EP1577628A1 - Tank for heat exchanger - Google Patents

Tank for heat exchanger Download PDF

Info

Publication number
EP1577628A1
EP1577628A1 EP03778765A EP03778765A EP1577628A1 EP 1577628 A1 EP1577628 A1 EP 1577628A1 EP 03778765 A EP03778765 A EP 03778765A EP 03778765 A EP03778765 A EP 03778765A EP 1577628 A1 EP1577628 A1 EP 1577628A1
Authority
EP
European Patent Office
Prior art keywords
tank
partition portion
wall thickness
punch
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03778765A
Other languages
German (de)
French (fr)
Other versions
EP1577628A4 (en
Inventor
Hajime c/o ZEXEL VALEO CLIMATE CONT. CORP. OHATA
Naoto c/o ZEXEL VALEO CLIMATE C. CORP TAKAYANAGI
Shoji c/o ZEXEL VALEO CLIMATE CONT. CORP AKIYAMA
Yoshihisa c/o ZEXEL VALEO CLIMATE CONT. CORP ETO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Thermal Systems Japan Corp
Original Assignee
Zexel Valeo Climate Control Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Valeo Climate Control Corp filed Critical Zexel Valeo Climate Control Corp
Publication of EP1577628A1 publication Critical patent/EP1577628A1/en
Publication of EP1577628A4 publication Critical patent/EP1577628A4/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0214Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions

Definitions

  • the chamber 21 and the chamber 22 at the tank 3 are each further divided into sub-chambers 21a and 21b or 22a and 22b with a partitioning plate 28 inserted through a slit 29 to partition the chamber halfway through along the ventilation direction.
  • the sub-chamber 21b and the sub-chamber 22b are made to communicate with each other through a communication passage 16.
  • the communication passage 16 is formed at the partition portion 20 as shown in FIG. 4(b) by using a punch unit 33 having a die arm 34 with a die hole 34a formed therein, a punch 35 assuming an external shape which allows it to be inserted through the die hole 34a at the die arm 34 and a punch arm 36 used to move the punch 35 toward the die arm 34, such as that shown in FIG. 5.
  • the die ann 34 is fixed along the surface of the partition portion 20
  • the front end of the punch 35 is moved toward the die arm 34 until it becomes inserted at the die hole 34a in the die arm 34 by moving the punch arm 36 and then a rectangular through hole, which is to constitute the communication passage 16, is punched at the partition portion 20 through press machining, as shown in FIG. 6.

Abstract

A die arm 34 and a punch 35 to be used to punch a hole are inserted into chambers 21 and 22 lying parallel to each other along the direction of ventilation through openings located on one side of the chambers along the lengthwise direction. A partition portion 20 has a small wall thickness T1 relative to the wall thicknesses of partition portions in the related art, in a range of equal to or greater than 0.4 mm and equal to or less than 1.65 mm, so as to ensure that the punch unit achieves a high enough level of fatigue resistance to assure a specific number of uses without a failure even though the fulcrum and the power point of the die arm 34 and the punch 35 are not on a single axis along the operating direction and also that the partition portion 20 with the smaller wall thickness still has sufficient strength to prevent deformation. Consequently, the partition portion of a tank manufactured through extrusion molding achieves an optimal wall thickness for the formation of a communication passage at the partition portion in a post-process.

Description

    TECHNICAL FIELD
  • The present invention relates to a structure that may be adopted in a tank for a heat exchanger, which is provided as a separate component independent of heat exchanging tubes, and more specifically, it relates to a structure adopted in a partition portion.
  • BACKGROUND ART
  • There is a structure known in the related art adopted in a coolant evaporator having a heat exchanger tank provided as a separate component independent of heat exchanging tubes with the inner space of the heat exchanger tank divided into a plurality of sub-chambers with, at least, a partition portion extending along the longer side of the heat exchanger tank and constituted as an integrated part of the tank portion, in which a plurality of bypass holes are formed at the partition portion to achieve a coolant bypass between the sub-chambers lying parallel to one another along the ventilation direction (see, for instance, Japanese Unexamined Patent Publication No. H11-287587 (in particular, paragraphs (0021) through (0024) and FIGS. 1, 13 and 14)). The publication further discloses that the plurality of bypass holes, which assume a rectangular shape, are punched all at once in a metal (e.g., aluminum) sheet constituting the partition portion through, for instance, press machining.
  • A prerequisite for the method of forming the bypass holes at the partition portion described above is that the heat exchanger tank be formed by bending a single metal sheet over a plurality of stages through roll forming. Namely, a plurality of holes are punched at the sheet over a predetermined distance to one another and burring is formed so as to rise from the edge of one of the holes while the sheet is still in a flat state. Then, a bypass hole passing through the partition portion is formed by inserting the burring formed at the edge of the hole into another hole when forming the partition portion by bending the metal sheet through roll forming. For this reason, the evaporator manufacturing method described above cannot be directly adopted if the heat exchanger tank is manufactured through extrusion molding.
  • Accordingly, an object of the present invention is to provide a tank for a heat exchanger manufactured through extrusion molding, having a partition portion with an optimal wall thickness, which allows the heat exchange medium to travel between chambers adjacent to one another along the ventilation direction to enable the use of the heat exchanger tank in a four-pass heat exchanger.
  • DISCLOSURE OF THE INVENTION
  • The tank for a heat exchanger according to the present invention manufactured through extrusion molding and having a partition portion extending along the direction in which heat exchanging tubes are layered and partitioning the inner space of the tank into a plurality of chambers lying parallel to one another along the direction of ventilation, is characterized in that a communication passage communicating between the chambers is formed at the partition portion. By adopting the structure in a heat exchanger tank that includes a partition portion formed as an integrated part of the perimeter portion through extrusion molding, the heat exchange medium is allowed to travel among the plurality of chambers via the communication passage.
  • While such a communication passage may be constituted with a notch having one side thereof left in an open state and formed at the partition portion and a lid portion used to close off the openings at the chambers, the structure may give rise to a problem in that before the lid portion is mounted, the notch formed at the partition portion may compromise the strength of the tank in the area where the communication passage is present on the side extending along the lengthwise direction. For this reason, it is more desirable to form the communication passage at the partition portion in a post-process as a hole instead of a notch. By taking these measures, the relative strength of the tank can be improved.
  • In addition, in consideration of optimal distribution of the heat exchange medium inside the tank, it is desirable to form the communication passage by punching a hole at the partition portion at a position further inward over a predetermined distance from an end of the tank along the lengthwise direction.
  • While the communication passage may be formed in a post-process at the partition portion of the tank manufactured through extrusion molding by inserting a punch and a die at the chambers lying parallel along the ventilation direction into the openings of the chambers at one end along the lengthwise direction and then punching a hole with the punch and the die, there is a problem in that the desired level of fatigue resistance cannot be readily achieved in the punch unit since the fulcrum and the power point of the punch and die do not lie on a single axis along the operating direction of the press.
  • This problem may be solved by reducing the wall thickness of the partition portion of the heat exchanger tank. However, this solution, in turn, gives rise to a new concern that the partition portion of the heat exchanger tank may become deformed while mounting a partitioning plate or when the product is placed in a specific operating environment.
  • For this reason, it is desirable to set the wall thickness of the partition portion of the heat exchanger tank according to the present invention equal to or greater than 0.4 mm and equal to or less than 1.65 mm. In conjunction with the partition portion assuming such a wall thickness, the wall thickness of the tank perimeter portion should be set equal to the wall thickness of the partition portion or greater than the wall thickness of the partition portion.
  • In the heat exchanger tank described above having a hole punched at the partition portion by inserting a punch arm and a die arm into chambers lying parallel to each other along the ventilation direction via the chamber openings at one end along the lengthwise direction, the wall thickness of the partition portion is set relatively small compared to that of partition portions in the related art, within a range of equal to or greater than 0.4 mm and equal to or less than 1.65 mm. As a result, even though the fulcrum and the power point of the punch and the die are not on a single axis along the operating direction, the improvement of the punch unit fatigue resistance ensures that the punch unit can be used a specific number of times and, at the same time, the partition portion still assures a level of strength high enough to prevent deformation thereof to avert a problem of the partition portion becoming deformed when a partitioning plate is inserted at a tank slit or in a specific operating environment.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1(a) is a rear view taken along the ventilation direction, showing the overall structure of a heat exchanger in which the tank for a heat exchanger according to the present invention is used and FIG. 1(b) is a side elevation showing the overall structure of the heat exchanger viewed from the side on which the heat exchange medium intake/outlet portion is present;
  • FIG. 2(a) is an enlarged sectional view taken along line A - A in FIG. 1, FIG. 2(b) is an enlarged sectional view taken along line B - B in FIG. 1 and FIG. 2(c) shows the heat exchanging tubes and the fins;
  • FIG. 3(a) shows the heat exchanging tubes and the fins and FIG. 3(b) is a sectional view of the tank;
  • FIGS. 4(a) through 4(g) each show a heat exchanger manufacturing step;
  • FIG. 5 is a partial perspective showing the structure of the tank partition portion, the wall thickness of the perimeter portion and the structure of the punch unit (the punch and the die);
  • FIG. 6 is a sectional view of the communication passage formed by inserting the die arm and the punch arm at the chambers in the tank;
  • FIG. 7 presents a diagram illustrating the relationship between the number of times the punch unit can be repeatedly used and the allowable die arm stress limit; and
  • FIG. 8 presents a diagram illustrating the relationship between the wall thickness of the partition portion and the maximum stress occurring at the die arm.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • The following is an explanation of an embodiment of the present invention, given in reference to the drawings.
  • A heat exchanger 1 shown in FIG. 1 may be used, for instance, as an evaporator constituting part of a freezing cycle of an on-vehicle air-conditioning system. The heat exchanger 1 manufactured through a furnace brazing method comprises a pair of tanks 2 and 3, a plurality of heat exchanging tubes 4 communicating between the tanks 2 and 3, corrugated outer fins 5 inserted and bonded between the individual heat exchanging tubes 4, side plates 6 disposed at the two ends of the layered heat exchanging tube assembly along the layering direction and a side tank 10 at which a connector 9 having heat exchange medium intake/ outlet portions 7 and 8 is mounted. The connector 9 is connected with an expansion valve (not shown). At the heat exchanger 1, a heat exchange medium supplied through the expansion valve (not shown) flows in via the side tank 10, the heat exchange medium then exchanges heat with the air passing between the outer fins 5 while traveling between the tank 2 and the tank 3 through the heat exchanging tubes 4 and finally the heat exchange medium exits via the side tank 10.
  • As shown in FIG. 3(a), each heat exchanging tube 4 has two open ends at which it is inserted at the tanks 2 and 3 and is formed by housing inner fins 15 inside a flat tube 13 having formed therein a heat exchange medium flow passage 14. In this embodiment, the heat exchanging tubes 4 are formed by bending a single sheet of flat tube material through roll forming.
  • As described earlier, the tanks 2 and 3 are set so as to face opposite each other over a predetermined distance and are both formed through extrusion molding. For this reason, they are formed by using, for instance, an aluminum alloy in the A3000 group with no brazing material layer formed at the surfaces thereof.
  • To explain the tank 2 in reference to FIG. 2(a), the tank 2 includes tube insertion holes 17 at which the heat exchanging tubes 4 are inserted, and has openings each formed at an end along the lengthwise direction. The openings are each closed off with a cap 19. The tank 2 also includes a partition portion 20 extending along the direction in which the heat exchanging tubes 4 are layered (along the longer side of the tank 2) and formed as an integrated part of a perimeter portion 18. Thus, the inner space of the tank 2 is divided into a chamber 21 and a chamber 22 set parallel along the ventilation direction, as shown in FIG. 3(b).
  • The tank 3, too, includes tube insertion holes 17 at which the heat exchanging tubes 4 are inserted and has openings formed at the two ends along the lengthwise direction which are closed off with caps 19, as shown in FIG. 2(b). In addition, a partition portion 20 extending along the direction in which the heat exchanging tubes 4 are layered (along the longer side of the tank 3) is formed as an integrated part of the tank to divide the inner space of the tank 3 into a chamber 21 and a chamber 22 set parallel along the ventilation direction, as shown in FIG. 3(b), in the structure substantially similar to that of the tank 2. However, unlike the chambers in the tank 2, the chamber 21 and the chamber 22 at the tank 3 are each further divided into sub-chambers 21a and 21b or 22a and 22b with a partitioning plate 28 inserted through a slit 29 to partition the chamber halfway through along the ventilation direction. In order to achieve a four-pass flow of the heat exchange medium, the sub-chamber 21b and the sub-chamber 22b are made to communicate with each other through a communication passage 16.
  • The tank 3 includes a projecting portion 3a that projects further out along the tube layering direction relative to the heat exchanging tube 4 at the terminating end of the layered tube assembly. This projecting portion 3a is formed by distending the perimeter portion 18, and the partition portion 20 is also allowed to extend to come into contact with the inner side surface of the cap 19. Thus, the chambers 21 and 22 of the tank 3 mentioned earlier are still partitioned from each other inside the projecting portion 3a. In the projecting portion 3a, the chambers 21 and 22 constitute the upstream-most side and the downstream-most side with regard to the heat exchange medium flow and, as shown in FIG. 2(b), the chambers 21 and 22 are made to communicate respectively with an inflow-side passage 25 and an outflow-side passage 26 at the side tank 10 via openings 23 and 24 formed at the projecting portion 3a.
  • Next, part of the process for manufacturing the heat exchanger 1, during which the tank 3 is formed, is explained in reference to FIG. 4. First, as shown in FIG. 4(a), a tank base piece M extracted from a plurality of tank base pieces M formed through extrusion molding so as to achieve a significant elongation (e.g., 5 m) and held in stock is set on the production line. Then, after punching the communication passage 16 at the partition portion 20 over an area near the front end of the tank base piece M on one side thereof, as shown in FIG. 4(b), tube insertion holes 17 are formed over a predetermined range at a surface 18A of the tank base piece M as shown in FIG. 4(c). In addition, as shown in FIG. 4(d), the tank base piece M is cut so as to achieve a desired measurement along the lengthwise direction by using a tool such as a circular saw, slits 29 and 29 are formed so as to run over surfaces 18A, 18B and 18D and surfaces 18A, 18C (not shown, faces opposite the surface 18B) and 18D, and the cut areas are washed to remove burrs and the like. Thus, the tank 3 achieves a desired shape. The steps for forming the communication passage 16, for forming the tube insertion holes 17, for forming the slits 29 and 29 and the like are repeatedly executed until the tank base piece M is consumed.
  • Next, as shown in FIG. 4(e), a partitioning plate 28 is mounted in the chamber 21 or the chamber 22 through the slit 29 at the finished tank 3. Lastly, a brazing sheet 30 is pasted to the tube insertion hole forming surface 18A of the tank 3, as shown in FIG. 4(f), and then the tank assembly process is completed by closing off the openings at the two ends of the tank along the lengthwise direction with the caps 19, as shown in FIG. 4(g).
  • Since the tank 2 does not include a communication passage 16 and it does not need slits 29 and 29 to be formed therein to allow partitioning plates 28 to be mounted inside the chambers 21 and 22 through the slits, the tank 2 is formed by cutting the tank base piece M with a tool instead of executing the step shown in FIG. 4(d) after the steps shown in FIGS. 4(a) and 4(c), then pasting a brazing material sheet 30 at the tube insertion hole forming surface 18A of the tank 2, as shown in FIG. 4(f) and closing off the openings at the two ends of the tank 2 along the lengthwise direction with the caps 19, as shown in FIG. 4(g).
  • After assembling the heat exchanger 1 by inserting the two ends of the longer side of each heat exchanging tube 4 at a tube insertion hole 17 at the tank 2 and a tube insertion hole 17 at the tank 3, the heat exchanger assembly is braised in the furnace, and thus, the production of the heat exchanger 1 is completed. It is to be noted that since the heat exchanger 1 is assembled and braised in a furnace by adopting methods in the known art, the assembly and brazing processes are not illustrated in the drawings and their explanation is omitted.
  • In this embodiment, the partition portion 20, which is formed as an integrated part of the perimeter portion 18 while the perimeter portion 18 is formed during the process of manufacturing the tank 3 through extrusion molding, has a wall thickness T1 of 1.0 mm, whereas the perimeter portion 18 has a wall thickness T2 of 1.5 mm at the surface ranging along the ventilation direction and a wall thickness T3 of 1.0 mm at the surface ranging along the direction intersecting the ventilation direction, as shown in FIG. 5. Namely, the wall thicknesses T2 and T3 assumed at the perimeter portion 18 are either equal to or greater than the wall thickness T1 of the partition portion 20. It is to be noted that the wall thickness T1 of the partition portion 20 does not need to be 1.0 mm as described above, and may take any value within a range of equal to or greater than 0.4 mm and equal to or less than 1.65 mm.
  • Then, the communication passage 16 is formed at the partition portion 20 as shown in FIG. 4(b) by using a punch unit 33 having a die arm 34 with a die hole 34a formed therein, a punch 35 assuming an external shape which allows it to be inserted through the die hole 34a at the die arm 34 and a punch arm 36 used to move the punch 35 toward the die arm 34, such as that shown in FIG. 5. Namely, after inserting the die arm 34 and the punch arm 36 respectively through the openings of the chambers 21 and 22 at an end along the lengthwise direction, the die ann 34 is fixed along the surface of the partition portion 20, the front end of the punch 35 is moved toward the die arm 34 until it becomes inserted at the die hole 34a in the die arm 34 by moving the punch arm 36 and then a rectangular through hole, which is to constitute the communication passage 16, is punched at the partition portion 20 through press machining, as shown in FIG. 6.
  • While the fulcrum and the power point of the die arm 34 and the punch 35 are not set on a single axis extending along the press operating direction, the wall thickness T 1 equal to or smaller than 1.65 mm assumed at the partition portion 20, which is relatively small compared to the wall thicknesses of partition portions in the related art, reduces the extent of metal fatigue occurring at the punch unit 33.
  • In other words, the punch unit is required to have durability assuring approximately 100,000 repeated uses without incident in practical application. The allowable press stress limit at which a punch unit constituted of SKH51, a material typically used to form press molds and punches, can withstand 100,000 repeated uses is approximately 850 Nmm2, as shown in FIG. 7, and the thickness of the partition portion that can be machined at such a stress level is equal to or less than 1.65 mm, as shown in FIG. 8. For these reasons, the upper limit to the plate thickness of the partition portion that assures 100,000 repeated uses is set to 1.65 mm. It has also been learned that a sufficient level of strength to withstand the force with which the front end of the partitioning plate 28 is abutted against the partition portion 20 when mounting the partitioning plate 28 through the slit 29 at the tank 3, as shown in FIG. 4(e), and the force that may be applied to the partition portion 20 in a specific operating environment is assured by keeping the lower limit to the wall thickness of the partition portion 20 to 0.4 mm at which deformation of the partition portion 20 does not occur.
  • INDUSTRIAL APPLICABILITY
  • As described above, in the tank for a heat exchanger according to the present invention, having a partition portion formed as an integrated part of the perimeter portion of the tank through extrusion molding, chambers are allowed to communicate with one another through a communication passage formed at the partition portion as a hole instead of a notch during a post-process and, as a result, the relative strength of the tank is improved.
  • In addition, according to the present invention disclosed in claims 3 and 4, the wall thickness of the partition portion is set within a range of equal to or greater than 0.4 mm and equal to or less than 1.65 mm. By forming the partition portion with a relatively small wall thickness compared to partition portions in the related art, a higher level of punch unit fatigue strength is achieved so as to assure a specific number of repeated uses without incident even though the communication passage is formed by using a punch and a die with the fulcrum and the power point thereof not on a single axis along the operating direction. At the same time, while the partition portion has a relatively small wall thickness, a sufficient level of strength to prevent deformation of the partition portion is still assured, and thus, the partition portion does not become deformed when a partitioning plate is inserted through a slit formed over the perimeter portion of the tank or in a specific operating environment.

Claims (4)

  1. A tank (3) for a heat exchanger (1), manufactured through extrusion molding with the inner space thereof divided into a plurality of chambers (21,22) lying parallel to one another along a ventilation direction with a partition portion (20) ranging along a direction in which heat exchanging tubes (4) are layered, characterized in:
    that a communication passage (16) communicating between said chambers (21,22) is formed at said partition portion (20).
  2. A tank (3) for a heat exchanger (1) according to claim 1, characterized in:
    that said communication passage (16) is formed by punching a hole at said partition portion (20).
  3. A tank (3) for a heat exchanger (1) according to claim 1 or claim 2, characterized in:
    that the wall thickness of said partition portion (20) is equal to or greater than 0.4 mm and equal to or less than 1.65 mm.
  4. A tank (3) for a heat exchanger (1) according to claim 1, claim 2 or claim 3, characterized in:
    that the wall thickness of a perimeter portion (18) of said tank (3) is equal to or greater than the wall thickness of said partition portion (20).
EP03778765A 2002-12-12 2003-12-10 Tank for heat exchanger Withdrawn EP1577628A4 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002360085 2002-12-12
JP2002360085 2002-12-12
PCT/JP2003/015770 WO2004053417A1 (en) 2002-12-12 2003-12-10 Tank for heat exchanger

Publications (2)

Publication Number Publication Date
EP1577628A1 true EP1577628A1 (en) 2005-09-21
EP1577628A4 EP1577628A4 (en) 2006-06-07

Family

ID=32500972

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03778765A Withdrawn EP1577628A4 (en) 2002-12-12 2003-12-10 Tank for heat exchanger

Country Status (4)

Country Link
US (1) US20060011335A1 (en)
EP (1) EP1577628A4 (en)
JP (1) JP4613615B2 (en)
WO (1) WO2004053417A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3059411A1 (en) * 2016-11-30 2018-06-01 Valeo Systemes Thermiques THERMAL EXCHANGER COLLECTOR BOX FOR INTAKE MODULE OF AN INTERNAL COMBUSTION ENGINE

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201059823Y (en) * 2007-06-19 2008-05-14 上海双桦汽车零部件股份有限公司 Parallel flow evaporator
KR101260765B1 (en) 2007-09-03 2013-05-06 한라비스테온공조 주식회사 evaporator
US11226158B2 (en) * 2019-04-01 2022-01-18 Hamilton Sundstrand Corporation Heat exchanger fractal splitter

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07121451B2 (en) * 1988-03-03 1995-12-25 株式会社ゼクセル Heat exchanger
KR940010978B1 (en) * 1988-08-12 1994-11-21 갈소니꾸 가부시끼가이샤 Multi-flow type heat exchanger
US5009262A (en) * 1990-06-19 1991-04-23 General Motors Corporation Combination radiator and condenser apparatus for motor vehicle
JP3017272B2 (en) * 1990-11-07 2000-03-06 株式会社ゼクセル Heat exchanger
JPH04203895A (en) * 1990-11-30 1992-07-24 Aisin Seiki Co Ltd Heat exchanger
JPH07180988A (en) * 1993-12-21 1995-07-18 Sanden Corp Heat exchanger
JPH07305990A (en) * 1994-05-16 1995-11-21 Sanden Corp Multitubular type heat exchanger
KR100489170B1 (en) * 1997-05-12 2005-05-17 노르스크 히드로 아에스아 Heat exchanger
US5941303A (en) * 1997-11-04 1999-08-24 Thermal Components Extruded manifold with multiple passages and cross-counterflow heat exchanger incorporating same
US6216776B1 (en) * 1998-02-16 2001-04-17 Denso Corporation Heat exchanger
JPH11325784A (en) * 1998-03-16 1999-11-26 Denso Corp Heat exchanger
JPH11287587A (en) * 1998-04-03 1999-10-19 Denso Corp Refrigerant evaporator
JP4147709B2 (en) * 1999-03-05 2008-09-10 株式会社デンソー Refrigerant condenser
JP2001133075A (en) * 1999-11-09 2001-05-18 Sanden Corp Heat exchanger in refrigerating circuit
JP2001215096A (en) * 2000-02-01 2001-08-10 Mitsubishi Heavy Ind Ltd Heat exchanger
DE10056074B4 (en) * 2000-11-07 2017-03-23 Mahle International Gmbh Heat exchanger
JP4180801B2 (en) * 2001-01-11 2008-11-12 三菱電機株式会社 Refrigeration and air conditioning cycle equipment
JP4068312B2 (en) * 2001-06-18 2008-03-26 カルソニックカンセイ株式会社 Carbon dioxide radiator
AU2003269545B2 (en) * 2002-12-31 2006-04-27 Modine Korea, Llc Evaporator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
No further relevant documents disclosed *
See also references of WO2004053417A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3059411A1 (en) * 2016-11-30 2018-06-01 Valeo Systemes Thermiques THERMAL EXCHANGER COLLECTOR BOX FOR INTAKE MODULE OF AN INTERNAL COMBUSTION ENGINE
WO2018100312A1 (en) * 2016-11-30 2018-06-07 Valeo Systemes Thermiques Heat exchanger header box for internal combustion engine intake module

Also Published As

Publication number Publication date
US20060011335A1 (en) 2006-01-19
JPWO2004053417A1 (en) 2006-04-13
WO2004053417A1 (en) 2004-06-24
JP4613615B2 (en) 2011-01-19
EP1577628A4 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
EP1046876B1 (en) Aluminum-alloy heat exchanger
US7708054B2 (en) Heat exchanger
JP5646133B2 (en) Heat exchanger with double baffle
EP0900605B1 (en) Method of forming a cylindrical heat exchanger header tank
JPH11226685A (en) Manufacture of heat exchanger and header tank
US5513700A (en) Automotive evaporator manifold
US6971445B2 (en) Heat exchanger and method of production
US5894886A (en) Heat exchanger with fluid control means for controlling a flow of a heat exchange medium and method of manufacturing the same
EP1409943A1 (en) Layered evaporator for use in motor vehicle air conditioners or the like, layered heat exchanger for providing the evaporator, and refrigeration cycle system comprising the evaporator
JP3822958B2 (en) Manufacturing method of heat exchanger
WO2008122116A1 (en) Heat exchanger construction
US7895749B2 (en) Method of manufacturing heat exchanger
KR200159030Y1 (en) Evaporator for a car
EP1577628A1 (en) Tank for heat exchanger
JP4448354B2 (en) Heat exchanger
JP4898672B2 (en) Heat exchanger
EP0736346B1 (en) Method of making an automotive evaporator
JP2003094135A (en) Heat exchanger
US6049981A (en) Method for manufacturing a header pipe
JP4705837B2 (en) Manufacturing method of heat exchanger
JP4233292B2 (en) Heat exchanger
JP5034063B2 (en) Heat exchanger
JP2002243387A (en) Heat exchanger and its manufacturing method
AU2002314555B2 (en) Layered evaporator for use in motor vehicle air conditioners or the like, layered heat exchanger for providing the evaporator, and refrigeration cycle system comprising the evaporator
JP2008020174A (en) Heat exchanger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050608

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR

A4 Supplementary search report drawn up and despatched

Effective date: 20060509

17Q First examination report despatched

Effective date: 20080110

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090303