EP1573764B1 - Transparentes, berührungsempfindliches umschaltsystem - Google Patents

Transparentes, berührungsempfindliches umschaltsystem Download PDF

Info

Publication number
EP1573764B1
EP1573764B1 EP03812617A EP03812617A EP1573764B1 EP 1573764 B1 EP1573764 B1 EP 1573764B1 EP 03812617 A EP03812617 A EP 03812617A EP 03812617 A EP03812617 A EP 03812617A EP 1573764 B1 EP1573764 B1 EP 1573764B1
Authority
EP
European Patent Office
Prior art keywords
touch
switching system
voltage
sensitive switching
applying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03812617A
Other languages
English (en)
French (fr)
Other versions
EP1573764A1 (de
Inventor
Mark T. Johnson
Dirk K. G. De Boer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Priority to EP03812617A priority Critical patent/EP1573764B1/de
Publication of EP1573764A1 publication Critical patent/EP1573764A1/de
Application granted granted Critical
Publication of EP1573764B1 publication Critical patent/EP1573764B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • H01H13/70Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
    • H01H13/702Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard with contacts carried by or formed from layers in a multilayer structure, e.g. membrane switches
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2201/00Contacts
    • H01H2201/02Piezo element

Definitions

  • the invention pertains to an at least partially transparent touch-sensitive switching system and an electro-optical display comprising said touch-sensitive switching system.
  • a transparent touch-sensitive switching system was disclosed in US 4,516,112. According to this patent a display was made with a display screen. Above the display screen a piezoelectric film was supported for selective localized depression towards the screen. The film has transparent flexible conductive coatings on opposite sides of the piezoelectric film. These transparent flexible conductive coatings are necessary to generate a voltage in response to depression of the film.
  • This system has the disadvantage that production thereof is expensive, since the piezoelectric film must be provided with two extra transparent flexible conductive coatings.
  • the addition of these transparent flexible conductive coatings has a disadvantageous effect on the transparency of the display, particularly in displays that operate with low power consumption, such as displays that are in use in mobile systems like mobile telephone displays, notebook computer systems, and the like. Further, these displays are thick and therefore relatively heavy, providing an other disadvantage, particularly in mobile systems.
  • the present invention provides an improved at least partially transparent touch-sensitive switching system comprising at least two electrodes provided with means for applying a voltage thereto and spaced from each other by a layer comprising at least one region that optically changes by applying the voltage, and at least one region comprising a piezoelectric material generating a voltage when applying pressure thereto.
  • the present system can be manufactured at relatively low costs and has excellent optical properties.
  • the piezoelectric material is preferably a piezoelectric polymer.
  • Such piezoelectric polymer can replace the conventional polymer that is present in almost any electro-optical display.
  • the displays of the invention can be made at about the same costs as conventional displays by simply using a piezoelectric polymer matrix material rather than a normal polymeric matrix material.
  • the present system allows the manufacture of display cells, which upon touching generates a voltage in the piezoelectric material that serves to detect the touch position.
  • Examples of displays wherein the touch-sensitive system of the invention can be used are PDLC (polymer dispersed liquid crystal), electrophoretic displays, Gyricon TM , PDCTLC (polymer dispersed cholesteric texture liquid crystal), polymer dispersed guest/host systems, and other polymer dispersed LC effects, systems with pixel walls (electrochromic, electrowetting, ASM (axial symmetric microcell) mode LCD, and the like).
  • the piezoelectric material is a polymer or a polymer comprising piezoelectric particles, which may be applied to make special spacer constructions, such as in a lithographic manner as disclosed by Odahara et al. in SID 01 Digest , p. 1358, or by micro-embossing. It is however, more preferred to incorporate the piezoelectric material in the pixel.
  • a display is made wherein at least one of the conductive or semi-conductive layers is placed onto a substrate.
  • the substrate may be any material that is commonly used for this purpose, such as glass or plastic, among which polycarbonate, polyurethane and the like.
  • the touch-sensitive switching system has at least one of the electrodes placed onto a substrate.
  • the touch-sensitive switching system is at least partially transparent. For many applications it is preferred that the system is fully transparent.
  • the piezoelectric materials are known in the art and commercially available. Most commonly used is polyvinylidene fluoride (PVDF) film, for instance having a thickness of 10 to 100 ⁇ m, but it is clear that any other piezoelectric material can also suitably be used, such as a ferroelectric (chiral smectic C*) elastomer (Brahma, M., Wiesemann, A., Zentel, R., Siemensmeyer, K., Wagenblast, G., Polymer Preprints, 1993, 34 (2), 708; http://staudinger.chemie.uni-mainz.de/akzentel/Publikationen/p99 1.htm#13), and polymers comprising piezoelectric particles (e.g. a titanate).
  • PVDF polyvinylidene fluoride
  • the molecular alignment by applying a high-poling voltage creates the piezoelectric effect.
  • the randomly oriented piezoelectric material is ordered on applying a high-voltage poling voltage.
  • Touch signals may then be measured over the pixel electrodes that are already present to drive the pixels, thus no extra connections are necessary in the display. By identification which row and column has generated a voltage upon applying pressure, sensing can be carried out.
  • a first substrate 1 is provided with an ITO layer (conductive layer) 2.
  • a second substrate 3 is also provided an ITO layer 4.
  • the two substrates are spaced apart by a polymer layer 5, having piezoelectric properties, by being piezoelectric as such or by comprising piezoelectric material.
  • regions 6 are present which may be "floating" droplets comprising liquid crystalline (LC) molecules or may be a capsule filled with LC molecules. If a capsule is used such capsule is made of a thin transparent polymeric film that are commonly used for making capsules.
  • the regions that optically change by applying the voltage are embedded in a matrix of the piezoelectric polymer.
  • Means 7 are present for applying a voltage over the ITO layers 2 and 4.
  • the layer 5 can be exposed to a high electric field in order to align the piezoelectric polymer.
  • the touch signal over the pixel electrodes is measured by the connections already present to drive the pixels. Sensing is carried out by simply identifying the row and column that have generated a voltage as a result of the touch pressure.
  • Each pixel may contain a plurality of regions 6, but more preferably each region 6 is an individual pixel.
  • An embodiment of an LCD with polymer network where pixels are individually encapsulated using a polymer network is the so-called Axially Symmetric Mode (ASM) used for wide viewing angle LCD's and PALC (plasma addressed liquid crystal) displays.
  • ASM Axially Symmetric Mode
  • PALC plasma addressed liquid crystal
  • a glass substrate 1 is provided with an ITO layer (conductive layer) 2.
  • a second substrate 3 is a PET layer with a thickness of 175-250 ⁇ m, which is also provided with an ITO layer 4.
  • the two substrates are spaced apart by a polymer layer 5, having piezoelectric properties, by being piezoelectric as such or by comprising piezoelectric material.
  • capsules 6 are present filled with electrostatically charged particles, wherein the particles are dispersed in a fluid (gas or liquid).
  • Means 7 are present for applying a voltage over the ITO layers 2 and 4. Again each pixel may contain a plurality of capsules, but more preferably each capsule represents an individual pixel.
  • the electrostatically charged particles are two different sorts of particles, whereof the colors are in contrast to each other and which are dispersed in a colorless fluid.
  • the capsules contain black and white particles in a colorless fluid, for instance negative electrostatically charged carbon black particles and positive electrostatically charged white TiO 2 particles.
  • the particles can also be electrostatically charged particles having only one color that is in contrast to the color of the fluid.
  • the piezoelectric polymer will be used as binder.
  • the principle of the present invention may advantageously also be used in many other types of electrophoretic display concepts that have been proposed in patent applications. These concepts will also function better if pixels are individually encapsulated using a polymer network.
  • this polymer network could be made piezoelectric to enable touch sensing.
  • the known display principle called Gyricon TM ex Xerox
  • the polymer network forming the binder around the rotating balls with black and white hemispheres could be made piezoelectric to enable touch sensing.
  • two electrodes are placed on the same substrate and spaced from each other by a layer 5 containing regions 6, according to layer 5 and regions 6 of Figures 1 or 2. These electrodes may alternatively also be contained in the same layer 5.
  • the system of the invention may further contain one or more of the usual other layers, such as substrate layers, intermediate layers, compensation or retardation layers, polarization layers, protective layers, and the like.
  • electrochrornic and electrowetting display pixels will function better if pixels are individually encapsulated using a polymer network.
  • this polymer network could be made piezoelectric to enable touch sensing.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Electronic Switches (AREA)
  • Push-Button Switches (AREA)
  • Position Input By Displaying (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Claims (11)

  1. Wenigstens teilweise transparentes berührungsempfindliches Umschaltsystem mit wenigstens zwei Elektroden, die mit Mitteln versehen sind um denselben eine Spannung zuzuführen, dadurch gekennzeichnet, dass die genannten Elektroden durch eine Schicht voneinander getrennt sind, die wenigstens ein Gebiet aufweist, das durch Zuführung der Spannung optisch sich ändert, und wobei wenigstens ein Gebiet ein piezoelektrisches Material aufweist, das eine Spannung erzeugt, wenn Druck darauf ausgeübt wird.
  2. Berührungsempfindliches Umschaltsystem nach Anspruch 1, wobei wenigstens eine der Elektroden transparent ist.
  3. Berührungsempfindliches Umschaltsystem nach Anspruch 1 oder 2, wobei das piezoelektrische Material ein piezoelektrisches Polymer ist.
  4. Berührungsempfindliches Umschaltsystem nach einem der Ansprüche 1 - 3, wobei die Gebiete, die optisch ändern durch Zuführung der Spannung, Gebiete sind, die eine Flüssigkeit oder eine Dispersion von Teilchen in einer Flüssigkeit enthalten.
  5. Berührungsempfindliches Umschaltsystem nach Anspruch 4, wobei die Flüssigkeit flüssigkristalline Moleküle enthält.
  6. Berührungsempfindliches Umschaltsystem nach Anspruch 4, wobei die Gebiete eine Dispersion von Teilchen in einer Flüssigkeit enthalten, wobei die Teilchen elektrostatisch geladen sind.
  7. Berührungsempfindliches Umschaltsystem nach Anspruch 6, wobei die elektrostatisch geladenen Teilchen eine Farbe haben, die zu der Farbe der Flüssigkeit kontrastiert, oder wobei die Teilchen in einer farblosen Flüssigkeit dispergiert sind und die . Dispersion wenigstens zwei verschiedene Sorten elektrostatisch geladener Teilchen aufweist, deren Farben zueinander kontrastieren.
  8. Berührungsempfindliches Umschaltsystem nach einem der Ansprüche 1-7, wobei die Gebiete, die durch Zuführung der Spannung optisch ändern, in eine Matrix aus dem piezoelektrischen Material eingebettet sind.
  9. Berührungsempfindliches Umschaltsystem nach einem der Ansprüche 6 oder 7, wobei die Dispersion elektrostatisch geladener Teilchen in einer Flüssigkeit in eine Kapsel aus einem Polymermaterial eingeschlossen ist.
  10. Elektrooptische Wiedergabeanordnung mit dem berührungsempfindlichen Umschaltsystem nach einem der Ansprüche 1-9.
  11. Wiedergabeanordnung nach Anspruch 10, wobei jedes Gebiet, das durch Zuführung der Spannung optisch ändert, einem einzigen Pixel entspricht, und wobei jedes Pixel ein berührungsempfindliches Pixel ist.
EP03812617A 2002-12-09 2003-11-12 Transparentes, berührungsempfindliches umschaltsystem Expired - Lifetime EP1573764B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP03812617A EP1573764B1 (de) 2002-12-09 2003-11-12 Transparentes, berührungsempfindliches umschaltsystem

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP02080158 2002-12-09
EP02080158 2002-12-09
EP03812617A EP1573764B1 (de) 2002-12-09 2003-11-12 Transparentes, berührungsempfindliches umschaltsystem
PCT/IB2003/005099 WO2004053909A1 (en) 2002-12-09 2003-11-12 Transparent touch-sensitive switching system

Publications (2)

Publication Number Publication Date
EP1573764A1 EP1573764A1 (de) 2005-09-14
EP1573764B1 true EP1573764B1 (de) 2006-06-07

Family

ID=32479758

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03812617A Expired - Lifetime EP1573764B1 (de) 2002-12-09 2003-11-12 Transparentes, berührungsempfindliches umschaltsystem

Country Status (10)

Country Link
US (1) US20060071819A1 (de)
EP (1) EP1573764B1 (de)
JP (1) JP2006509302A (de)
KR (1) KR20050088303A (de)
CN (1) CN1723517A (de)
AT (1) ATE329361T1 (de)
AU (1) AU2003276542A1 (de)
DE (1) DE60305973T2 (de)
TW (1) TW200414088A (de)
WO (1) WO2004053909A1 (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2424305A (en) * 2005-01-21 2006-09-20 Magink Display Technologies In Batteryless display apparatus
KR20080052022A (ko) * 2006-12-07 2008-06-11 한국전자통신연구원 전기영동방식의 디스플레이장치 및 제조방법
AT504438B8 (de) * 2006-12-19 2008-09-15 Univ Linz Vorrichtung zum erfassen der ortskoordinaten eines druckpunktes innerhalb eines sensorfeldes
US20100013785A1 (en) * 2007-03-01 2010-01-21 Atsuhito Murai Display panel substrate, display panel, display appratus, and method for manufacturing display panel substrate
DE102007048102A1 (de) * 2007-10-06 2009-04-09 Leonhard Kurz Gmbh & Co. Kg Sicherheitselement zur Kennzeichnung eines Sicherheitsdokuments und Verfahren zu seiner Herstellung
KR101658991B1 (ko) 2009-06-19 2016-09-22 삼성전자주식회사 터치 패널 및 이를 구비한 전자 기기
KR101667801B1 (ko) 2009-06-19 2016-10-20 삼성전자주식회사 터치 패널 및 이를 구비한 전자 기기
CN102667678A (zh) * 2009-11-20 2012-09-12 夏普株式会社 带触摸传感器功能的挠性显示面板
KR101616875B1 (ko) 2010-01-07 2016-05-02 삼성전자주식회사 터치 패널 및 이를 구비한 전자기기
KR101631892B1 (ko) 2010-01-28 2016-06-21 삼성전자주식회사 터치 패널 및 이를 구비한 전자기기
KR101710523B1 (ko) 2010-03-22 2017-02-27 삼성전자주식회사 터치 패널 및 이를 구비한 전자기기
KR101661728B1 (ko) 2010-05-11 2016-10-04 삼성전자주식회사 사용자 입력 장치 및 이를 구비한 전자 기기
KR101809191B1 (ko) 2010-10-11 2018-01-18 삼성전자주식회사 터치 패널
KR101735715B1 (ko) 2010-11-23 2017-05-15 삼성전자주식회사 입력 감지 소자 및 이를 구비한 터치 패널
KR101784436B1 (ko) 2011-04-18 2017-10-11 삼성전자주식회사 터치 패널 및 이를 위한 구동 장치
KR101823691B1 (ko) * 2011-11-30 2018-01-30 엘지이노텍 주식회사 터치 패널
KR101453467B1 (ko) * 2012-06-05 2014-10-22 (주)펜제너레이션스 광학필름 및 이를 이용한 전자펜 시스템
CN103293734B (zh) * 2012-08-27 2015-12-02 上海天马微电子有限公司 内嵌式触控显示装置
WO2014073628A1 (ja) 2012-11-08 2014-05-15 味の素株式会社 メンブレンスイッチおよびそれを用いてなる物品
TWI699605B (zh) * 2015-01-05 2020-07-21 美商電子墨水股份有限公司 用於驅動顯示器之方法
CN109343734B (zh) * 2018-09-14 2022-04-12 京东方科技集团股份有限公司 一种触控板、手写输入方法和显示面板
WO2020194135A1 (en) * 2019-03-22 2020-10-01 Gentex Corporation Piezoelectric films with low haze and methods of making and using
CN113223908A (zh) * 2020-02-05 2021-08-06 Abb瑞士股份有限公司 用于指示熔断器状态的装置和隔离开关装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4516112A (en) * 1982-02-22 1985-05-07 Eaton Corporation Transparent touch switching system
US5159323A (en) * 1987-02-19 1992-10-27 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display
JPH09203890A (ja) * 1996-01-25 1997-08-05 Sharp Corp 入力機能付き液晶表示素子および反射型入力機能付き液晶表示素子、並びにそれらの製造方法
ATE356369T1 (de) * 1996-07-19 2007-03-15 E Ink Corp Elektronisch adressierbare mikroverkapselte tinte
US5847787A (en) * 1996-08-05 1998-12-08 Motorola, Inc. Low driving voltage polymer dispersed liquid crystal display device with conductive nanoparticles
US6842170B1 (en) * 1999-03-17 2005-01-11 Motorola, Inc. Display with aligned optical shutter and backlight cells applicable for use with a touchscreen

Also Published As

Publication number Publication date
AU2003276542A1 (en) 2004-06-30
JP2006509302A (ja) 2006-03-16
ATE329361T1 (de) 2006-06-15
CN1723517A (zh) 2006-01-18
DE60305973D1 (de) 2006-07-20
WO2004053909A1 (en) 2004-06-24
US20060071819A1 (en) 2006-04-06
DE60305973T2 (de) 2007-02-01
EP1573764A1 (de) 2005-09-14
KR20050088303A (ko) 2005-09-05
TW200414088A (en) 2004-08-01

Similar Documents

Publication Publication Date Title
EP1573764B1 (de) Transparentes, berührungsempfindliches umschaltsystem
US7649666B2 (en) Components and methods for use in electro-optic displays
US10429715B2 (en) Electrode structures for electro-optic displays
US7889418B2 (en) Electro-optical display, electrophoretic display, and electronic device
KR101625767B1 (ko) 에지 시일을 구비한 전기 광학 디스플레이
EP2309304B1 (de) Verfahren zur Herstellung von elektrooptischen Anzeigen
US8498042B2 (en) Multi-layer sheet for use in electro-optic displays
US20120062823A1 (en) Liquid crystal display device
EP0552993B1 (de) Anzeigevorrichtung
JP5015942B2 (ja) 一体化されたタッチスクリーンを有するディスプレイの製造
EP2104876B1 (de) Elektrooptisches display mit randabdichtung
US20080254272A1 (en) Multi-layer sheet for use in electro-optic displays
WO2016148430A1 (ko) 액정 캡슐 표시 필름 및 이를 구비하는 표시 장치
KR101319258B1 (ko) 쓰기 가능한 전자종이 표시소자 및 그의 제조 방법
US10209602B2 (en) Stretchable electro-optic displays
TWI807369B (zh) 包含整合式導電封邊的電光裝置及其製造方法
KR20080060822A (ko) 액정 표시장치
JP2002268099A (ja) 光変調素子
JP2017016005A (ja) 表示装置
US20230273495A1 (en) Piezo-electrophoretic film including patterned piezo polarities for creating images via electrophoretic media
KR20070014263A (ko) 편광판 및 이를 가지는 액정 표시 장치
WO2010140856A2 (ko) 금속박막패턴의 가요성을 이용한 표시패널 및 그 제조방법
WO2023200859A1 (en) Display material including patterned areas of encapsulated electrophoretic media
JP2810313B2 (ja) 大型カラー液晶表示素子
KR20070118488A (ko) 편광판 어셈블리와 이의 제조 방법 및 표시 장치의 제조방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050711

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060607

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60305973

Country of ref document: DE

Date of ref document: 20060720

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060907

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060908

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060907

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20071112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061112

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061208

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071112