EP1585895B1 - Method for calculating pressure fluctuations in a fuel supply system of an internal combustion engine operating with direct injection of fuel and for controlling the injection valves thereof - Google Patents

Method for calculating pressure fluctuations in a fuel supply system of an internal combustion engine operating with direct injection of fuel and for controlling the injection valves thereof Download PDF

Info

Publication number
EP1585895B1
EP1585895B1 EP04704585A EP04704585A EP1585895B1 EP 1585895 B1 EP1585895 B1 EP 1585895B1 EP 04704585 A EP04704585 A EP 04704585A EP 04704585 A EP04704585 A EP 04704585A EP 1585895 B1 EP1585895 B1 EP 1585895B1
Authority
EP
European Patent Office
Prior art keywords
injection
fuel
pressure
fourier
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP04704585A
Other languages
German (de)
French (fr)
Other versions
EP1585895A1 (en
Inventor
Marco Claudio Pio Brunelli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1585895A1 publication Critical patent/EP1585895A1/en
Application granted granted Critical
Publication of EP1585895B1 publication Critical patent/EP1585895B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1429Linearisation, i.e. using a feedback law such that the system evolves as a linear one
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • F02D2041/288Interface circuits comprising means for signal processing for performing a transformation into the frequency domain, e.g. Fourier transformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • F02D2200/0604Estimation of fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/04Fuel pressure pulsation in common rails

Definitions

  • the invention relates to a method for calculating pressure fluctuations in a fuel supply system of a direct fuel injection internal combustion engine and for controlling these injectors.
  • pressure waves are generated by all other actuation processes of the injection valves of the injection system, so that superimpose a plurality of partial pressure waves in the injection system.
  • speed of sound is dependent on the type of fuel (summer diesel, winter diesel, RME diesel) not considered in this method and the fuel temperature, with the said control device for adjusting the injection duration of a fuel injection, the problem caused by the pressure waves in the fuel supply of the cylinder does not sufficiently solved.
  • a compensation device is additionally proposed in which a piezoactuator determines the frequency of a fuel pressure wave by converting the mechanical force exerted on this sensor, converted into an electrical signal and provides a control device available.
  • This control device uses this frequency information and the knowledge about the undisturbed start of injection and the undisturbed injection end of the injector to adjust the level of the injection pressure of the following injection process.
  • a disadvantage of the previously known methods or devices for compensating for the effects of pressure waves in the lines of direct injection fuel injection systems is that they cause increased device costs or is tuned only to a very specific injection system with all its geometric data and other physical constraints and the asked technical Therefore solve the problem only very imperfectly.
  • DE 199 50 222 A1 describes a method with which the defect-free functioning of components of this system should be detectable by Fourier analysis of the fuel pressure in a high-pressure fuel supply system of a direct-injection internal combustion engine. It is not about fuel pressure fluctuations, which are caused primarily or secondarily by a functionally correct operation of the fuel injection valves, but those that arise due to a faulty behavior of components in the fuel supply system.
  • DE 197 40 608 A1 discloses a method for determining at least one fuel-injection-related parameter for an internal combustion engine with common-rail injection system.
  • the pressure in the common engine fuel injection system common to the engine combustion chambers is detected via a respective injection curtain for a respective combustion chamber in its course by means of a pressure sensor of the distributor pressure chamber. From this pressure curve, an associated pressure profile pattern is obtained, from which the at least one fuel-related parameter individually is determined for each combustion chamber and each injection process.
  • the present invention seeks to provide a method for reducing the effects of the pressure waves described above, with the efficiency of the engine further increased and the reliability of the overall system of the internal combustion engine and fuel injection system is improved. This method should also be usable without major changes for different sized fuel injection systems.
  • the method according to the invention is based on the knowledge that the steady-state fuel pressure oscillations occurring in a directly injecting fuel injection system can be reliably described by means of a Fourier analysis.
  • the temporal fluctuations of the fuel pressure and thus the fuel flow with the injection valve open are also not considered for the entire fuel supply system, but only for predetermined fixed points in the line and for given volumes. These points are nodes in a one-dimensional lattice mindset in the injection conduit system and to which the continuum equations are applied to describe the temporal evolution of the system. By definition, the pressure swing analyzes used for these junctions also apply to all other locations in the considered injection system.
  • the time variation of the pressure and / or the volume flow at the junctions can be described by first-order differential equations with time-dependent coefficients. It is legitimately assumed that after a few working cycles of the internal combustion engine, a steady state with respect to the pressure oscillations in the fuel distribution system is present, since the injection timing and injection quantities do not change at a constant engine speed.
  • the dynamics of such a discrete system hitherto assumed to be free from external disturbances, can be more generally represented as a superposition of vibrations at different frequencies, each frequency being a resonant frequency of that system.
  • the fuel injection system is not actually considered an isolated system. Rather, in addition to the typical in an isolated system oscillation also occur in the fuel injection system, which are generated by the external excitation of the valve actuation.
  • the pressure of the fuel will also oscillate at its equilibrium value (the static pressure) with the same period as the external excitation source after a certain excitation time.
  • the time dependence of this oscillation can be calculated using the mathematical method of Fourier transformation.
  • the injection system can be regarded as a high-pressure hydraulic system stabilized after a few operating strokes of the internal combustion engine, in which the geometric properties of the injection and the properties of certain types of fuel are constants.
  • the actuation of the injection valves constitutes an external excitation source for the fuel pressure oscillations in the injection system.
  • the transfer function method In order to determine the fuel pressure oscillations arising in such an injection system, the transfer function method is used, whose response function indicates the sum of the amplitudes and phases of the pressure wave with which it oscillates around the desired pressure in the fuel supply system.
  • the pressure oscillation phases and pressure oscillation amplitudes thus calculated are then compared with desired values of the actuation times, the fuel injection pressure and / or the injection volume.
  • at least one correction value for the originally provided actuation time, the originally provided actuation duration and / or the originally provided injection volume is then calculated from the deviation.
  • at least one of the previous setpoint values is changed by applying a correction value for the next and / or all subsequent injection events to the effect that a compensation of the disadvantages resulting from the fuel pressure oscillation is achieved.
  • X k, 0 denotes the equilibrium value of the component X k of the state variables X for the pressure and the volumetric flow, 1 the number of nonzero components of the state variables of the external excitation F, X k . n i the Fourier components of the amplitude value as well ⁇ k . n i the Fourier components of the phase value between the k th state variable and the ith control variable, f c . n i and ⁇ c . n i the coefficients of the Fourier transform of the control variables i, t the time, T the period of a fuel pressure oscillation, c and s the coefficients of the cosine and sine components and n an integer index value.
  • the geometric parameters of the injection system and / or the properties of the fuel are preferably specified as constants, although these can also be determined by means of suitable measuring devices at predetermined time intervals.
  • X shall be referred to as the vector indicating the pressure and volumetric flow rates at said nodal points of the injection system.
  • the components X k of the vector X are referred to as state variables of the fuel.
  • A is a matrix indicating the geometrical parameters of the system and the fluid properties of the fuel
  • F (t) is the vector of the actuation history of the injectors or, specifically, for example the vector of the injected amount of fluid at the respective injectors.
  • F (t) The components of F (t) are periodic functions and are referred to as control variables, all of which have the same period T and typically have different phase relationships to each other.
  • f i (t) can be considered as a periodic function due to an ith injection process and decomposed into its cosine and sine components.
  • n i 2 T ⁇ - T / 2 T / 2 f i ( t - t i ) cos 2 ⁇ ⁇ n ⁇ t T and f s .
  • n i 2 T ⁇ - T / 2 T / 2 f i ( t - t i ) sin 2 ⁇ ⁇ n ⁇ t T where t i may be needed to shift the range of values of the variability range from f (t) to (-T / 2, T / 2).
  • amplitudes and phases of the oscillations can be calculated between the control variable and the state variable X k at the frequency f n with the formalism of the Fourier transform.
  • the Fourier transform is always calculated numerically, even if in certain cases an approximate analytic expression for certain variables or constants could be given.
  • Each Fourier component of the injected flow thus induces an oscillation of the volumetric flow and the pressure at the considered node whose phase and amplitude are known. Since this system is linear, the time behavior of X k can be considered as the sum of all the contributions of the Fourier components of the control variables.
  • X k, 0 is the equilibrium value of X k and 1 represents the number of nonzero components of F.
  • This equilibrium value X k, 0 is nothing more than the static pressure, under which the fuel is included in the injection system. Around this equilibrium value of the pressure, the pressure wave fluctuates with the cosine and sine components of the excitation oscillation.
  • the values for X k . n i and for ⁇ k . n i are calculated from the Fourier transform between the k th state variable and the ith control variable, while f n i and ⁇ n i are the coefficients of the Fourier transform of the control variables i.
  • the value n indicates the number of addends considered in the calculation.
  • the index s and the index c represent the coefficients of the cosine and sine components.
  • the analytical expression for the forced time response of the pressure and the volume flow to the excitation by the injector operation was tested in a computer program simulating a 4 and a 3-cylinder common-rail injection engine.
  • the injection duration ⁇ t and the maximum volume flow Q inj were set so that the correct injection quantity was available at the considered operating point of the cylinder.
  • the time t a at which the injection of the fuel into the cylinder takes place, was chosen differently for each of the injection valves in such a way that the correct injection order resulted.
  • the cycle time T was also calculated so that the desired engine speed was set.
  • Fig. 2 how well the agreement of the calculated pressure fluctuations between the complex simulation program "Amesim" and the much faster operating and less injection system data required method according to the invention is actually shown in Fig. 2, in which the percentage error between the two calculation methods for a common rail system Connection is shown with a four-cylinder internal combustion engine during a complete injection period with a length of 0.1 second. As this error history shows, this error does not exceed the value of 0.09%, so that a very good agreement between the results of both calculation methods can be found.
  • the proposed method for determining the pressure fluctuations can be used with advantage in control and regulating methods for actuating the injection valves of directly injecting fuel injection systems. These systems can be both common-rail and pump-nozzle injection systems.
  • the correction of the injection times can be calculated analytically with a formula that contains a clear and explicit dependency on the system geometry and the injection characteristic.
  • the frequencies, amplitudes and phases used in this mathematical expression for calculating the pressure fluctuations and for the injection timing and possibly injection duration correction are predetermined a priori by the injection system and need not be determined by constantly repeated measurements.
  • the method is very fast and provides results that are in very good agreement with those of standard hydraulic system simulation tools. Therefore, the calculation time in the simulation of injection operations in stationary operating points of an internal combustion engine can be significantly reduced.
  • this calculation can also be done with a vehicle computer, for example, during the first start-up or at predetermined intervals during operation of the vehicle. In the latter case, it will be preferable to determine only the viscosity of the fuel and to carry out a one-time simulation run.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Pressure fluctuations can occur in internal combustion engines provided with direct fuel injection systems. This increases fuel consumption inter alia and has a negative effect upon exhaust gas properties. The invention provides a method for calculating pressure fluctuations in the fuel supply system, which is used as a basis for controlling the injection valves of the fuel injection system such that the above-mentioned disadvantages do not occur. The invention is based on the perception that the fuel injection system can be described as a closed high-pressure system which is exposed to injection-valve actuation as an external excitation source of fluctuation. Fourier analysis is used to analyse the thus excited liquid pressure fluctuation and correction values are calculated in order to enable the time of injection, duration of injection and/or the injection volume to be modified. The temporal dependency of the liquid pressure and/or liquid volume flow is calculated by means of a separate equation

Description

Die Erfindung betrifft ein Verfahren zur Berechnung von Druckschwankungen in einem Kraftstoffversorgungssystem einer mit Kraftstoff-Direkteinspritzung arbeitenden Brennkraftmaschine und zur Steuerung derer Einspritzventile.The invention relates to a method for calculating pressure fluctuations in a fuel supply system of a direct fuel injection internal combustion engine and for controlling these injectors.

Es ist allgemein bekannt, dass Fahrzeuge mit Brennkraftmaschinen mit direkt einspritzenden Kraftstoffversorgungssystemen bei Kunden immer beliebter werden. Dies liegt vor allem daran, dass diese gegenüber herkömmlichen Brennkraftmaschinen einen deutlich geringeren Kraftstoffverbrauch aufweisen. Hinzu kommt bei Diesel-Brennkraftmaschinen, dass der Dieselkraftstoff kostengünstiger und mittlerweile auch als so genannter Bio-Diesel (RME-Diesel) zu erwerben ist, der aus nachwachsenden Rohstoffen hergestellt wird und daher die CO2-Belastung der Erdatmosphäre nicht weiter vergrößert. Bei solchen direkt einspritzenden Kraftstoffversorgungssystemen wird der beste Wirkungsgrad dann erreicht, wenn der Kraftstoffdruck in dem Einspritzsystem einen konstant hohen Wert hat.It is well-known that vehicles with internal combustion engines with direct-injection fuel supply systems are becoming increasingly popular with customers. This is mainly because they have a much lower fuel consumption compared to conventional internal combustion engines. In addition, in diesel internal combustion engines, the diesel fuel is cheaper and now also known as so-called bio-diesel (RME diesel) to acquire, which is made from renewable resources and therefore does not further increase the CO 2 pollution of the earth's atmosphere. In such direct-injection fuel supply systems, the best efficiency is achieved when the fuel pressure in the injection system has a constant high value.

Bei Diesel-Brennkraftmaschinen kommt neben dem sogenannten Pumpe-Düse-Einspritzsystem vor allem das an sich bekannte Common-Rail-Einspritzsystem zum Einsatz. Zumindest für letzteres sind Mehrfacheinspritzverfahren bekannt, mit denen zur Verbesserung der Gemischaufbereitung und des Verbrennungsprozesses die für einen Arbeitsvorgang in einem Motorzylinder benötigte Kraftstoffmenge in beispielsweise drei Teileinspritzvorgängen eingespritzt wird. Dabei verbessert eine Voreinspritzung insbesondere die Gemischaufbereitung und damit das Einsetzen der Verbrennung während der Haupteinspritzung. Eine Nacheinspritzung von Kraftstoff dient abschließend vor allen der Verbesserung des Abgasverhaltens der Brennkraftmaschine.In diesel internal combustion engines, in addition to the so-called pump-nozzle injection system, in particular the known common-rail injection system is used. At least for the latter are multiple injection known, with which to improve the mixture preparation and the Combustion process, the required for a work operation in an engine cylinder fuel quantity is injected in, for example, three partial injection operations. In this case, a pre-injection improves in particular the mixture preparation and thus the onset of combustion during the main injection. A post-injection of fuel is finally before all the improvement of the exhaust gas performance of the internal combustion engine.

Insbesondere beim Betreiben von solchen Common-Rail-Einspritzsystemen mit Mehrfacheinspritzverfahren treten während der Einspritzvorgänge Druckwellen in den zu den Einspritzdüsen führenden Leitungen auf, die im ungünstigen Fall den Nominalwert des Einspritzdrucks reduzieren und damit den Wirkungsgrad sowie die Zuverlässigkeit des Einspritzsystems der Brennkraftmaschine negativ beeinflussen. So kann es vorkommen, dass während eines Einspritzvorgangs an der Einspritzdüse der erforderliche Soll-Einspritzdruck nicht zur Verfügung steht und daher bei vorgegebenerer Einspritzdauer nicht die gewünschte Kraftstoffmenge eingespritzt wird. Dabei kann es in Abhängigkeit von der Druckwellenphase sowohl zu einer Überversorgung als auch zu einer Unterversorgung mit Kraftstoff sowie zu unterschiedlichen Einspritzdrücken kommen. Dadurch wird die Antriebsleistung sowie das nominale Abgasverhalten der Brennkraftmaschine verschlechtert.In particular, when operating such common rail injection systems with multiple injection occur during the injection processes pressure waves in the lines leading to the injectors, which reduce the nominal value of the injection pressure in an unfavorable case and thus adversely affect the efficiency and reliability of the injection system of the internal combustion engine. Thus, it may happen that during an injection process at the injection nozzle, the required target injection pressure is not available and therefore the desired amount of fuel is not injected at a predetermined injection duration. Depending on the pressure wave phase, this may lead both to an oversupply and to an undersupply of fuel as well as to different injection pressures. As a result, the drive power and the nominal exhaust behavior of the internal combustion engine is deteriorated.

Zur Lösung dieses Problems ist in der nicht vorveröffentlichten DE 102 17 592 vorgeschlagen worden, mittels einer Regelungseinrichtung die Einspritzdauer einer Teileinspritzung an die Phasenlage der Einspritzung im Verhältnis zur Druckwelle anzupassen, so dass zumindest die für einen ungestörten Einspritzvorgang vorgesehene Kraftstoffmenge, wenn auch über eine längere Einspritzdauer in den Zylinder der Brennkraftmaschine eingespritzt wird. Bei diesem Verfahren benötigt man jedoch Kenntnisse über den zeitlichen Verlauf und damit über den Auslöser und die Frequenz der Druckwelle. Der Auslöser der Druckwelle ist zwar durch die vorhergehende Teileinspritzung bekannt, die Frequenz der Druckwelle ist aber abhängig von der Geometrie der Kraftstoffleitung sowie von der Schallgeschwindigkeit der Welle im Kraftstoff.To solve this problem, it has been proposed in the unpublished DE 102 17 592, by means of a control device, to adapt the injection duration of a partial injection to the phase position of the injection in relation to the pressure wave, so that at least the fuel quantity provided for an undisturbed injection process, although it is injected over a longer injection duration in the cylinder of the internal combustion engine. In this method, however, you need knowledge about the time course and thus about the trigger and the frequency of the pressure wave. Although the trigger of the pressure wave is known by the previous partial injection, but the frequency of the pressure wave is dependent on the geometry of the fuel line and the speed of sound of the shaft in the fuel.

Hinzu kommt, dass auch durch alle anderen Betätigungsvorgänge der Einspritzventile des Einspritzsystems Druckwellen erzeugt werden, so dass sich in dem Einspritzsystem eine Vielzahl von Teildruckwellen überlagern. Da zudem die Schallgeschwindigkeit abhängig von der bei diesem Verfahren nicht berücksichtigten Kraftstoffsorte (Sommerdiesel, Winterdiesel, RME-Diesel) sowie der Kraftstofftemperatur ist, wird mit der genannten Regeleinrichtung zur Anpassung der Einspritzdauer einer Kraftstoffteileinspritzung das von den Druckwellen verursachte Problem bei der Kraftstoffversorgung des Zylinders nicht ausreichend gelöst.In addition, pressure waves are generated by all other actuation processes of the injection valves of the injection system, so that superimpose a plurality of partial pressure waves in the injection system. In addition, since the speed of sound is dependent on the type of fuel (summer diesel, winter diesel, RME diesel) not considered in this method and the fuel temperature, with the said control device for adjusting the injection duration of a fuel injection, the problem caused by the pressure waves in the fuel supply of the cylinder does not sufficiently solved.

Andere bekannte Vorkehrungen zur Kompensation von Druckwellen in solchen Kraftstoffeinspritzsystemen betreffen Vorrichtungen, wie beispielsweise die Integration von zusätzlichen Kraftstoffspeichern in der Nähe der Einspritzdüsen oder den Einbau von Drosseln zwischen der Zuleitung und den jeweiligen Einspritzdüsen.Other known provisions for compensation of pressure waves in such fuel injection systems relate to devices such as the integration of additional fuel reservoirs in the vicinity of the injection nozzles or the installation of throttles between the supply line and the respective injection nozzles.

In der genannten DE 102 17 592 wird zudem eine Kompensationsvorrichtung vorgeschlagen, bei der ein Piezo-Aktuator die Frequenz einer Kraftstoffdruckwelle durch Umwandlung der auf diesen Sensor ausgeübten mechanischen Kraft bestimmt, in ein elektrisches Signal umsetzt und einer Regeleinrichtung zur Verfügung stellt. Diese Regelvorrichtung nutzt dann diese Frequenzinformation sowie die Kenntnis über den ungestörten Einspritzbeginn und das ungestörte Einspritzende des Einspritzventils zur Anpassung der Höhe des Einspritzdrucks des folgenden Einspritzvorgangs.In the mentioned DE 102 17 592 a compensation device is additionally proposed in which a piezoactuator determines the frequency of a fuel pressure wave by converting the mechanical force exerted on this sensor, converted into an electrical signal and provides a control device available. This control device then uses this frequency information and the knowledge about the undisturbed start of injection and the undisturbed injection end of the injector to adjust the level of the injection pressure of the following injection process.

Darüber hinaus ist aus der WO 99/47802 ein Verfahren zur Bestimmung der Einspritzzeit bei einer mit Kraftstoff-Direkteinspritzung arbeitenden Brennkraftmaschine bekannt, mit dem die in der Zuleitung zu einem Einspritzventil auftretenden Druckschwankungen während zwei aufeinander folgenden Einspritzvorgängen innerhalb desselben Arbeitsspiels des Zylinders mit einem mathematischen Korrekturterm berücksichtigt werden. Mit dem korrigierten Druckwert werden sodann die Ansteuerzeit für die Einspritzventile verändert, so dass die richtige Kraftstoffmenge eingespritzt wird. Der Korrekturterm wird dabei mittels eines so genannten "Least-Squares-Schätzers" bestimmt, der in Abhängigkeit von den geometrischen Daten des Kraftstoffeinspritzsystems, wie z.B. die Länge der Zuleitung von der gemeinsamen Versorgungsleitung zum Einspritzventil, und den Eigenschaften des Kraftstoffs den wahrscheinlichen Einspritzdruck an der Düse des Einspritzventils schätzt.In addition, from WO 99/47802 a method for determining the injection time in a working with direct fuel injection internal combustion engine, with which occurring in the supply line to an injection valve pressure fluctuations during two consecutive injection operations within the same cycle of the cylinder with a mathematical Korrekturterm be taken into account. With the corrected pressure value, the activation time for the injection valves is then changed, so that the correct amount of fuel is injected. The correction term is determined by means of a so-called "least-squares estimator" which, depending on the geometric data of the fuel injection system, such as e.g. the length of the supply line from the common supply line to the injection valve, and the properties of the fuel estimates the likely injection pressure at the nozzle of the injection valve.

Nachteilig an den bisher bekannten Verfahren oder Vorrichtungen zur Kompensation der Effekte von Druckwellen in den Leitungen von direkt einspritzenden Kraftstoffeinspritzsystemen ist, dass diese erhöhte Vorrichtungskosten verursachen oder nur auf ein ganz bestimmtes Einspritzsystem mit all seinen geometrischen Daten und anderen physikalischen Randbedingungen abgestimmt ist und das gestellte technische Problem daher nur sehr unvollkommen lösen.A disadvantage of the previously known methods or devices for compensating for the effects of pressure waves in the lines of direct injection fuel injection systems is that they cause increased device costs or is tuned only to a very specific injection system with all its geometric data and other physical constraints and the asked technical Therefore solve the problem only very imperfectly.

Zudem beschreibt die DE 199 50 222 A1 ein Verfahren, mit welchem durch Fourier-Analyse des Kraftstoffdrucks in einem Hochdruckkraftstoffversorgungssystem einer direkteinspritzenden Brennkraftmaschine das defektfreie Funktionieren von Komponenten dieses Systems feststellbar sein soll. Dabei geht es nicht um Kraftstoffdruckschwankungen, die primär oder sekundär durch eine funktionsgerechte Betätigung der Kraftstoffeinspritzventile hervorgerufen werden, sondern um solche, die aufgrund eines fehlerhaften Verhaltens von Bauteilen im Kraftstoffversorgungssystem entstehen.In addition, DE 199 50 222 A1 describes a method with which the defect-free functioning of components of this system should be detectable by Fourier analysis of the fuel pressure in a high-pressure fuel supply system of a direct-injection internal combustion engine. It is not about fuel pressure fluctuations, which are caused primarily or secondarily by a functionally correct operation of the fuel injection valves, but those that arise due to a faulty behavior of components in the fuel supply system.

Außerdem offenbart die Druckschrift A.G. Favennec, P. Minier, M. Leburn, Renault/Imagine: "Analysis of the Dynamic Behavior of the Circuit of a Common Rail Direct Injection System", Forth JHPS International Symposium on Fluid Power, Tokyo 1999, 15-17 Nov. 1999, pp 543-548, dass ein Common-Rail-Einspritzsystem mit Hilfe einer Amesim-Software modellhaft beschrieben sowie der Einspritzdruck eines solchen Systems einer Fourier-Analyse unterzogen werden kann.In addition, the publication A.G. Favennec, P. Minier, M. Leburn, Renault / Imagine: "Analysis of the Dynamic Behavior of the Common Rail Direct Injection System", Forth JHPS International Symposium on Fluid Power, Tokyo 1999, 15-17 Nov. 1999, pp 543-548 that a common rail injection system using an Amesim software model described and the injection pressure of such a system can be subjected to a Fourier analysis.

Schließlich ist aus der DE 197 40 608 A1 ein Verfahren zur Bestimmung wenigstens einer kraftstoffeinspritzbezogenen Kenngröße für einen Verbrennungsmotor mit Common-Rail-Einspritzanlage bekannt. Bei diesem Verfahren wird der Druck in dem den Motorbrennräumen gemeinsam zugeordneten Verteilerdruckraum der Common-Rail-Einspritzanlage über einen jeweiligen Einspritzvorhang für einen jeweiligen Brennraum hinweg in seinem Verlauf mittels eines Drucksensors des Verteilerdruckraums erfasst. Aus diesem Druckverlauf wird ein zugehöriges Druckverlaufsmuster gewonnen, aus dem die wenigstens eine kraftstoffbezogene Kenngröße individuell für jeden Brennraum und jeden Einspritzvorgang bestimmt wird.Finally, DE 197 40 608 A1 discloses a method for determining at least one fuel-injection-related parameter for an internal combustion engine with common-rail injection system. In this method, the pressure in the common engine fuel injection system common to the engine combustion chambers is detected via a respective injection curtain for a respective combustion chamber in its course by means of a pressure sensor of the distributor pressure chamber. From this pressure curve, an associated pressure profile pattern is obtained, from which the at least one fuel-related parameter individually is determined for each combustion chamber and each injection process.

Vor diesem Hintergrund liegt der Erfindung die Aufgabe zugrunde, ein Verfahren zur Verminderung der Auswirkungen der eingangs beschriebenen Druckwellen vorzustellen, mit dem der Wirkungsgrad der Brennkraftmaschine weiter erhöht und die Zuverlässigkeit des Gesamtsystems aus Brennkraftmaschine und Kraftstoffeinspritzsystem verbessert wird. Dieses Verfahren soll zudem ohne große Änderungen für unterschiedlich dimensionierte Kraftstoffeinspritzsysteme nutzbar sein.Against this background, the present invention seeks to provide a method for reducing the effects of the pressure waves described above, with the efficiency of the engine further increased and the reliability of the overall system of the internal combustion engine and fuel injection system is improved. This method should also be usable without major changes for different sized fuel injection systems.

Die Lösung dieser Aufgabe ergibt sich aus einem Verfahren mit den Merkmalen des Hauptanspruchs, während vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung den Unteransprüchen entnehmbar sind.The solution to this problem results from a method having the features of the main claim, while advantageous embodiments and further developments of the invention are the dependent claims.

Das erfindungsgemäße Verfahren geht auf die Erkenntnis zurück, dass die in einem direkt einspritzenden Kraftstoffeinspritzsystem auftretenden Kraftstoffdruckschwingungen im eingeschwungenen Zustand zuverlässig mit Hilfe einer Fourier-Analyse beschrieben werden können.The method according to the invention is based on the knowledge that the steady-state fuel pressure oscillations occurring in a directly injecting fuel injection system can be reliably described by means of a Fourier analysis.

Dabei wird zur mathematischen Analyse dieses Schwingungsverhaltens der Druckwelle vorausgesetzt, dass in dem Einspritzsystem keine nichtlinearen Effekte auftreten, oder dass bei einem Auftreten von nichtlinearen Effekten diese liniearisierbar sind. Sofern zum Beispiel das dynamische Verhalten der Kraftstoffeinspritzventile liniearisierbar ist, so kann auch das Ansteuersignal (Piezosignal) für dieses Ventil zur Fourier-Analyse genutzt werden. Zudem wird davon ausgegangen, dass diesem Signal oder speziell dieser Kraftstoffeinspritzrate eine feste Zeitabhängigkeit zugeordnet ist, weshalb dynamischen Einflüsse der Einspritzmenge als Ergebnis des Betätigens des Einspritzventils außer Betracht bleiben. Die Kraftstoffeinspritzmenge ist in dem nachfolgend entwickelten mathematischen Modell daher einfach proportional vom Betätigungszeitpunkt und der Betätigungsdauer des Einspritzventils. Außerdem wird bei den folgenden Betrachtungen davon ausgegangen, dass die Dynamik des Kraftstoffeinspritzsystems von genau festgelegten Arbeitsbedingungen hinsichtlich Einspritzdruck und Motordrehzahl abhängt.For the mathematical analysis of this vibration behavior of the pressure wave, it is assumed that no non-linear effects occur in the injection system, or that these are linearizable when nonlinear effects occur. If, for example, the dynamic behavior of the fuel injection valves is liniearisierbar, so the drive signal (piezo signal) can be used for this valve for Fourier analysis. In addition, it is assumed that this signal or specifically this Fuel injection rate is associated with a fixed time dependence, which is why dynamic influences of the injection quantity as a result of actuation of the injection valve are disregarded. The fuel injection amount in the subsequently developed mathematical model, therefore, is simply proportional to the timing of the operation and duration of the injection valve. In addition, the following considerations assume that the dynamics of the fuel injection system depend on well-defined operating conditions in terms of injection pressure and engine speed.

Die zeitlichen Schwankungen des Kraftstoffdrucks und damit des Kraftstoffvolumenstroms bei geöffnetem Einspritzventil werden zudem nicht für das gesamte Kraftstoffversorgungssystem, sondern nur für vorgegebene feste Punkte im Bereich der Leitungen sowie für vorgegebene Volumina betrachtet. Diese Punkte sind Knoten in einem eindimensionalen Gitter, das gedanklich in dem Einspritzleitungssystem aufgespannt ist und auf das die Kontinuumgleichungen angewendet werden, um die zeitliche Entwicklung des Systems zu beschreiben. Die für diesen Knotenpunkte angestellten Druckschwingungsanalysen gelten definitionsgemäß auch für alle anderen Orte in dem betrachteten Einspritzsystem.The temporal fluctuations of the fuel pressure and thus the fuel flow with the injection valve open are also not considered for the entire fuel supply system, but only for predetermined fixed points in the line and for given volumes. These points are nodes in a one-dimensional lattice mindset in the injection conduit system and to which the continuum equations are applied to describe the temporal evolution of the system. By definition, the pressure swing analyzes used for these junctions also apply to all other locations in the considered injection system.

Unter den o.g. Modellvoraussetzungen kann die zeitliche Veränderung des Drucks und/oder des Volumenstroms an den Knotenpunkten beispielsweise in einem Common-Rail-System durch Differentialgleichungen erster Ordnung mit zeitenabhängigen Koeffizienten beschrieben werden. Dabei wird berechtigter Weise davon ausgegangen, dass nach wenigen Arbeitstakten der Brennkraftmaschine ein eingeschwungener Zustand hinsichtlich der Druckschwingungen in dem Kraftstoffverteilungssystem vorliegt, da sich die Einspritzsteuerzeiten und Einspritzmengen bei konstanter Motordrehzahl nicht ändern. Die Dynamik eines solchen diskreten Systems, das bis hier als frei von externen Störungen angenommen wird, kann ganz allgemein als eine Überlagerung von Schwingungen mit unterschiedlichen Frequenzen darstellt werden, wobei jede Frequenz eine Resonanzfrequenz dieses Systems ist.Under the abovementioned model requirements, the time variation of the pressure and / or the volume flow at the junctions, for example in a common rail system, can be described by first-order differential equations with time-dependent coefficients. It is legitimately assumed that after a few working cycles of the internal combustion engine, a steady state with respect to the pressure oscillations in the fuel distribution system is present, since the injection timing and injection quantities do not change at a constant engine speed. The dynamics of such a discrete system, hitherto assumed to be free from external disturbances, can be more generally represented as a superposition of vibrations at different frequencies, each frequency being a resonant frequency of that system.

Aufgrund des Öffnens und Schließens der Einspritzventile ist das Kraftstoffeinspritzsystem tatsächlich jedoch nicht als isoliertes System zu betrachten. Vielmehr treten in dem Kraftstoffeinspritzsystem neben den in einem isolierten System typischen Oszillation auch solche auf, die durch die externe Anregung der Ventilbetätigung erzeugt werden.However, due to the opening and closing of the injectors, the fuel injection system is not actually considered an isolated system. Rather, in addition to the typical in an isolated system oscillation also occur in the fuel injection system, which are generated by the external excitation of the valve actuation.

Wenn wie hier die externe Anregung periodisch ist, schwingt wegen der überall in dem Kraftstoffeinspritzsystem präsenten Viskosität des Kraftstoffs auch der Druck des Kraftstoffs nach einer gewissen Anregungszeit um seinen Gleichgewichtswert (also dem statischen Druck) mit der gleichen Periode, wie die äußere Anregungsquelle. Die Zeitabhängigkeit dieser Schwingung kann mit der mathematischen Methode der Fourier-Transformation berechnet werden.If, as here, the external excitation is periodic, because of the viscosity of the fuel present throughout the fuel injection system, the pressure of the fuel will also oscillate at its equilibrium value (the static pressure) with the same period as the external excitation source after a certain excitation time. The time dependence of this oscillation can be calculated using the mathematical method of Fourier transformation.

Demnach wird zur Bestimmung einer Korrektursteuerzeit zur Veränderung des Betätigungszeitpunktes und/oder der Betätigungsdauer eines Einspritzventils in einem direkt einspritzenden Kraftstoffeinspritzsystem einer Brennkraftmaschine zunächst davon ausgegangen, dass das Einspritzsystem als ein nach wenigen Arbeitstakten der Brennkraftmaschine eingeschwungenes Hochdruckhydrauliksystem angesehen werden kann, bei dem die geometrischen Eigenschaften des Einspritzsystems und sowie die Eigenschaften von bestimmten Kraftstoffarten als Konstanten gelten. Zudem wird davon ausgegangen, dass die Betätigung der Einspritzventile eine äußere Anregungsquelle für die Kraftstoffdruckschwingungen in dem Einspritzsystem darstellt.Accordingly, in order to determine a correction control time for changing the actuation time and / or the actuation duration of an injection valve in a direct-injection fuel injection system of an internal combustion engine, it is initially assumed that the injection system can be regarded as a high-pressure hydraulic system stabilized after a few operating strokes of the internal combustion engine, in which the geometric properties of the injection and the properties of certain types of fuel are constants. In addition, it is assumed that the actuation of the injection valves constitutes an external excitation source for the fuel pressure oscillations in the injection system.

Zur Bestimmung der in einem solchen Einspritzsystem entstehenden Kraftstoffdruckschwingungen wird die Methode der Transferfunktion angewandt, deren Antwortfunktion die Summe der Amplituden und Phasen der Druckwelle angibt, mit der diese um den Solldruck in dem Kraftstoffversorgungssystem schwingt.In order to determine the fuel pressure oscillations arising in such an injection system, the transfer function method is used, whose response function indicates the sum of the amplitudes and phases of the pressure wave with which it oscillates around the desired pressure in the fuel supply system.

Die so berechneten Druckschwingungsphasen und Druckschwingungsamplituden werden anschließend mit Sollwerten der Betätigungszeitpunkte, des Kraftstoffeinspritzdrucks und/oder des Einspritzvolumens verglichen. Bei Abweichungen der erreichbaren Istwerte im Vergleich zu den genannten Sollwerten wird sodann aus der Abweichung wenigstens ein Korrekturwert für den ursprünglich vorgesehenen Betätigungszeitpunkt, die ursprünglich vorgesehene Betätigungsdauer und/oder das ursprünglich vorgesehene Einspritzvolumen errechnet. Anschließend wird wenigstens einer der genannten bisherigen Sollwerte durch Anwendung eines Korrekturwertes für den nächsten und/oder alle folgenden Einspritzvorgänge dahingehend verändert, dass eine Kompensation der aus der Kraftstoffdruckschwingung entstehenden Nachteile erreicht wird.The pressure oscillation phases and pressure oscillation amplitudes thus calculated are then compared with desired values of the actuation times, the fuel injection pressure and / or the injection volume. In case of deviations of the achievable actual values in comparison to the specified values, at least one correction value for the originally provided actuation time, the originally provided actuation duration and / or the originally provided injection volume is then calculated from the deviation. Subsequently, at least one of the previous setpoint values is changed by applying a correction value for the next and / or all subsequent injection events to the effect that a compensation of the disadvantages resulting from the fuel pressure oscillation is achieved.

Bei diesem Verfahren wird zudem die zeitliche Abhängigkeit des Kraftstoffdrucks und/oder des Kraftstoffvolumenstroms mit Hilfe der Gleichung X k ( t ) = X k , 0 + i = 1 l n = 0 X k , n i ( f c , n i cos ( 2 π n t T + φ c , n i + Φ k , n i ) + f s , n i sin ( 2 π n t T + φ s , n i + Φ k , n i ) )

Figure imgb0001
bestimmt. Die in dieser Gleichung genannten Konstanten und Variablen werden später hergeleitet und daher direkt nachfolgend nur kurz erläutert. So bedeutet Xk,0 den Gleichgewichtswert von der Komponente Xk der Zustandsvariablen X für den Druck und den Volumenstrom, 1 die Anzahl von Nicht-Null-Komponenten der Zustandsvariablen der äußeren Anregung F, X k , n i
Figure imgb0002
die Fourier-Komponenten des Amplitudenwertes sowie Φ k , n i
Figure imgb0003
die Fourier-Komponenten des Phasenwertes zwischen der k-ten Zustandsvariablen und der i-ten Steuerungsvariablen, f c , n i
Figure imgb0004
und φ c , n i
Figure imgb0005
die Koeffizienten der Fourier-Transformation der Steuerungsvariablen i, t die Zeit, T die Periode einer Kraftstoffdruckschwingung, c und s die Koeffizienten der Kosinus- und Sinusanteile sowie n einen ganzzahligen Indexwert.In this method, moreover, the time dependence of the fuel pressure and / or the fuel volume flow with the aid of the equation X k ( t ) = X k . 0 + Σ i = 1 l Σ n = 0 X k . n i ( f c . n i cos ( 2 π n t T + φ c . n i + Φ k . n i ) + f s . n i sin ( 2 π n t T + φ s . n i + Φ k . n i ) )
Figure imgb0001
certainly. The constants and variables mentioned in this equation are derived later and therefore only briefly explained below. Thus, X k, 0 denotes the equilibrium value of the component X k of the state variables X for the pressure and the volumetric flow, 1 the number of nonzero components of the state variables of the external excitation F, X k . n i
Figure imgb0002
the Fourier components of the amplitude value as well Φ k . n i
Figure imgb0003
the Fourier components of the phase value between the k th state variable and the ith control variable, f c . n i
Figure imgb0004
and φ c . n i
Figure imgb0005
the coefficients of the Fourier transform of the control variables i, t the time, T the period of a fuel pressure oscillation, c and s the coefficients of the cosine and sine components and n an integer index value.

Ein konkretes Steuerungsverfahren kann dabei folgende Verfahrensschritte umfassen:

  • Bestimmen von geometrischen Parametern des Einspritzsystems,
  • Bestimmen von Eigenschaften des Kraftstoffs,
  • Bestimmen der Zustandsvariablen F(t) der äußeren Anregungsquelle (z.B. Einspritzventilbetätigung; eingespritzte Kraftstoffmenge),
  • Fourier-Entwicklung der i-ten Komponente der Zustandsvariablen F(t),
  • Berechnen der Amplitude und Phase der Druckschwingung in dem Einspritzsystem durch Anwendung der Fourier-Transformation,
  • Korrektur des Einspritzzeitpunktes und/oder der Betätigungsdauer für das jeweilige Einspritzventil derart, dass unter Beachtung der berechneten Amplitude und Phase der Druckschwingung der gewünschte Einspritzdruck und/oder die gewünschte Einspritzmenge für die jeweiligen Einspritzventile eingehalten wird.
A concrete control method can include the following method steps:
  • Determining geometric parameters of the injection system,
  • Determining properties of the fuel,
  • Determining the state variable F (t) of the external excitation source (eg injector actuation, injected fuel quantity),
  • Fourier evolution of the ith component of the state variable F (t),
  • Calculating the amplitude and phase of the pressure oscillation in the injection system by applying the Fourier transformation,
  • Correction of the injection time and / or the actuation duration for the respective injection valve such that the desired injection pressure and / or the desired injection quantity for the respective injection valves is maintained, taking into account the calculated amplitude and phase of the pressure oscillation.

Die geometrischen Parameter des Einspritzsystems und/oder die Eigenschaften des Kraftstoffs sind dabei vorzugsweise als Konstanten vorgegeben, wenngleich diese auch mittels geeigneter Messvorrichtungen in vorgegebenen Zeitabständen bestimmt werden können.The geometric parameters of the injection system and / or the properties of the fuel are preferably specified as constants, although these can also be determined by means of suitable measuring devices at predetermined time intervals.

Zur Berechnung der Druck- und/oder Volumenstromschwankungen in dem Kraftstoffeinspritzsystem soll X als der Vektor bezeichnet werden, der die Druck- und des Volumenstromwerte an den genannten Knotenpunkten des Einspritzsystems angibt. Die Komponenten Xk von dem Vektor X werden als Zustandsvariablen des Kraftstoffs bezeichnet. Für die Ableitung des Vektors X nach der Zeit gilt dann d x d t = A x + F ( t )

Figure imgb0006

worin A eine Matrix ist, die die geometrischen Parameter des Systems und die Flüssigkeitseigenschaften des Kraftstoffs angibt, während F(t) der Vektor des Betätigungsverlaufs der Einspritzventile oder speziell betrachtet z.B. der Vektor der eingespritzten Flüssigkeitsmenge an den jeweiligen Einspritzventilen ist.To compute the pressure and / or volumetric flow fluctuations in the fuel injection system, X shall be referred to as the vector indicating the pressure and volumetric flow rates at said nodal points of the injection system. The components X k of the vector X are referred to as state variables of the fuel. For the derivation of the vector X after the time then applies d x d t = A x + F ( t )
Figure imgb0006

where A is a matrix indicating the geometrical parameters of the system and the fluid properties of the fuel, while F (t) is the vector of the actuation history of the injectors or, specifically, for example the vector of the injected amount of fluid at the respective injectors.

Die Komponenten von F(t) sind periodische Funktionen und werden als Steuerungsvariablen bezeichnet, die alle die gleiche Periode T aufweisen und in der Regel unterschiedliche Phasenlagen zueinander haben.The components of F (t) are periodic functions and are referred to as control variables, all of which have the same period T and typically have different phase relationships to each other.

Die Fourier-Entwicklung der i-ten Komponente von F(t) ist f i ( t ) = n = 0 f c , n i cos ( 2 π n t T + φ n , c i ) + f s , n i sin ( 2 π n t T + φ n , s i )

Figure imgb0007

wobei f i (t) als periodische Funktion angesehen werden kann, die auf einen i-ten Einspritzvorgang zurückzuführen ist und in ihre Kosinus- und Sinus-Komponenten zerlegt ist.The Fourier evolution of the ith component of F (t) is f i ( t ) = Σ n = 0 f c . n i cos ( 2 π n t T + φ n . c i ) + f s . n i sin ( 2 π n t T + φ n . s i )
Figure imgb0007

where f i (t) can be considered as a periodic function due to an ith injection process and decomposed into its cosine and sine components.

Die Fourier-Komponenten der Anregung sind dabei bestimmt durch f c , n i = 2 T T / 2 T / 2 f i ( t t i ) cos 2 π n t T

Figure imgb0008
und f s , n i = 2 T T / 2 T / 2 f i ( t t i ) sin 2 π n t T
Figure imgb0009

wobei ti gegebenenfalls benötigt wird, um den Wertebereich des Variabilitätsbereiches von f(t) bis (-T/2, T/2) zu verschieben.The Fourier components of the excitation are determined by f c . n i = 2 T - T / 2 T / 2 f i ( t - t i ) cos 2 π n t T
Figure imgb0008
and f s . n i = 2 T - T / 2 T / 2 f i ( t - t i ) sin 2 π n t T
Figure imgb0009

where t i may be needed to shift the range of values of the variability range from f (t) to (-T / 2, T / 2).

Mit der Haupttheorie der linearen Differentialgleichungen kann gezeigt werden, dass eine sinusförmige Anregung einer Steuerungsvariablen mit der Frequenz von fn= n/T bei einem Systemgleichgewicht in der k-ten Komponente Xk von X eine sinusförmige Schwingung mit einer Amplitude Xk,n und mit einer Phase Φ k,n induziert. Dieser Zusammenhang kann ausgedrückt werden durch: f n X k , n , Φ k , n

Figure imgb0010
With the main theory of linear differential equations it can be shown that a sinusoidal excitation of a control variable with the frequency of f n = n / T at one System equilibrium in the k-th component X k of X a sinusoidal oscillation with an amplitude X k, n and with a phase Φ k, n induced. This relationship can be expressed by: f n X k . n . Φ k . n
Figure imgb0010

Diese Amplituden und Phasen der Schwingungen können zwischen der Steuerungsvariablen und der Zustandsvariablen Xk bei der Frequenz fn mit dem Formalismus der Fourier-Transformation berechnet werden. Die Fourier-Transformation wird dabei immer numerisch berechnet, selbst wenn in bestimmten Fällen ein angenäherter analytischer Ausdruck für bestimmte Variablen oder Konstanten gegeben sein könnte.These amplitudes and phases of the oscillations can be calculated between the control variable and the state variable X k at the frequency f n with the formalism of the Fourier transform. The Fourier transform is always calculated numerically, even if in certain cases an approximate analytic expression for certain variables or constants could be given.

Jede Fourier-Komponente der eingespritzten Strömung induziert auf diese Weise eine Schwingung des Volumenstroms und des Drucks an dem betrachteten Knotenpunkt, deren Phase und Amplitude bekannt sind. Da dieses System linear ist, kann das Zeitverhalten von Xk als die Summe von allen Beiträgen der Fourier-Komponenten der Steuerungsvariablen betrachtet werden.Each Fourier component of the injected flow thus induces an oscillation of the volumetric flow and the pressure at the considered node whose phase and amplitude are known. Since this system is linear, the time behavior of X k can be considered as the sum of all the contributions of the Fourier components of the control variables.

Die eingangs schon erwähnte zeitliche Abhängigkeit Xk(t) des Kraftstoffdrucks und/oder des Volumenstroms an einem Knotenpunkt in dem Einspritzsystem ist daher gegeben durch X k ( t ) = X k , 0 + i = 1 l n = 0 X k , n i ( f c , n i cos ( 2 π n t T + φ c , n i + Φ k , n i ) + f s , n i sin ( 2 π n t T + φ s , n i + Φ k , n i ) )

Figure imgb0011

worin Xk,0 der Gleichgewichtswert von Xk ist und 1 für die Anzahl von Nicht-Null-Komponenten von F steht. Dieser Gleichgewichtswert Xk,0 ist dabei nichts anderes als der statische Druck, unter dem der Kraftstoff in dem Einspritzsystem eingeschlossen ist. Um diesen Gleichgewichtswert des Drucks schwankt die Druckwelle mit den Kosinus- und Sinusanteilen der Anregungsschwingung.The already mentioned time dependence X k (t) of the fuel pressure and / or the volume flow at a node in the injection system is therefore given by X k ( t ) = X k . 0 + Σ i = 1 l Σ n = 0 X k . n i ( f c . n i cos ( 2 π n t T + φ c . n i + Φ k . n i ) + f s . n i sin ( 2 π n t T + φ s . n i + Φ k . n i ) )
Figure imgb0011

where X k, 0 is the equilibrium value of X k and 1 represents the number of nonzero components of F. This equilibrium value X k, 0 is nothing more than the static pressure, under which the fuel is included in the injection system. Around this equilibrium value of the pressure, the pressure wave fluctuates with the cosine and sine components of the excitation oscillation.

Die Werte für X k , n i

Figure imgb0012
und für Φ k , n i
Figure imgb0013
werden aus der Fourier-Transformation zwischen der k-ten Zustandsvariablen und der i-ten Steuerungsvariablen berechnet, während f n i
Figure imgb0014
und Φ n i
Figure imgb0015
die Koeffizienten der Fourier-Transformation der Steuerungsvariablen i sind. Der Wert n gibt die Zahl des bei der Berechnung jeweils berücksichtigten Summanden an. Der Index s sowie der Index c stellen die Koeffizienten der Kosinus- und der Sinusanteile dar.The values for X k . n i
Figure imgb0012
and for Φ k . n i
Figure imgb0013
are calculated from the Fourier transform between the k th state variable and the ith control variable, while f n i
Figure imgb0014
and Φ n i
Figure imgb0015
are the coefficients of the Fourier transform of the control variables i. The value n indicates the number of addends considered in the calculation. The index s and the index c represent the coefficients of the cosine and sine components.

Dabei wird zur mathematischen Analyse dieses Schwingungsverhaltens der Druckwelle vorausgesetzt, dass in dem Einspritzsystem keine nichtlinearen Effekte auftreten oder dass bei einem Auftreten von nichtlinearen Effekten diese liniearisierbar sind. Sofern zum Beispiel das dynamische Verhalten der Kraftstoffeinspritzventile liniearisierbar ist, so kann auch das Ansteuersignal (Piezosignal) für dieses Ventil zur Fourier-Analyse genutzt werden. Zudem wird davon ausgegangen, dass diesem Signal oder speziell dieser Kraftstoffeinspritzrate eine feste Zeitabhängigkeit zugeordnet ist, weshalb dynamische Einflüsse der Einspritzmenge als Ergebnis des Betätigens des Einspritzventils außer Betracht bleiben. Die Kraftstoffeinspritzmenge ist in dem verwendeten mathematischen Modell daher einfach proportional vom Betätigungszeitpunkt und der Betätigungsdauer des Einspritzventils. Außerdem wird davon ausgegangen, dass die Dynamik des Kraftstoffeinspritzsystems von genau festgelegten Arbeitsbedingungen hinsichtlich Einspritzdruck und Motordrehzahl abhängt.For the mathematical analysis of this vibration behavior of the pressure wave, it is assumed that no non-linear effects occur in the injection system or that these are linearizable when nonlinear effects occur. If, for example, the dynamic behavior of the fuel injection valves is liniearisierbar, so the drive signal (piezo signal) can be used for this valve for Fourier analysis. In addition, it is assumed that this signal or specifically this fuel injection rate is assigned a fixed time dependency, for which reason dynamic influences of the injection quantity as a result of actuation of the injection valve are disregarded. The fuel injection amount is therefore simply proportional in the mathematical model used from the time of actuation and the duration of operation of the injector. It is also believed that the dynamics of the fuel injection system depend on well-defined operating conditions in terms of injection pressure and engine speed.

Mit der beschriebenen mathematischen Funktion [Gl. 7] wurde eine Vergleichsrechnung durchgeführt, mit der die Richtigkeit der Überlegungen dahingehend bestätigt werden konnte, dass sich das Kraftstoffeinspritzsystem im eingeschwungenen Zustand hinsichtlich der dort auftretenden Druckschwingungen durch eine Fourier-Analyse zuverlässig beschreiben lässt. Dabei wurde zunächst ein computergestütztes Simulationssystem Namens "Amesim" mit allen notwenigen Daten über ein zu untersuchendes Common-Rail-Kraftstoffeinspritzsystem versorgt, zu denen neben den konkreten geometrischen Angaben zu der Kraftstoffleitungsgeometrie auch die Eigenschaften der Einspritzventile, deren Betätigungsfolgen und Betätigungszeiträume, der Betätigungssolldruck sowie die Eigenschaften des verwendeten Kraftstoffs eingegeben wurden. Anschließend wurde mit diesen Daten ein Programmlauf in einem Computer durchgeführt und die errechneten Druckschwankungen im Kraftstoff u.a. in graphischer Form ausgegeben.With the described mathematical function [Eq. 7] was carried out a comparative calculation, with the accuracy of the considerations could be confirmed to the effect that the fuel injection system can be reliably described in the steady state with respect to the pressure oscillations occurring there by a Fourier analysis. First, a computer-aided simulation system called "Amesim" was supplied with all the necessary data on a common rail fuel injection system to be examined, in addition to the specific geometric information on the fuel line geometry and the properties of the injectors, their operating sequences and operating periods, the actuation target pressure and the Properties of the fuel used were entered. Subsequently, with this data, a program run was performed in a computer and the calculated pressure fluctuations in the fuel u.a. output in graphic form.

Konkret wurde der analytische Ausdruck für die erzwungene Zeitantwort des Drucks und des Volumenstroms auf die Anregung durch die Einspritzventilbetätigung in einem Computerprogramm getestet, mit dem eine 4- und eine 3-Zylinder-Brennkraftmaschine mit Common-Rail-Einspritzsystem simuliert wurde. Der eingespritzte Kraftstoffvolumenstrom Q(t) während einer Einspritzzyklusdauer T wurde als Treppenfunktion vorgegeben, für die die folgenden Beziehungen gelten: Q ( t ) = 0   bei    0 < t < t a

Figure imgb0016
Q ( t ) = Q inj   bei  t a < t < t a + Δ t
Figure imgb0017
Q ( t ) = 0    bei   t a + Δ t < t < T
Figure imgb0018

wobei t für die zwischen zwei Einspritzvorgängen am selben Einspritzventil vergangene Zeit, Δt für die Einspritzdauer und Qinj für den maximalen Kraftstoffvolumenstrom am Einspritzventil steht. Die Einspritzdauer Δt und der maximale Volumenstrom Qinj wurden dabei so eingestellt, dass die richtige Einspritzmenge am betrachteten Arbeitspunkt des Zylinders zur Verfügung stand. Der Zeitpunkt ta, zu dem die Einspritzung des Kraftstoffs in den Zylinder erfolgt, wurde für jeden der Einspritzventile derart unterschiedlich gewählt, dass sich die richtige Einspritzreihenfolge ergab. Die Zyklusdauer T wurde zudem so berechnet, dass sich die gewünschte Motordrehzahl einstellte.Concretely, the analytical expression for the forced time response of the pressure and the volume flow to the excitation by the injector operation was tested in a computer program simulating a 4 and a 3-cylinder common-rail injection engine. The injected fuel flow rate Q (t) during an injection cycle duration T has been specified as a step function, for which the following relationships apply: Q ( t ) = 0 at 0 < t < t a
Figure imgb0016
Q ( t ) = Q inj at t a < t < t a + Δ t
Figure imgb0017
Q ( t ) = 0 at t a + Δ t < t < T
Figure imgb0018

where t is the time elapsed between two injections on the same injection valve, .DELTA.t for the injection duration and Q inj for the maximum fuel flow rate at the injection valve. In this case, the injection duration Δt and the maximum volume flow Q inj were set so that the correct injection quantity was available at the considered operating point of the cylinder. The time t a , at which the injection of the fuel into the cylinder takes place, was chosen differently for each of the injection valves in such a way that the correct injection order resulted. The cycle time T was also calculated so that the desired engine speed was set.

Die der Beschreibung beigefügte Zeichnung zeigt in

Fig. 1
den Verlauf des Kraftstoffdrucks berechnet mit dem Simulationsprogramm "Amesin" für ein Common-Rail-Einspritzsystem, sowie Druckwerte, die mit der erfindungsgemäßen Fourier-Transformations-Methode berechnet wurden, und in
Fig. 2
den graphisch aufgetragenen prozentualen Fehler zwischen den in Fig. 1 dargestellten Druckverläufen der Vergleichsberechnungen.
The accompanying drawings show in
Fig. 1
the course of the fuel pressure calculated with the simulation program "Amesin" for a common rail injection system, as well as pressure values, which were calculated with the Fourier transform method according to the invention, and in
Fig. 2
the graphically plotted percentage error between the pressure curves of the comparison calculations shown in FIG.

Dabei ist in Fig. 1 deutlich erkennbar, dass der Verlauf des Kraftstoffdrucks bei einer Motordrehzahl von 1.250 U/min wie zuvor beschrieben um den in dem Einspritzsystem in der Simulation als konstant vorgegebenen Druck von 600 Bar oszilliert und über den hier analysierten Zeitraum von 5 Millisekunden einen Schwankungsbereich von 575 Bar bis 628 Bar aufweist.It can be seen clearly in FIG. 1 that the course of the fuel pressure at an engine speed of 1,250 rpm as previously described is that in the injection system oscillates in the simulation as a constant predetermined pressure of 600 bar and has a fluctuation range of 575 bar to 628 bar over the period of 5 milliseconds analyzed here.

Während die durchgezogene Druckverlauflinie durch das genannte Simulationssystem "Amesim" errechnet wurde, stellen die einzelnen Messpunkte die Ergebnisse aus der erfindungsgemäßen Druckberechnung mittels der Fourier-Analyse und der Fourier-Transformation dar. Schon der einfache graphische Vergleich zeigt, dass die Berechnungsergebnisse sehr dicht beieinander liegen.While the continuous pressure curve line was calculated by the said simulation system "Amesim", the individual measuring points represent the results from the pressure calculation according to the invention by means of the Fourier analysis and the Fourier transformation. Even the simple graphical comparison shows that the calculation results are very close to each other ,

Wie gut die Übereinstimmung der berechneten Druckschwankungen zwischen dem aufwendigen Simulationsprogramm "Amesim" und dem sehr viel schneller arbeitenden und weniger Einspritzsystemdaten benötigenden erfindungsgemäßen Verfahren tatsächlich ist zeigt Fig. 2, in der der prozentuale Fehler zwischen den beiden Berechnungsmethoden für ein Common-Rail-System in Verbindung mit einer vierzylindrigen Brennkraftmaschine während einer vollständigen Einspritzperiode mit einer Länge von 0,1 Sekunde dargestellt ist. Wie dieser Fehlerverlauf zeigt, überschreitet dieser Fehler in keinem Fall den Wert von 0,09%, womit eine sehr gute Übereinstimmung zwischen den Ergebnissen beider Berechnungsmethoden festgestellt werden kann.How well the agreement of the calculated pressure fluctuations between the complex simulation program "Amesim" and the much faster operating and less injection system data required method according to the invention is actually shown in Fig. 2, in which the percentage error between the two calculation methods for a common rail system Connection is shown with a four-cylinder internal combustion engine during a complete injection period with a length of 0.1 second. As this error history shows, this error does not exceed the value of 0.09%, so that a very good agreement between the results of both calculation methods can be found.

Die vorgeschlagene Methode zur Bestimmung der Druckschwankungen ist mit Vorteil in Steuerungs- und Regelungsverfahren zur Betätigung der Einspritzventile von direkt einspritzenden Kraftstoffeinspritzsystemen nutzbar. Diese Systeme können dabei sowohl Common-Rail- als auch Pumpe-Düse-Einspritzsysteme sein.The proposed method for determining the pressure fluctuations can be used with advantage in control and regulating methods for actuating the injection valves of directly injecting fuel injection systems. These systems can be both common-rail and pump-nozzle injection systems.

Von besonderem Vorteil bei dem erfindungsgemäßen Berechnungsverfahren ist, dass die Korrektur der Einspritzzeitpunkte analytisch mit einer Formel berechnet werden kann, die eine klare und explizite Abhängigkeit von der Systemgeometrie und der Einspritzcharakteristik enthält. Die Frequenzen, Amplituden und Phasen, die in diesem mathematischen Ausdruck zur Berechnung der Druckschwankungen und für die Einspritzzeitpunkt- und gegebenenfalls Einspritzdauerkorrektur verwendet werden, sind a priori durch das Einspritzsystem vorgegeben und müssen nicht durch ständig wiederholte Messungen bestimmt werden.Of particular advantage in the inventive calculation method is that the correction of the injection times can be calculated analytically with a formula that contains a clear and explicit dependency on the system geometry and the injection characteristic. The frequencies, amplitudes and phases used in this mathematical expression for calculating the pressure fluctuations and for the injection timing and possibly injection duration correction are predetermined a priori by the injection system and need not be determined by constantly repeated measurements.

Insgesamt ist die Methode sehr schnell und liefert Ergebnisse, die in sehr guter Übereinstimmung mit denen der Standard-Mittel für die Simulation von Hydrauliksystemen zur Verfügung stehen. Daher kann die Berechnungszeit bei der Simulation von Einspritzvorgängen in stationären Arbeitspunkten einer Brennkraftmaschine erheblich reduziert werden.Overall, the method is very fast and provides results that are in very good agreement with those of standard hydraulic system simulation tools. Therefore, the calculation time in the simulation of injection operations in stationary operating points of an internal combustion engine can be significantly reduced.

Bei ausreichend hoher Rechnerleistung kann diese Berechnung auch mit einem Fahrzeugcomputer beispielsweise bei der ersten Inbetriebnahme oder in vorbestimmten Abständen während des Betriebs des Fahrzeuges erfolgen. In letzterem Fall wird vorzugsweise lediglich die Viskosität des Kraftstoffs festzustellen und ein einmaliger Simulationslauf durchzuführen sein.With sufficiently high computing power, this calculation can also be done with a vehicle computer, for example, during the first start-up or at predetermined intervals during operation of the vehicle. In the latter case, it will be preferable to determine only the viscosity of the fuel and to carry out a one-time simulation run.

Claims (5)

  1. Method for calculating pressure fluctuations in a fuel supply system of an internal combustion engine operating with direct fuel injection and for control of its injection valves,
    in which the fuel supply system is defined as a high-pressure hydraulic system synchronized after a few operating cycles of the internal combustion engine,
    in which the geometrical characteristics of the fuel supply system and also the fuel properties for a specific type of fuel are specified as constants or are defined,
    in which the actuation of the injection valves represents an external source of excitation for fuel pressure fluctuations in the injection system,
    in which the method of Fourier analysis is applied to fuel pressure fluctuations arising in such an injection system,
    in which the response function of the Fourier analysis specifies the phases and the amplitude of the pressure fluctuation components at which the pressure fluctuation phases and pressure fluctuation amplitudes are compared with required values of the activation points of the fuel-injection pressure and/or of the injection volume for activating the fuel-injection valves,
    in which on deviation of the achievable actual values compared to the given required values, the envisaged activation duration and/or the injection volume is calculated from the deviation of the least one correction value for the originally intended activation point,
    in which at least one of the stated previous required values is changed by application of the correction value for the next and/or all subsequent injection processes to the extent that a compensation for the disadvantages arising from the fuel pressure fluctuation is achieved and in which the time dependency of the pressure and/or the volume flow is determined with the equation X k ( t ) = X k , 0 + i = 1 l n = 0 X k , n i ( f c , n i cos ( 2 π n t T + φ c , n i + Φ k , n i ) + f s , n i sin ( 2 π n t T + φ s , n i + Φ k , n i ) )
    Figure imgb0029

    in which Xk,0 stands for the equilibrium value of the component Xk of the status variable X for the pressure and the volume stream, 1 for the number of non-zero components of the status variable of the external excitation F, X k , n i
    Figure imgb0030
    for the Fourier components of the amplitude value and Φ k , n i
    Figure imgb0031
    for the Fourier components of the phase value between the kth status variables and the ith control variables, f c , n i
    Figure imgb0032
    and φ c , n 1
    Figure imgb0033
    means the coefficients of the Fourier transformation of the control variables I, as well as t for the time, T for the period of a fuel pressure fluctuation, c and s for the coefficients of the cosine and sine components as well as n for an integer index value.
  2. Method according to claim 1, characterized by following steps:
    - Determining geometrical parameters of the injection system,
    - Determining properties of the fuel,
    - Determining the status variables F(t) of the external excitation (e.g. injection valve actuation; injected fuel volume),
    - Fourier development of the ith component of the status variable F(t),
    - Calculating the amplitude and phase of the fuel pressure fluctuation in the fuel supply system by application of Fourier transformation,
    - Correction of the injection point and/or the injection period for the relevant injection valve such that, taking into account the calculated amplitude and phase of the pressure fluctuation, the desired injection pressure and/or the desired injection volume can be maintained for the relevant injection valves.
  3. Method according to claim 2, characterized in that the geometrical parameters of the injection system and/or the properties of the fuel are specified as constants and/or determined by means of measuring devices at defined intervals.
  4. Method in accordance with at least one of the previous claims, characterized in that the Fourier development of the ith component of the status variable F(t) of the injected fuel quantity is produced by the equation f i ( t ) = n = 0 f c , n i cos ( 2 π n t T + φ n , c i ) + f s , n i sin ( 2 π n t T + φ n , s i )
    Figure imgb0034
    with f c , n i
    Figure imgb0035
    and f s , n i
    Figure imgb0036
    as Fourier coefficients, I as the ith injection process, t as the time, T as the period of an injection pressure fluctuation, c and s as coefficients of the cosine and sine components as well as n as an integer index value.
  5. Method according to claim 4, characterized in that the Fourier coefficients are formed by f c , n i = 2 T T / 2 T / 2 i ( t t 1 ) cos 2 π n t T
    Figure imgb0037
    and f s , n i = 2 T T / 2 T / 2 i ( t t 1 ) sin 2 π n t T
    Figure imgb0038
EP04704585A 2003-01-24 2004-01-23 Method for calculating pressure fluctuations in a fuel supply system of an internal combustion engine operating with direct injection of fuel and for controlling the injection valves thereof Expired - Fee Related EP1585895B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE2003102806 DE10302806B4 (en) 2003-01-24 2003-01-24 Method for calculating pressure fluctuations in a fuel supply system of an internal combustion engine working with direct fuel injection and for controlling its injection valves
DE10302806 2003-01-24
PCT/EP2004/000581 WO2004065775A1 (en) 2003-01-24 2004-01-23 Method for calculating pressure fluctuations in a fuel supply system of an internal combustion engine operating with direct injection of fuel and for controlling the injection valves thereof

Publications (2)

Publication Number Publication Date
EP1585895A1 EP1585895A1 (en) 2005-10-19
EP1585895B1 true EP1585895B1 (en) 2006-05-24

Family

ID=32694957

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04704585A Expired - Fee Related EP1585895B1 (en) 2003-01-24 2004-01-23 Method for calculating pressure fluctuations in a fuel supply system of an internal combustion engine operating with direct injection of fuel and for controlling the injection valves thereof

Country Status (3)

Country Link
EP (1) EP1585895B1 (en)
DE (1) DE10302806B4 (en)
WO (1) WO2004065775A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107013352A (en) * 2016-01-27 2017-08-04 丰田自动车株式会社 The control device of internal combustion engine

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004057963A1 (en) * 2004-12-01 2006-06-08 Robert Bosch Gmbh Method and device for exciting pressure fluctuations in a fuel supply system of an internal combustion engine
DE102005056704B4 (en) * 2005-11-28 2013-05-29 Continental Automotive Gmbh A method for achieving a scheduled injection amount of fuel in an internal combustion engine
DE102006033459B3 (en) * 2006-07-19 2007-10-31 Siemens Ag Operating method for IC engines with fuel injection valves comprises determining point at which pressure fluctuations in fuel appear and calculating period from start of injection, correction being used to derive corrected injection time
DE102006034514B4 (en) * 2006-07-26 2014-01-16 Mtu Friedrichshafen Gmbh Method for controlling an internal combustion engine
DE102007045606B3 (en) 2007-09-25 2009-02-26 Mtu Friedrichshafen Gmbh Method for controlling and regulating internal combustion engine with common rail system, involves filtering individual accumulator pressure within time frame in measuring interval after end of injection of main injection
DE102007060768B4 (en) 2007-12-17 2024-06-13 Robert Bosch Gmbh Methods for drift detection and drift compensation of injectors
DE102010001387A1 (en) * 2010-01-29 2011-08-04 Robert Bosch GmbH, 70469 Method and device for testing a fuel injector
DE102010029064A1 (en) * 2010-05-18 2011-11-24 Robert Bosch Gmbh Method for monitoring fuel injection valve of injection device of internal combustion engine, involves carrying out opening and closing events by periodic pressurization when periodic change of pressure is detected in line
DE102010030545B4 (en) * 2010-06-25 2016-12-08 Continental Automotive Gmbh Method for controlling a fuel injection system of an internal combustion engine
US8608127B2 (en) 2011-01-24 2013-12-17 Fluke Corporation Piezoelectric proportional control valve
GB2523318A (en) * 2014-02-19 2015-08-26 Gm Global Tech Operations Inc Method of operating an internal combustion engine
DE102014225530A1 (en) * 2014-12-11 2016-06-16 Robert Bosch Gmbh Method for operating a fuel injector
DE102015111209B4 (en) * 2015-07-10 2017-02-16 Denso Corporation Technique for detecting pressure changes in a fuel supply system as a result of pumping
DE102015226138B3 (en) * 2015-12-21 2016-12-29 Continental Automotive Gmbh Method for determining the composition of the fuel used to operate an internal combustion engine
DE102017209386B4 (en) * 2017-06-02 2024-05-08 Vitesco Technologies GmbH Method for determining the current trim of the intake tract of an internal combustion engine during operation
CN113062811B (en) * 2021-03-08 2022-02-22 哈尔滨工程大学 Method for identifying key time characteristics of oil injection process according to frequency spectrum characteristics of pressure signal at inlet of oil injector

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19740608C2 (en) * 1997-09-16 2003-02-13 Daimler Chrysler Ag Method for determining a fuel injection-related parameter for an internal combustion engine with high-pressure accumulator injection system
DE59901733D1 (en) * 1998-03-16 2002-07-18 Siemens Ag METHOD FOR DETERMINING THE INJECTION TIME OF A DIRECTLY INJECTING INTERNAL COMBUSTION ENGINE
DE19950222A1 (en) * 1999-10-19 2001-04-26 Bosch Gmbh Robert Procedure for diagnosis of fuel supply system of IC engine has recording of variation of fuel pressure in system, formation of frequency spectrum of fuel pressure variation and analysis thereof
DE10055192C2 (en) * 2000-11-07 2002-11-21 Mtu Friedrichshafen Gmbh Concentricity control for diesel engines
DE10217592A1 (en) * 2002-04-19 2003-11-06 Siemens Ag Injector for the injection of fuel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107013352A (en) * 2016-01-27 2017-08-04 丰田自动车株式会社 The control device of internal combustion engine
CN107013352B (en) * 2016-01-27 2020-01-03 丰田自动车株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
DE10302806B4 (en) 2004-12-09
WO2004065775A1 (en) 2004-08-05
DE10302806A1 (en) 2004-08-12
EP1585895A1 (en) 2005-10-19

Similar Documents

Publication Publication Date Title
EP1585895B1 (en) Method for calculating pressure fluctuations in a fuel supply system of an internal combustion engine operating with direct injection of fuel and for controlling the injection valves thereof
EP1913249B1 (en) Method and device for controlling the injection system of an internal combustion engine
EP1064457B1 (en) Method for determining the injection time in a direct injection internal combustion engine
DE602004003390T2 (en) METHOD FOR REAL-TIME DETERMINATION OF A FUEL INJECTION FLOW CHARACTERISTIC
DE102008054690B4 (en) Method and device for calibrating partial injections in an internal combustion engine, in particular a motor vehicle
EP2297444B1 (en) Method and device for the pressure wave compensation of consecutive injections in an injection system of an internal combustion engine
EP2148070A2 (en) Method for determining the injected fuel mass of a single injection and device for carrying out the method
EP1613853B1 (en) Method for determining the injection duration in a combustion engine with a mapping value and a correction value, and method for determining the correction value
DE102005036192A1 (en) Fuel injection system e.g. high pressure-based fuel injection system, controlling method for e.g. self-ignition internal combustion engine, involves implementing compression wave correction based on periodic model that models masses wave
DE112015002823T5 (en) System and method for injector control for multi-pulse fuel injection
DE102006026928A1 (en) Operating method for injection system of internal-combustion engine, involves determining injection amount of fuel, which is injected by injector into combustion chamber and time-dependent injection pressure is also computed
DE102012218176A1 (en) Method for operating a fuel injection system
EP0878617A2 (en) Method for the determining of the opening time of a fuel injector in a Common-rail fuel injection system
DE102006000456A1 (en) Apparatus and method for manufacturing fuel injection control system
DE102004053418B4 (en) Method and device for pressure wave compensating control of temporally successive injections in an injection system of an internal combustion engine
DE102011077698A1 (en) Method for controlling smooth running of e.g. diesel engine used in motor vehicle, involves assigning working cycles for each cylinder so as to control smooth running of internal combustion engine via two working cycles of cylinder
DE102006033459B3 (en) Operating method for IC engines with fuel injection valves comprises determining point at which pressure fluctuations in fuel appear and calculating period from start of injection, correction being used to derive corrected injection time
DE10305525B4 (en) Method and device for adapting the pressure wave correction in a high-pressure injection system of a motor vehicle while driving
DE102008005154A1 (en) Method and device for monitoring a motor control unit
EP2520788A2 (en) Method for operating a fuel injection system for a combustion engine
DE10321999A1 (en) Actuator drive method, especially for piezoactuator, involves using control voltage dependent on internal combustion engine operating parameter(s), e.g. interval between two partial injections
DE60019262T2 (en) fuel injection system
DE102008055008B4 (en) Method for operating an internal combustion engine
DE102005036193A1 (en) Fuel e.g. petrol, injection system e.g. common rail injection system, controlling method for use in motor vehicle, involves carrying out pressure wave correction based on physical model describing wave effect on opening behavior of injector
DE102006026641A1 (en) To determine the fuel pressure distribution in a common rail, of a motor fuel injection system, at least one injector is subjected to pressure swings for a model computation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050314

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): FR GB IT

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060524

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060524

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070227

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20110825 AND 20110831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120124

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140123

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190123

Year of fee payment: 16

Ref country code: GB

Payment date: 20190121

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200123