated by the blade tip 14.

L'invention s'applique de préférence à une aube 10 dite « fine et longue » comme illustré sur la figure 1, c'est à dire présentant un rapport entre sa largeur l2 (distance maximale séparant la face intrados 22 de la face extrados 24 de l'aube, figure 2, aussi appelée maître couple) et sa hauteur radiale h (figure 1) entre le pied 12 et le sommet d'aube 14 compris entre 0,01 et 0,25.The invention is preferably applied to a blade 10 called "thin and long" as illustrated on the figure 1 , ie having a ratio between its width l 2 (maximum distance separating the intrados face 22 of the extrados face 24 of the blade, figure 2 , also called master torque) and its radial height h ( figure 1 ) between the foot 12 and the blade tip 14 between 0.01 and 0.25.

Selon encore une autre caractéristique avantageuse de l'invention, l'aube 10 présente un rapport entre la profondeur P des enfoncements 30 (figures 5 et 6) et la largeur l1 de la cavité de refroidissement 26 (figure 2) compris entre 0,15 et 0,65.According to yet another advantageous characteristic of the invention, the blade 10 has a ratio between the depth P of the depressions 30 ( Figures 5 and 6 ) and the width 11 of the cooling cavity 26 ( figure 2 ) between 0.15 and 0.65.

Les enfoncements 30 de la cavité de refroidissement 26 de l'aube 10 peuvent être disposés en quinconce par rapport à l'axe radial XX' de l'aube (figures 1 et 3). Alternativement, les enfoncements 30 de la cavité de refroidissement 26 peuvent être sensiblement alignés selon l'axe radial XX' de l'aube (figure 4).The depressions 30 of the cooling cavity 26 of the blade 10 may be arranged in staggered relation to the radial axis XX 'of the blade ( figures 1 and 3 ). Alternatively, the depressions 30 of the cooling cavity 26 may be substantially aligned along the radial axis XX 'of the blade ( figure 4 ).

En outre, comme illustré sur la figure 1, les enfoncements 30 de la cavité de refroidissement 26 peuvent être pratiqués uniquement au niveau d'une partie inférieure de l'aube 10, par exemple sur une hauteur radiale représentant environ 30% de la hauteur radiale totale h de l'aube comprise entre son pied 12 et son sommet 14. Bien entendu, les enfoncements peuvent aussi être pratiqués sur toute ou partie de la hauteur radiale de l'aube.In addition, as illustrated on the figure 1 the depressions 30 of the cooling cavity 26 may be made only at a lower part of the blade 10, for example at a radial height representing approximately 30% of the total radial height h of the blade between its foot 12 and its top 14. Of course, the depressions can also be practiced over all or part of the radial height of the blade.

Les enfoncements 30 de la cavité de refroidissement 26 peuvent présenter une section transversale sensiblement sphérique (figure 5) ou sensiblement conique (figure 6). On peut également imaginer toute autre forme pour leur section : carrée, cylindrique, en forme de goutte d'eau, etc.The depressions 30 of the cooling cavity 26 may have a substantially spherical cross-section ( figure 5 ) or substantially conical ( figure 6 ). One can also imagine any other form for their section: square, cylindrical, teardrop-shaped, etc.

La taille, la profondeur P et l'espacement entre deux enfoncements 30 adjacents est également variable suivant le niveau de perturbation que l'on cherche à obtenir.The size, the depth P and the spacing between two adjacent depressions is also variable depending on the level of disturbance that is sought to obtain.

Claims (11)

  1. A blade (10) for a turbomachine gas turbine, the blade comprising a cooling circuit having at least one cooling cavity (26), said cooling cavity having, in transversal section, a dimension at least three times higher than another dimension, said cooling cavity extending radially between a root (12) and a tip (14) of the blade, and at least one air admission opening (28) at a radially inner end of the cavity to feed it with cooling air, characterized in that at least one of the walls (26a, 26b) of the cooling cavity (26) is provided with a plurality of indentations (30) so as to disturb the flow of cooling air in said cavity and increase heat exchange, and in that the walls of the cooling cavity (26) do not have any flow-disturbing patterns of added material.
  2. A blade according to claim 1, in which the cooling circuit does not eject any air through the faces (18, 20, 22, 24) of the blade (10).
  3. A blade according to claim 1 or claim 2, in which the blade (10) presents a ratio of its thickness (l2) over its radial height (h) between the root (12) and the tip (14) lying in the range 0.01 to 0.25.
  4. A blade according to any one of claims 1 to 3, in which the blade (10) presents a ratio of the depth (P) of the indentations (30) over the width (l1) of the cooling cavity (26) lying in the range 0.15 to 0.65.
  5. A blade according to any one of claims 1 to 4, in which the indentations (30) of the cooling cavity (26) are substantially in alignment parallel with a radial axis (XX') of the blade.
  6. A blade according to any one of claims 1 to 4, in which the indentations (30) of the cooling cavity (26) are disposed in a staggered configuration relative to a radial axis (XX') of the blade.
  7. A blade according to any one of claims 1 to 6, in which the indentations (30) are formed in the walls (26a, 26b) of the cooling cavity (26) on the pressure side (22) and on the suction side (24) of the blade.
  8. A blade according to any one of claims 1 to 7, in which the indentations (30) of the cooling cavity (26) are formed in a lower portion of the blade.
  9. A blade according to any one of claims 1 to 8, in which the indentations (30) of the cooling cavity (26) are of substantially spherical shape.
  10. A blade according to any one of claims 1 to 8, in which the indentations (30) of the cooling cavity (26) are of substantially conical shape.
  11. A turbomachine comprising at least one blade according to any one of claims 1 to 10.
EP05290838.1A 2004-05-18 2005-04-15 Wall structure for hollow gas turbine blades to increase the heat transfer Active EP1598523B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0405397 2004-05-18
FR0405397A FR2870560B1 (en) 2004-05-18 2004-05-18 HIGH TEMPERATURE RATIO COOLING CIRCUIT FOR GAS TURBINE BLADE

Publications (2)

Publication Number Publication Date
EP1598523A1 EP1598523A1 (en) 2005-11-23
EP1598523B1 true EP1598523B1 (en) 2016-01-20

Family

ID=34942141

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05290838.1A Active EP1598523B1 (en) 2004-05-18 2005-04-15 Wall structure for hollow gas turbine blades to increase the heat transfer

Country Status (7)

Country Link
US (1) US7513737B2 (en)
EP (1) EP1598523B1 (en)
JP (1) JP4854985B2 (en)
CA (1) CA2504168C (en)
FR (1) FR2870560B1 (en)
RU (1) RU2388915C2 (en)
UA (1) UA86580C2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4831816B2 (en) * 2006-03-02 2011-12-07 三菱重工業株式会社 Gas turbine blade cooling structure
US7722327B1 (en) * 2007-04-03 2010-05-25 Florida Turbine Technologies, Inc. Multiple vortex cooling circuit for a thin airfoil
US8894367B2 (en) * 2009-08-06 2014-11-25 Siemens Energy, Inc. Compound cooling flow turbulator for turbine component
EP2354453B1 (en) * 2010-02-02 2018-03-28 Siemens Aktiengesellschaft Turbine engine component for adaptive cooling
US8770936B1 (en) * 2010-11-22 2014-07-08 Florida Turbine Technologies, Inc. Turbine blade with near wall cooling channels
RU2522156C2 (en) * 2012-07-17 2014-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗ ГУ) Heat-tube cooling circuit of turbine blade
US9718735B2 (en) 2015-02-03 2017-08-01 General Electric Company CMC turbine components and methods of forming CMC turbine components
US10605170B2 (en) * 2015-11-24 2020-03-31 General Electric Company Engine component with film cooling
FR3052990B1 (en) 2016-06-28 2020-07-03 Safran Aircraft Engines COOLING CIRCUIT OF A TURBOMACHINE BLADE
DE102018209610A1 (en) * 2018-06-14 2019-12-19 MTU Aero Engines AG Blade for a turbomachine
CN109139545B (en) * 2018-11-14 2024-05-03 珠海格力电器股份有限公司 Blade, cross-flow fan blade and air conditioner
IT202100000296A1 (en) 2021-01-08 2022-07-08 Gen Electric TURBINE ENGINE WITH VANE HAVING A SET OF DIMPLES
GB202107128D0 (en) 2021-05-19 2021-06-30 Rolls Royce Plc Nozzle guide vane

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142824A (en) * 1977-09-02 1979-03-06 General Electric Company Tip cooling for turbine blades
US5413463A (en) * 1991-12-30 1995-05-09 General Electric Company Turbulated cooling passages in gas turbine buckets
US5577555A (en) * 1993-02-24 1996-11-26 Hitachi, Ltd. Heat exchanger
US5975850A (en) * 1996-12-23 1999-11-02 General Electric Company Turbulated cooling passages for turbine blades
US6098397A (en) * 1998-06-08 2000-08-08 Caterpillar Inc. Combustor for a low-emissions gas turbine engine
EP1022435B1 (en) * 1999-01-25 2009-06-03 General Electric Company Internal cooling circuit for a gas turbine bucket
US6142734A (en) * 1999-04-06 2000-11-07 General Electric Company Internally grooved turbine wall
US6589600B1 (en) * 1999-06-30 2003-07-08 General Electric Company Turbine engine component having enhanced heat transfer characteristics and method for forming same
US6302185B1 (en) * 2000-01-10 2001-10-16 General Electric Company Casting having an enhanced heat transfer surface, and mold and pattern for forming same
WO2001071164A1 (en) * 2000-03-22 2001-09-27 Siemens Aktiengesellschaft Reinforcement and cooling structure of a turbine blade
US6504274B2 (en) * 2001-01-04 2003-01-07 General Electric Company Generator stator cooling design with concavity surfaces
US6644921B2 (en) * 2001-11-08 2003-11-11 General Electric Company Cooling passages and methods of fabrication
US6722134B2 (en) * 2002-09-18 2004-04-20 General Electric Company Linear surface concavity enhancement
US7302990B2 (en) * 2004-05-06 2007-12-04 General Electric Company Method of forming concavities in the surface of a metal component, and related processes and articles

Also Published As

Publication number Publication date
FR2870560A1 (en) 2005-11-25
US20050260076A1 (en) 2005-11-24
CA2504168A1 (en) 2005-11-18
CA2504168C (en) 2012-12-18
UA86580C2 (en) 2009-05-12
RU2005114173A (en) 2006-11-20
JP4854985B2 (en) 2012-01-18
FR2870560B1 (en) 2006-08-25
US7513737B2 (en) 2009-04-07
RU2388915C2 (en) 2010-05-10
JP2005330966A (en) 2005-12-02
EP1598523A1 (en) 2005-11-23

Similar Documents

Publication Publication Date Title
EP1598523B1 (en) Wall structure for hollow gas turbine blades to increase the heat transfer
EP1741875B1 (en) Cooling circuit for a rotor blade of a turbomachine
CA3018664C (en) Turbine ring assembly with no cold fitting play
EP1726783B1 (en) Hollow rotor blade for the turbine of a gas turbine engine, provided with a tip cup
CA2864576C (en) Foundry core assembly for manufacturing a turbomachine blade, associated method of manufacturing a blade and associated blade
EP2705223B1 (en) Sealing apparatus of a guide conduit of a turbine of a turbomachine
EP2352922B1 (en) Diffuser having blades with apertures
EP4273370A2 (en) Turbine ring assembly for differential thermal expansion
FR2985760A1 (en) MOBILE AUB OF TURBOMACHINE
FR2864990A1 (en) High-pressure turbine blade for turbo machine, has part of discharge slit`s lower sill, close to platform, presenting circular cross-section to remove any protrusions between reinforcement wall of slit and connection zone
FR2855439A1 (en) PROCESS FOR THE MANUFACTURE OF A HOLLOW BLADE FOR A TURBOMACHINE.
FR2977274A1 (en) LABYRINTH SEAL SEAL FOR TURBINE OF A GAS TURBINE ENGINE
FR2835015A1 (en) HIGH-PRESSURE TURBINE MOBILE TURBINE WITH IMPROVED THERMAL BEHAVIOR LEAKAGE EDGE
EP2694781B1 (en) Sealing ring for a turbine stage of an aircraft turbomachine, comprising slotted anti-rotation pegs
CA2979791A1 (en) Turbine ring assembly comprising a plurality of ceramic matrix composite ring segments
EP1318274B1 (en) High-pressure turbine blade with cooled trailing edge
EP1452691A1 (en) Annular stator blade platform for low pressure turbine in a gas turbine engine
FR3084694A1 (en) ATTACHING A VALVE TO A CASING OF A TURBOMACHINE
FR2965843A1 (en) ROTOR FOR TURBOMACHINE
FR3096722A1 (en) Dynamic gasket for turbomachine comprising a multilayer abradable part
WO2021245339A1 (en) Turbine nozzle for a turbine engine
FR2874403A1 (en) Rotor/stator blade for compressor/gas turbine of turbine engine, has platform with downstream shoulder that has notch dividing shoulder into two lateral parts that expand and deform freely with respect to each other
FR3090032A1 (en) BLADE FOR TURBOMACHINE WHEEL
WO2023156726A1 (en) Assembly for an aircraft turbomachine, and aircraft turbomachine
FR2896304A1 (en) Annular wall for turbine engine combustion chamber has series of peripheral radial or tangential grooves to shift resonance frequency above combustion frequency

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050425

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

AKX Designation fees paid

Designated state(s): DE ES FR GB IT SE

17Q First examination report despatched

Effective date: 20061128

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150715

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005048327

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005048327

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20161021

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES, FR

Effective date: 20170717

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230321

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240320

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240320

Year of fee payment: 20

Ref country code: IT

Payment date: 20240320

Year of fee payment: 20

Ref country code: FR

Payment date: 20240320

Year of fee payment: 20