EP1584789A1 - Kühlbare Schaufel - Google Patents
Kühlbare Schaufel Download PDFInfo
- Publication number
- EP1584789A1 EP1584789A1 EP04008601A EP04008601A EP1584789A1 EP 1584789 A1 EP1584789 A1 EP 1584789A1 EP 04008601 A EP04008601 A EP 04008601A EP 04008601 A EP04008601 A EP 04008601A EP 1584789 A1 EP1584789 A1 EP 1584789A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooling channel
- throttle
- blade according
- temperature
- blade
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/50—Intrinsic material properties or characteristics
- F05D2300/502—Thermal properties
- F05D2300/5021—Expansivity
- F05D2300/50212—Expansivity dissimilar
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/50—Intrinsic material properties or characteristics
- F05D2300/505—Shape memory behaviour
Definitions
- the invention relates to a blade, in particular a turbine blade with at least one cooling channel, z. Legs Guide or blade, for a turbomachine.
- the blade is, for example, in a turbomachine, z. B. in a gas turbine used.
- a gas turbine will in many areas to drive generators or work machines used.
- the fuel is in a combustion chamber burned, being compressed by an air compressor Air is supplied. That in the combustion chamber through the combustion of the fuel produced under high pressure and under high temperature standing working medium is over a turbine unit connected downstream of the combustion chamber, where it relaxes work.
- blades are strongly idealized in design, because of the relatively large variations in the manufacturing process the blades can only be considered indirectly. This is an individual interpretation of the blade only limited possible. The variations caused by the production in the design of the blades are doing, for example balanced by a high cooling air requirement. this leads to to a reduction in the efficiency of the associated gas turbine.
- the cooling air supply for the blades over external throttle regulated.
- the throttle valves regulate while the supply pressure and thus the amount of cooling air.
- an individual regulation or control of the Cooling air quantity for each blade in a row of blades not intended. Rather, they are intended for an entire series Shovels over an associated common external Throttle valve with regard to the amount of cooling air to be supplied regulated.
- An individual control of the cooling of a single Shovel is not possible.
- the invention is therefore based on the object, a blade indicate which one improved over the prior art Cooling has.
- the object is achieved according to the invention in a blade with at least one cooling channel, the flow output side in an environment space, eg. As a turbine opens, wherein the cooling channel is designed such that a cooling channel flowing through cooling medium amount dependent on temperature controllable is.
- the invention is based on the consideration that for a sufficiently long life of a blade manufacturing technology conditional inaccuracies in the production the turbine blades balanced during operation of the blade should be.
- the guided through the blade should Cooling medium quantity from the temperature level within the Shovel be dependent.
- the cooling channel is designed such that the coolant channel flowing through the cooling medium temperature dependent is controllable. It is through the Cooling channel guided coolant quantity depending on the cross-sectional size of the cooling channel.
- Cooling channel is this with at least one temperature-dependent, provided in cross-section varying throttle point.
- the throttle point is in an additional expanded flow input area and / or Flow outlet region of the cooling channel formed.
- the cooling channel is in the region of Provided throttle with a throttle element.
- a throttle element For example protrudes over an opening arranged in the cooling channel wall a throttle element horizontally into the cooling channel inside.
- the Throttle element is formed, for example, pin-like.
- the throttle element is made of a bi-metal material.
- the throttle element designed as an orifice. Includes the orifice plate has several bi-metal sector plates with different staggered temperature application points.
- the throttle element as formed a disk throttle.
- the throttle element comprises a arranged on the cooling channel wall ring on which lamellas are arranged.
- the throttle element from several the cooling channel wall encircling ring segments be formed with lamellae.
- the ring can fixed or freely movable arranged on the cooling channel wall be.
- two axially superimposed arranged rings can one of the rings fixed and the other ring can be freely moved.
- the slats may be arranged in pairs, for example. Depending on the specification the throttle effect at the relevant point in the cooling channel In addition, the slats can be fixed or free be movably arranged.
- a throttle element which is perpendicular to Cooling channel axis is arranged in the cooling channel. That's it Throttling element, in particular the throttle plate, at least partially disposed along the cooling channel wall. Especially The throttle plate protrudes at least partially from the cooling channel opening in the form of a collar.
- the throttle plate For example, designed as an L-profile whose long leg is arranged in the cooling channel and its short Leg at least partially the edge of the cooling channel opening forms.
- the throttle plate is at least partially, in particular in the region of the projecting into the cooling channel long thigh, designed as a bi-metal strip. Depending on the temperature of the area in the Bi-metal strip flowing through cooling medium occurs an extension of the bi-metal strip, causing the throttle plate is shifted so that the cooling passage opening at least partially closed or opened.
- a further embodiment is for a varying Cross section of the cooling channel of this with at least two the Cooling channel wall provided at least partially circumferential layers.
- the layers of different Temperature-dependent material in the nature of a bi-metal strip educated.
- one of the layers is off a solid as possible, especially temperature-resistant Material and the other layer of a soft, temperature-dependent Material formed.
- the coating of the cooling channel wall Steel of different hardness with different coefficients of expansion and different modulus of elasticity Depending on Cooling channel type, main cooling channel or secondary cooling channel, the Layers formed as full or partial layers be.
- the cooling channels of a blade is the coating of Cooling duct wall preferably in a widened region, in particular in a widened flow inlet or Flow outlet area, provided.
- the Cooling channel wall in the flow inlet area in the blade root conical expanded and provided with at least two layers. Due to the temperature acting on the blade experiences then the respective layer from the temperature-dependent Material an expansion or shrinkage, which leads to a Narrowing or cross-sectional change of the cooling channel leads, so that a throttle point is formed in the cooling channel.
- z. B Material type of the throttle element or its arrangement in the cooling channel, takes place at the throttle point a cross-sectional change by expansion or Shrinkage in a range of 0% to 30%, in particular from 10% to 20%, the cross-sectional size of the cooling channel.
- the advantages achieved by the invention are in particular in that with a temperature dependent throttling in the Cooling channel of a respective blade by appropriate training the cooling channel itself, with increasing heating the cooling channel with respect to the amount of cooling medium flowing through closed or opened, the consumption of Cooling medium, for. B. cooling or compressor air, without a design according to Change or design to the current thermal Condition of the bucket is limited and thus the cooling is optimized. In other words, conditioned by a such, shovel-related adjustment of the amount of cooling medium the cooling medium requirement depending on different Operating conditions of the turbine, z. B. at part load, full load, set, in particular reduced. An additional consumption on cooling medium is safely avoided.
- the blade is a lower thermal Exposed to stress by reducing the temperature gradient.
- the efficiency of a turbine at the design point due to optimized cooling medium requirement without safety margin be raised against overheating.
- FIG. 1 shows a blade 1, z.
- a turbine blade in particular a rotor or vane.
- the blade 1 is provided with a plurality of cooling channels 2 for the purpose of cooling, the vertical in a manner not shown and / or horizontally, looped and / or largely rectilinear can run through the blade 1.
- this has a corresponding Diameter D on.
- those are shown vertically Cooling channels 2 formed with a larger diameter D, since these cooling channels 2 mostly as so-called main cooling channels or collecting cooling channels serve.
- the blade 1 in a particularly hot acted area a variety of Cooling channels 2 and less hot areas acted upon a smaller number of cooling channels 2, as shown in the FIG 1 is shown.
- the cooling channel 2 in a particularly hot acted area, z. B. in the area of Leading edge 3 of the blade 1, a cooling channel 2 with a particularly large diameter D, z. B. from 3 mm to 4 mm, in particular of 3.3 mm, whereas in one not so hot area acted upon the cooling channels 2 a smaller Have diameter D, as shown for example in FIG is shown.
- the cooling channel 2 is designed such that the cooling medium flowing through the cooling channel 2 temperature dependent is controllable. This is achieved by the through the cooling channel 2 guided cooling medium depending on the cross-sectional size of the cooling channel 2 is controlled.
- a varying cross-section of the cooling channel 2 is this in a first possible embodiment with at least two the cooling channel wall 4, d. H. the inner wall, at least partially circumferential layers S1 and S2 provided. Preferred are the Layers S1 and S2 from different temperature-dependent Material made in the style of a bi-metal strip.
- one of the layers S2 is one of the most possible solid, especially temperature-resistant material and the another layer S1 of a soft, temperature-dependent material educated.
- the temperature-stable Layer S2 the outer and the inner wall of the cooling channel 2 forming layer.
- the temperature-dependent layer S1 is between the layer S1 and the base material G of Shovel 1 arranged.
- further layers Sn which are made of the same or different material are to be provided.
- only a single can Layer S1, in particular a layer S1 of temperature-dependent Material, be provided.
- the respective layer S1 and S2 in the normal state has a thickness of 0.1 mm to 0.7 mm, in particular from 0.1 mm to 0.3 mm.
- layers S1 and S2 may be full or partial Layers be formed.
- the cross section of the cooling channel 2 varies as a function of the temperature T, in particular of temperature changes .DELTA.T.
- the cooling channel 2 is provided, for example, in the flow input region, in the flow outlet region and / or in the channel region with the layers S1 and S2.
- those from different temperature-dependent Material formed layers S1, S2 allow an im Cross-section varying cooling channel 2, wherein the layers S1, S2 in the cooling channel 2 at least one temperature-dependent, in Cross-section varying throttle point 6 form.
- the cooling channel 2 can thereby along its longitudinal orientation be provided in regions with the layers S1 and S2.
- conditioned due to the generally small cross-sectional sizes of the Cooling channels 2 of a blade 1 is the coating of the cooling channel wall 4 preferably in a widened region of the Cooling channel 2 arranged, in particular in a widened Flow inlet or flow exit area.
- the cooling channel wall 4 in the flow input area in Blade foot conically widened and with at least two Layers S1, S2 provided.
- the layer S1 from the temperature-dependent material shrinkage (see FIG 4) or expansion (see FIG. 5), which leads to a constriction or Magnification, d. H.
- cooling channel 2 leads, so that the throttle point 6 in Cooling channel 2 is formed.
- the cooling channel 2 of Bucket 1 in cold condition with an associated one Diameter Dc shown, in Figure 5 is the cooling channel 2 in the state at a loading of the blade 1 with hot temperatures with an associated large diameter That is, where Dc ⁇ Dh.
- z. B. type of material or its arrangement in the cooling channel 2 is a change in cross section by expansion or shrinkage in one Range from 0% to 30%, especially from 10% to 20%, of Cross-sectional size of the cooling channel 2.
- the cooling channel 2 is in the region of Throttle 6 provided with a throttle element 8.
- a throttle element 8 For example protrudes over a arranged in the cooling channel wall 4 Opening 10, the throttle element 8 horizontally in the cooling channel. 2 into it.
- the throttle element 8 is for example pin-like educated.
- the throttle element 8 made of a bi-metal material.
- FIGS. 7A, 7B and 8A, 8B show a further embodiment for a throttle point 6 in the cooling channel 2.
- FIGS. 7A, 7B show the cooling channel 2 in the area of the throttle point 6 and subjecting the blade 1 with hot temperatures T and a correspondingly large diameter D for a maximum possible flow through the cooling channel 2 with the cooling medium in the flow direction P2.
- FIGS. 8A, 8B show the cooling channel 2 in the region of the throttle point 6 in the normal state, d. H. at cold temperatures T, so that the cooling channel 2 a small diameter D with correspondingly smaller channel cross-section having.
- FIG. 7A shows the cooling channel 2 in cross section, d. H. in the wide open state with the largest possible diameter D, so that a corresponding maximum amount of cooling air through the cooling channel 2 flows.
- FIG. 7B shows the cooling channel 2 according to FIG. 7A in FIG Longitudinal section in the region of the throttle point 6, wherein as a throttle element 8, a throttle plate 10 is provided, which is arranged perpendicular to the cooling channel axis in the cooling channel 2.
- the throttle plate 10, which, for example, as a perforated plate is formed is at least partially along the cooling channel wall 4 arranged.
- the throttle plate 10 projects at least partially from a cooling channel opening 12 in the form of a Collar out.
- the throttle plate 12 for example formed as an L-profile, whose long leg in Cooling channel 2 is arranged and whose short leg at least partially forms the edge of the cooling channel opening 12.
- the Throttle plate 10 at least partially, especially in the area of the protruding into the cooling channel 2 long leg as Bi-metal strips 10a, 10b formed.
- a bi-metal strip 10a, 10b may be a temperature-dependent individual control of the amount of cooling air for each individual Shovel 1 can be achieved.
- the cooling channel opening 12 by appropriate displacement of the throttle plate 10 along the arrow P1 release. That is, depending on the temperature T of the area of the bi-metal strip 10a, 10b in the flow direction P2 flowing cooling medium there is an expansion of the bi-metal strip 10a, 10b, whereby the throttle plate 10 such is shifted, that the cooling channel opening 12 at least partially closed (FIGS. 8A, 8B) or completely opened (FIG 7A, 7B shown) is.
- FIGS. 9 and 10 show an alternative embodiment of a throttle element 8 designed as a throttle plate 10.
- the cooling channel 2 passes through the blade 1 with a curved course, wherein the cooling channel 2 is divided into branch channels by the throttle element 8 formed by two throttle plates 10.
- the throttle plates 10 are made of a temperature-dependent material with a high expansion coefficient. By using such throttle plates 10, a temperature-dependent individual control of the amount of cooling air for the individual blade 1 is effected. Depending on the temperature change .DELTA.T between the blade 1 and throttle plate 10, a more or less large gap S is released, which controls the amount of cooling air.
- FIG. 10 shows a further alternative embodiment for a throttle plate 10 shown with a along the channel wall 4 extending bi-metal strips 10a, 10b, as shown in FIGS. 7A to 8B show an opening and closing of the cooling channel opening 12 causes.
- the bi-metal strip 10a, 10b points in particular different staggered temperature application points on.
- the throttle element 8 is formed as a slat throttle 14, as in FIG FIG 11 shows.
- the throttle element 8 comprises a the cooling channel wall 4 arranged ring R, on which slats L are arranged.
- the throttle element 8 off a plurality of the cooling channel wall 4 circumferential ring segments RS be formed with lamellae L, as shown in Figures 12 and 13.
- the ring R or the ring segments RS fixed or be arranged freely movable on the cooling channel wall 4.
- the ring R or the ring segments RS fixed or be arranged freely movable on the cooling channel wall 4.
- the slats L may be arranged in pairs, for example. Depending on the specification the throttle effect at the respective throttle point. 6 In the cooling channel 2, moreover, the slats L fixed or be arranged freely movable.
- FIGS. 14A and 14B show another embodiment of FIG a throttle point 6 with a throttle element 8, which as an orifice 14 is formed.
- the orifice 14 is different from a plurality of bi-metal sector plates 14a to 14d staggered temperature application points formed.
- a throttling of the cooling channel 2 flowing through Cooling air quantity causes which temperature-dependent by changing the position of the bi-metal sector plates 14a until 14d.
- the consumption of cooling air without a according to design surcharge on the current thermal Condition of the bucket 1 limited and the cooling of the bucket 1 optimized.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
- FIG 1
- schematisch in perspektivischer Darstellung eine Schaufel mit mehreren Kühlkanälen,
- FIG 2
- schematisch im Querschnitt eine Schaufel mit mehreren Kühlkanälen mit unterschiedlichen Durchmessern,
- FIG 3
- schematisch einen Kühlkanal im Querschnitt im Bereich einer temperaturabhängigen Drosselstelle,
- FIG 4, 5
- schematisch einen Kühlkanal im Längsschnitt im Bereich einer temperaturabhängigen Drosselstelle bei einer Beaufschlagung der Schaufel mit kalten bzw. heißen Temperaturen,
- FIG 6
- schematisch eine weitere Ausführungsform für eine ein Drosselelement umfassende, temperaturabhängige Drosselstelle in einem Kühlkanal, und
- FIG 7 bis 14B
- schematisch weitere verschiedene Ausführungsformen für eine temperaturabhängige Drosselstelle in einem Kühlkanal.
Claims (28)
- Schaufel (1) mit mindestens einem Kühlkanal (2), der strömungsausgangsseitig in einen Umgebungsraum mündet, wobei der Kühlkanal (2) derart ausgebildet ist, dass eine den Kühlkanal (2) durchströmende Kühlmediummenge temperaturabhängig steuerbar ist.
- Schaufel nach Anspruch 1, wobei der Querschnitt des Kühlkanals (2) zumindest bereichsweise, insbesondere im Strömungseingangsbereich, im Strömungsausgangsbereich und/oder im Kanalbereich, temperaturabhängig variierbar ist.
- Schaufel nach Anspruch 1 oder 2, wobei der Kühlkanal (2) mit mindestens einer variablen, von der Temperatur (T) des Kühlmediums abhängigen Drosselstelle (6) versehen ist.
- Schaufel nach Anspruch 3, wobei die Drosselstelle (6) in einem zusätzlich aufgeweiteten Strömungseingangsbereich und/oder Strömungsausgangsbereich des Kühlkanals (2) gebildet ist.
- Schaufel nach Anspruch 2 oder 3, wobei der Kühlkanal (2) im Bereich der Drosselstelle (6) mit einem Drosselelement (8) versehen ist.
- Schaufel nach Anspruch 5, wobei ein Drosselelement (8) über eine in der Kühlkanalwand (4) angeordneten Öffnung (10) in den Kühlkanal (2) hineinragt.
- Schaufel nach Anspruch 5 oder 6, wobei das Drosselelement (8) stiftartig ausgebildet ist.
- Schaufel nach einem der Ansprüche 5 bis 7, wobei das Drosselelement (8) aus einem temperaturabhängigen Material, z. B. einem Metall mit einem hohen Ausdehnungskoeffizienten (αSG), gebildet ist.
- Schaufel nach einem der Ansprüche 5 bis 8, wobei das Drosselelement (8) als eine Drosselblende (14) ausgebildet ist.
- Schaufel nach Anspruch 9, wobei die Drosselblende (14) aus mehreren Bi-Metall-Sektorblechen (14a, 14b) mit unterschiedlich gestaffelten Temperatur-Einsatzpunkten gebildet ist.
- Schaufel nach Anspruch 5, wobei das Drosselelement (8) als eine Lamellendrossel (14) ausgebildet ist.
- Schaufel nach Anspruch 11, wobei das Drosselelement (8) aus einem die Kühlkanalwand (4) umlaufenden Ring (R) mit Lamellen (L) gebildet ist.
- Schaufel nach Anspruch 11 oder 12, wobei das Drosselelement (8) aus mehreren die Kühlkanalwand (4) umlaufenden Ringsegmenten (RS) mit Lamellen (L) gebildet ist.
- Schaufel nach einem der Ansprüche 11 bis 13, wobei die Lamellen (L) paarweise angeordnet sind.
- Schaufel nach einem der Ansprüche 12 bis 14, wobei die Lamellen (L) feststehend angeordnet sind.
- Schaufel nach Anspruch 5, wobei das Drosselelement (8) als ein Drosselblech (10) ausgebildet ist, welches senkrecht zur Kühlkanalachse im Kühlkanal angeordnet ist.
- Schaufel nach Anspruch 16, wobei das Drosselblech (10) zumindest teilweise entlang der Kühlkanalwand (4) angeordnet ist.
- Schaufel nach Anspruch 16 oder 17, wobei das Drosselblech (10) zumindest teilweise aus der Kühlkanalöffnung (12) herausragt.
- Schaufel nach einem der Ansprüche 16 bis 18, wobei das Drosselblech (10) als ein L-Profil ausgebildet ist, dessen langer Schenkel im Kühlkanal (2) angeordnet ist und dessen kurzer Schenkel zumindest teilweise den Rand der Kühlkanalöffnung (12) bildet.
- Schaufel nach einem der Ansprüche 16 bis 19, wobei das Drosselblech (10) zumindest teilweise ein Bi-Metallstreifen (10a, 10b) ist.
- Schaufel nach einem der Ansprüche 16 bis 20, wobei mindestens ein Ende des Drosselblechs (10), insbesondere das im Kühlkanal (2) angeordnete Ende, als Bi-Metallstreifen (10a, 10b) ausgebildet ist.
- Schaufel einem der Ansprüche 16 bis 21, wobei das Drosselblech (10) als Lochblech ausgebildet ist.
- Schaufel nach einem der Ansprüche 1 bis 22, wobei der Kühlkanal (2) mit mindestens zwei die Kühlkanalwand (4) zumindest teilweise umlaufenden Schichten (S1, S2) versehen ist.
- Schaufel nach Anspruch 23, wobei die Schichten (S1, S2) aus unterschiedlichem temperaturabhängigen Material in Art eines Bi-Metallstreifens (10a, 10b) gebildet sind.
- Schaufel nach Anspruch 23 oder 24, wobei eine der Schichten (S1) aus einem möglichst festen Material, insbesondere einem temperaturstabilen Material und die andere Schicht (S2) aus einem temperaturabhängigen Material gebildet ist.
- Schaufel nach Anspruch 25, wobei das temperaturstabile Material aus einem Blech, insbesondere Stahl mit einem niedrigen Ausdehnungskoeffizienten, gebildet ist.
- Schaufel nach Anspruch 25 oder 26, wobei das temperaturabhängige Material aus einem Blech, insbesondere Stahl mit einem hohen Ausdehnungskoeffizienten (αSG), gebildet ist.
- Schaufel nach einem der Ansprüche 23 bis 27, wobei die jeweilige Schicht (S1, S2) im Normalzustand eine Dicke von 0,1 mm bis 0,7 mm, insbesondere von 0,1 mm bis 0,3 mm, aufweist.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200450004022 DE502004004022D1 (de) | 2004-04-08 | 2004-04-08 | Kühlbare Schaufel |
EP04008601A EP1584789B1 (de) | 2004-04-08 | 2004-04-08 | Kühlbare Schaufel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04008601A EP1584789B1 (de) | 2004-04-08 | 2004-04-08 | Kühlbare Schaufel |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1584789A1 true EP1584789A1 (de) | 2005-10-12 |
EP1584789B1 EP1584789B1 (de) | 2007-06-06 |
Family
ID=34896038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04008601A Expired - Lifetime EP1584789B1 (de) | 2004-04-08 | 2004-04-08 | Kühlbare Schaufel |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1584789B1 (de) |
DE (1) | DE502004004022D1 (de) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008141410A1 (en) | 2007-05-17 | 2008-11-27 | Enero Inventions | Immediate response steam generating system and method |
FR2916475A1 (fr) * | 2007-05-23 | 2008-11-28 | Snecma Sa | Circuit d'alimentation en air de ventilation d'un rotor de turbine dans un moteur a turbine a gaz |
JP2014114811A (ja) * | 2012-12-07 | 2014-06-26 | General Electric Co <Ge> | ガスタービンの圧縮機セクションからの冷却流を制御するためのシステム |
WO2014143236A1 (en) * | 2013-03-15 | 2014-09-18 | Duge Robert T | Turbine vane cooling system, corresponding gas turbine engine and operating method |
EP3000973A1 (de) * | 2014-09-24 | 2016-03-30 | United Technologies Corporation | Selbstmodulierte kühlung an turbinenkomponenten |
EP3147455A1 (de) * | 2015-09-23 | 2017-03-29 | Siemens Aktiengesellschaft | Turbinenleitschaufel mit einer drosseleinrichtung |
EP3190263A1 (de) * | 2016-01-07 | 2017-07-12 | United Technologies Corporation | Thermisch angetriebenes federventil für gasturbinen |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10273809B2 (en) | 2013-12-16 | 2019-04-30 | United Technologies Corporation | Centrifugal airfoil cooling modulation |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2977090A (en) * | 1956-06-12 | 1961-03-28 | Daniel J Mccarty | Heat responsive means for blade cooling |
US4751962A (en) * | 1986-02-10 | 1988-06-21 | General Motors Corporation | Temperature responsive laminated porous metal panel |
US5022817A (en) * | 1989-09-12 | 1991-06-11 | Allied-Signal Inc. | Thermostatic control of turbine cooling air |
US6485255B1 (en) * | 1999-09-18 | 2002-11-26 | Rolls-Royce Plc | Cooling air flow control device for a gas turbine engine |
DE10225264A1 (de) * | 2001-09-17 | 2003-04-03 | Alstom Switzerland Ltd | Luftgekühlte Turbinenschaufel mit Deckbandelement |
WO2003062607A1 (de) * | 2002-01-25 | 2003-07-31 | Alstom (Switzerland) Ltd | Gekühltes bauteil für eine gasturbine |
-
2004
- 2004-04-08 EP EP04008601A patent/EP1584789B1/de not_active Expired - Lifetime
- 2004-04-08 DE DE200450004022 patent/DE502004004022D1/de not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2977090A (en) * | 1956-06-12 | 1961-03-28 | Daniel J Mccarty | Heat responsive means for blade cooling |
US4751962A (en) * | 1986-02-10 | 1988-06-21 | General Motors Corporation | Temperature responsive laminated porous metal panel |
US5022817A (en) * | 1989-09-12 | 1991-06-11 | Allied-Signal Inc. | Thermostatic control of turbine cooling air |
US6485255B1 (en) * | 1999-09-18 | 2002-11-26 | Rolls-Royce Plc | Cooling air flow control device for a gas turbine engine |
DE10225264A1 (de) * | 2001-09-17 | 2003-04-03 | Alstom Switzerland Ltd | Luftgekühlte Turbinenschaufel mit Deckbandelement |
WO2003062607A1 (de) * | 2002-01-25 | 2003-07-31 | Alstom (Switzerland) Ltd | Gekühltes bauteil für eine gasturbine |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008141410A1 (en) | 2007-05-17 | 2008-11-27 | Enero Inventions | Immediate response steam generating system and method |
FR2916475A1 (fr) * | 2007-05-23 | 2008-11-28 | Snecma Sa | Circuit d'alimentation en air de ventilation d'un rotor de turbine dans un moteur a turbine a gaz |
JP2014114811A (ja) * | 2012-12-07 | 2014-06-26 | General Electric Co <Ge> | ガスタービンの圧縮機セクションからの冷却流を制御するためのシステム |
WO2014143236A1 (en) * | 2013-03-15 | 2014-09-18 | Duge Robert T | Turbine vane cooling system, corresponding gas turbine engine and operating method |
EP3000973A1 (de) * | 2014-09-24 | 2016-03-30 | United Technologies Corporation | Selbstmodulierte kühlung an turbinenkomponenten |
US9845731B2 (en) | 2014-09-24 | 2017-12-19 | United Technologies Corporation | Self-modulated cooling on turbine components |
EP3608507A1 (de) * | 2014-09-24 | 2020-02-12 | United Technologies Corporation | Selbstmodulierte kühlung an turbinenkomponenten |
EP3147455A1 (de) * | 2015-09-23 | 2017-03-29 | Siemens Aktiengesellschaft | Turbinenleitschaufel mit einer drosseleinrichtung |
EP3190263A1 (de) * | 2016-01-07 | 2017-07-12 | United Technologies Corporation | Thermisch angetriebenes federventil für gasturbinen |
US10113441B2 (en) | 2016-01-07 | 2018-10-30 | United Technologies Corporation | Thermally driven spring valve for turbine gas path parts |
Also Published As
Publication number | Publication date |
---|---|
EP1584789B1 (de) | 2007-06-06 |
DE502004004022D1 (de) | 2007-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69404168T2 (de) | Gekühlte turbinenschaufel | |
EP1028230B2 (de) | Gekühlte Gasturbinenkomponente mit verstellbarer Kühlung | |
DE60038086T2 (de) | Verfahren und Vorrichtung zum Kühlen einer Turbinenschaufel | |
DE60016058T2 (de) | Gekühlter Turbinen-Mantelring | |
DE69718673T2 (de) | Kühlbare schaufelstruktur für eine gasturbine | |
DE3878174T2 (de) | Erwaermungseinrichtung fuer einen gasturbinenrotor. | |
DE102006024968B4 (de) | Gasturbine, Verfahren zum Steuern der Luftzufuhr und Computerprogrammprodukt zum Steuern der Luftzufuhr | |
EP1482246A1 (de) | Brennkammer | |
DE3040594A1 (de) | Spaltsteuervorrichtung fuer eine turbomaschine | |
WO2000011324A1 (de) | Turbinengehäuse | |
DE60017396T2 (de) | Vorrichtung zur reduzierung der kühlung für einen turbineneinlasskanal | |
DE102014220296A1 (de) | (Mikro-)Gasturbinenanordnung | |
EP1409926B1 (de) | Prallkühlvorrichtung | |
WO2014033220A1 (de) | Kühlverfahren zum betreiben einer gasturbine | |
EP2812636B1 (de) | Ringbrennkammer-bypass | |
DE60035247T2 (de) | Gasturbinenschaufel | |
EP1741877A1 (de) | Hitzeschild und Turbinenleitschaufel für eine Gasturbine | |
DE102017110050A1 (de) | Aufgeweitete zentrale Ausnehmung hinter der Flügelprofilvorderkante | |
EP1584789B1 (de) | Kühlbare Schaufel | |
DE102017110055A1 (de) | Zentraler Zwischenkanal, der äußere Wände hinter einem Vorderkantenkanal eines Schaufelblattes überbrückt | |
EP2039998A1 (de) | Gasturbine mit geschweissten Brennkammerschalen | |
DE102017110051A1 (de) | Schaufel mit belastungsreduzierendem bauchigem Vorsprung an einer Wendeöffnung von Kühlmittelkanälen | |
DE102017110052A1 (de) | Innere Rippe mit definierter konkaver Oberflächenkrümmung für ein Schaufelblatt | |
EP1857635A1 (de) | Turbinenschaufel für eine Gasturbine | |
EP1284391A1 (de) | Brennkammeranordnung für Gasturbinen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
17P | Request for examination filed |
Effective date: 20060411 |
|
AKX | Designation fees paid |
Designated state(s): CH DE GB IT LI |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE GB IT LI |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 502004004022 Country of ref document: DE Date of ref document: 20070719 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20070704 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20080307 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20100621 Year of fee payment: 7 Ref country code: IT Payment date: 20100427 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20100727 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20100412 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110408 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110430 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110430 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111101 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004004022 Country of ref document: DE Effective date: 20111101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110408 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110408 |