EP1581729B1 - Method for controlling an internal combustion engine and lean operating internal combustion engine - Google Patents

Method for controlling an internal combustion engine and lean operating internal combustion engine Download PDF

Info

Publication number
EP1581729B1
EP1581729B1 EP03795912A EP03795912A EP1581729B1 EP 1581729 B1 EP1581729 B1 EP 1581729B1 EP 03795912 A EP03795912 A EP 03795912A EP 03795912 A EP03795912 A EP 03795912A EP 1581729 B1 EP1581729 B1 EP 1581729B1
Authority
EP
European Patent Office
Prior art keywords
internal combustion
combustion engine
lambda value
catalytic converter
transition phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03795912A
Other languages
German (de)
French (fr)
Other versions
EP1581729A1 (en
Inventor
Ekkehard Pott
Michael Zillmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10357415A external-priority patent/DE10357415A1/en
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP1581729A1 publication Critical patent/EP1581729A1/en
Application granted granted Critical
Publication of EP1581729B1 publication Critical patent/EP1581729B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • F02D41/126Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off transitional corrections at the end of the cut-off period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent

Definitions

  • the invention relates to a method for controlling an internal combustion engine and a lean-running internal combustion engine with the features mentioned in the preamble of claim 1 and 18 respectively.
  • the exhaust gas is passed over at least one catalyst, which performs a conversion of one or more pollutant components of the exhaust gas.
  • catalysts which performs a conversion of one or more pollutant components of the exhaust gas.
  • Oxidation catalysts promote the oxidation of unburned hydrocarbons (HC) and carbon monoxide (CO), while reduction catalysts promote the reduction of nitrogen oxides (NO x ) of the exhaust gas.
  • 3-way catalysts are used to simultaneously catalyze the conversion of the three aforementioned components (HC, CO, NO x ).
  • storage catalysts for example NO x storage catalysts, are known.
  • the NO x storage catalytic converters used in lean-running gasoline engines for exhaust gas purification have lower high-temperature stability in the current state of development compared to conventional 3-way catalysts.
  • the use of this catalyst technology therefore requires special efforts to limit the Temperature load of these catalysts.
  • measures come into consideration, which lead to the reduction of the stationary temperature levels, such as the exhaust gas cooling or the reduction of the residual oxygen content of the exhaust gases by optimizing the combustion process.
  • measures are appropriate here as well as for 3-way systems, which lead to a reduction of load during transient engine operation, such as the optimization of the application in terms of HC peaks.
  • the invention is therefore an object of the invention to provide a method for controlling an internal combustion engine with at least one disposed in an exhaust passage of the internal combustion engine catalyst and a corresponding internal combustion engine, in which or during the transition phase after a fuel cut-off phase, thermal load peaks of at least one catalyst by exothermic Processes are safely avoided.
  • an approximately stoichiometric or less sub-stoichiometric lambda value is set as requested and then to the requested lambda value, preferably to a predetermined value of an engine control of the internal combustion engine, whereby an oxygen storage of at least one catalyst, preferably at least one NO x storage catalyst, which may comprise at least one precatalyst, gradually is emptied.
  • the exhaust gas temperatures may be briefly above predetermined limit temperatures and cause the higher residual oxygen content of the exhaust gases increased Grundexothermie. Overall, however, this advantageously prevents too rapid emptying of the oxygen storage and thus also a sudden release of energy, which would lead to an excessive temperature peak or load on the catalyst.
  • the requirement of a substoichiometric lambda value can be based on a performance specification for the internal combustion engine or a specification of the engine control, for example due to the exceeding of a permissible exhaust gas temperature.
  • the transition phase is preferably subdivided into at least two phases, wherein in the transition phase as a whole or else only in at least one phase with different speeds or different steepness can be controlled to the required substoichiometric lambda value.
  • a lambda value between 0.9 and 1.05, preferably between 0.93 and 1.02, and more preferably set between 0.97 and 1.0 and then gradually or continuously diverted to the originally requested lambda value, wherein the stepwise or continuous Abhneung can take place in the transition phase as a whole or only in at least one phase.
  • the measure for controlling the lambda value in the transition phase or in at least one of the phases can be made dependent on exceeding a temperature threshold for at least one of the catalysts.
  • the transition phase or preferably at least one of the phases should preferably take place with a duration of at least ten working cycles, in particular of at least thirty working cycles of the internal combustion engine.
  • the change or the ablation of the lambda value in the transition phase or in at least one phase of the transition phase should preferably take place with an average enrichment rate of -0.01 to 0.3 s -1 , in particular of about -0.1 S -1 .
  • a particularly preferred embodiment of the method according to the invention is given when using an oxygen-sensitive measuring device, which is arranged downstream of at least one catalyst.
  • an oxygen-sensitive measuring device for example, a lambda probe or a NO x sensor can be used with appropriate measurement function.
  • the lambda before the at least one catalyst to a lambda value, preferably ⁇ 1.00, optimally between 0.92 and 0.99, ideally between 0.94 and 0.96 is, set.
  • the actual lambda can be regulated to the desired specification in a known manner.
  • a lambda threshold value is reached below the oxygen-sensitive measuring device downstream of an at least first catalytic converter or downstream of the most stress-critical catalytic converter.
  • This threshold is close to 1.00, preferably in the range 0.95 to 1.03, more preferably 0.97 to 1.01 and ideally 0.98 to 0.9995.
  • the lambda value After falling below the threshold value, the lambda value can be lowered as described to the originally requested lambda value determined in a known manner. It is also possible according to the invention, after falling below the measured threshold value, to delay the lowering of the lambda value for a short period of time from 0 to 4000 ms, ideally 100 to 1000 ms and optimally 200 to 500 ms, in order to eliminate at least almost complete emptying of the stored oxygen to ensure that at least one catalyst.
  • Both the lambda value at the beginning of the transition phase or at the beginning of the first phase and the enrichment rate are preferably at least one depending on the engine speed, a temperature of the at least one catalyst and / or a precatalyst, an exhaust gas temperature, an exhaust gas mass flow, the operating point, the oxygen storage capacity the catalysts of an elapsed since the beginning of the transition phase time and / or a lambdaa réelleen exhaust gas composition.
  • the lean-burn internal combustion engine with at least one arranged in an exhaust passage of the internal combustion engine catalyst comprises means with which immediately after a fuel cut-off phase of the internal combustion engine and / or immediately after an operating phase in which oxygen is stored in the catalyst, first in one Transition phase is adjustable in approximately stoichiometric or less stoichiometric lambda, and with which the lambda value can then be deducted with a predeterminable course to an originally, preferably requested by an engine control of the internal combustion engine lambda value.
  • the at least one catalyst is at least one NO x storage catalyst which may have at least one precatalyst.
  • the means may comprise at least one oxygen-sensitive measuring device arranged downstream of the at least one catalytic converter.
  • a further oxygen-sensitive measuring device can be arranged downstream of the internal combustion engine, but upstream of an at least first catalytic converter.
  • control unit which is preferably integrated in an engine control unit, in which models and algorithms for the coordinated control of exhaust gas and performance-relevant measures are stored in digitized form.
  • control and coordination of the aforementioned means and other conventional means via the control unit or the engine control unit.
  • the internal combustion engine is a gasoline engine, in particular a direct injection gasoline engine, or a diesel engine.
  • the at least one arranged in the exhaust passage of the internal combustion engine catalyst has a relation to the prior art reduced precious metal content.
  • Vehicles with lean-burn internal combustion engines which in the New European Driving Cycle NEDC with thermally undamaged catalysts with a stored sulfur mass ⁇ 0.2 g / l catalyst volume and a timed fired lean operating component without fuel cut phases with a lambda> 1.15 of at least 250 s, in particular at least 350 s , reach an HC emission of ⁇ 0.07 g / km and an NO x emission of ⁇ 0.05 g / km, are today equipped in the prior art with catalysts, the noble metal contents of ⁇ 3.59 g / dm 3 (100 g / ft 3 ).
  • the downstream of a preferred embodiment of the internal combustion engine according to the invention catalyst system consisting of at least one NO x storage catalyst and possibly at least one upstream precatalyst, a noble metal content ⁇ 3.59 g / dm 3 (100 g / ft 3 ), in particular ⁇ 2.87 g / dm 3 (80 g / ft 3 ) and preferably ⁇ 2.15 g / dm 3 (60 g / ft 3 ).
  • the catalyst system with inventively lowered noble metal content with increasing vehicle mileage in the NEDC compared to the original design with higher noble metal content and without the inventive method no higher emissions.
  • the in FIG. 1 shown internal combustion engine 10 is an exhaust system 12 downstream.
  • the exhaust system 12 has an exhaust gas channel 14, in which a pre-catalyst arranged close to the engine 16 and a large-volume NO x storage 18 are located.
  • the exhaust gas duct 14 usually has various gas and / or temperature sensors (not shown here) for controlling the internal combustion engine 10. Shown in FIG. 1 For example, only two oxygen-sensitive measuring devices 20, 22, upstream or downstream of the NO x storage catalytic converter 18, which provide a signal for the respective lambda value in the exhaust gas, and a temperature sensor 24, by means of which the temperature of the NO x storage 18 is determined.
  • the signals are transmitted to a control unit 26, in which they are used to control the operating modes of the internal combustion engine 10.
  • the control unit 26 is also integrated in an engine control unit 28.
  • at least one operating parameter of the internal combustion engine 10, in particular an air-fuel mixture (combustion lambda) to be supplied, is influenced as a function of the signals.
  • the lambda value or the mixture composition is initially set stoichiometrically immediately after the fuel cut-off phase at time t 1 .
  • the lambda value originally requested by the engine control unit 28 is only reached at a time t 2 , the course of the lowering of the lambda value being predetermined.
  • the oxygen storage of the NO x storage catalyst 18 is gradually emptied.
  • the temperature at the NO x storage catalyst 18 increases between the two times t 1 and t 2 , but this increase is less than the temperature peak that occurs in the prior art process. As a result, too high a temperature load and a concomitant damage to the NO x storage catalytic converter 18 are avoided.
  • FIG. 3 A variant of the method according to the invention is in FIG. 3 shown.
  • the graph 106 with the dashed line shows the lambda after the NO x storage 18 and the graph 108 the lambda before the NO x storage 18. It is at time t 1, the lambda before NO x storage 18 to a less substoichiometric Lambda value set as originally requested.
  • Via at least one oxygen-sensitive measuring device 22 located downstream of the internal combustion engine 10, but upstream of the primary catalytic converter 16 the actual lambda is regulated to the lambda value in a known manner. The operation with the lambda thus given is maintained until downstream of the NO x storage 18 at the oxygen-sensitive measuring device 20 at time t 3, a Lambda threshold is exceeded.
  • the lambda value After falling below the lambda threshold value, the lambda value is lowered to the lambda value required for protecting the catalytic converter, wherein the lowering of the lambda value is still delayed for a short period of time and thus only takes place at time t 4 in order to ensure at least almost complete removal of the stored oxygen.

Abstract

The invention relates to a method for controlling an internal combustion engine (10) consisting of at least one catalyst arranged in the exhaust channel (14) of the internal combustion engine (10), and a lean operating internal combustion engine (10). According to the invention, when a substochiometric lambda value is required directly after a thrust disconnection phase of the internal combustion engine(10) and/or directly after an operating phase in which oxygen is stored in the catalyst, an approximately stochiometric or less substochiometric lambda value is initially adjusted in a transition phase and is subsequently brought down to the required substochiometric lambda value.

Description

Die Erfindung betrifft ein Verfahren zur Steuerung einer Verbrennungskraftmaschine sowie eine magerlauffähige Verbrennungskraftmaschine mit den im Oberbegriff des Anspruchs 1 beziehungsweise 18 genannten Merkmalen.The invention relates to a method for controlling an internal combustion engine and a lean-running internal combustion engine with the features mentioned in the preamble of claim 1 and 18 respectively.

Zur Nachbehandlung von Abgasen von Verbrennungskraftmaschinen wird dieses üblicherweise katalytisch gereinigt. Dazu wird das Abgas über mindestens einen Katalysator geleitet, der eine Konvertierung einer oder mehrerer Schadstoffkomponenten des Abgases vornimmt. Es sind unterschiedliche Arten von Katalysatoren bekannt. Oxidationskatalysatoren fördern die Oxidation von unverbrannten Kohlenwasserstoffen (HC) und Kohlenmonoxid (CO), während Reduktionskatalysatoren eine Reduzierung von Stickoxiden (NOx) des Abgases unterstützen. Ferner werden 3-Wege-Katalysatoren verwendet, um die Konvertierung der drei vorgenannten Komponenten (HC, CO, NOx) gleichzeitig zu katalysieren. Daneben sind auch Speicherkatalysatoren, beispielsweise NOx-Speicherkatalysatoren, bekannt. Diese werden bei der Abgasreinigung von Verbrennungskraftmaschinen eingesetzt, die aus Gründen einer Verbrauchsoptimierung wenigstens zeitweise in einem mageren Betriebsmodus, das heißt mit einem sauerstoffreichen Abgas mit λ, > 1, betrieben werden. Die dabei entstehenden Stickoxide NOx können bei einer katalytischen oxidativen Umsetzung von unverbrannten Kohlenwasserstoffen HC und Kohlenmonoxid CO in nur sehr geringem Maße zu umweltneutralem Stickstoff umgesetzt werden. Zur Abhilfe werden vorgenannte NOx-Speicherkatalysatoren in den Abgaskanälen von Verbrennungskraftmaschinen angeordnet, die in mageren Betriebsphasen NOx als Nitrat einlagern. In Intervallen muss der NOx-Speicherkatalysator regeneriert werden.For the aftertreatment of exhaust gases from internal combustion engines, this is usually purified by catalytic means. For this purpose, the exhaust gas is passed over at least one catalyst, which performs a conversion of one or more pollutant components of the exhaust gas. Different types of catalysts are known. Oxidation catalysts promote the oxidation of unburned hydrocarbons (HC) and carbon monoxide (CO), while reduction catalysts promote the reduction of nitrogen oxides (NO x ) of the exhaust gas. Furthermore, 3-way catalysts are used to simultaneously catalyze the conversion of the three aforementioned components (HC, CO, NO x ). In addition, storage catalysts, for example NO x storage catalysts, are known. These are used in the exhaust gas purification of internal combustion engines, which are operated for reasons of consumption optimization at least temporarily in a lean operating mode, ie with an oxygen-rich exhaust gas with λ,> 1. The resulting nitrogen oxides NO x can be implemented in a catalytic oxidative conversion of unburned hydrocarbons HC and carbon monoxide CO in only a very small extent to environmentally neutral nitrogen. To remedy the aforementioned NO x storage catalytic converters are arranged in the exhaust ducts of internal combustion engines, which store in lean operating phases NO x as nitrate. At intervals, the NO x storage catalytic converter must be regenerated.

Die bei magerlauffähigen Ottomotoren für die Abgasreinigung eingesetzten NOx-Speicherkatalysatoren weisen im heutigen Entwicklungsstand gegenüber konventionellen 3-Wege-Katalysatoren eine geringere Hochtemperaturstabilität auf. Der Einsatz dieser Katalysatortechnik erfordert daher besondere Anstrengungen zur Begrenzung der Temperaturbelastung dieser Katalysatoren. Dafür kommen einerseits Maßnahmen in Betracht, die zur Absenkung des stationären Temperaturniveaus führen, wie beispielsweise die Abgaskühlung oder die Verringerung des Restsauerstoffgehaltes der Abgase durch Optimierung des Brennverfahrens. Andererseits sind hier genauso wie für 3-Wege-Systeme Maßnahmen sinnvoll, die zur Verringerung der Belastung bei instationärem Motorbetrieb führen, wie beispielsweise die Optimierung der Applikation hinsichtlich von HC-Spitzen.The NO x storage catalytic converters used in lean-running gasoline engines for exhaust gas purification have lower high-temperature stability in the current state of development compared to conventional 3-way catalysts. The use of this catalyst technology therefore requires special efforts to limit the Temperature load of these catalysts. For this purpose, on the one hand measures come into consideration, which lead to the reduction of the stationary temperature levels, such as the exhaust gas cooling or the reduction of the residual oxygen content of the exhaust gases by optimizing the combustion process. On the other hand, measures are appropriate here as well as for 3-way systems, which lead to a reduction of load during transient engine operation, such as the optimization of the application in terms of HC peaks.

Besonders kritisch bezüglich der Katalysatoralterung sind Hochtemperaturzyklen mit Schubabschaltungsphasen, das heißt mit zwischengeschaltetem, ungefeuertem Motorbetrieb (siehe z.B EP 093521A2 ). Als Ursache sind neben den erhöhten HC-Rohemissionen, die aus Wandfilmeffekten oder auch Ungenauigkeiten bei der Kraftstoffzumessung im Dynamikbetrieb resultieren, vor allem die hohen Sauerstoffkonzentrationen zu nennen, die durch Oxidations- und Sinterungsvorgänge zur Verringerung der Konvertierungsleistung der Katalysatoren führen können. Dabei kann es erforderlich sein, die Schubabschaltung bei sehr hohen Katalysatortemperaturen zu verbieten.Particularly critical with regard to catalyst aging are high-temperature cycles with fuel cut-off phases, that is to say with interposed, unfired engine operation (see, for example, US Pat EP 093521A2 ). In addition to the increased raw HC emissions, which result from wall film effects or inaccuracies in the fuel metering in dynamic operation, the main causes are the high oxygen concentrations, which can lead to a reduction in the conversion performance of the catalysts due to oxidation and sintering processes. It may be necessary to prohibit overrun fuel cutoff at very high catalyst temperatures.

Ein weiteres Problem hinsichtlich der thermischen Katalysatorbelastung tritt beim Übergang aus einer Schubabschaltungsphase in den gefeuerten Motorbetrieb auf, wenn dabei sofort eine unterstöchiometrische Gemischzusammensetzung eingestellt wird. Während der Schubabschaltungsphase wird der Sauerstoffspeicher des Katalysators vollständig gefüllt, das heißt in der Katalysatorbeschichtung beziehungsweise dem Washcoat wird Sauerstoff zwischengespeichert. Wird nun der Katalysator beim Wiedereinsetzen - beispielsweise bei einer anschließenden Volllastbeschleunigung - mit sehr sauerstoffarmem Abgas beaufschlagt, führt der Partialdruckunterschied zu einem sehr raschen Herauslösen des gespeicherten Sauerstoffs. Da das Abgas bei unterstöchiometrischem Motorbetrieb hohe Konzentrationen an brennbaren Komponenten (HC, CO, H2) enthält, kommt es zu heftigen Oxidationsreaktionen, die bei noch ausreichend hohem Grundtemperaturniveau des Katalysators zumindest örtlich zum Überschreiten der maximal zulässigen Temperatur der Beschichtung führen können.Another problem with thermal catalyst loading occurs in the transition from a fuel cut phase to fired engine operation when a stoichiometric mixture composition is immediately adjusted. During the fuel cut-off phase, the oxygen storage of the catalyst is completely filled, that is, oxygen is temporarily stored in the catalyst coating or the washcoat. If now the catalyst during re-insertion - for example, in a subsequent full-load acceleration - applied with very low-oxygen exhaust gas, the partial pressure difference leads to a very rapid dissolution of the stored oxygen. Since the exhaust gas contains substoichiometric engine operation high concentrations of combustible components (HC, CO, H 2 ), it comes to violent oxidation reactions that can lead to exceeding the maximum allowable temperature of the coating at sufficiently high base temperature level of the catalyst at least locally.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Steuerung einer Verbrennungskraftmaschine mit zumindest einem in einem Abgaskanal der Verbrennungskraftmaschine angeordneten Katalysator sowie eine entsprechende Verbrennungskraftmaschine zu schaffen, bei dem beziehungsweise der während der Übergangsphase nach einer Schubabschaltungsphase, thermische Belastungsspitzen des zumindest einen Katalysators durch exotherme Abläufe sicher vermieden werden.The invention is therefore an object of the invention to provide a method for controlling an internal combustion engine with at least one disposed in an exhaust passage of the internal combustion engine catalyst and a corresponding internal combustion engine, in which or during the transition phase after a fuel cut-off phase, thermal load peaks of at least one catalyst by exothermic Processes are safely avoided.

Diese Aufgabe wird durch ein Verfahren sowie eine Verbrennungskraftmaschine mit den im Anspruch 1 beziehungsweise 19 genannten Merkmalen gelöst.This object is achieved by a method and an internal combustion engine with the features mentioned in claim 1 or 19.

Bei dem erfindungsgemäßen Verfahren zur Steuerung einer Verbrennungskraftmaschine mit zumindest einem in einem Abgaskanal der Verbrennungskraftmaschine angeordneten Katalysator ist es vorgesehen, dass bei (betriebsbedingter) Anforderung eines unterstöchiometrischen Lambdawertes unmittelbar im Anschluss an eine Schubabschaltungsphase der Verbrennungskraftmaschine, zunächst in einer Übergangsphase ein in etwa stöchiometrischer oder weniger unterstöchiometrischer Lambdawert als angefordert eingestellt und anschließend auf den angeforderten Lambdawert, vorzugsweise auf einen von einer Motorsteuerung der Verbrennungskraftmaschine vorgegebenen Wert, abgesteuert wird, wodurch ein Sauerstoffspeicher des zumindest einen Katalysators, vorzugsweise zumindest eines NOx-Speicherkatalysators, der zumindest einen Vorkatalysator aufweisen kann, allmählich geleert wird. Dabei können die Abgastemperaturen kurzzeitig oberhalb von vorgegebenen Grenztemperaturen liegen und der höhere Restsauerstoffgehalt der Abgase eine erhöhte Grundexothermie bewirken. Insgesamt wird damit jedoch vorteilhafterweise die zu rasche Leerung des Sauerstoffspeichers und somit auch eine schlagartige Energiefreisetzung sicher verhindert, die zu einer zu großen Temperaturspitze beziehungsweise Belastung des Katalysators führen würde.In the method according to the invention for controlling an internal combustion engine with at least one catalytic converter arranged in an exhaust duct of the internal combustion engine, it is provided that, during a (operational) requirement of a substoichiometric lambda value immediately following a fuel cut-off phase of the internal combustion engine, initially in a transitional phase, an approximately stoichiometric or less sub-stoichiometric lambda value is set as requested and then to the requested lambda value, preferably to a predetermined value of an engine control of the internal combustion engine, whereby an oxygen storage of at least one catalyst, preferably at least one NO x storage catalyst, which may comprise at least one precatalyst, gradually is emptied. In this case, the exhaust gas temperatures may be briefly above predetermined limit temperatures and cause the higher residual oxygen content of the exhaust gases increased Grundexothermie. Overall, however, this advantageously prevents too rapid emptying of the oxygen storage and thus also a sudden release of energy, which would lead to an excessive temperature peak or load on the catalyst.

Die Anforderung eines unterstöchiometrischen Lambdawertes kann aufgrund einer Leistungsvorgabe für die Verbrennungskraftmaschine oder einer Vorgabe der Motorsteuerung, zum Beispiel wegen der Überschreitung einer zulässigen Abgastemperatur erfolgen.The requirement of a substoichiometric lambda value can be based on a performance specification for the internal combustion engine or a specification of the engine control, for example due to the exceeding of a permissible exhaust gas temperature.

Die Übergangsphase ist vorzugsweise in mindestens zwei Phasen unterteilt, wobei in der Übergangsphase insgesamt oder auch nur in mindestens einer Phase mit unterschiedlichen Geschwindigkeiten beziehungsweise unterschiedlicher Steilheit auf den angeforderten unterstöchiometrischen Lambdawert abgesteuert werden kann.The transition phase is preferably subdivided into at least two phases, wherein in the transition phase as a whole or else only in at least one phase with different speeds or different steepness can be controlled to the required substoichiometric lambda value.

Vorzugsweise wird bei Anforderung eines unterstöchiometrischen Lambdawertes durch die Motorsteuerung der Verbrennungskraftmaschine im Anschluss an eine Schubabschaltungsphase zunächst zu Beginn der Übergangsphase oder in der ersten Phase der Übergangsphase ein Lambdawert zwischen 0,9 und 1,05, vorzugsweise zwischen 0,93 und 1,02 und besonders bevorzugt zwischen 0,97 und 1,0 eingestellt und anschließend schrittweise oder kontinuierlich auf den ursprünglich angeforderten Lambdawert abgesteuert, wobei die schrittweise oder kontinuierliche Absteuerung in der Übergangsphase insgesamt oder nur in mindestens einer Phase erfolgen kann.Preferably, upon request of a substoichiometric lambda value by the engine control of the internal combustion engine following a fuel cut-off phase initially at the beginning of the transition phase or in the first phase of the transition phase, a lambda value between 0.9 and 1.05, preferably between 0.93 and 1.02, and more preferably set between 0.97 and 1.0 and then gradually or continuously diverted to the originally requested lambda value, wherein the stepwise or continuous Absteuerung can take place in the transition phase as a whole or only in at least one phase.

Dabei kann bevorzugterweise die Maßnahme zur Absteuerung des Lambdawertes in der Übergangsphase oder in zumindest einer der Phasen vom Überschreiten einer Temperaturschwelle für zumindest einen der Katalysatoren abhängig gemacht werden.In this case, preferably the measure for controlling the lambda value in the transition phase or in at least one of the phases can be made dependent on exceeding a temperature threshold for at least one of the catalysts.

Die Übergangsphase beziehungsweise vorzugsweise zumindest eine der Phasen soll vorzugsweise mit einer Dauer von mindestens zehn Arbeitsspielen, insbesondere von mindestens dreißig Arbeitsspielen der Verbrennungskraftmaschine ablaufen.The transition phase or preferably at least one of the phases should preferably take place with a duration of at least ten working cycles, in particular of at least thirty working cycles of the internal combustion engine.

Die Veränderung beziehungsweise die Absteuerung des Lambdawertes in der Übergangsphase oder in mindestens einer Phasen der Übergangsphase soll vorzugsweise mit einer durchschnittlichen Anreicherungsgeschwindigkeit von -0,01 bis 0,3 s-1, insbesondere von etwa -0,1 S-1 erfolgen.The change or the ablation of the lambda value in the transition phase or in at least one phase of the transition phase should preferably take place with an average enrichment rate of -0.01 to 0.3 s -1 , in particular of about -0.1 S -1 .

Eine besonders bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens ist bei der Verwendung einer sauerstoffsensitiven Messeinrichtung gegeben, die zumindest einem Katalysator nachgeordnet ist. Als sauerstoffsensitive Messeinrichtung kann beispielsweise eine Lambdasonde oder ein NOx-Sensor mit entsprechender Messfunktion verwendet werden. In diesem Falle wird zu Beginn des Wiedereinsetzens des gefeuerten Betriebes der Verbrennungskraftmaschine das Lambda vor dem zumindest einen Katalysator auf einen Lambdawert, der vorzugsweise < 1,00, optimal zwischen 0,92 und 0,99, ideal zwischen 0,94 und 0,96 liegt, eingestellt. Über zumindest eine stromab der Verbrennungskraftmaschine, jedoch stromauf eines zumindest ersten Katalysators gelegene sauerstoffsensitive Messeinrichtung kann das tatsächliche Lambda auf die Sollvorgabe in bekannter Weise geregelt werden.A particularly preferred embodiment of the method according to the invention is given when using an oxygen-sensitive measuring device, which is arranged downstream of at least one catalyst. As an oxygen-sensitive measuring device, for example, a lambda probe or a NO x sensor can be used with appropriate measurement function. In this case, at the beginning of the re-start of the fired operation of the internal combustion engine, the lambda before the at least one catalyst to a lambda value, preferably <1.00, optimally between 0.92 and 0.99, ideally between 0.94 and 0.96 is, set. By means of at least one oxygen-sensitive measuring device located downstream of the internal combustion engine, but upstream of an at least first catalytic converter, the actual lambda can be regulated to the desired specification in a known manner.

Der Betrieb mit dem so vorgegebenen Lambdawert wird so lange beibehalten, bis stromab eines zumindest ersten Katalysators beziehungsweise stromab des belastungskritischsten Katalysators an der sauerstoffsensitiven Messeinrichtung ein Lambdaschwellwert unterschritten wird. Dieser Schwellwert liegt nahe um 1,00, vorzugsweise im Bereich von 0,95 bis 1,03, insbesondere zwischen 0,97 bis 1,01 und ideal zwischen 0,98 und 0,9995.The operation with the lambda value predetermined in this way is maintained until a lambda threshold value is reached below the oxygen-sensitive measuring device downstream of an at least first catalytic converter or downstream of the most stress-critical catalytic converter. This threshold is close to 1.00, preferably in the range 0.95 to 1.03, more preferably 0.97 to 1.01 and ideally 0.98 to 0.9995.

Nach Unterschreiten des Schwellwertes kann der Lambdawert wie beschrieben auf den ursprünglich angeforderten, in bekannter Weise ermittelten Lambdawert abgesenkt werden. Es ist erfindungsgemäß auch möglich, nach Unterschreiten des gemessenen Schwellwertes das Absenken des Lambdawertes noch für eine kurze Zeitspanne von 0 bis 4000 ms, ideal 100 bis 1000 ms und optimal 200 bis 500 ms zu verzögern, um ein zumindest nahezu vollständiges Ausräumen des gespeicherten Sauerstoffs aus dem zumindest einen Katalysator sicherzustellen.After falling below the threshold value, the lambda value can be lowered as described to the originally requested lambda value determined in a known manner. It is also possible according to the invention, after falling below the measured threshold value, to delay the lowering of the lambda value for a short period of time from 0 to 4000 ms, ideally 100 to 1000 ms and optimally 200 to 500 ms, in order to eliminate at least almost complete emptying of the stored oxygen to ensure that at least one catalyst.

Sowohl der Lambdawert zu Beginn der Übergangsphase oder zu Beginn der ersten Phase als auch die Anreicherungsgeschwindigkeit sind vorzugsweise in Abhängigkeit von der Motordrehzahl, einer Temperatur des zumindest einen Katalysators und/oder eines Vorkatalysators, einer Abgastemperatur, einem Abgasmassenstrom, des Betriebspunktes, der Sauerstoffspeicherfähigkeit zumindest eines der Katalysatoren einer seit Beginn der Übergangsphase verstrichenen Zeit und/oder einer lambdabezogenen Abgaszusammensetzung festgelegt.Both the lambda value at the beginning of the transition phase or at the beginning of the first phase and the enrichment rate are preferably at least one depending on the engine speed, a temperature of the at least one catalyst and / or a precatalyst, an exhaust gas temperature, an exhaust gas mass flow, the operating point, the oxygen storage capacity the catalysts of an elapsed since the beginning of the transition phase time and / or a lambdaabezogenen exhaust gas composition.

Die vorstehend beschriebene Verfahrensvariante mit einem gestuften Wiedereinsetzen des gefeuerten Betriebes der Verbrennungskraftmaschine bietet den zusätzlichen Vorteil, dass die Zeitdauer der ersten Stufe an den aktuellen Katalysatorzustand angepasst werden kann und somit die Phase der kurzzeitigen thermischen Überlastung so kurz wie möglich und so lang wie erforderlich gehalten wird.The above-described process variant with a gradual re-start of the fired operation of the internal combustion engine offers the additional advantage that the time period of the first stage can be adapted to the current catalyst state and thus the phase of short-term thermal overload is kept as short as possible and as long as necessary ,

Die magerlauffähige Verbrennungskraftmaschine mit zumindest einem in einem Abgaskanal der Verbrennungskraftmaschine angeordneten Katalysator weist erfindungsgemäß Mittel auf, mit denen unmittelbar im Anschluss an eine Schubabschaltungsphase der Verbrennungskraftmaschine und/oder unmittelbar im Anschluss an eine Betriebsphase, in der Sauerstoff in den Katalysator eingelagert wird, zunächst in einer Übergangsphase ein in etwa stöchiometrisches oder weniger unterstöchiometrisches Lambda einstellbar ist, und mit denen der Lambdawert anschließend mit einem vorgebbaren Verlauf auf einen ursprünglich, vorzugsweise von einer Motorsteuerung der Verbrennungskraftmaschine angeforderten Lambdawert absteuerbar ist.The lean-burn internal combustion engine with at least one arranged in an exhaust passage of the internal combustion engine catalyst according to the invention comprises means with which immediately after a fuel cut-off phase of the internal combustion engine and / or immediately after an operating phase in which oxygen is stored in the catalyst, first in one Transition phase is adjustable in approximately stoichiometric or less stoichiometric lambda, and with which the lambda value can then be deducted with a predeterminable course to an originally, preferably requested by an engine control of the internal combustion engine lambda value.

Nach einer besonders bevorzugten Ausführungsform handelt es sich bei dem zumindest einen Katalysator um zumindest einen NOx-Speicherkatalysator, der zumindest einen Vorkatalysator besitzen kann.According to a particularly preferred embodiment, the at least one catalyst is at least one NO x storage catalyst which may have at least one precatalyst.

Die Mittel können je nach Ausführungsform der Verbrennungskraftmaschine zumindest eine sauerstoffsensitive Messeinrichtung aufweisen, die dem zumindest einen Katalysator nachgeordnet ist. Eine weitere sauerstoffsensitive Messeinrichtung kann stromab der Verbrennungskraftmaschine, jedoch stromauf eines zumindest ersten Katalysators angeordnet sein.Depending on the embodiment of the internal combustion engine, the means may comprise at least one oxygen-sensitive measuring device arranged downstream of the at least one catalytic converter. A further oxygen-sensitive measuring device can be arranged downstream of the internal combustion engine, but upstream of an at least first catalytic converter.

Diese Mittel umfassen zudem ein Steuergerät, das vorzugsweise in ein Motorsteuergerät integriert ist, in dem Modelle und Algorithmen zur koordinierten Steuerung von abgas- und leistungsrelevanten Maßnahmen in digitalisierter Form hinterlegt sind.These means also include a control unit, which is preferably integrated in an engine control unit, in which models and algorithms for the coordinated control of exhaust gas and performance-relevant measures are stored in digitized form.

Die Steuerung und Koordination vorgenannter Mittel und sonstiger üblicher Mittel erfolgt über das Steuergerät beziehungsweise das Motorsteuergerät.The control and coordination of the aforementioned means and other conventional means via the control unit or the engine control unit.

Bei der erfindungsgemäßen Verbrennungskraftmaschine handelt es sich um einen Ottomotor, insbesondere einen direkt einspritzenden Ottomotor, oder einen Dieselmotor.In the internal combustion engine according to the invention is a gasoline engine, in particular a direct injection gasoline engine, or a diesel engine.

Vorteilhafterweise weist der zumindest eine im Abgaskanal der Verbrennungskraftmaschine angeordnete Katalysator einen gegenüber dem Stand der Technik verringerten Edelmetallgehalt auf.Advantageously, the at least one arranged in the exhaust passage of the internal combustion engine catalyst has a relation to the prior art reduced precious metal content.

Fahrzeuge mit magerlauffähigen Verbrennungskraftmaschinen, die im Neuen Europäischen Fahrzyklus NEFZ mit thermisch ungeschädigten Katalysatoren mit einer gespeicherten Schwefelmasse < 0,2 g/l Katalysatorvolumen und einem zeitlichen gefeuerten Magerbetriebsanteil ohne Schubabschaltungsphasen mit einem Lambda > 1,15 von zumindest 250 s, insbesondere mindestens 350 s, eine HC-Emission von < 0,07 g/km und eine NOx- Emission von < 0,05 g/km erreichen, werden heute im Stand der Technik mit Katalysatoren ausgerüstet, die Edelmetallgehalte von ≧ 3,59 g/dm3 (100 g/ft3) aufweisen.Vehicles with lean-burn internal combustion engines, which in the New European Driving Cycle NEDC with thermally undamaged catalysts with a stored sulfur mass <0.2 g / l catalyst volume and a timed fired lean operating component without fuel cut phases with a lambda> 1.15 of at least 250 s, in particular at least 350 s , reach an HC emission of <0.07 g / km and an NO x emission of <0.05 g / km, are today equipped in the prior art with catalysts, the noble metal contents of ≧ 3.59 g / dm 3 (100 g / ft 3 ).

Vorteilhafterweise weist das nach einer bevorzugten Ausführungsform der erfindungsgemäßen Verbrennungskraftmaschine nachgeordnete Katalysatorsystem, bestehend aus zumindest einem NOx Speicherkatalysator und eventuell zumindest einem vorgeschalteten Vorkatalysator, einen Edelmetallgehalt ≦ 3,59 g/dm3 (100 g/ft3), insbesondere ≦ 2,87 g/dm3 (80 g/ft3) und vorzugsweise ≦ 2,15 g/dm3 (60 g/ft3) auf. Vorteilhafterweise weist das Katalysatorsystem mit erfindungsgemäß abgesenktem Edelmetallgehalt mit zunehmender Fahrzeuglaufleistung im NEFZ gegenüber der ursprünglichen Ausführung mit höherem Edelmetallgehalt und ohne dem erfindungsgemäßen Verfahren keine höheren Emissionen auf.Advantageously, the downstream of a preferred embodiment of the internal combustion engine according to the invention catalyst system consisting of at least one NO x storage catalyst and possibly at least one upstream precatalyst, a noble metal content ≦ 3.59 g / dm 3 (100 g / ft 3 ), in particular ≦ 2.87 g / dm 3 (80 g / ft 3 ) and preferably ≦ 2.15 g / dm 3 (60 g / ft 3 ). Advantageously, the catalyst system with inventively lowered noble metal content with increasing vehicle mileage in the NEDC compared to the original design with higher noble metal content and without the inventive method no higher emissions.

Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.Further preferred embodiments of the invention will become apparent from the remaining, mentioned in the dependent claims characteristics.

Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:

Figur 1
eine Prinzipdarstellung einer Verbrennungskraftmaschine mit einer Abgasanlage;
Figur 2
zeitliche Verläufe verschiedener Parameter beim Wechsel aus einer Schubabschaltungsphase nach dem erfindungsgemäßen Verfahren und
Figur 3
zeitliche Verläufe von Lambda vor und nach dem Katalysator beim Wechsel aus einer Schubabschaltungsphase nach einer zweiten Variante des erfindungsgemäßen Verfahrens.
The invention will be explained in more detail in embodiments with reference to the accompanying drawings. Show it:
FIG. 1
a schematic diagram of an internal combustion engine with an exhaust system;
FIG. 2
temporal courses of various parameters when changing from a fuel cut-off phase according to the inventive method and
FIG. 3
Timing of Lambda before and after the catalyst when changing from a fuel cut-off phase according to a second variant of the method according to the invention.

Der in Figur 1 dargestellten Verbrennungskraftmaschine 10 ist eine Abgasanlage 12 nachgeordnet. Die Abgasanlage 12 weist einen Abgaskanal 14 auf, in dem ein motornah angeordneter Vorkatalysator 16 sowie ein großvolumiger NOx-Speicherkatalysator 18 befindlich sind. Neben dem Vorkatalysator 16 und dem NOx-Speicherkatalysator 18 weist der Abgaskanal 14 üblicherweise verschiedene, hier jedoch nicht dargestellte Gas- und/oder Temperatursensoren zur Regelung der Verbrennungskraftmaschine 10 auf. Dargestellt sind in Figur 1 lediglich beispielhaft zwei sauerstoffsensitive Messeinrichtungen 20, 22, stromauf beziehungsweise stromab des NOx-Speicherkatalysators 18 angeordnet, die ein Signal für den jeweiligen Lambdawert im Abgas liefern, sowie ein Temperatursensor 24, mit Hilfe dessen die Temperatur des NOx-Speicherkatalysators 18 ermittelt wird. Die Signale werden an ein Steuergerät 26 übermittelt, in welchem diese zur Steuerung der Betriebsarten der Verbrennungskraftmaschine 10 herangezogen werden. Das Steuergerät 26 ist zudem in einem Motorsteuergerät 28 integriert. Mittels des Steuergerätes 26 und des Motorsteuergerätes 28 wird mindestens ein Betriebsparameter der Verbrennungskraftmaschine 10, insbesondere ein zuzuführendes Luft-Kraftstoff-Gemisch (Verbrennungslambda), in Abhängigkeit der Signale beeinflusst.The in FIG. 1 shown internal combustion engine 10 is an exhaust system 12 downstream. The exhaust system 12 has an exhaust gas channel 14, in which a pre-catalyst arranged close to the engine 16 and a large-volume NO x storage 18 are located. In addition to the primary catalytic converter 16 and the NO x storage catalytic converter 18, the exhaust gas duct 14 usually has various gas and / or temperature sensors (not shown here) for controlling the internal combustion engine 10. Shown in FIG. 1 For example, only two oxygen-sensitive measuring devices 20, 22, upstream or downstream of the NO x storage catalytic converter 18, which provide a signal for the respective lambda value in the exhaust gas, and a temperature sensor 24, by means of which the temperature of the NO x storage 18 is determined. The signals are transmitted to a control unit 26, in which they are used to control the operating modes of the internal combustion engine 10. The control unit 26 is also integrated in an engine control unit 28. By means of the control unit 26 and the engine control unit 28, at least one operating parameter of the internal combustion engine 10, in particular an air-fuel mixture (combustion lambda) to be supplied, is influenced as a function of the signals.

Bei den in Figur 2 dargestellten Verläufen von Parametern stellen der Graph 100a und 100b das Lambda, Graph 102a und 102b die Temperatur des NOx-Speicherkatalysators 18 und Graph 104a und 104b den Sauerstofffüllstand des NOx-Speicherkatalysators 18 im zeitlichen Verlauf während des Übergangs vom Schubbetrieb auf den gefeuerten Betrieb der Verbrennungskraftmaschine 10 dar. Die Graphen 100a, 102a und 104a sind gestrichelt dargestellt und zeigen die Verläufe, die sich nach dem Stand der Technik ergeben, während die Graphen 100b, 102b und 104b die Verläufe nach dem erfindungsgemäßen Verfahren darstellen. Der Lambdawert beziehungsweise die Gemischzusammensetzung wird erfindungsgemäß unmittelbar im Anschluss an die Schubabschaltungsphase zum Zeitpunkt t1 zunächst stöchiometrisch eingestellt. Der ursprünglich von der Motorsteuerung 28 angeforderte Lambdawert wird erst zu einem Zeitpunkt t2 erreicht, wobei der Verlauf der Absenkung des Lambdawertes vorgegeben wird. Durch diese Maßnahme wird der Sauerstoffspeicher des NOx-Speicherkatalysators 18 allmählich geleert. Dies hat zur Folge dass die Temperatur am NOx-Speicherkatalysator 18 zwischen den beiden Zeitpunkten t1 und t2 ansteigt, jedoch ist dieser Anstieg geringer als die Temperaturspitze, die sich beim Verfahren nach dem Stand der Technik einstellt. Dadurch wird eine zu hohe Temperaturbelastung und eine damit einhergehende Schädigung des NOx-Speicherkatalysators 18 vermieden.At the in FIG. 2 progressions of parameters shown are the graph 100a and 100b lambda, graph 102a and 102b, the temperature of the NO x storing catalyst 18 and Graph 104a and 104b of the oxygen level of the NO x storing catalyst 18 at the time During the transition from overrun to fired operation of internal combustion engine 10, graphs 100a, 102a and 104a are shown in phantom and show the histories of the prior art while graphs 100b, 102b and 104b trace the graphs represent the inventive method. According to the invention, the lambda value or the mixture composition is initially set stoichiometrically immediately after the fuel cut-off phase at time t 1 . The lambda value originally requested by the engine control unit 28 is only reached at a time t 2 , the course of the lowering of the lambda value being predetermined. By this measure, the oxygen storage of the NO x storage catalyst 18 is gradually emptied. As a result, the temperature at the NO x storage catalyst 18 increases between the two times t 1 and t 2 , but this increase is less than the temperature peak that occurs in the prior art process. As a result, too high a temperature load and a concomitant damage to the NO x storage catalytic converter 18 are avoided.

Eine Variante des erfindungsgemäßen Verfahrens ist in Figur 3 dargestellt. Hierbei zeigt der Graph 106 mit der gestrichelten Linie das Lambda nach dem NOx-Speicherkatalysator 18 und der Graph 108 das Lambda vor dem NOx-Speicherkatalysator 18. Es wird zum Zeitpunkt t1 das Lambda vor NOx-Speicherkatalysator 18 auf einen weniger unterstöchiometrischen Lambdawert als ursprünglich angefordert eingestellt. Über zumindest eine stromab der Verbrennungskraftmaschine 10, jedoch stromauf des Vorkatalysators 16 gelegene, sauerstoffsensitive Messeinrichtung 22 wird das tatsächliche Lambda auf den Lambdawert in bekannter Weise geregelt. Der Betrieb mit dem so vorgegebenen Lambda wird so lange beibehalten, bis stromab des NOx-Speicherkatalysators 18 an der sauerstoffsensitiven Messeinrichtung 20 zum Zeitpunkt t3 ein Lambdaschwellwert unterschritten wird. Nach Unterschreiten des Lambdaschwellwertes wird der Lambdawert auf den zur Katalysatorschonung angeforderten Lambdawert abgesenkt, wobei das Absenken des Lambdawertes noch für eine kurze Zeitspanne verzögert wird und somit erst zum Zeitpunkt t4 erfolgt, um ein zumindest nahezu vollständiges Ausräumen des gespeicherten Sauerstoffs sicherzustellen.A variant of the method according to the invention is in FIG. 3 shown. Here, the graph 106 with the dashed line shows the lambda after the NO x storage 18 and the graph 108 the lambda before the NO x storage 18. It is at time t 1, the lambda before NO x storage 18 to a less substoichiometric Lambda value set as originally requested. Via at least one oxygen-sensitive measuring device 22 located downstream of the internal combustion engine 10, but upstream of the primary catalytic converter 16, the actual lambda is regulated to the lambda value in a known manner. The operation with the lambda thus given is maintained until downstream of the NO x storage 18 at the oxygen-sensitive measuring device 20 at time t 3, a Lambda threshold is exceeded. After falling below the lambda threshold value, the lambda value is lowered to the lambda value required for protecting the catalytic converter, wherein the lowering of the lambda value is still delayed for a short period of time and thus only takes place at time t 4 in order to ensure at least almost complete removal of the stored oxygen.

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

1010
VerbrennungskraftmaschineInternal combustion engine
1212
Abgasanlageexhaust system
1414
Abgaskanalexhaust duct
1616
Vorkatalysatorprecatalyzer
1818
NOx-SpeicherkatalysatorNO x storage catalyst
20, 2220, 22
sauerstoffsensitive Messeinrichtungoxygen-sensitive measuring device
2424
Temperatursensortemperature sensor
2626
Steuergerätcontrol unit
2828
MotorsteuergerätEngine control unit
100a, 100b100a, 100b
Lambdaverlauflambda curve
102a, 102b102a, 102b
Temperaturverlauf des NOx-SpeicherkatalysatorsTemperature profile of the NO x storage catalytic converter
104a, 104b104a, 104b
Verlauf des Sauerstofffüllstandes des NOx-SpeicherkatalysatorsCourse of the oxygen level of the NO x storage catalytic converter
106106
Lambdaverlauf nach NOx-SpeicherkatalysatorLambda curve after NO x storage catalytic converter
108108
Lambdaverlauflambda curve
t1 t 1
Zeitpunkt / Ende der SchubabschaltungsphaseTime / end of the fuel cut-off phase
t2 t 2
Zeitpunkt / Erreichen des ursprünglich angeforderten LambdawertesTime / Reaching the originally requested lambda value
t3 t 3
Zeitpunkt / Unterschreiten eines SchwellwertesTime / falling below a threshold value
t4 t 4
Zeitpunkt / Ende der VerzögerungTime / end of delay

Claims (25)

  1. Method for controlling an internal combustion engine (10) having at least one catalytic converter arranged in an exhaust duct (14) of the internal combustion engine (10), characterized in that, in the event of a demand for a substoichiometric lambda value directly after an overrun cut-off phase of the internal combustion engine (10), initially, in a transition phase, a lambda value is set which is approximately stoichiometric or which is less substoichiometric than that demanded, and subsequently, a downregulation adjustment is made to the demanded substoichiometric lambda value.
  2. Method according to Claim 1, characterized in that the demanded lambda value and/or the lambda value initially set in the transition phase is predefined by an engine controller.
  3. Method according to Claim 1 or 2, characterized in that the at least one catalytic converter is at least one NOx storage catalytic converter (18).
  4. Method according to one of Claims 1 to 3,
    characterized in that the at least one catalytic converter has a pre-catalytic converter (16).
  5. Method according to one of Claims 1 to 4,
    characterized in that the transition phase is divided into at least two phases in which the downregulation to the demanded substoichiometric lambda value is carried out at different speeds.
  6. Method according to one of Claims 1 to 5,
    characterized in that the downregulation of the lambda value takes place continuously in at least one of the phases or in the transition phase as a whole.
  7. Method according to one of Claims 1 to 6,
    characterized in that the downregulation of the lambda value takes place in steps in at least one of the phases or in the transition phase as a whole.
  8. Method according to one of Claims 1 to 7,
    characterized in that the transition phase as a whole, preferably even one of the phases, is executed over a duration of at least ten, in particular at least thirty working cycles of the internal combustion engine (10).
  9. Method according to one of Claims 1 to 8,
    characterized in that the downregulation of the lambda value in the transition phase or in at least one of the phases is made with an average enrichment speed of -0.01 to -0.3 s-1, preferably with an average enrichment speed of approximately -0.1 s-1.
  10. Method according to one of Claims 1 to 9,
    characterized in that the introduction of the downregulation of the lambda value in the transition phase or in at least one of the phases is made as a function of the exceedance of a temperature threshold of at least one catalytic converter.
  11. Method according to one of Claims 1 to 10,
    characterized in that, at the start of the transition phase or in the first phase of the transition phase, a lambda value of between 0.9 and 1.05, in particular between 0.93 and 1.02 and preferably between 0.97 and 1.0 is set.
  12. Method according to one of Claims 1 to 10,
    characterized in that an oxygen-sensitive measuring device (20) is arranged downstream of the at least one catalytic converter.
  13. Method according to Claim 12, characterized in that, at the start of the transition phase or in the first phase of the transition phase, a lambda value of < 1.00, preferably of between 0.92 and 0.99 and particularly preferably of between 0.94 and 0.96 is set.
  14. Method according to Claim 12 or 13, characterized in that the approximately stoichiometric or less substoichiometric lambda which is initially set in the transition phase is maintained until a lambda threshold value is undershot downstream of a first catalytic converter or downstream of the load-critical catalytic converter at the oxygen-sensitive measuring device (20).
  15. Method according to Claim 14, characterized in that the lambda value lies close to 1.00, preferably in the range from 0.95 to 1.03, particularly preferably in the range from 0.97 to 1.01 and optimally in the range from 0.98 to 0.9995.
  16. Method according to Claim 14 or 15, characterized in that after the undershooting of the lambda threshold value, the reduction of the initially-set lambda value is delayed further for a time period of 0...4000 ms, preferably 100...1000 ms, particularly preferably 200...500 ms.
  17. Method according to one of Claims 1 to 16,
    characterized in that the lambda value at the start of the transition phase and/or the enrichment speed during the transition phase are defined as a function of the engine speed, a temperature of the at least one catalytic converter and/or of a pre-catalytic converter, an exhaust gas temperature, an exhaust gas mass flow, the operating point, the oxygen storage capacity of at least one of the catalytic converters, a time which has elapsed since the start of the transition phase and/or a lambda-related exhaust-gas composition.
  18. Method according to one of Claims 1 to 17,
    characterized in that the demand for the substoichiometric lambda value after the overrun cut-off phase takes place for operational reasons, in particular on account of a power demand of the internal combustion engine or on account of a demand of the engine controller.
  19. Internal combustion engine (10) capable of lean running having at least one catalytic converter arranged in an exhaust duct (14) of the internal combustion engine (10), characterized in that the internal combustion engine (10) has means with which, in the event of a demand for a substoichiometric lambda value directly after an overrun cut-off phase of the internal combustion engine (10), initially, in a transition phase, a lambda value is set which is approximately stoichiometric or which is less substoichiometric than that demanded, and with which the lambda value is subsequently downregulated to the originally demanded lambda value.
  20. Internal combustion engine according to Claim 19, characterized in that the at least one catalytic converter is at least one NOx storage catalytic converter (18).
  21. Internal combustion engine according to Claim 19 or 20, characterized in that the at least one catalytic converter has at least one pre-catalytic converter (16).
  22. Internal combustion engine according to one of Claims 19 to 21, characterized in that the means comprise at least one oxygen-sensitive measuring device (20) which is arranged downstream of the at least one catalytic converter.
  23. Internal combustion engine according to one of Claims 19 to 22, characterized in that the means comprise a control unit (26) which is, if appropriate, integrated into an engine control unit (28), in which models and algorithms for the coordinated control of exhaust-gas- and power-relevant measures are stored in digitized form.
  24. Internal combustion engine according to one of Claims 19 to 23, characterized in that the internal combustion engine (10) is a spark-ignition engine or a diesel engine.
  25. Internal combustion engine according to one of Claims 19 to 24, characterized in that the at least one catalytic converter has a nobel metal content of ≤ 3.59 g/dm3, preferably ≤ 2.87 g/dm3, particularly preferably ≤ 2.15 g/dm3.
EP03795912A 2002-12-31 2003-12-18 Method for controlling an internal combustion engine and lean operating internal combustion engine Expired - Lifetime EP1581729B1 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
DE10261913 2002-12-31
DE10261913 2002-12-31
DE10303663 2003-01-23
DE10303663 2003-01-23
DE10357415 2003-12-03
DE10357415A DE10357415A1 (en) 2002-12-31 2003-12-03 Method for controlling an internal combustion engine and lean-burn internal combustion engine
PCT/EP2003/014455 WO2004059136A1 (en) 2002-12-31 2003-12-18 Method for controlling an internal combustion engine and lean operating internal combustion engine

Publications (2)

Publication Number Publication Date
EP1581729A1 EP1581729A1 (en) 2005-10-05
EP1581729B1 true EP1581729B1 (en) 2008-05-28

Family

ID=32685660

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03795912A Expired - Lifetime EP1581729B1 (en) 2002-12-31 2003-12-18 Method for controlling an internal combustion engine and lean operating internal combustion engine

Country Status (4)

Country Link
EP (1) EP1581729B1 (en)
AT (1) ATE397147T1 (en)
DE (1) DE50309932D1 (en)
WO (1) WO2004059136A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8168616B1 (en) 2000-11-17 2012-05-01 Novartis Ag Combination comprising a renin inhibitor and an angiotensin receptor inhibitor for hypertension

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3591283B2 (en) * 1998-01-29 2004-11-17 日産自動車株式会社 Engine exhaust purification device
JP3259711B2 (en) * 1999-05-18 2002-02-25 トヨタ自動車株式会社 Control device for internal combustion engine
JP2001082135A (en) * 1999-09-09 2001-03-27 Toyota Motor Corp Exhaust emisson control device for internal combustion engine
JP3607984B2 (en) * 2000-06-26 2005-01-05 トヨタ自動車株式会社 Exhaust gas purification device for in-vehicle internal combustion engine
JP4666542B2 (en) * 2000-06-29 2011-04-06 株式会社デンソー Exhaust gas purification control device for internal combustion engine
DE10064665C2 (en) * 2000-12-22 2003-04-30 Siemens Ag Method for controlling an internal combustion engine

Also Published As

Publication number Publication date
ATE397147T1 (en) 2008-06-15
DE50309932D1 (en) 2008-07-10
WO2004059136A1 (en) 2004-07-15
EP1581729A1 (en) 2005-10-05

Similar Documents

Publication Publication Date Title
EP1581733B1 (en) Method for controlling the temperature of a catalyst and multicylinder engine comprising a lambda splitting exhaust gas cleaning system
EP1366278A1 (en) METHOD FOR catalyst temperature control
EP1117916B1 (en) REGENERATION METHOD FOR A NOx STORAGE CATALYST PERTAINING TO AN INTERNAL COMBUSTION ENGINE
DE10226873B4 (en) Method for controlling the mode selection of an internal combustion engine
EP1205648A2 (en) Method and arrangement for a catalyst heating system
EP1581729B1 (en) Method for controlling an internal combustion engine and lean operating internal combustion engine
EP1255922B1 (en) Device and method for controlling operation of a multi-cylinder engine for motor vehicles having a multi-flow emission control system
EP1132584A2 (en) Method and apparatus for control of heating an exhaust gas purification system of internal combustion engines
DE10154974B4 (en) Method and device for switching an internal combustion engine from a fired operation to an unfired overrun operation
DE10154041B4 (en) Method and device for reducing pollutant emissions
DE102005063204B4 (en) Design and operation of a lean-running internal combustion engine with adapted exhaust aftertreatment
EP1479894B1 (en) Method for operating an internal combustion engine
DE10249609B4 (en) Method for controlling a NOx storage catalytic converter
DE10123148A1 (en) Two-stage process to remove sulfur from automotive exhaust system, comprises alternating rich and lean burn above threshold temperature
DE10357415A1 (en) Method for controlling an internal combustion engine and lean-burn internal combustion engine
DE10130053B4 (en) Method and device for desulphurisation of a NOX storage catalytic converter
EP1370758A1 (en) Method for controlling the warm-up process of a catalytic converter system
DE10202935A1 (en) Operating process for removal of sulfur deposits from the pre-catalyst in an IC engine exhaust system by periodic inducing of high temperature with alternating lean and rich lambda conditions
EP1387070B1 (en) Procedure and device for the operating of an exhaust purification intallation for an internal combustion engine
EP1108875B1 (en) Method for heating a catalyst of a lean burn internal combustion engine especially at idle
EP1479895A2 (en) Method for suppressing overrun fuel cut-off of an internal combustion engine during overrun mode
DE10230676B4 (en) Method for thermal regeneration of an exhaust gas purification device and internal combustion engine system
DE10114523B4 (en) Method for controlling a NOx regeneration of an arranged in the exhaust line of an internal combustion engine NOx storage catalyst
EP1491749B1 (en) Method for operating an internal combustion engine
DE10321311B4 (en) Method for heating a catalytic converter and engine with control unit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050801

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50309932

Country of ref document: DE

Date of ref document: 20080710

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080828

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081028

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080828

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

26N No opposition filed

Effective date: 20090303

BERE Be: lapsed

Owner name: VOLKSWAGEN A.G.

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081129

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080829

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171231

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181227

Year of fee payment: 16

Ref country code: GB

Payment date: 20181221

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50309932

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190702

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191218

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231