EP1573942A1 - Distributionssystem für satellitenrundfunk - Google Patents

Distributionssystem für satellitenrundfunk

Info

Publication number
EP1573942A1
EP1573942A1 EP03799476A EP03799476A EP1573942A1 EP 1573942 A1 EP1573942 A1 EP 1573942A1 EP 03799476 A EP03799476 A EP 03799476A EP 03799476 A EP03799476 A EP 03799476A EP 1573942 A1 EP1573942 A1 EP 1573942A1
Authority
EP
European Patent Office
Prior art keywords
signals
satellite
receiver
distribution
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP03799476A
Other languages
English (en)
French (fr)
Inventor
Herbert Hetzel
Rainer Klos
Patrick Heck
Christian Thiel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMSC Europe GmbH
Original Assignee
Oasis SiliconSystems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10324122A external-priority patent/DE10324122B4/de
Application filed by Oasis SiliconSystems AG filed Critical Oasis SiliconSystems AG
Publication of EP1573942A1 publication Critical patent/EP1573942A1/de
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/90Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for satellite broadcast receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/20Adaptations for transmission via a GHz frequency band, e.g. via satellite

Definitions

  • the invention relates to a distribution system for satellite broadcasting and related services.
  • Receiving systems with controllable head stations bring an improvement here.
  • the desired channel is converted into an intermediate band in accordance with the channel selection of the individual subscribers, which can be transmitted via the coaxial cable.
  • the disadvantage of such a solution is the high complexity of the head-end station combined with a low one Flexibility. This means that only receivers specially designed for communication with the head-end station can be used.
  • US 6,486,907 B1 represents a simplified solution here.
  • a simplified optical distribution system is described here, in which the signals are also transmitted in the baseband without further modulation.
  • the disadvantage of this arrangement is a low transmission quality due to the optical signal transmission in the baseband.
  • the invention is based on the object of designing a distribution system for satellite broadcasting which does not have the disadvantages described above and is suitable for the simultaneous connection of a large number of subscribers with high flexibility and low costs.
  • a solution to this problem according to the invention is specified in the independent patent claims. Further developments of the invention are the subject of the dependent claims.
  • tellite broadcasting includes services such as satellite TV, satellite radio, both in analog and digital form, as well as purely digital services, such as the distribution of Internet data via satellite channels.
  • a distribution system comprises at least one satellite receiving antenna for receiving the satellite signals, at least one LNB (Low Noise Block) as a preamplifier and at least one receiver for demodulating the signals received by the antenna. Furthermore, at least one line system for distributing the signals to at least one subscriber is provided. Further components, which are essential for the function of the system but not for the invention itself, are not discussed further here.
  • LNB Low Noise Block
  • receivers are not located on the side of the subscriber, but are assigned to the satellite receiving antenna (s).
  • receivers are not understood to mean frequency converters which convert a signal into another frequency band. Rather includes the term those units which demodulate the signals and decode if necessary.
  • At least one LNB, possibly necessary frequency converter, and at least one receiver are assigned to at least one antenna together with a bus interface.
  • decoding refers to special types of coding, such as those used for the high-frequency transmission of satellite signals from the satellite to the terrestrial receiver.
  • the signals for transmission via the bus system can be re-encoded according to the bus system standard. Codings that can usually also be evaluated by audio and video devices without their own HF receiver, such as MP3 or similar standards, do not necessarily have to be decoded. In this way, signals coded in this way can be transmitted to the participants even without decoding.
  • preamplifier (8) with optional frequency converter (LNB), receiver (9) and bus interface (10) with the antenna preferably takes place.
  • LNB frequency converter
  • receiver (9) with optional frequency converter (LNB)
  • bus interface (10) with the antenna preferably takes place.
  • Components can, for example, in a single housing, preferably as is usually the case Is used according to the state of the art for LNBs, housed and mounted on the antenna.
  • antenna here refers to a reflector that is commonly used, such as a parabolic mirror.
  • a mode converter such as a horn, which is used to implement the free-space modes in line-guided modes of the electromagnetic waves, can be assigned either to the reflector or to the preamplifier. However, it is preferably assigned to the preamplifier.
  • any reflector shapes or antenna shapes can be used in the sense of the invention.
  • Active or passive array antennas can also be used according to the invention.
  • at least one LNB, possibly necessary frequency converter, and at least one receiver are integrated in one unit together with a bus interface in the antenna itself.
  • the bus system is based on electrical lines and in particular on optical fibers.
  • this can also be a narrowband radio system or a wireless LAN.
  • Such systems are currently often offered, for example, in the 13 cm band.
  • Another embodiment of the invention relates to the configuration of the bus system as a digital bus system.
  • bidirectional communication is also regularly possible. This makes it particularly easy for the participants, a to tell the speaking receiver which channel of the satellite band it is to receive and demodulate.
  • additional communication options available via the bus system. For example, other parameters such as signal quality or other information such as time can be transmitted.
  • intelligent control can be implemented with such a bus system. If, for example, two or more subscribers request the same channel, it is now possible to tell these subscribers which receiver is currently demodulating this channel or in which data stream the desired packets can be found. The multiple demodulation of the same channel by several receivers is therefore not necessary. This is particularly advantageous in the case of large systems, since it is highly likely that at least some participants will request the same channels. Thus, the number of recipients can be chosen less than the number of participants. This leads to further cost savings.
  • the bus system can be used not only for the distribution of satellite signals, but also for data transmission, such as in PC networks or for building automation.
  • at least one receiver is designed for real-time coding of the received signals in at least one digital video format.
  • digital video formats can be, for example, MPEG or formats derived therefrom or related thereto.
  • the participants are advantageously particularly inexpensive, since they only have to have standard decoders, such as MPEG decoders.
  • standard decoders such as MPEG decoders.
  • simple MPEG decoders can be used instead of the previously complex satellite receivers, which can be implemented, for example, in PCs using software or integrated in DVD players anyway. This leads to a strong cost reduction of the overall system.
  • Another embodiment of the invention provides at least one diversity unit, which filters the signal with the best quality in each case from the signals of a plurality of receivers and transmits it further to the participants.
  • the filtering can be carried out either on the basis of the demodulated signals from receivers or else on the basis of digital signals which are transmitted via a bus. It is particularly simple
  • a method according to the invention comprises the steps: satellite broadcast signals comprising the following steps: reception of the satellite signals by means of at least one satellite antenna, demodulation of the received signals, conversion of the signals into a digital one
  • Bus system with a bus interface integrated in the antenna and distribution of the demodulated signals via a line system to at least one subscriber.
  • Fig. 1 shows schematically a device according to the invention in general form.
  • Fig. 2 shows in general form schematically the structure of a receiving unit (3).
  • 3 shows a receiving unit with several receivers.
  • the distribution system shown here has a satellite receiving antenna (1) for receiving the satellite signals.
  • This antenna comprises at least one reflector (2).
  • the receiver (3) which contains all the components necessary for tapping the signals concentrated by the reflector, their implementation and delivery as digital signals on the bus system (5). These are, for example, mode converters (7), preamplifiers (8) and receivers (9). The signals received and demodulated in the receiving unit are converted into a suitable digital form, which can be transmitted to the individual subscribers (6a, 6b, 6c, 6d, 6e) via the bus system (5). With this arrangement, the receiver is not located on the side of the participants, but in the immediate vicinity of the satellite receiving antenna.
  • a receiving unit is shown schematically in FIG. 3.
  • a mode converter (7) for example a horn antenna, picks up the electromagnetic waves concentrated by the reflector (2) and converts these waves to the line. These are then amplified by a preamplifier (8) and demodulated by a subsequent receiver (9) and decoded if necessary.
  • a bus interface (10) is provided for communication between the receiver and the participants by means of the bus system (5). This bus interface can optionally also be designed bidirectionally, so that it can not only send signals to the bus, but also receive signals from the bus. In this way, for example, certain operating states, such as the selection or the blocking of certain channels, can also be signaled to the receiving unit.
  • Fig. 3 shows schematically the exemplary embodiment with two receivers.
  • the mode converters (7, 17) which emit electrical signals to the preamplifiers (8, 18).
  • the amplified signals are then fed to the corresponding receivers (9, 19) for demodulation.
  • the received signals are now connected to the (external) bus interface (10) by means of the local bus interfaces (11, 20).
  • This bus can be, for example, a synchronous, multimedia-capable bus, such as the MediaLB.
  • Self It is understandable that other receivers can also be combined with one another in accordance with this exemplary embodiment.
  • a combination is also possible in accordance with the prior art, for example via multiplexers (channel switches). However, the combination shown here is much more flexible and powerful via a local bus.
  • the bus system (5) can of course also be used instead of the local bus.

Landscapes

  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Radio Relay Systems (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

Ein Distributionssystem für Satellitenrundfunk umfasst eine Satelliten-Empfangsantenne zum Empfang der Satelliten-Signale, Empfänger zur Demodulation der von der Antenne empfangenen Signale und ein Leitungssystem zur Verteilung der Signale an mehrere Teilnehmer, wobei die Empfänger der Satelliten-Empfangsantenne räumlich nahe zugeordnet sind und ausschließlich demodulierte bzw. decodierte Signale mittels des Leitungssystems an die Teilnehmer weiterverteilen.

Description

Distributionssystem für Satellitenrundfunk
Technisches Gebiet Die Erfindung betrifft ein Distributionssystem für Satellitenrundfunk und verwandte Dienste.
Stand der Technik
Konventionelle Distributionssysteme für Satellitenrund- funk, wie sie beispielsweise in der US 5,787,335 beschrieben sind, basieren auf der Verteilung analoger Hochfrequenz - Signale mittels Koaxialkabeln. Zur gleichzeitigen Übertragung der Signale zweier Polarisationen werden zwei Kabelstränge eingesetzt. Eine Ver- besserung zeigt hier die US 5,805,975 , bei der die Signale der zweiten Polarisation in einen anderen Frequenzbereich umgesetzt werden. Allerdings ist hierbei ein wesentlich breitbandigeres Kabel sowie ein breitbandigeres Verteilersystem notwendig. Das Problem bei derartigen Anordnungen ist, dass die bei herkömmlichen Kabelsystemen zur Verfügung stehende Bandbreite bei weitem nicht ausreicht, um alle übertragbaren Kanäle, insbesondere bei gleichzeitigem Empfang mehrerer Satelliten zu verteilen.
Eine Verbesserung bringen hier Empfangsysteme mit steuerbaren Kopfstationen, wie sie beispielsweise in der DE 195 28 589 Cl beschrieben sind. Hierin wird entsprechend der Kanalselektion der einzelnen Teilneh- mer der gewünschte Kanal in ein Zwischenband umgesetzt, welches über das Koaxialkabel übertragen werden kann. Der Nachteil einer solchen Lösung ist die hohe Komplexität der Kopfstation verbunden mit einer geringen Flexibilität. So können nur speziell für die Kommunikation mit der Kopfstation ausgelegte Empfänger eingesetzt werden.
Ein anderer Ansatz wird in der US 5,995,258 verfolgt. Darin wird ein komplexes optisches Bussystem beschrieben, bei dem die Satelliten-Empfangssignale im Basisband übertragen werden. Zur gleichzeitigen Übertragung mehrerer Polarisationen bzw. einer Kommunikation in der Gegenrichtung werden unterschiedliche optische Wellenlängen eingesetzt. Dieses System weist die Nachteile einer äußerst hohen Komplexität, eines hohen Aufwands der optischen Komponenten und gleichzeitig niedrige Übertragungsqualität durch optische Signalübertragung im Basisband auf.
Eine vereinfachte Lösung stellt hier die US 6,486,907 Bl dar. Hier wird ein vereinfachtes optisches Verteil- system beschrieben, bei dem die Signale ebenfalls ohne weitere Modulation im Basisband übertragen werden. Der Nachteil dieser Anordnung besteht in einer niedrigen Übertragungsqualität aufgrund der optischen Signalübertragung im Basisband.
Darstellung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, ein Distributionssystem für Satellitenrundfunk zu gestalten, welches die zuvor beschriebenen Nachteile nicht aufweist und für den gleichzeitigen Anschluss einer hohen Teil- nehmerzahl bei hoher Flexibilität und niedrigen Kosten geeignet ist. Eine erfindungsgemäße Lösung dieser Aufgabe ist in den unabhängigen Patentansprüchen angegeben. Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche .
Nachfolgend wird aus Gründen der Übersichtlichkeit ausschließlich auf den Begriff des Satellitenrundfunks Bezug genommen. Mit eingeschlossen seien hierbei Dienste wie Satelliten - TV, Satelliten - Radio, sowohl in analoger als auch digitaler Form als auch rein digitale Dienste, wie die Verteilung von Internet - Daten über Satellitenkanäle .
Ein erfindungsgemäßes Distributionssystem umfasst wenigstens eine Satelliten - Empfangsantenne zum Empfang der Satelliten - Signale, wenigstens einen LNB (Low Noise Block) als Vorverstärker sowie wenigstens einen Empfänger zur Demodulation der von der Antenne empfangenen Signale. Weiterhin ist wenigstens ein Leitungssystem zur Verteilung der Signale an wenigstens einen Teilnehmer vorgesehen. Auf weitere Komponenten, welche zwar für die Funktion des Systems, aber nicht für die Erfindung selbst wesentlich sind, wird hier nicht weiter eingegangen.
Im Gegensatz zum Stand der Technik befindet sich der bzw. die Empfänger nicht auf Seiten der Teilnehmer, sondern sind der bzw. den Satelliten - Empfangsantennen zugeordnet. Unter Empfängern werden hier entsprechend des allgemein üblichen technischen Sprachgebrauchs nicht Frequenzumsetzer, welche ein Signal in ein anderes Frequenzband umsetzen, verstanden. Vielmehr umfasst der Begriff diejenigen Einheiten, welche die Signale demodulieren und gegebenenfalls dekodieren.
Erfindungsgemäß sind wenigstens ein LNB, eventuell notwendige Frequenzumsetzer, sowie wenigstens ein Empfänger zusammen mit einem Businterface wenigstens einer Antenne zugeordnet. Somit werden erfindungsgemäß ausschließlich demodulierte und/oder falls gewünscht oder notwendig decodierte Signale mittels des Bussys- tems an die Teilnehmer weiter verteilt. Somit sind selbstverständlich in den Teilnehmern selbst keine Empfänger zur Demodulation bzw. Dekodierung der Signale mehr notwendig. Der Begriff der Dekodierung bezieht sich hier auf spezielle Arten der Kodierung, wie zur hochfrequenten Übertragung der Satellitensignale vom Satelliten zum terrestrischen Empfänger verwendet werden. Selbstverständlich können die Signale zur Übertragung über das BusSystem entsprechend dem Bussys- tem-Standard neu kodiert werden. Kodierungen, die üblicherweise auch von Audio- und Videogeräten ohne eigenes HF-Empfangsteil ausgewertet werden können, wie MP3 oder ähnliche Standards müssen nicht zwangsläufig dekodiert werden. So können derart kodierte Signale auch ohne Dekodierung weiter an die Teilnehmer übertra- gen werden.
Vorzugsweise erfolgt eine enge räumliche Integration von Vorverstärker (8) mit optionalem Frequenzumsetzer (LNB), Empfänger (9), Sowie Businterface (10) mit der Antenne. Eine erfindungsgemäße Einheit aus diesen
Komponenten kann beispielsweise in einem einzigen Gehäuse, vorzugsweise wie dies üblicherweise entspre- chend dem Stand der Technik für LNBs verwendet wird, untergebracht und an der Antenne montiert werden.
Mit dem Begriff Antenne wird hier auf einen üblicher- weise eingesetzten Reflektor, wie beispielsweise einen Parabolspiegel Bezug genommen. Ein Modenwandler, wie beispielsweise ein Hornstrahler, welcher zur Umsetzung der Freiraum-Moden in Leitung geführte Moden der elektromagnetische Wellen eingesetzt wird, kann wahlweise dem Reflektor oder auch dem Vorverstärker zugeordnet werden. Bevorzugt ist er jedoch dem Vorverstärker zugeordnet. Grundsätzlich können im Sinne der Erfindung beliebige Reflektorformen bzw. Antennenformen eingesetzt werden. Ebenso sind erfindungsgemäß auch aktive oder passive Array-Antennen einsetzbar. Hierbei wird selbstverständlich wenigstens ein LNB, eventuell notwendige Frequenzumsetzer, sowie wenigstens ein Empfänger in einer Einheit zusammen mit einem Businterface in die Antenne selbst integriert.
Entsprechend der Erfindung basiert das Bussystem auf elektrischen Leitungen und insbesondere auf Lichtwellenleitern. Alternativ kann dies auch ein schmalbandi- ges Funksystem oder auch ein wireless-LAN sein. Derar- tige Systeme werden derzeit beispielsweise vielfach im 13cm-Band angeboten.
Eine andere Ausgestaltung der Erfindung betrifft die Ausgestaltung des Bussystems als digitales Bussystem. In derartigen digitalen Bussystemen ist auch regelmäßig eine bidirektionale Kommunikation möglich. Dadurch ist es besonders einfach, für die Teilnehmer, einem ent- sprechenden Empfänger mitzuteilen, welchen Kanal des Satellitenbandes dieser empfangen und demodulieren soll. Ebenso ist über das Bussystem eine Reihe zusätzlicher Kommunikationsmöglichkeiten gegeben. So können beispielsweise weitere Parameter wie über die Signalqualität oder andere Informationen wie Uhrzeit übertragen werden. Weiterhin lassen sich mit einem solchen Bussystem intelligente Steuerung realisieren. Fordern beispielsweise zwei oder mehr Teilnehmer den gleichen Kanal an, so ist es nun möglich, diesen Teilnehmern mitzuteilen, welcher Empfänger gerade diesen Kanal demoduliert bzw. in welchem Datenstrom die gewünschten Pakete zu finden sind. Somit entfällt die mehrfache Demodulation des gleichen Kanals durch mehrere Empfän- ger. Dieses ist insbesondere bei großen Systemen vorteilhaft, da hier mit hoher Wahrscheinlichkeit zumindest einige Teilnehmer die gleichen Kanäle anfordern. Somit kann die Anzahl der Empfänger geringer als die Anzahl der Teilnehmer gewählt werden. Dies führt zu einer weiteren Kosteneinsparung.
Weiterhin kann das Bussystem nicht nur zur Distribution der Satellitensignale, sondern zusätzlich auch zur Datenübertragung, wie beispielsweise in PC-Netzwerken oder zur Gebäudeautomatisierung eingesetzt werden. Dadurch ist es nur noch notwendig, eine einzige Netzwerkinfrastruktur vorzusehen, welche alle möglichen Kommunikationsaufgaben in einem Gebäude bewältigt. Dies führt gegenüber den bekannten Lösungen mit mehreren Netzwerk - bzw. Kabelsystemen zu einer enormen Kostenersparnis . In einer anderen Ausgestaltung der Erfindung ist wenigstens ein Empfänger zur Echtzeit - Kodierung der empfangenen Signale in wenigstens ein digitales Videoformat ausgebildet. Derartige digitale Videoformate können beispielsweise MPEG oder hieraus abgeleitete bzw. dazu verwandte Formate sein. Durch die Kodierung in ein solches Videoformat müssen über das Leitungssystem bzw. über den digitalen Bus nur sehr stark reduzierte Datenmengen übertragen werden. Damit ist über eine einfache Businfrastruktur eine hohe Anzahl unterschiedlicher Kanäle gleichzeitig übertragbar.
Weiterhin sind die Teilnehmer vorteilhafterweise besonders kostengünstig auszugestalten, da diese nur noch Standard - Decoder, wie beispielsweise MPEG-Decoder aufweisen müssen. Somit sind an Stelle der bisher aufwändigen Satellitenempfänger einfache MPEG-Decoder, welche beispielsweise in PCs per Software realisiert werden können oder auch in DVD - Playern ohnehin integ- riert sind, einsetzbar. Dies führt zu einer starken Kostenreduzierung des Gesamtsystems .
Eine andere Ausgestaltung der Erfindung sieht wenigstens eine Diversity - Einheit vor, welche aus den Signalen mehrerer Empfänger das Signal mit der jeweils besten Qualität herausfiltert und weiter an die Teilnehmer übermittelt. Die Filterung kann wahlweise anhand der demodulierten Signale von Empfängern oder aber auch anhand von digitalen Signalen, welche über einen Bus übertragen werden, erfolgen. Besonders einfach ist die
Auswahl des besten Kanals , wenn ein Empfänger bei der Echtzeit - Kodierung der Signale einen Güteparameter errechnet und diesen an die Diversity - Einheit übermittelt. Somit kann diese Diversity - Einheit anhand des Parameters eine einfache Auswahl des besten Kanals treffen.
Ein erfindungsgemäßes Verfahren umfasst die Schritte: Satellitenrundfunksignalen umfassend die folgenden Schritte: Empfang der Satellitensignale mittels wenigstens einer Satellitenantenne, Demodulation der empfan- genen Signale, Umsetzung der Signale in ein digitales
Bussystem mit einem in die Antenne integrierten Businterface und Distribution der demodulierte Signale über ein Leitungssystem an wenigstens einen Teilnehmer.
Beschreibung der Zeichnungen
Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungs- beispielen unter Bezugnahme auf die Zeichnung exemplarisch beschrieben.
Fig. 1 zeigt in allgemeiner Form schematisch eine erfindungsgemäße Vorrichtung.
Fig. 2 zeigt in allgemeiner Form schematisch den Aufbau einer Empfangseinheit (3).
Fig. 3 zeigt eine Empfangseinheit mit mehreren Empfän- gern.
Das hier dargestellte Distributionssystem weist eine Satelliten - Empfangsantenne (1) zum Empfang der Satelliten - Signale auf. Diese Antenne umfasst zumindest einen Reflektor (2) . Weiterhin ist eine Empfangeinheit
(3) vorgesehen, welche alle Komponenten enthält, die zum Abgriff der vom Reflektor konzentrierten Signale, deren Umsetzung und Abgabe als digitale Signale auf dem Bussystem (5) notwendig sind, enthält. Dies sind bei- spielsweise Modenwandler (7), Vorverstärker (8) sowie Empfänger (9). Die in der Empfangseinheit empfangenen und demodulierten Signale werden in eine geeignete digitale Form umgesetzt, welche über das Bussystemen (5) zu den einzelnen Teilnehmern (6a, 6b, 6c, 6d, 6e) übertragen werden kann. Bei dieser Anordnung ist der Empfänger nicht auf Seiten der Teilnehmer, sondern in unmittelbarer Nähe der Satelliten - Empfangsantenne angebracht.
In Fig. 3 ist schematisch eine Empfangseinheit dargestellt. Ein Modenwandler (7), beispielsweise eine Hornantenne greift die von dem Reflektor (2) konzentrierten elektromagnetischen Wellen auf und wandelt diese Leitung geführte Wellen um. Diese werden dann von einem Vorverstärker (8) verstärkt sowie von einem nachfolgenden Empfänger (9) demoduliert und gegebenenfalls decodiert. Zur Kommunikation zwischen dem Empfänger und den Teilnehmern mittels des Bussystems (5) ist ein Businterface (10) vorgesehen. Dieses Businterface kann wahlweise auch bidirektional ausgebildet sein, so dass dieses nicht nur Signale an den Bus aussenden, sondern auch Signale von Bus empfangen kann. Dadurch lassen sich beispielsweise der Empfangseinheit auch bestimmte Betriebszustände, wie die Selektion oder auch die Sperre bestimmter Kanäle signalisieren.
Fig. 3 zeigt schematisch die beispielhafte Ausgestaltung mit zwei Empfängern. Es sind hier nun zwei Modenwandler (7, 17) vorgesehen, welche elektrische Signale an die Vorverstärker (8, 18) abgeben. Die verstärkten Signale werden dann den entsprechenden Empfänger (9, 19) zur Demodulation zugeführt. Die empfangenen Signale werden nun mittels der lokalen Businterfaces (11, 20) mit dem (externen) Businterface (10) verbunden. Hierzu besteht zwischen den Businterfaces (11, 20, 10) ein interner Bus. Dieser Bus kann z.B. ein synchroner, Multimediafähiger Bus, wie der MediaLB sein. Selbst verständlich können entsprechend diesem Ausführungsbei- spiel auch weitere Empfänger miteinander kombiniert werden. Eine Kombination ist auch entsprechend dem Stand der Technik beispielsweise über Multiplexer (Kanalschalter) möglich. Allerdings ist die hier dargestellte Kombination über einen lokalen Bus wesentlich flexibler und leistungsfähiger. An Stelle des lokalen Busses kann selbst verständlich auch das Bussystem (5) verwendet werden.
Bezugszeichenliste
1 Satelliten - Empfangsantenne 2 Reflektor
3 Empfangseinheit 5 Bussystem
6a, 6b, 6c, 6d, 6e Teilnehmer 7 Modenwandler 8 Vorverstärker
9 Empfänger
10 Businterface
11 Lokales Businterface 17 Zweiter Modenwandler 18 Zweiter Vorverstärker 19 Zweiter Empfänger
20 Zweites Lokales Businterface

Claims

- 1 -PATENTANSPRÜCHE
1. Distributionssystem für Satellitenrundfunk umfas- send wenigstens eine Satelliten - Empfangsantenne (1) zum Empfang von Satelliten - Signalen, wenigstens einen Vorverstärker (8) mit optionalem Frequenzumsetzer (LNB) zur Verstärkung der empfangenen Signale, wenigstens einen Empfänger (9) zur Demodulation und/oder Dekodierung der Signale des Vorverstärkers und ein Leitungssystem (5) zur Verteilung der Sig- nale des Empfängers an wenigstens einen Teilnehmer dadurch gekennzeichnet, dass wenigstens ein Vorverstärker (8) mit optionalem Frequenzumsetzer, sowie wenigstens ein Empfänger (9) zusammen mit einem Businterface (10) für ein digitales Bussystem, welches wahlweise auf elektrischen Leitungen bzw. auf Lichtwellenleitern basiert, wenigstens einer Satelliten - Empfangsantenne (1) zugeordnet ist und weiterhin zur Weiter- Verteilung von demodulierten und/oder decodierten Signalen mittels des Bussystems an wenigstens einen Teilnehmer (6a, 6b, 6c, 6d, 6e) ausgebildet ist .
2. Distributionssystem nach Anspruch 1, dadurch gekennzeichnet, dass wenigstens ein Vorverstärker (8) mit optionalem - 2 -
Frequenzumsetzer, sowie wenigstens ein Empfänger (9) zusammen mit einem Businterface (10) für ein digitales Bussystem, zu einer Empfangseinheit (3) integriert sind.
3. Distributionssystem nach Anspruch 2, dadurch gekennzeichnet, dass die Empfangseinheit (3) in einem Gehäuse untergebracht ist und ähnlich der dem Stand der Technik entsprechenden Vorverstärker bzw. LNBs an der Antenne angebracht ist.
4. Distributionssystem nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass • das digitale Bussystem (5) auch für weitere Kommunikationsaufgaben wie die eines PC - Netzwerkes oder zur Gebäudeautomatisierung verwendbar ist.
5. Distributionssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet) dass wenigstens ein Empfänger (9) zur Echtzeit - Kodierung der empfangenen Signale in ein digitales Vi- deoformat, vorzugsweise MPEG oder ein dazu verwandtes Format ausgebildet ist.
6. Distributionssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens ein Teilnehmer (6a, 6b, 6c, 6d, 6e) zum Empfang der Daten in einem digitale Videoformat, - 3 -
vorzugsweise MPEG oder ein dazu verwandtes Format ausgebildet ist.
7. Distributionssystem nach einem der vorhergehenden Ansprüche , dadurch gekennzeichnet, dass wenigstens eine Diversity - Einheit vorgesehen ist, welche aus den Signalen mehrerer Empfänger das Signal mit der jeweils beste Qualität heraus- filtert und weiter an die Teilnehmer übermittelt.
8. Verfahren zur Distribution' von Satellitenrundfunk- Signalen umfassend die folgenden Schritte:
Empfang der Satellitensignale mittels wenigs- tens einer Satellitenantenne,
Demodulation der empfangenen Signale, - Umsetzung der Signale in ein digitales Bussystem mit einem in die Antenne integrierten Businterface und - Distribution der demodulierte Signale über ein Leitungssystem an wenigstens einen Teilnehmer .
EP03799476A 2002-12-12 2003-12-12 Distributionssystem für satellitenrundfunk Ceased EP1573942A1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10258331 2002-12-12
DE10258331 2002-12-12
DE10324122A DE10324122B4 (de) 2003-05-26 2003-05-26 Distributionssystem für Satellitenrundfunk
DE10324122 2003-05-26
PCT/EP2003/014114 WO2004054143A1 (de) 2002-12-12 2003-12-12 Distributionssystem für satellitenrundfunk

Publications (1)

Publication Number Publication Date
EP1573942A1 true EP1573942A1 (de) 2005-09-14

Family

ID=32509754

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03799476A Ceased EP1573942A1 (de) 2002-12-12 2003-12-12 Distributionssystem für satellitenrundfunk

Country Status (5)

Country Link
US (1) US7502588B2 (de)
EP (1) EP1573942A1 (de)
JP (1) JP2006510331A (de)
AU (1) AU2003299305A1 (de)
WO (1) WO2004054143A1 (de)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020154055A1 (en) * 2001-04-18 2002-10-24 Robert Davis LAN based satellite antenna/satellite multiswitch
US7954127B2 (en) * 2002-09-25 2011-05-31 The Directv Group, Inc. Direct broadcast signal distribution methods
US8549565B2 (en) 2005-04-01 2013-10-01 The Directv Group, Inc. Power balancing signal combiner
US7958531B2 (en) 2005-04-01 2011-06-07 The Directv Group, Inc. Automatic level control for incoming signals of different signal strengths
US8621525B2 (en) * 2005-04-01 2013-12-31 The Directv Group, Inc. Signal injection via power supply
US7950038B2 (en) * 2005-04-01 2011-05-24 The Directv Group, Inc. Transponder tuning and mapping
US7900230B2 (en) * 2005-04-01 2011-03-01 The Directv Group, Inc. Intelligent two-way switching network
US7945932B2 (en) * 2005-04-01 2011-05-17 The Directv Group, Inc. Narrow bandwidth signal delivery system
US7987486B2 (en) * 2005-04-01 2011-07-26 The Directv Group, Inc. System architecture for control and signal distribution on coaxial cable
US8024759B2 (en) * 2005-04-01 2011-09-20 The Directv Group, Inc. Backwards-compatible frequency translation module for satellite video delivery
US7937732B2 (en) * 2005-09-02 2011-05-03 The Directv Group, Inc. Network fraud prevention via registration and verification
US20080016535A1 (en) * 2005-09-02 2008-01-17 The Directv Group, Inc. Frequency shift key control in video delivery systems
US8789115B2 (en) * 2005-09-02 2014-07-22 The Directv Group, Inc. Frequency translation module discovery and configuration
US8019275B2 (en) * 2005-10-12 2011-09-13 The Directv Group, Inc. Band upconverter approach to KA/KU signal distribution
US7991348B2 (en) * 2005-10-12 2011-08-02 The Directv Group, Inc. Triple band combining approach to satellite signal distribution
US20070089142A1 (en) * 2005-10-14 2007-04-19 John Norin Band converter approach to Ka/Ku signal distribution
WO2007096617A2 (en) * 2006-02-22 2007-08-30 Invacom Ltd Distribution of data signals from broadcast data receiving means
MX2008015654A (es) * 2006-06-09 2009-02-16 Directv Group Inc Modo de presentacion para corrientes de bits en varios formatos.
WO2007149403A2 (en) * 2006-06-16 2007-12-27 The Directv Group, Inc. Digital storage media command and control data indexing
WO2008044902A1 (en) * 2006-10-13 2008-04-17 Electronics And Telecommunications Research Institute Relaying method of relay station(rs) using a direct relaying zone in multi-hop relay system
US8719875B2 (en) 2006-11-06 2014-05-06 The Directv Group, Inc. Satellite television IP bitstream generator receiving unit
US8712318B2 (en) 2007-05-29 2014-04-29 The Directv Group, Inc. Integrated multi-sat LNB and frequency translation module
US8238813B1 (en) 2007-08-20 2012-08-07 The Directv Group, Inc. Computationally efficient design for broadcast satellite single wire and/or direct demod interface
US9942618B2 (en) * 2007-10-31 2018-04-10 The Directv Group, Inc. SMATV headend using IP transport stream input and method for operating the same
BRPI1006912A2 (pt) 2009-01-06 2016-02-16 Directv Group Inc estimação de deriva de frequência para unidade externa de baixo custo
JP2011254187A (ja) * 2010-06-01 2011-12-15 Funai Electric Co Ltd ネットワークシステム
DE102012003966B4 (de) * 2012-02-29 2015-11-05 Kathrein-Werke Kg Speisesystem insbesondere zum Empfang von über Satellit ausgestrahlten Fernseh- und/oder Rundfunkprogrammen
DE202013006660U1 (de) 2013-07-24 2014-10-28 Kathrein-Werke Kg Speisesystem insbesondere zum Empfang von über Satellit ausgestrahlten Fernseh- und/oder Rundfunkprogrammen
KR102165085B1 (ko) * 2015-04-30 2020-10-13 주식회사 쏠리드 위성 신호 중계 시스템

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69802440T2 (de) * 1998-04-14 2002-07-11 Fraunhofer Ges Forschung Zweimodenempfänger zum empfang von satelliten und terrestrischen signalen in einem digitalrundfunksystem
US20020154055A1 (en) * 2001-04-18 2002-10-24 Robert Davis LAN based satellite antenna/satellite multiswitch

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4012657C2 (de) 1990-04-20 1995-06-01 Comtec Ag Gemeinschaftsantennenanlage
US5404505A (en) * 1991-11-01 1995-04-04 Finisar Corporation System for scheduling transmission of indexed and requested database tiers on demand at varying repetition rates
US5521631A (en) * 1994-05-25 1996-05-28 Spectravision, Inc. Interactive digital video services system with store and forward capabilities
US5805975A (en) 1995-02-22 1998-09-08 Green, Sr.; James A. Satellite broadcast receiving and distribution system
DE19528589C1 (de) 1995-08-03 1997-01-09 Kathrein Werke Kg Satelliten-Empfangsanlage mit steuerbarer Kopfstation
DE19625806A1 (de) 1996-06-27 1998-01-02 Bosch Gmbh Robert Endgerät für ein optisches Netz, optisches Netz und Endvermittlungsstelle hierfür
US5787335A (en) 1996-11-18 1998-07-28 Ethnic-American Broadcasting Co, Lp Direct broadcast satellite system for multiple dwelling units
IL119972A (en) 1997-01-07 2001-01-28 Foxcom Ltd Satellite distributed television
US5970386A (en) * 1997-01-27 1999-10-19 Hughes Electronics Corporation Transmodulated broadcast delivery system for use in multiple dwelling units
DE19749120C2 (de) * 1997-11-06 2002-07-18 Kathrein Werke Kg Satelliten-Empfangsanlage sowie zugehöriges Verfahren zum Betrieb einer Antennen-Empfangsanlage
US6430165B1 (en) * 1998-08-07 2002-08-06 Hughes Electronics Corporation Method and apparatus for performing satellite selection in a broadcast communication system
WO2000013408A1 (en) 1998-08-26 2000-03-09 Thomson Licensing S.A. A method for automatically determining the configuration of a multi-input video processing apparatus
US6211844B1 (en) * 1999-01-07 2001-04-03 Recoton Corporation Dual LNB/antenna multi-switch with DC path for the terrestrial television antenna port
AU2001229774A1 (en) 2000-01-27 2001-08-07 Atheros Communications, Inc. Home video distribution and storing system
WO2002025847A1 (en) * 2000-09-21 2002-03-28 Zydonik Aaron E Satellite television distribution system
DE10206385A1 (de) 2001-03-02 2002-09-12 Lindenmeier Heinz Diversity-Anlage zum Empfang digitaler terrestrischer und/oder Satellitenfunksignale für Fahrzeuge

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69802440T2 (de) * 1998-04-14 2002-07-11 Fraunhofer Ges Forschung Zweimodenempfänger zum empfang von satelliten und terrestrischen signalen in einem digitalrundfunksystem
US20020154055A1 (en) * 2001-04-18 2002-10-24 Robert Davis LAN based satellite antenna/satellite multiswitch

Also Published As

Publication number Publication date
US7502588B2 (en) 2009-03-10
JP2006510331A (ja) 2006-03-23
WO2004054143A1 (de) 2004-06-24
AU2003299305A1 (en) 2004-06-30
US20060030259A1 (en) 2006-02-09

Similar Documents

Publication Publication Date Title
EP1573942A1 (de) Distributionssystem für satellitenrundfunk
DE3246225C2 (de) Breitbandverteilsystem hoher Kanalzahl
EP2499878B1 (de) Master-einheit, remote-einheit sowie multiband-übertragungssystem
DE69421997T2 (de) Satellitenkommunikationsanordnung mit hoher Datenrate
EP0527289B1 (de) Verfahren zum Übertragen von digitalen HDTV-Signalen
EP2359508A2 (de) Satelliten-empfangs- und verteilanlage als kopfstelle mit programmierbarer transponderumsetzung von transponderblöcken
DE3707244C2 (de)
DE4012657C2 (de) Gemeinschaftsantennenanlage
DE19632791B4 (de) Verfahren und System zur Rundfunkübertragung
DE10324122B4 (de) Distributionssystem für Satellitenrundfunk
EP0740434B2 (de) System zur Verteilung von Fernsehsatellitensignalen in einer Gemeinschaftsantennenanlage
DE4334440A1 (de) Verfahren und Vorrichtung für die Übertragung von über Antennen empfangenen Signalen
EP2609699B1 (de) Gerät für empfangsanlagen, insbesondere für einkabelsysteme in gemeinschaftsempfangsanlagen
EP2634936B1 (de) Speisesystem insbesondere zum Empfang von über Satellit ausgestrahlten Fernseh- und/oder Rundfunkprogrammen
EP3347995B1 (de) Einrichtung zum senden und empfangen von mobilfunk-signalen mittels einer stationären antenne
EP0710024A2 (de) Hausnetz zur Anbindung von Teilnehmern an ein öffentliches Verteilnetz für Video- und/oder Audiosignale
DE3208308A1 (de) Verfahren zum uebertragen von frequenzmodulierten hoerrundfunksignalen ueber ein digitales breitbandverteilnetz
DE202007017295U1 (de) Satelliten-Empfangs- und Verteilanlage im Heimbereich mit drahtlosen und drahtgebundenen Übertragungsstrecken und Einspeisung mehrerer Transponder
EP0545031B1 (de) Verfahren zur Aufbereitung von geträgerten Fernsehsignalen und/oder Tonsignalen sowie Anwendung
EP3094085A1 (de) System zum empfang von telekommunikationsignalen, insbesondere von fernsehsignalen in matv/smatv-netzen
DE4417756A1 (de) Empfangsanordnung für Satellitensignale
DE202009018162U1 (de) Multischalter für Satelliten-Zwischenfrequenz-Verteilung
DE3935183A1 (de) Kabelfernseh-uebertragungssystem
DE29719893U1 (de) Fernsteuerbare Kopfstation zum Empfang von Satellitenprogrammen mit Bild- und Tonübertragung über Funk zum jeweiligen Teilnehmer
AT412934B (de) Schaltung zum übertragen von daten im haus

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050712

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SMSC EUROPE GMBH

17Q First examination report despatched

Effective date: 20080320

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20140915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: H04H0001000000

Ipc: H04H0020000000

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: H04H0001000000

Ipc: H04H0020000000

Effective date: 20150225