EP1597463A1 - Procede de realisation de turbines a gaz et installation de turbines a gaz - Google Patents

Procede de realisation de turbines a gaz et installation de turbines a gaz

Info

Publication number
EP1597463A1
EP1597463A1 EP03709603A EP03709603A EP1597463A1 EP 1597463 A1 EP1597463 A1 EP 1597463A1 EP 03709603 A EP03709603 A EP 03709603A EP 03709603 A EP03709603 A EP 03709603A EP 1597463 A1 EP1597463 A1 EP 1597463A1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
turbine
gas turbocharger
gas
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03709603A
Other languages
German (de)
English (en)
Inventor
Uwe Borchert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1597463A1 publication Critical patent/EP1597463A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/10Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with another turbine driving an output shaft but not driving the compressor
    • F02C3/103Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with another turbine driving an output shaft but not driving the compressor the compressor being of the centrifugal type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/08Heating air supply before combustion, e.g. by exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • F05D2230/61Assembly methods using limited numbers of standard modules which can be adapted by machining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/40Use of a multiplicity of similar components

Definitions

  • Gas turbine plants briefly called gas turbines, today have a great importance in drive technology. They are characterized by a low power to weight ratio, uncomplicated
  • Performance limit gas turbines especially because of the large purchase price, which is up to 10 times compared to a piston engine of the same strength, little or no importance.
  • piston engines are still used today, although the use of a gas turbine would be technically more advantageous and more comfortable (eg vibration-free).
  • compact gas turbines are designed and manufactured in such a way that a large number of individual parts have to be developed and manufactured exclusively for this one application. These include, among other things, the impellers (turbine wheels, compressor wheels) and their blades, shafts, nozzles and bearings, which are particularly complex and demanding in the choice of materials.
  • An exchange of assemblies and parts is when the turbine power and / or the type of turbine is to be changed, only
  • the object of the invention is to provide a method, be prepared by the small gas turbines with low-cost components (to.
  • a further object is to develop an arrangement 30,> about 'with these components to create various compact gas turbines.
  • the invention also proposes an air heater according to the existing
  • the units are 'connected so that the hot air from the air heater in the exhaust gas turbocharger and the compressed air from the' compressor wheel flows into the air heater.
  • the air heater consists of a combustion chamber with upstream heat exchanger and known accessories.
  • a second known exhaust gas turbocharger without compressor wheel as
  • the combustion chamber is dimensioned and matched to the exhaust gas turbocharger, or the / the
  • Exhaust gas turbocharger (1, 2, 3) with respect to the Stromungs- cross sections selected so that in the combustion chamber, a pressure difference compared to the environment of 1.5 to 2.5 bar is generated.
  • the system thus works in the optimum range.
  • the compressor ides exhaust gas turbocharger with the gas generator and the combustion chamber is connected branched.
  • the compressed air flow is thus a part (primary air) in the Combustion zone and, to a further part (secondary air) behind the combustion zone.
  • the secondary air mixes with the freshly burned gases and cools them down far enough that the allowable turbine temperature is not exceeded.
  • the distribution of the air flows is also designed controllable, so that the afterburning and the Aeggastemperatur is controllable.
  • the new process makes it possible to use a gas turbine instead of a piston engine for the first time, even for smaller outputs (30 to 200 kW). So far, the specific price * per installed power was very high at smaller 5 gas turbines, because the variety of their parts and their production cost was similar to that of a 'gas turbine with a relatively high nominal power.
  • the costs are greatly reduced by the use of produced in large quantities and 0 thus inexpensive assemblies (Abgasturb ⁇ lader), the originally borrowed not for a gas turbine but are necessarily nostifäh'ig.
  • Combustion temperature, unit temperature, inlet and outlet velocities, geometry of connections to the combustion chamber and to the turbine, inlet and outlet pressures, density of the combustion chamber Match gases and exhaust gas analysis.
  • the assemblies are to be selected and adapted with the air heater so that the characteristics of all assemblies are matched to one another and the required power and efficiency are achieved.
  • a further advantage of this method is that a larger number of different gas turbines can be realized by combining different or several identical exhaust gas turbochargers. Thus, with a few assemblies many different small gas turbines (in terms of '
  • a small gas turbine of this type can be used both as a shaft power gas turbine and as a hot gas generator or air supplier, regardless of the arrangement and the number of exhaust gas turbochargers involved.
  • the use as prime mover is with transmission or with electrical transmission or both in aircraft, watercraft, hovercraft, motor vehicles and rail vehicles, caterpillars u. ' a. Vehicles and agricultural machinery, ' construction machinery, emergency generators and combined heat and power plants possible. Both high quality and low quality, both conventional and alternative liquid and gaseous fuels can be used. , ⁇
  • FIGS. 1 to 12 show the individual arrangement variants and flow diagrams 1 . '
  • FIGS. 1 to 4 as an example of the explanation, a shaft power train ine in a two-shaft type having a '
  • the air is sucked in by the compressor 5 from the environment and compressed.
  • the compressor 5 belongs to the first exhaust gas turbocharger 1.
  • the compressed air flows into the heat exchanger 11, in which the air is preheated by the exhaust gas heat output. Thereafter, the compressed and preheated air enters the combustion chamber 12, where a portion of the atmospheric oxygen for combustion of the fuel entering the combustion chamber 12 through the injection valve 15 is utilized.
  • he combustion chamber 12 is so designed that the high-temperature riert (s combustion products and di'e remaining air (secondary air 25) ⁇ mix well and ben a technologically acceptable temperature tur of the working fluid now referred to as fresh gas erge-.
  • the fresh gas flows through the distributor into the compressor turbine 7, which is also part of the first exhaust-gas turbocharger 1, where the gas delivers a large part of its energy to the compressor turbine wheel and thus drives the compressor 5.
  • the gas then flows through the connecting piece 13 in the power turbine 9, which is part of the second exhaust gas turbocharger 2. There, the mechanical 'power on the Power turbine shaft 10 transmitted and is available there.
  • the gas is further supplied to the heat exchanger 11, D rt is a part of the remaining residual energy of the
  • the unit is put into operation 'with the aid' of the starter 18, which can be a generator at the same time.
  • the spark plug 19 is used for the first ignition of the fuel-air
  • the oil pump 16 delivers lubricant to the bearings. Often ⁇ it is not necessary for a Antriebs'aggregat that all .Wellen must be arranged coaxially or in alignment. ⁇ The in Fig. 1 to Fig. ' 4 demonstrated unit
  • FIGS. 5 to 12 show further possibilities of assembling a small gas turbine engine comprising a plurality of exhaust gas turbines.
  • Fig. 5 and Fig. 6 shows the arrangement of Fig. 1 to Fig. 4 mi 1 t .einer on the Verdich- ⁇
  • FIGS. 9 to 12 show a multi-stage arrangement of a small gas turbine, in which a heat exchanger can be dispensed with because of the larger pressure ratio.
  • the 'air first' is pre-compressed in the low-pressure, compressor 4 and then, by means of the high-pressure compressor .5, 'at a higher pressure ratio

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

La présente invention concerne un procédé de réalisation et une installation destinés à un système de turbine à gaz de faible puissance qui peut servir de turbine à gaz à puissance sur l'arbre, de générateur de gaz haute température ou de dispositif d'amenée d'air. L'invention a pour objet la mise au point d'un procédé qui permet la réalisation de petites turbines à gaz avec des composants peu onéreux. Le procédé de l'invention se caractérise en ce qu'au moins un turbocompresseur à gaz d'échappement (1) de moteurs à combustion interne, des générateurs d'air chaud (11, 12) réalisés en fonction de ses paramètres de puissance ou adaptés à ceux-ci, sont reliés à d'autres unités adaptées, pour constituer une turbine à gaz, la sortie du compresseur (5) du turbocompresseur à gaz d'échappement (1) étant raccordée au générateur de gaz ou à la chambre de combustion (12).
EP03709603A 2003-02-11 2003-02-11 Procede de realisation de turbines a gaz et installation de turbines a gaz Withdrawn EP1597463A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2003/000386 WO2004072450A1 (fr) 2003-02-11 2003-02-11 Procede de realisation de turbines a gaz et installation de turbines a gaz

Publications (1)

Publication Number Publication Date
EP1597463A1 true EP1597463A1 (fr) 2005-11-23

Family

ID=32857104

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03709603A Withdrawn EP1597463A1 (fr) 2003-02-11 2003-02-11 Procede de realisation de turbines a gaz et installation de turbines a gaz

Country Status (4)

Country Link
US (1) US20060248899A1 (fr)
EP (1) EP1597463A1 (fr)
AU (1) AU2003213998A1 (fr)
WO (1) WO2004072450A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007023326A1 (fr) * 2005-08-23 2007-03-01 Shap Spa Solar Heat And Power Centrale de cogeneration
WO2013059456A1 (fr) * 2011-10-18 2013-04-25 Icr Turbine Engine Corporation Configurations d'axe de composant de moteur à turbine à gaz
US10094288B2 (en) 2012-07-24 2018-10-09 Icr Turbine Engine Corporation Ceramic-to-metal turbine volute attachment for a gas turbine engine
US10202856B2 (en) * 2014-09-02 2019-02-12 United Technologies Corporation Decoupled gas turbine engine
US10480343B1 (en) * 2017-07-12 2019-11-19 Kim Alexander Zorzi Re-circulating heat pump turbine
US10830123B2 (en) * 2017-12-27 2020-11-10 Transportation Ip Holdings, Llc Systems and method for a waste heat-driven turbocharger system
JP2020183733A (ja) * 2019-05-09 2020-11-12 三菱重工業株式会社 ターボクラスターガスタービンシステム及びその起動方法
CN110500184B (zh) * 2019-08-28 2022-04-01 上海明华电力科技有限公司 一种提升燃气轮机联合循环经济性的余热利用系统
US11473442B1 (en) * 2020-09-22 2022-10-18 Aetherdynamic Power Systems Llc Re-circulating heat pump turbine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2669092A (en) * 1953-02-03 1954-02-16 Nils W Hammaren Gas turbine power plant with exhaust gas recycling
US3988894A (en) * 1970-05-05 1976-11-02 Melchior Jean F Improvement in methods of supercharging an engine, preferably a diesel engine in such supercharged engines, and in supercharging units for such engines
DE3030043A1 (de) * 1980-08-08 1982-03-11 Rolf Dr.-Ing. 4200 Oberhausen Noack Verfahren zum betreiben eines turbobrenners und brenner zur durchfuehrung des verfahrens
SE439337B (sv) * 1980-09-29 1985-06-10 Volvo Ab Gasturbinmaskineri
DE3224577A1 (de) * 1982-07-01 1984-01-05 Rudolf Dr. 6800 Mannheim Wieser Kombinierte gasturbinen/dampfturbinenanlage
DE3519950A1 (de) * 1985-06-04 1986-12-04 Rudolf Dr. 6800 Mannheim Wieser Kombinierte gasturbinen-dampfturbinenanlage
US4815282A (en) * 1987-02-24 1989-03-28 Teledyne Industries, Inc. Turbocharged compund cycle ducted fan engine system
GB2216191B (en) * 1988-03-31 1992-08-12 Aisin Seiki Gas turbine cogeneration apparatus for the production of domestic heat and power
DE3837052A1 (de) * 1988-10-31 1990-05-03 Fraunhofer Ges Forschung Vorrichtung zur gleichzeitigen abgabe von waerme auf einem oberhalb und einem unterhalb der temperatur eines reservoirs gelegenen temperaturniveau
JPH03117632A (ja) * 1989-09-29 1991-05-20 Isuzu Motors Ltd 複合ターボコンパウンドエンジン
US5488823A (en) * 1993-05-12 1996-02-06 Gas Research Institute Turbocharger-based bleed-air driven fuel gas booster system and method
AT409405B (de) * 1993-11-12 2002-08-26 Werner Dipl Ing Schaller Anlage zur gewinnung elektrischer energie aus brennstoffen, insbesondere aus biogenen brennstoffen
US6487862B1 (en) * 1996-10-28 2002-12-03 Richard B. Doorley Low cost jet engine
DE10307374A1 (de) * 2003-02-21 2004-09-02 Alstom Technology Ltd Verfahren zum Betrieb eines teilgeschlossenen, aufgeladenen Gasturbinenkreislaufs sowie Gasturbinensystem zur Durchführung des Verfahrens
US6931856B2 (en) * 2003-09-12 2005-08-23 Mes International, Inc. Multi-spool turbogenerator system and control method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004072450A1 *

Also Published As

Publication number Publication date
US20060248899A1 (en) 2006-11-09
WO2004072450A1 (fr) 2004-08-26
AU2003213998A1 (en) 2004-09-06

Similar Documents

Publication Publication Date Title
DE3690769C2 (de) Verfahren zum Betreiben eines Verbrennunsmotors und Verbrennungsmotor
DE69533558T2 (de) Gaserzeuger für ein energie-erzeugungssystem mit geringer umweltbelastung
EP2621807B1 (fr) Groupe motopropulseur compound moteur diesel-turbine à gaz pour un moyen de transport
CH699804A1 (de) Gasturbinenanlage mit Abgasrückführung sowie Verfahren zum Betrieb einer solchen Anlage.
DE68907191T2 (de) Verfahren und vorrichtung zum optimieren der temperatur der von einer gasturbine angesaugten luft.
DE112009001834T5 (de) System und Verfahren zum Betreiben eines Energieerzeugungssystems mit einem alternativen Arbeitsfluid
DE3881651T2 (de) Gasturbinenprozess.
DE112009001835T5 (de) System und Verfahren zum Betreiben eines Gasturbinenantriebs mit einem alternativen Arbeitsfluid
DE3804906A1 (de) Antriebsvorrichtung fuer luftfahrzeuge
DE112009001807T5 (de) System und Verfahren zum Betreiben eines Gasturbinenantriebs mit einem alternativen Arbeitsfluid
DE102009025914A1 (de) Turbinensystem mit Abgasrückführung und Zwischenüberhitzung
DE3514718A1 (de) Gasturbinentriebwerk und betriebsverfahren
DE10236324A1 (de) Verfahren zum Kühlen von Turbinenschaufeln
DE102006019282A1 (de) Abgasrückführsystem für eine Brennkraftmaschine
DE10307374A1 (de) Verfahren zum Betrieb eines teilgeschlossenen, aufgeladenen Gasturbinenkreislaufs sowie Gasturbinensystem zur Durchführung des Verfahrens
DE102009043721A1 (de) Hubkolbenmaschine im Hochdruckteil einer Gasturbinen-Kombinationsbrennkraftmaschine
EP2614236A1 (fr) Centrale électrique
DE1601624A1 (de) Gasturbinensystem zum Starten von Triebwerken
DE19960762A1 (de) Energiegewinnung aus der Abgaswärme eines Verbrennungsmotors
EP1597463A1 (fr) Procede de realisation de turbines a gaz et installation de turbines a gaz
WO2010000285A1 (fr) Exploitation de l'énergie des gaz d'échappement à l'aide d'un processus de turbine à gaz ouverte
EP1338773B1 (fr) Arrangement d'une turbine à gaz pour le conditionnement d'air
DE102007027725A1 (de) Verfahren und Vorrichtung zur Erzeugung von Nutz-Wärme und/oder Nutz-Kälte
DE102005048329A1 (de) Brennkraftmaschine mit einem Abgasturbolader
DE69109173T2 (de) Hochdruck-Zweiwellengasturbine mit Radialrotoren.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050907

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

R17P Request for examination filed (corrected)

Effective date: 20050907

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080830