EP1573761B1 - Method and device for determining the remaining service life of a switchgear - Google Patents

Method and device for determining the remaining service life of a switchgear Download PDF

Info

Publication number
EP1573761B1
EP1573761B1 EP03785582A EP03785582A EP1573761B1 EP 1573761 B1 EP1573761 B1 EP 1573761B1 EP 03785582 A EP03785582 A EP 03785582A EP 03785582 A EP03785582 A EP 03785582A EP 1573761 B1 EP1573761 B1 EP 1573761B1
Authority
EP
European Patent Office
Prior art keywords
contact
switching
switchgear
determined
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP03785582A
Other languages
German (de)
French (fr)
Other versions
EP1573761A1 (en
Inventor
Norbert Elsner
Reinhard Maier
Fritz Pohl
Bernhard Streich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1573761A1 publication Critical patent/EP1573761A1/en
Application granted granted Critical
Publication of EP1573761B1 publication Critical patent/EP1573761B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H11/00Apparatus or processes specially adapted for the manufacture of electric switches
    • H01H11/0062Testing or measuring non-electrical properties of switches, e.g. contact velocity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0015Means for testing or for inspecting contacts, e.g. wear indicator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/04Means for indicating condition of the switching device
    • H01H2071/044Monitoring, detection or measuring systems to establish the end of life of the switching device, can also contain other on-line monitoring systems, e.g. for detecting mechanical failures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/08Indicators; Distinguishing marks

Definitions

  • the invention relates to a method for determining the remaining service life of a switching device.
  • the invention relates to an associated apparatus for carrying out the method.
  • EP 0 694 937 B1 under protection.
  • Specific methods for use with switching devices are described in EP 0 878 016 B1, EP 0 878 015 B1 and EP 1 002 325 B1. In so doing, it is always assumed that the changes in throughput during the switch-off process, i. be detected by an electromagnetic drive when opening the switch contacts, from which specifically determined the burnup of the switch contacts and from this the remaining life of the switching device is determined.
  • the detection of the changes in pressure is now carried out especially during the switch-on process, i. when closing the switch contacts by the magnetic drive, with at least one position sensor takes place three times to three positions of the contacts.
  • a position sensor is non-positively coupled to the contact for this purpose on the armature of the magnetic drive.
  • the contact stroke is comparatively low in vacuum switches compared to air switching devices (up to 2 mm), but by the contact closing force, which is generated by applying force to the device mechanism and achievable only via lever force deflection and power transmission, wear and tear, especially at the pivot points the device mechanics can easily occur.
  • the method described below for determining the remaining service life of switching contacts consists essentially in the timely detection of predetermined, discrete positions of a magnet armature of a contactor drive and / or certain components of the switching device drive and in the determination of the speed and the (average) acceleration of the component on which the Position measurement is made to these predetermined positions. In addition, it consists in the measurement of the switch-on of the switching contacts during their closing movement and the determination of the contact-closing positions relative to the detected, discrete positions.
  • FIG. 1 shows schematically the path-time curve 1 of a component of the switching device whose path is identical to the contact path, the path either but also over a constant Factor or via a given function with the contact path can be mathematically linked.
  • a mean value of a constant acceleration is determined. From the determined values of the speed and the acceleration, as well as from the relative positions of the position sensors to each other and their position times, the position of the closing contact can be determined for the contact closing time t 3 by a simple mathematical relationship.
  • the still unknown contact closing position between the position x 2 which represents the end of the distance interval for speed determination, and the position x 4 , which is in the closing direction of the component after the contact-closing position, is unknown. It can be seen that the closer the path interval between the positions x 1 and x 4 is selected, the more accurate the contact closing position x 3 can be determined. Ideally, positions x 1 and x 4 are chosen to confidently enclose the contact closing position due to contact and / or mechanical wear, but the path interval between them will not be significantly greater than the difference in contact closing positions at the beginning and end to the end of the contact life.
  • FIG. 2 shows a known magnetic drive for a switching device and designates it as 100. It consists in a known manner, for example, E-shaped magnetic yoke with magnetic coils and a magnet armature.
  • an associated switching device is specifically a contactor.
  • This may be an air contactor but also a vacuum contactor, in the latter case, the articulation of the drive to the moving contacts of the contactor is more complex.
  • a yoke is denoted by 101, sit on the two magnetic coils 102 and 102 'for magnetic excitation.
  • the pole faces of the magnetic yoke are labeled 103 and 103 '.
  • the magnet yoke 101 is associated with a magnet armature 110, which is attracted to the magnetic yoke by the magnet yoke upon excitation of the magnetic drive.
  • FIG. 2 shows the full opening position of the magnet armature 110.
  • a carrier 130 On the magnet armature, a carrier 130 is arranged for a moving contact 141, wherein in Figure 2, the carrier 130 is movable in the vertical direction.
  • the moving contact 141 is brought into the closed position to the fixed contact 151.
  • a position transmitter 120 is arranged in frictional contact with the magnet armature 110.
  • the position sensor 120 is essentially used to detect certain position times in the armature movement and will be described in more detail in the other figures.
  • FIG. 3 shows the magnetic drive with a specific embodiment of a position transmitter 120, whose advantages lie in its simplicity, robustness and precision in detecting the predetermined positions.
  • the constructively predeterminable number of positions to be detected can be considerably above the minimum number of three positions, ie (x 1 , x 2 and x 4 ).
  • the position sensor 120 is formed as a cylindrical rod, which is pressed by a spring 127 with moderate spring force against the armature 110 and can be moved in an associated housing 126.
  • the off state of the magnetic drive 100 of the position sensor 120 is located on the armature 110, which is taken during the switching movement of the armature 110 of the position sensor 120 and acting on him acceleration forces, but no impact forces.
  • the cylindrical surface 121 of the position sensor 120 is in the axial direction in a plurality of conductive and non-conductive surface portions 122 to 124. Since the outer diameter of all surface portions 122 to 124 are identical and they join each other without a parting line, one obtains a smooth cylindrical surface of alternating axially in the axial direction conductive and non-conductive sections.
  • Such an electrically conductive portion may be e.g. a good conductive metallic ring 125 whose height is e.g. 1mm or less.
  • the position detection can be done by electrical contact external contact members with this metal ring.
  • the contact can be realized instead by a sliding contact by a rolling contact.
  • An electrical measuring circuit is connected to this measuring contact, which derives a voltage signal (on / off) from the contact signal (on / off). If, for example, the instantaneous closing speed of the component is 1 m / s, the measuring contact will deliver as the 1 mm passes high metal ring times of the switching edges of the voltage signal, which have a time interval of 1 millisecond. At each segment boundary of the surface sections, therefore, a time signal can be taken.
  • the position sensor 120 according to FIG. 3 therefore provides an alternating square-wave voltage signal which coincides in time with the conductivity signal of the passing segmented cylinder jacket surface produced at the measuring contact.
  • FIG. 4 shows the contact apparatus 40 of an air contactor and the armature 110 with the position transmitter 120 on one side and the bridge carrier 130 on the other side corresponding to FIG.
  • the movable part of the contact apparatus is introduced with its components. Specifically, a contact bridge 140 with BewegCounten 141, 141 'attached to a spring housing 160 with abutment 161, wherein the contact bridge 140 is supported at open contacts by a contact force spring 165 against the bridge girder 130.
  • the contact force spring 165 generates the contact force and the closing positions of armature and contact bridge determine the pressure of the spring.
  • v ( x 2 - x 1 ) / ( t 2 - t 1 )
  • x 4 - x 1 v * t 4 - t 1 + 0.5 * b m * t 4 - t 1 2 .
  • b m 2 / ( t 4 - t 1 ) * ( x 4 - x 1 ) / ( t 4 - t 1 ) - x 2 - x 1 ) / ( t 2 - t 1 ) / ( t 2 - t 1
  • the measured values of the component positions and the switch-on contact to become a channel (x 3 -x 1) is recalculated on a microprocessor. Due to contact wear, possibly with additional mechanical wear, a current value of the travel is obtained during switching operation (x 3 -x 1 ).
  • the wear for example in mm here is, by the difference of the calculated paths (x 3 -x 1) - redistributed (x 3 -x 1).
  • this difference corresponds to the decrease in the through-pressure by reducing the contact piece thickness.
  • the mechanical, reduced pressure drop is also recorded as part of the total reduction in permeate pressure since the contacts and the drive components are in frictional contact during the accelerated switch-on movement.
  • FIG. 5 illustrates the mathematical procedure with reference to a flowchart.
  • the individual steps 201 to 212 are largely self-explanatory: About the start and a presetting of switchgear encoder data corresponding to the positions 201 and 202, the times t 2 , t 3 and t 4 are determined according to position 205. From this, the output values x 3 (t 3 ) and x 1 (t 1 ) or their difference x 3 -x 1 can be calculated correspondingly. The difference (x 3 -x 1 ) new - (x 3 -x 1 ) results in the current change in pressure according to item 210.
  • the change in pressure is correlated with the life end of the contacts and, if the given conditions are met, according to position 212 finished the program. If this is not the case, the position 203 is returned and t 1 , t 2 and t 3 are re-determined according to the positions 204, 205. Positions 206 and 208, respectively, provide test routines for averaging x 3 -x 1 .
  • the current value (x 3 -x 1 ) is newly determined at the beginning of a new life cycle, which implicitly includes the current state of wear of the switching device mechanism. This ensures a reliable assessment of contact wear in each subsequent life cycle.
  • a particularly advantageous development of the procedure described above is a speed control of the drive:
  • speed-controllable drives in particular contactor drives, which consist of a controllable, magnetic drive
  • the speed v measured with the position sensor can be used to iteratively set the drive to a predetermined speed , or to limit the speed to a predetermined value range.
  • the control parameters with each switching on of the drive with a predetermined parameter step in the direction of higher speed as long as the speed is less than the setpoint or less than the setpoint range, or set to lower speed as long as the speed is greater than the setpoint or above the setpoint range. This ensures that the contacts close after reaching the speed setting with the specified speed.
  • a particular advantage is that the method can be applied to existing shooters. However, this requires the detection of the voltage waveform with an A / D converter or zero-crossing detection on the control voltage.
  • the predetermined and empirically determinable path-time curve of the magnetic drive according to Figure 1 is used.
  • the change of the Einschaltweges in use state with respect to the new condition then provides a direct or proportional measure in the change in the contact piece thickness.
  • a pressure value of the contact force spring is determined and determined from the change in use, the wear-related change in pressure.
  • Advantage of this method is a simple detection of the timestamps. However, a modification of the contactor structure and thus a redesign may be required for the method.
  • an advantageous embodiment of a speed control of the drive can be carried out as follows: By means of several position rings on a position sensor, it is possible to measure the path during the armature movement and to achieve an almost constant speed for closing the switching device by controlling the magnetic force. As a result, not only the switching movement is optimized, but also the forces causing the wear on the mechanically moving parts are minimized as much as possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Keying Circuit Devices (AREA)

Abstract

In a switchgear, the switching contacts of a switchgear mechanism (100) are set to the on position or the off position, wherefore pressure is generated by the contact force spring in order to apply the pre-determined contact force in the on position. The service life of one such switchgear is determined by the erosion of switching contacts and by the mechanical wear of the switchgear mechanism. It is known that the switching contact erosion can be determined by detecting the change in pressure in the drive of the switchgear, According to prior art, the change in pressure is always measured during the switching-off process. According to the invention, the pressure change is detected during the switching-on process, and especially the mechanical wear of the switchgear can be simultaneously determined. The inventive device comprises a magnetic drive (100) consisting of an armature (110), a yoke (101) and magnetising coils (102, 102'), a position transmitter (120) being coupled to the magnetic armature (110) in a positively engaging manner.

Description

Die Erfindung bezieht sich auf ein Verfahren zur Bestimmung der Restlebensdauer eines Schaltgerätes. Daneben bezieht sich die Erfindung auf eine zugehörige Vorrichtung zur Durchführung des Verfahrens.The invention relates to a method for determining the remaining service life of a switching device. In addition, the invention relates to an associated apparatus for carrying out the method.

Für die Betriebssicherheit von Schaltanlagen ist es wichtig, die Restlebensdauer von Kontaktstücken zu kennen, um durch rechtzeitige Wartungsmaßnahmen, z.B. bei Schützen, durch Austausch der Kontakte, Betriebsstörungen zu vermeiden. Bisher bekannte Verfahren werten die zeitliche Abfolge während des Ausschaltvorganges aus. Für Schütze, insbesondere Luftschütze, wurde ein Verfahren zur Restlebensdauererkennung des Kontaktabbrandes entwickelt, bei dem der Abbrand durch Messung des Zeitintervalls zwischen Ankeröffnung - gekennzeichnet durch einen charakteristischen Peak in der Spulenspannung - und Kontaktöffnung - gekennzeichnet durch das Auftreten einer Schaltstreckenspannung - der Kontaktabbrand und damit die Restlebensdauer gemessen wird.For the reliability of switchgear, it is important to know the residual life of contactors in order to be able to be protected by timely maintenance measures, e.g. in contactors, by replacing the contacts, to avoid malfunction. Previously known methods evaluate the chronological sequence during the switch-off process. For contactors, in particular air guns, a method for residual life detection of contact erosion was developed in which the burn by measuring the time interval between armature opening - characterized by a characteristic peak in the coil voltage - and contact opening - characterized by the occurrence of a switching path voltage - the contact erosion and thus the Remaining life is measured.

Speziell das Verfahren zur Erfassung der Durchdruckänderung als Ersatzkriterium für den Kontaktabbrand ist mit der EP 0 694 937 B1 unter Schutz gestellt. Spezifische Methoden zur Anwendung bei Schaltgeräten sind in der EP 0 878 016 B1, der EP 0 878 015 B1 und der EP 1 002 325 B1 beschrieben. Dabei wird durchweg darauf abgestellt, dass die Durchdruckänderungen beim Ausschaltvorgang, d.h. beim Öffnen der Schaltkontakte durch einen elektromagnetischen Antrieb erfasst werden, woraus speziell der Abbrand an den Schaltkontakten ermittelt und daraus die Restlebensdauer des Schaltgerätes ermittelt wird.Specifically, the method for detecting the change in through pressure as a substitute criterion for the contact erosion is provided by EP 0 694 937 B1 under protection. Specific methods for use with switching devices are described in EP 0 878 016 B1, EP 0 878 015 B1 and EP 1 002 325 B1. In so doing, it is always assumed that the changes in throughput during the switch-off process, i. be detected by an electromagnetic drive when opening the switch contacts, from which specifically determined the burnup of the switch contacts and from this the remaining life of the switching device is determined.

Daneben ist aus der DE 199 15 978 A1 ein Verfahren zur Bestimmung des Kontaktabbrandes bekannt, bei dem die Abstandsänderung des beweglichen Kontaktstückes zum Kontaktpunkt überwacht wird. Spezifische Ausbildungen von Schaltern mit unterschiedlichen Möglichkeiten der Abbranderfassung werden in der DE 100 28 559 A1 und der EP 0 355 606 B1 beschrieben.In addition, a method for determining the contact erosion is known from DE 199 15 978 A1, in which the change in distance the movable contact piece is monitored to the contact point. Specific embodiments of switches with different possibilities of Abbranderfassung are described in DE 100 28 559 A1 and EP 0 355 606 B1.

Davon ausgehend ist es Aufgabe der Erfindung, ein Verfahren und die zugehörige Vorrichtung anzugeben, bei denen neben dem Kontaktabbrand auch der Verschleiß der Schaltgerätemechanik unter bestimmten Bedingungen berücksichtigt werden kann. Zusätzlich ist eine Überwachung und Steuerung der Einschaltbewegung mit den erfassten Messwerten möglich.On this basis, it is an object of the invention to provide a method and the associated device in which in addition to the contact wear and the wear of the switching device mechanism can be considered under certain conditions. In addition, it is possible to monitor and control the switch-on movement with the acquired measured values.

Die Aufgabe ist erfindungsgemäß durch ein Verfahren gemäß des Patentanspruches 1 gelöst. Eine zugehörige Vorrichtung ist im Patentanspruch 9 angegeben. Weiterbildungen des Verfahrens sowie der zugehörigen Vorrichtung sind Gegenstand der abhängigen Ansprüche.The object is achieved by a method according to claim 1. An associated device is specified in claim 9. Further developments of the method and the associated device are the subject of the dependent claims.

Gemäß der Erfindung erfolgt nunmehr die Erfassung der Durchdruckänderungen speziell beim Einschaltvorgang, d.h. beim Schließen der Schaltkontakte durch den Magnetantrieb, wobei mit wenigstens einem Positionsgeber drei Zeitpunkte zu drei Positionen der Kontakte erfolgt. Bei der zugehörigen Vorrichtung ist für diesen Zweck am Magnetanker des Magnetantriebes ein Positionsgeber kraftschlüssig zum Kontakt angekoppelt.According to the invention, the detection of the changes in pressure is now carried out especially during the switch-on process, i. when closing the switch contacts by the magnetic drive, with at least one position sensor takes place three times to three positions of the contacts. In the associated device, a position sensor is non-positively coupled to the contact for this purpose on the armature of the magnetic drive.

Besonders vorteilhaft ist bei der Erfindung, dass nicht nur der Kontaktabbrand als die Lebensdauer des Schaltgerätes im Wesentlichen bestimmende Größe, sondern auch der Verschleiß der Gerätemechanik hierzu berücksichtigt wird. Dies kann dann von Bedeutung sein, wenn das Schaltgerät speziell ein Vakuumschütz ist. Während nämlich bei Luftschützen der Kontakthub vergleichsweise groß ist (bis zu 10 mm) und insofern das durch den Verschleiß der beweglichen Komponenten der Gerätemechanik verursachte Spiel prozentual kaum ins Gewicht fällt, kann dies bei Vakuumschützen eine nicht zu vernachlässigende Größe darstellen.It is particularly advantageous in the invention that not only the contact erosion as the life of the switching device substantially determining size, but also the wear of the device mechanism is taken into account. This may be important if the switching device is specifically a vacuum contactor. While the contact stroke is comparatively large (up to 10 mm) in the case of air riflemen, and insofar as the play caused by the wear of the movable components of the device mechanics hardly matters, this can be a factor that can not be neglected in vacuum contactors.

Letzteres ist dadurch gegeben, dass der Kontakthub bei Vakuumschaltern gegenüber Luftschaltgeräten vergleichsweise gering ist (bis zu 2 mm), dafür aber durch die Kontaktschließkraft, die durch Kraftbeaufschlagung der Gerätemechanik und einer nur über Hebel erreichbaren Kraftumlenkung und Kraftübersetzung erzeugt wird, Verschleißerscheinungen insbesondere an den Drehpunkten der Gerätemechanik leicht auftreten können.The latter is given by the fact that the contact stroke is comparatively low in vacuum switches compared to air switching devices (up to 2 mm), but by the contact closing force, which is generated by applying force to the device mechanism and achievable only via lever force deflection and power transmission, wear and tear, especially at the pivot points the device mechanics can easily occur.

Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Figurenbeschreibung von Ausführungsbeispielen anhand der zeichnung in Verbindung mit den Patentansprüchen. Es zeigen

Figur 1
eine graphische Darstellung zur Berechnung der Kontakt-Schließposition beim Einschaltvorgang,
Figur 2
einen Magnetantrieb für ein Schaltgerät mit einem Positionssensor,
Figur 3
eine spezifische Ausbildung des Positionssensors aus Figur 2 zur Bestimmung einzelner Positionszeitpunkte,
Figur 4
eine zu Figur 3 konkretisierte Anordnung für ein Luftschütz zur Ermittlung von Kontakt-Schließpositionen x3, x3neu der Positionszeitpunkte und
Figur 5
ein Flussdiagramm zur rechnerischen Ermittlung der Kontaktlebensdauer eines Schaltgerätes.
Further details and advantages of the invention will become apparent from the following description of exemplary embodiments with reference to the drawing in conjunction with the claims. Show it
FIG. 1
a graphic representation for the calculation of the contact closing position during the switch-on,
FIG. 2
a magnetic drive for a switching device with a position sensor,
FIG. 3
a specific embodiment of the position sensor from FIG. 2 for determining individual position times,
FIG. 4
an arrangement specified for Figure 3 for an air contactor for determining contact closing positions x 3 , x 3neu the position times and
FIG. 5
a flowchart for the mathematical determination of the contact life of a switching device.

Das nachfolgend beschriebene Verfahren zur Bestimmung der Restlebensdauer von Schaltkontakten besteht im Wesentlichen in der zeitlichen Erfassung vorgegebener, diskreter Positionen eines Magnetankers eines Schützantriebes und/oder bestimmter Komponenten des Schaltgeräteantriebs und in der Bestimmung der Geschwindigkeit und der (mittleren) Beschleunigung des Bauteiles, an dem die Positionsmessung vorgenommen wird, zu diesen vorgegebenen Positionen. Daneben besteht es in der Messung der Einschaltzeitpunkte der Schaltkontakte während ihrer Schließbewegung und der Bestimmung der Kontakt-Schließpositionen relativ zu den erfassten, diskreten Positionen.The method described below for determining the remaining service life of switching contacts consists essentially in the timely detection of predetermined, discrete positions of a magnet armature of a contactor drive and / or certain components of the switching device drive and in the determination of the speed and the (average) acceleration of the component on which the Position measurement is made to these predetermined positions. In addition, it consists in the measurement of the switch-on of the switching contacts during their closing movement and the determination of the contact-closing positions relative to the detected, discrete positions.

Figur 1 zeigt dazu schematisch den Weg-Zeit-Verlauf 1 eines Bauteiles des Schaltgerätes, dessen Weg mit dem Kontaktweg identisch ist, dessen Weg entweder aber auch über einen konstanten Faktor oder über eine vorgegebene Funktion mit dem Kontaktweg mathematisch verknüpft sein kann.1 shows schematically the path-time curve 1 of a component of the switching device whose path is identical to the contact path, the path either but also over a constant Factor or via a given function with the contact path can be mathematically linked.

Zur Bestimmung der Restlebensdauer werden wenigstens vier Zeitpunkte erfasst, von denen einer, z.B. t3, den Kontaktschließzeitpunkt darstellt und die anderen, z.B. t1, t2 und t4 Positionszeitpunkte eines oder mehrer Positionsgeber darstellen. Wenigstens zwei dieser Zeitpunkte, z.B. t1 und t2, können Zeitwerte zweier nah benachbarter Positionen sein, aus welchen durch die Beziehung v = ( x 2 - x 1 ) / t 2 - t 1

Figure imgb0001

ein Geschwindigkeitswert des Bauteiles ableitbar ist. Da das überwachte Bauteil während des Einschaltvorganges im allgemeinen eine beschleunigte Bewegung ausführt, wird neben der Geschwindigkeit v für wenigstens ein Zeitintervall, z . B . Δt = t 4 - t 1 oder Δt = t 4 - t 2 ,
Figure imgb0002

ein mittlerer Wert einer konstanten Beschleunigung bestimmt. Aus den ermittelten Werten der Geschwindigkeit und der Beschleunigung, sowie aus den Relativpositionen der Positionsgeber zueinander und ihrer Positionszeitpunkte, kann für den Kontaktschließzeitpunkt t3 durch eine einfache mathematische Beziehung die Position des schließenden Kontaktes bestimmt werden.To determine the residual life, at least four points in time are recorded, one of which, eg, t 3 , represents the contact closure time and the other, eg, t 1 , t 2, and t 4 represent position times of one or more position encoders. At least two of these times, eg t 1 and t 2 , may be time values of two closely adjacent positions, from which by the relationship v = ( x 2 - x 1 ) / t 2 - t 1
Figure imgb0001

a speed value of the component is derivable. Since the monitored component generally performs an accelerated movement during the switch-on process, in addition to the speed v for at least one time interval, z , B , .delta.t = t 4 - t 1 or Δt = t 4 - t 2 .
Figure imgb0002

a mean value of a constant acceleration is determined. From the determined values of the speed and the acceleration, as well as from the relative positions of the position sensors to each other and their position times, the position of the closing contact can be determined for the contact closing time t 3 by a simple mathematical relationship.

Die noch unbekannte Kontakt-Schließposition zwischen der Position x2, welche das Ende des Wegintervalls zur Geschwindigkeitsbestimmung darstellt, und der Position x4, welche in Schließrichtung des Bauteiles nach der Kontakt-Schließposition liegt, ist unbekannt. Es ist ersichtlich, dass sich die Kontakt-Schließposition x3 umso genauer bestimmen lässt, je enger das Wegintervall zwischen den Positionen x1 und x4 gewählt wird. Im Idealfall werden die Positionen x1 und x4 so gewählt, dass sie die durch Verschleiß von Kontakt und/oder Mechanik sich verändernde Kontaktschließposition sicher einschließen, das Wegintervall zwischen ihnen aber nicht wesentlich größer wird, als die Differenz der Kontakt-Schließpositionen zu Beginn und zum Ende der Kontaktlebensdauer.The still unknown contact closing position between the position x 2 , which represents the end of the distance interval for speed determination, and the position x 4 , which is in the closing direction of the component after the contact-closing position, is unknown. It can be seen that the closer the path interval between the positions x 1 and x 4 is selected, the more accurate the contact closing position x 3 can be determined. Ideally, positions x 1 and x 4 are chosen to confidently enclose the contact closing position due to contact and / or mechanical wear, but the path interval between them will not be significantly greater than the difference in contact closing positions at the beginning and end to the end of the contact life.

Zur Lösung der Positions/Zeit-Erfassung ergeben sich mehrere alternative Verfahren, wozu auf den Aufbau des Schaltgeräteantriebes eingegangen wird:To solve the position / time detection results in several alternative methods, including the structure of the switching device drive is addressed:

In Figur 2 ist ein bekannter Magnetantrieb für ein Schaltgerät dargestellt und pauschal mit 100 bezeichnet. Es besteht in bekannter Weise aus beispielsweise E-förmigem Magnetjoch mit Magnetspulen und einem Magnetanker.FIG. 2 shows a known magnetic drive for a switching device and designates it as 100. It consists in a known manner, for example, E-shaped magnetic yoke with magnetic coils and a magnet armature.

In Figur 2 ist ein zugehöriges Schaltgerät speziell ein Schütz. Dieses kann ein Luftschütz aber ebenso ein Vakuumschütz sein, wobei in letzterem Fall die Anlenkung des Antriebes an die Bewegkontakte des Schützes komplexer ist.In Figure 2, an associated switching device is specifically a contactor. This may be an air contactor but also a vacuum contactor, in the latter case, the articulation of the drive to the moving contacts of the contactor is more complex.

In Figur 2 ist ein Magnetjoch mit 101 bezeichnet, auf dem zwei Magnetspulen 102 und 102' zur magnetischen Erregung sitzen. Die Polflächen des Magnetjoches sind mit 103 und 103' bezeichnet. Dem Magnetjoch 101 ist ein Magnetanker 110 zugeordnet, der bei Erregung des Magnetantriebes durch die Magnetspulen vom Magnetjoch angezogen wird.In Figure 2, a yoke is denoted by 101, sit on the two magnetic coils 102 and 102 'for magnetic excitation. The pole faces of the magnetic yoke are labeled 103 and 103 '. The magnet yoke 101 is associated with a magnet armature 110, which is attracted to the magnetic yoke by the magnet yoke upon excitation of the magnetic drive.

In Figur 2 ist die volle Öffnungsposition des Magnetankers 110 dargestellt. Auf dem Magnetanker ist ein Träger 130 für einen Bewegkontakt 141 angeordnet, wobei in Figur 2 der Träger 130 in vertikaler Richtung bewegbar ist. Bei der Einschaltbewegung des Antriebes wird der Bewegkontakt 141 in Schließposition zu dem Festkontakt 151 gebracht.FIG. 2 shows the full opening position of the magnet armature 110. On the magnet armature, a carrier 130 is arranged for a moving contact 141, wherein in Figure 2, the carrier 130 is movable in the vertical direction. During the switch-on movement of the drive, the moving contact 141 is brought into the closed position to the fixed contact 151.

In der Figur 2 ist auf der anderen dem Magnetjoch zugewandten Seite des Magnetankers ein Positionsgeber 120 in kraftschlüssigem Kontakt mit dem Magnetanker 110 angeordnet. Der Positionsgeber 120 dient im Wesentlichen zur Erfassung bestimmter Positionszeitpunkte bei der Ankerbewegung und wird in den weiteren Figuren im Einzelnen beschrieben.In FIG. 2, on the other side of the magnet armature facing the magnet yoke, a position transmitter 120 is arranged in frictional contact with the magnet armature 110. The position sensor 120 is essentially used to detect certain position times in the armature movement and will be described in more detail in the other figures.

In Figur 3 ist der Magnetantrieb mit einer spezifischen Ausführungsform eines Positionsgebers 120 dargestellt, dessen Vorzüge in seiner Einfachheit, Robustheit und der Präzision bei Erfassung der vorgegebenen Positionen liegt. Wie aus der Figur 3 ersichtlich, kann die konstruktiv vorgebbare Anzahl von zu erfassenden Positionen erheblich über der Mindestzahl von drei Positionen, d.h. (x1, x2 und x4), liegen. Der Positionsgeber 120 ist als zylindrischer Stab ausgebildet, welcher über eine Feder 127 mit mäßiger Federkraft gegen den Magnetanker 110 gedrückt wird und in einem zugehörigen Gehäuse 126 bewegt werden kann. Im Ausschaltzustandes des Magnetantriebes 100 liegt der Positionsgeber 120 am Anker 110 an, wodurch bei der Einschaltbewegung des Ankers 110 der Positionsgeber 120 mitgenommen wird und auf ihn Beschleunigungskräfte einwirken, aber keine Stoßkräfte. Die Zylindermantelfläche 121 des Positionsgebers 120 ist in axialer Richtung in mehrere leitende und nichtleitende Flächenabschnitte 122 bis 124. Da der Außendurchmesser aller Flächenabschnitte 122 bis 124 identisch ist und sie sich ohne Trennfuge aneinander anschließen, erhält man eine glatte Zylinderoberfläche aus in axialer Richtung sich abwechselnden elektrisch leitenden und nichtleitenden Abschnitten.FIG. 3 shows the magnetic drive with a specific embodiment of a position transmitter 120, whose advantages lie in its simplicity, robustness and precision in detecting the predetermined positions. As can be seen from FIG. 3, the constructively predeterminable number of positions to be detected can be considerably above the minimum number of three positions, ie (x 1 , x 2 and x 4 ). The position sensor 120 is formed as a cylindrical rod, which is pressed by a spring 127 with moderate spring force against the armature 110 and can be moved in an associated housing 126. In the off state of the magnetic drive 100 of the position sensor 120 is located on the armature 110, which is taken during the switching movement of the armature 110 of the position sensor 120 and acting on him acceleration forces, but no impact forces. The cylindrical surface 121 of the position sensor 120 is in the axial direction in a plurality of conductive and non-conductive surface portions 122 to 124. Since the outer diameter of all surface portions 122 to 124 are identical and they join each other without a parting line, one obtains a smooth cylindrical surface of alternating axially in the axial direction conductive and non-conductive sections.

Ein derartiger elektrisch leitender Abschnitt kann z.B. ein gut leitender, metallischer Ring 125 sein, dessen Höhe z.B. 1mm oder weniger betragen kann. Die Positionserfassung kann durch elektrische Kontaktgabe äußerer Kontaktglieder mit diesem Metallring erfolgen.Such an electrically conductive portion may be e.g. a good conductive metallic ring 125 whose height is e.g. 1mm or less. The position detection can be done by electrical contact external contact members with this metal ring.

Um den mechanischen Verschleiß durch Abrieb zwischen den Kontaktgliedern und dem Ring klein zuhalten, kann die Kontaktgabe statt durch einen schleifenden Kontakt durch einen abrollenden Kontakt realisiert sein. An diesen Messkontakt ist ein elektrischer Messkreis angeschlossen, der aus dem Kontaktsignal (Ein/Aus) ein Spannungssignal (Ein/Aus) ableitet. Beträgt z.B. die momentane Schließgeschwindigkeit des Bauteiles 1 m/s, so liefert der Messkontakt beim Vorbeilaufen des 1 mm hohen Metallringes Zeitpunkte der Schaltflanken des Spannungssignals, die einen Zeitabstand von 1 Millisekunde aufweisen. An jeder Segmentgrenze der Flächenabschnitte kann also ein Zeitsignal entnommen werden. Der Positionssensor 120 nach Figur 3 liefert also ein wechselndes Rechteckspannungssignal das mit dem am Messkontakt erzeugten Leitfähigkeitssignal der vorbeistreichenden, segmentierten Zylindermantelfläche zeitlich übereinstimmt.In order to keep the mechanical wear by abrasion between the contact members and the ring small, the contact can be realized instead by a sliding contact by a rolling contact. An electrical measuring circuit is connected to this measuring contact, which derives a voltage signal (on / off) from the contact signal (on / off). If, for example, the instantaneous closing speed of the component is 1 m / s, the measuring contact will deliver as the 1 mm passes high metal ring times of the switching edges of the voltage signal, which have a time interval of 1 millisecond. At each segment boundary of the surface sections, therefore, a time signal can be taken. The position sensor 120 according to FIG. 3 therefore provides an alternating square-wave voltage signal which coincides in time with the conductivity signal of the passing segmented cylinder jacket surface produced at the measuring contact.

In Figur 4 sind der Kontaktapparat 40 eines Luftschützes und der Anker 110 mit dem Positionsgeber 120 auf der einen Seite sowie dem Brückenträger 130 auf der anderen Seite entsprechend Figur 3 dargestellt. An den Brückenträger 130 ist der bewegliche Teil des Kontaktapparates mit seinen Komponenten eingebracht. Im Einzelnen ist eine Kontaktbrücke 140 mit Bewegkontakten 141, 141' an einem Federgehäuse 160 mit Gegenlager 161 angebracht, wobei die Kontaktbrücke 140 bei geöffneten Kontakten durch eine Kontaktkraft-Feder 165 gegen den Brückenträger 130 abgestützt wird. Durch diese Anordnung sind die Bewegkontakte 141, 141' gegenüber den Festkontakten 151, 151', die auf Kontaktträgern 150, 150 befestigt sind, beweglich und in Öffnungs- bzw. Schließstellung bringbar. Die Kontaktkraft-Feder 165 erzeugt dabei die Kontaktkraft und die Schließpositionen von Magnetanker und Kontaktbrücke bestimmen den Durchdruck der Feder.FIG. 4 shows the contact apparatus 40 of an air contactor and the armature 110 with the position transmitter 120 on one side and the bridge carrier 130 on the other side corresponding to FIG. To the bridge support 130, the movable part of the contact apparatus is introduced with its components. Specifically, a contact bridge 140 with Bewegkontakten 141, 141 'attached to a spring housing 160 with abutment 161, wherein the contact bridge 140 is supported at open contacts by a contact force spring 165 against the bridge girder 130. By this arrangement, the moving contacts 141, 141 'relative to the fixed contacts 151, 151', which are mounted on contact carriers 150, 150, movable and in the open or closed position can be brought. The contact force spring 165 generates the contact force and the closing positions of armature and contact bridge determine the pressure of the spring.

Aus der Figur 4 ergeben sich die geometrischen Verhältnisse, welche die Positionszeitpunkte t1 bis t4 bestimmen, wobei die gleichen Bezugszeichen wie in Figur 3 verwendet sind. Wesentlich ist in diesem Zusammenhang die Bestimmung der Geberposition x3neu im Neuzustand der Kontakte und der Geberposition x3 im Gebrauchtzustand der Kontakte. Weiterhin sind die Ortsmarken x1(t1), x2 (t2) und x4 (t4) dargestellt. Die Kontakte sind als Kontaktringe 122 bis 124 bzw. 125, 125' um den zylindrischen Positionsgeber 120 ausgebildet. Es kann auch genügen, die Oberfläche 121 des Positionsgeber 120 zu beschichten.From Figure 4, the geometric relationships which determine the position times t 1 to t 4 , wherein the same reference numerals are used as in Figure 3. Essential in this context is the determination of the encoder position x 3new in the new state of the contacts and the encoder position x 3 in the used state of the contacts. Furthermore, the placemarks x 1 (t 1 ), x 2 (t 2 ) and x 4 (t 4 ) are shown. The contacts are formed as contact rings 122 to 124 and 125, 125 'around the cylindrical position sensor 120. It may also be sufficient to coat the surface 121 of the position sensor 120.

Zur Positionsbestimmung des Kontaktes beim Kontaktschließen werden die Geschwindigkeit zwischen den nah benachbarten Positionen x1 und x2 und die mittlere Beschleunigung zwischen x1 und x4 benötigt. Es gilt: v = ( x 2 - x 1 ) / ( t 2 - t 1 ) .

Figure imgb0003
x 4 - x 1 = v * t 4 - t 1 + 0.5 * b m * t 4 - t 1 2 ,
Figure imgb0004
b m = 2 / ( t 4 - t 1 ) * ( x 4 - x 1 ) / ( t 4 - t 1 ) - x 2 - x 1 ) / ( t 2 - t 1
Figure imgb0005
To determine the position of the contact during contact closure, the speed between the closely adjacent positions x 1 and x 2 and the average acceleration between x 1 and x 4 are required. The following applies: v = ( x 2 - x 1 ) / ( t 2 - t 1 ) ,
Figure imgb0003
x 4 - x 1 = v * t 4 - t 1 + 0.5 * b m * t 4 - t 1 2 .
Figure imgb0004
b m = 2 / ( t 4 - t 1 ) * ( x 4 - x 1 ) / ( t 4 - t 1 ) - x 2 - x 1 ) / ( t 2 - t 1
Figure imgb0005

Damit erhält man für die Kontakt-Schließposition x3 x 3 - x 1 = v * t 3 - t 1 + 0.5 * b m * t 3 - t 1 2 ,

Figure imgb0006
x 3 - x 1 = x 2 - x 1 / t 2 - t 1 * t 3 - t 1 + ( x 4 - x 1 / ( t 4 - t 1 ) - ( x 2 - x 1 ) / ( t 2 - t 1 ) * t 3 - t 1 2 / ( t 4 - t 1 ) .
Figure imgb0007
This gives x 3 for the contact closing position x 3 - x 1 = v * t 3 - t 1 + 0.5 * b m * t 3 - t 1 2 .
Figure imgb0006
x 3 - x 1 = x 2 - x 1 / t 2 - t 1 * t 3 - t 1 + ( x 4 - x 1 / ( t 4 - t 1 ) - ( x 2 - x 1 ) / ( t 2 - t 1 ) * t 3 - t 1 2 / ( t 4 - t 1 ) ,
Figure imgb0007

Es ist ersichtlich, dass zur Berechnung der Änderung der Kontakt-Schließposition nur die Differenzen der gemessenen Kontaktzeiten ti und der bekannten Positionswerte benötigt werden. Eine räumliche Justierung für die Bestimmung absoluter Positionswerte ist also nicht erforderlich.It can be seen that the change of the contact-closure position to calculate only the differences of the measured contact times t i and the known position values are needed. A spatial adjustment for the determination of absolute position values is therefore not required.

Im Neuzustand der Kontakte werden über einen Mikroprozessor die mit dem Positionssensor gemessenen Zeitwerte der Bauteil-Positionen und des Kontakt-Einschaltzeitpunktes zu einem Weg (x3-x1)neu berechnet. Durch Kontaktverschleiß eventuell zusätzlich mit mechanischem Verschleiß erhält man im Schaltbetrieb einen aktuellen Wert des Weges (x3-x1).In the new state of the contacts with the position sensor, the measured values of the component positions and the switch-on contact to become a channel (x 3 -x 1) is recalculated on a microprocessor. Due to contact wear, possibly with additional mechanical wear, a current value of the travel is obtained during switching operation (x 3 -x 1 ).

Der Verschleiß, z.B. in mm, ist dabei durch die Differenz der berechneten Wege (x3-x1) - (x3-x1) neu gegeben. Beim Kontaktabbrand entspricht diese Differenz der Abnahme des Durchdruckes durch Reduzierung der Kontaktstückdicke. Tritt zusätzlich noch eine Durchdruckabnahme durch Verschleiß mechanischer, kraftübertragender Teile des Geräteantriebes auf, so wird die mechanisch, bedingte Durchdruckabnahme als Teil der gesamten Durchdruckabnahme miterfasst, da die Kontakte und die Antriebskomponenten bei der beschleunigten Einschaltbewegung in kraftschlüssigem Kontakt stehen.The wear, for example in mm here is, by the difference of the calculated paths (x 3 -x 1) - redistributed (x 3 -x 1). When Kontaktabbrand this difference corresponds to the decrease in the through-pressure by reducing the contact piece thickness. If, in addition, there is a decrease in the permissible pressure due to wear of mechanical, force-transmitting parts of the device drive, the mechanical, reduced pressure drop is also recorded as part of the total reduction in permeate pressure since the contacts and the drive components are in frictional contact during the accelerated switch-on movement.

In Figur 5 ist die rechnerische Vorgehensweise anhand eines Flussdiagramms verdeutlicht. Die einzelnen Schritte 201 bis 212 sind weitestgehend selbsterklärend: Über den Start und einer Voreinstellung von Schaltgeräte-Geberdaten entsprechend den Positionen 201 und 202 werden die Zeitpunkte t2, t3 und t4 entsprechend Position 205 ermittelt. Daraus lassen sich entsprechend Position die Ausgabewerte x3(t3) und x1(t1) bzw. deren Differenz x3-x1 berechnen. Durch die Differenz (x3-x1)neu-(x3-x1) ergibt sich die aktuelle Durchdruckänderung gemäß Position 210. Gemäß Position 211 wird die Durchdruckänderung mit dem Lebensdauer-Ende der Kontakte korrelliert und bei Erfüllung der vorgegebenen Bedingungen entsprechend Position 212 das Programm beendet. Ist das nicht der Fall, wird zur Position 203 zurückgegangen und es werden t1, t2 und t3 entsprechend den Positionen 204, 205 neu ermittelt. Die Positionen 206 bzw. 208 geben Prüfroutinen für die Mittelwertbildung von x3-x1 an.FIG. 5 illustrates the mathematical procedure with reference to a flowchart. The individual steps 201 to 212 are largely self-explanatory: About the start and a presetting of switchgear encoder data corresponding to the positions 201 and 202, the times t 2 , t 3 and t 4 are determined according to position 205. From this, the output values x 3 (t 3 ) and x 1 (t 1 ) or their difference x 3 -x 1 can be calculated correspondingly. The difference (x 3 -x 1 ) new - (x 3 -x 1 ) results in the current change in pressure according to item 210. According to item 211, the change in pressure is correlated with the life end of the contacts and, if the given conditions are met, according to position 212 finished the program. If this is not the case, the position 203 is returned and t 1 , t 2 and t 3 are re-determined according to the positions 204, 205. Positions 206 and 208, respectively, provide test routines for averaging x 3 -x 1 .

Nach dem Erreichen des Kontakt-Lebensdauer-Endes und dem Einbau neuer Kontakte wird zu Beginn eines neuen Lebensdauerzyklus der aktuelle Wert (x3-x1)neu bestimmt, welcher den aktuellen Verschleißzustand der Schaltgerätemechanik implizit beinhaltet. Dadurch ist eine sichere Beurteilung des Kontaktverschleißes in jedem folgenden Lebensdauerzyklus gewährleistet.After reaching the contact life end and the installation of new contacts, the current value (x 3 -x 1 ) is newly determined at the beginning of a new life cycle, which implicitly includes the current state of wear of the switching device mechanism. This ensures a reliable assessment of contact wear in each subsequent life cycle.

Eine besonders vorteilhafte Weiterbildung der oben beschriebenen Vorgehensweise ist eine Geschwindigkeitsregelung des Antriebes: Für geschwindigkeitsregelbare Antriebe, insbesondere Schützantriebe, die aus einem regelbaren, magnetischen Antrieb bestehen, kann die mit dem Positionssensor gemessene Geschwindigkeit v genutzt werden, um den Antrieb iterativ auf eine vorgegebene Geschwindigkeit einzustellen, oder die Geschwindigkeit auf einen vorgegebenen Wertebereich zu beschränken. Dazu werden die Steuerparameter mit jeder Einschaltung des Antriebes mit einem vorgegebenen Parameterschritt in Richtung höhere Geschwindigkeit gestellt, solange die Geschwindigkeit kleiner als der Sollwert ist oder unterhalb des Sollbereiches liegt, oder in Richtung kleinere Geschwindigkeit gestellt, solange die Geschwindigkeit größer als der Sollwert ist, oder oberhalb des Sollbereiches liegt. Damit wird erreicht, dass die Kontakte nach erreichter Geschwindigkeitseinstellung mit der vorgegebenen Geschwindigkeit schließen.A particularly advantageous development of the procedure described above is a speed control of the drive: For speed-controllable drives, in particular contactor drives, which consist of a controllable, magnetic drive, the speed v measured with the position sensor can be used to iteratively set the drive to a predetermined speed , or to limit the speed to a predetermined value range. For this purpose, the control parameters with each switching on of the drive with a predetermined parameter step in the direction of higher speed, as long as the speed is less than the setpoint or less than the setpoint range, or set to lower speed as long as the speed is greater than the setpoint or above the setpoint range. This ensures that the contacts close after reaching the speed setting with the specified speed.

Eine Alternative zu vorstehend angegebener Vorgehensweise ergibt sich durch die Bestimmung zweier Zeitpunkte tBeginn und tEnde für die Abfolge des Einschaltvorganges und daraus berechneter Restlebensdauer. Es bedeuten:

tBeginn =
den Zeitpunkt des Anlegens von Spannung an die Spule entweder
  • unter Berücksichtigung der Phasenlage der Spannung zur Erfassung der unterschiedlichen Kraftentwicklung oder
  • unter Einsatz eines phasengesteuerten Zuschaltens, was der Herbeiführung von Synchronismus dient.
tEnde =
Erfassung des Kontaktschließens, wozu die Schaltstreckenspannung gemessen wird.
An alternative to the procedure described above results from the determination of two points in time t beginning and t end for the sequence of the switch-on process and the residual life calculated therefrom. It means:
t beginning =
the time of applying voltage to the coil either
  • taking into account the phase position of the voltage to detect the different force development or
  • using phased switching, which serves to provide synchronism.
t end =
Detecting the contact closing, for which the switching path voltage is measured.

Ein besonderer Vorteil besteht darin, dass sich das Verfahren an bestehenden Schützen anwenden lässt. Allerdings ist hierzu die Erfassung der Spannungsform mit einem A/D-Wandler oder eine Nulldurchgangsdetektion an der Steuerspannung erforderlich.A particular advantage is that the method can be applied to existing shooters. However, this requires the detection of the voltage waveform with an A / D converter or zero-crossing detection on the control voltage.

Zur Auswertung des Einschaltweges aus den Zeitpunkten tBeginn und tEnde wird die vorgegebene und empirisch bestimmbare Weg-Zeit-Kurve des Magnetantriebes entsprechend Figur 1 herangezogen. Die Änderung des Einschaltweges im Gebrauchszustand hinsichtlich des Neuzustandes liefert dann ein direktes oder proportionales Maß in der Änderung der Kontaktstückdicke.To evaluate the switch-on from the times t beginning and t end , the predetermined and empirically determinable path-time curve of the magnetic drive according to Figure 1 is used. The change of the Einschaltweges in use state with respect to the new condition then provides a direct or proportional measure in the change in the contact piece thickness.

Alternativ dazu erfolgt die Bestimmung zweier anderer Zeitpunkte tBeginn und tEnde für die Abfolge des Einschaltvorganges und daraus berechneter Restlebensdauer. Die Messgrößen sind folgendermaßen definiert:

tBeginn =
Zeitpunkt des Kontaktschließens, wozu die Schaltstreckenspannung gemessen wird.
tEnde =
Erfassung eines Wegepunktes, entweder wenn
  • das Magnetsystem schließt, wobei die Messung z.B. durch Anlegen einer Spannung erfolgt, die Joch-Anker-Bewegung und ein Spannungsnullwert gemessen wird, oder
  • ein Schalter am Magnetsystem oder beliebigem Wegepunkt angebracht wird.
Alternatively, the determination of two other times t beginning and t end for the sequence of the switch-on and calculated from this residual life. The measured variables are defined as follows:
t beginning =
Time of contact closure, for which the switching path voltage is measured.
t end =
Detecting a waypoint, either when
  • closing the magnet system, wherein the measurement is carried out, for example, by applying a voltage, the yoke-armature movement and a voltage zero value is measured, or
  • a switch is attached to the magnet system or any waypoint.

Aus der entsprechend Figur 1 empirisch vorgegebenen Weg-Zeit-Kurve des Magnetantriebes wird ein Durchdruckwert der Kontaktkraft-Feder bestimmt und aus dessen Änderung im Gebrauchszustand die verschleißbezogene Durchdruckänderung bestimmt. Vorteil diesen Verfahrens ist eine einfache Erfassung der Zeitmarken. Allerdings kann für das Verfahren eine Abwandlung des Schützaufbaus und damit eine Neukonstruktion erforderlich sein.From the empirically given according to Figure 1 path-time curve of the magnetic drive, a pressure value of the contact force spring is determined and determined from the change in use, the wear-related change in pressure. Advantage of this method is a simple detection of the timestamps. However, a modification of the contactor structure and thus a redesign may be required for the method.

Bei der ersten Alternative kann eine vorteilhafte Ausprägung einer Geschwindigkeitsregelung des Antriebes folgendermaßen erfolgen: Durch mehrere Positionsringe auf einem Positionsgeber besteht die Möglichkeit, den Weg bei der Ankerbewegung zu messen und durch Steuerung der Magnetkraft eine nahezu konstante Geschwindigkeit für das Schließen des Schaltgerätes zu erreichen. Dadurch wird nicht nur die Schaltbewegung optimiert, sondern es werden auch die den Verschleiß bewirkenden Kräfte an den mechanisch bewegten Teilen so weit wie möglich minimiert.In the first alternative, an advantageous embodiment of a speed control of the drive can be carried out as follows: By means of several position rings on a position sensor, it is possible to measure the path during the armature movement and to achieve an almost constant speed for closing the switching device by controlling the magnetic force. As a result, not only the switching movement is optimized, but also the forces causing the wear on the mechanically moving parts are minimized as much as possible.

Claims (18)

  1. Method for determining the remaining service life of a switchgear, the service life of which is conditional upon switching contact erosion on the one hand and mechanical wear of an associated switchgear mechanism on the other hand, having switching contacts (141,141',151,151'), which are switched by the switchgear mechanism to an on or off position, with a through-pressure of a contact force spring (127) being produced in order to apply a predetermined contact force in an on position, and with the switching contact erosion in particular being determined by detecting the through-pressure change,
    characterised in that the following measures are carried out
    - the through-pressure change is detected during the switching-on process of the switchgear,
    - the switching contact erosion on the one hand and the mechanical wear of the switchgear mechanism on the other hand are determined by detecting the through-pressure change during the switching-on process
    - to which end at least one position sensor (120) is used, by means of which at least three time points are determined during the switching-on process at three positions of the contacts.
  2. Method according to claim 1,
    characterised in that
    the closing speed of the contact/s is determined from two of the positions and associated time points.
  3. Method according to claim 1,
    characterised in that
    the increase or decrease in the closing speed is determined from the third time point of the third position.
  4. Method according to one of the preceding claims,
    characterised in that
    the contact position is calculated from the contact closing time.
  5. Method according to claim 4,
    characterised in that
    the through-pressure change is determined from the change in the contact position.
  6. Method according to claim 1,
    characterised in that
    a temporal determination of predetermined positions of the moveable components of the switchgear mechanism of the switchgear is carried out in order to detect the through-pressure.
  7. Method according to claim 1,
    characterised in that
    a determination of the speed and/or of the acceleration of moveable components of the switchgear mechanism on the one hand and a measurement of the switching-on time points of the switching contacts during their closing movement are carried out in order to detect the through-pressure.
  8. Method according to one of the preceding claims,
    characterised in that
    the speed of the moveable components is controlled during the switching-on process.
  9. Device for implementing the method according to claim 1 or one of claims 2 to 9, with the switchgear being a contactor, with which the motion contacts (141, 141') are switched, by means of the magnetic armature (110) of a magnetic drive (100), which is formed from the armature (110), yoke (101) and magnet coils (102, 102'), to an on or off position, characterised in that
    a position sensor (120) is coupled in a non-positive manner to the magnetic armature (110).
  10. Device according to claim 9,
    characterised in that
    ring contacts (122 to 124) are present on the position sensor (120) to detect a position.
  11. Device according to claim 9,
    characterised in that
    contact rollers (125) are arranged on the position sensor (120) to provide position-dependent contact.
  12. Device according to claim 11,
    characterised in that
    the position sensor is designed as a cylindrical rod (120), the cylindrical outer surface (121) of which is subdivided in the axial direction into a number of conductive and nonconductive surface segments (122-124).
  13. Device according to one of claims 9 to 12,
    characterised in that
    a relative position (x 3) of the contact can be derived at the sensor positions (x 1 x 2 x 3) from the contact closing time point (t 3) using the position sensor, it being possible to determine contact erosion from the change therein compared with a new value (x 3new ).
  14. Device according to claim 13,
    characterised in that
    the remaining service life can be determined from the relative contact positions (x3) in the used state and in the new state (x 3new ).
  15. Device according to one of claims 9 to 14,
    characterised by
    means for calculating and displaying the remaining service life of the switchgear.
  16. Device according to claim 15,
    characterised in that
    the means comprise a computer, in the storage device of which a path-time curve is stored.
  17. Device according to claim 16,
    characterised in that
    the closing path can be determined from the predetermined path-time curve by detecting the start of the armature movement (tstart ) when switching-on and the contact closing time point (tend ) during the switching-on process and that the change in the contact piece thickness can be calculated from a change in the closing path, with the change in the contact piece thickness corresponding to the erosion.
  18. Device according to claim 16,
    characterised in that
    a part of the armature path can be determined from the contact closing time point (tstart) and a time point (tend) of a predetermined armature position with the aid of the predetermined path-time curve, from the change in which a change in the through-pressure of the contact force spring can be derived.
EP03785582A 2002-12-20 2003-12-17 Method and device for determining the remaining service life of a switchgear Expired - Fee Related EP1573761B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE2002160249 DE10260249B4 (en) 2002-12-20 2002-12-20 Method and device for determining the remaining service life of a switching device
DE10260249 2002-12-20
PCT/DE2003/004173 WO2004057634A1 (en) 2002-12-20 2003-12-17 Method and device for determining the remaining service life of a switchgear

Publications (2)

Publication Number Publication Date
EP1573761A1 EP1573761A1 (en) 2005-09-14
EP1573761B1 true EP1573761B1 (en) 2007-05-09

Family

ID=32667529

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03785582A Expired - Fee Related EP1573761B1 (en) 2002-12-20 2003-12-17 Method and device for determining the remaining service life of a switchgear

Country Status (4)

Country Link
EP (1) EP1573761B1 (en)
CN (1) CN100413004C (en)
DE (2) DE10260249B4 (en)
WO (1) WO2004057634A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004062266A1 (en) * 2004-12-23 2006-07-13 Siemens Ag Method and device for safe operation of a switching device
DE102005045095A1 (en) 2005-09-21 2007-04-05 Siemens Ag A method for determining the burnup of contacts of an electromagnetic switching device and electromagnetic switching device with a device operating according to this method
FR2891392B1 (en) * 2005-09-23 2009-03-20 Schneider Electric Ind Sas DEVICE FOR NEUTRALIZING AN ELECTRICAL DEVICE SWITCH
DE102008048828A1 (en) * 2008-09-22 2010-04-08 Siemens Aktiengesellschaft Method for determining stroke of two actuating elements driven by drive element, involves determining position of drive element, when actuating element is arranged in predetermined position
FR2945661A1 (en) 2009-05-18 2010-11-19 Schneider Electric Ind Sas EVALUATION OF THE WEAR OF CONTACTS ENFONCES BY THE VARIATION OF THE ROTATION OF THE TREE OF POLES
EP2290666B1 (en) * 2009-08-27 2015-08-12 Siemens Aktiengesellschaft Auxiliary module with lifespan monitoring for electromagnetic switching devices and accompanying method
FR3011673B1 (en) 2013-10-08 2015-12-11 Schneider Electric Ind Sas SWITCHING DEVICE AND METHOD FOR DETECTING A FAULT IN SUCH A SWITCHING DEVICE
FR3069064B1 (en) * 2017-07-13 2022-02-11 Schneider Electric Ind Sas ELECTRICAL SWITCHING DEVICE AND ASSOCIATED WEAR DETECTION METHOD
GB201803422D0 (en) * 2018-01-16 2018-04-18 Eaton Intelligent Power Ltd Contactor with contact carrier location sensing
US10727010B1 (en) * 2019-01-29 2020-07-28 Arc Suppression Technologies Power contact end-of-life (EoL) predictor apparatus and method
CN112109643B (en) * 2020-09-14 2022-08-30 东风汽车有限公司 Automotive interior component and car
DE102020124802A1 (en) 2020-09-23 2022-03-24 Te Connectivity Germany Gmbh Circuit arrangement and method for measuring a position of a contact bridge in a circuit arrangement
CN113232887B (en) * 2021-05-19 2023-03-14 中航西安飞机工业集团股份有限公司 Mechanical life test bed and test method for retractable switch of undercarriage
CN114203481B (en) * 2022-02-16 2022-04-26 晟望电气有限公司 Vacuum circuit breaker on post

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3925722A (en) * 1972-05-01 1975-12-09 Gen Electric Wear indicator for vacuum circuit interrupter
JPH0276427U (en) * 1988-08-11 1990-06-12
DE4427006A1 (en) * 1994-07-29 1996-02-01 Siemens Ag Method for determining the remaining service life of contacts in switchgear and associated arrangement
DE19603319A1 (en) * 1996-01-31 1997-08-07 Siemens Ag Method for determining the remaining service life of contacts in switchgear and associated arrangement
DE19544926C1 (en) * 1995-12-01 1997-04-30 Siemens Ag Method and device for monitoring the erosion of the contact pieces in a switching device
DE19603310A1 (en) * 1996-01-31 1997-08-07 Siemens Ag Method for determining the remaining service life of contacts in switchgear and associated arrangement
DE19734224C1 (en) * 1997-08-07 1999-02-04 Siemens Ag Method and device for determining switchgear-specific data on contacts in switchgear and / or for determining company-specific data in the network connected with it
DE19915978A1 (en) * 1999-04-09 2000-10-12 Abb Patent Gmbh Method for measuring contact wear of power switch of medium or high voltage by comparing of distance S1 to contact point of movable contact piece with initial contact of current and target time diagram
DE10028559C1 (en) * 2000-06-09 2001-11-22 Siemens Ag Electromagnetic switching device, used as contactor, comprises contact with fixed contact pieces and moving contact bridge

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN1745443A (en) 2006-03-08
DE50307262D1 (en) 2007-06-21
EP1573761A1 (en) 2005-09-14
DE10260249B4 (en) 2005-07-28
CN100413004C (en) 2008-08-20
DE10260249A1 (en) 2004-08-12
WO2004057634A1 (en) 2004-07-08

Similar Documents

Publication Publication Date Title
EP1573761B1 (en) Method and device for determining the remaining service life of a switchgear
EP1927121B1 (en) Method for determining contact erosion of an electromagnetic switching device, and electromagnetic switching device comprising a mechanism operating according to said method
WO2006069962A1 (en) Method and device for the secure operation of a switching device
EP3408859B1 (en) Relay
DE202007018709U1 (en) Determination and display of the contact abrasion on a high-power switch
EP3891518B1 (en) Device and method for detecting wear in an electromechanical switching apparatus
EP1793235A1 (en) Monitoring System for High-Voltage Switch Gears
EP0878015A1 (en) Method of establishing the residual useful life of contacts in switchgear and associated arrangement
EP0694937A2 (en) Method and apparatus for determining the residual life of contacts in switching devices
DE10260248B4 (en) Method for determining the remaining service life of a switching device and associated arrangement
DE10260258B4 (en) Method and device for determining the remaining service life of a switching device
WO2001041174A1 (en) Electromagnetic switchgear comprising a controlled drive, a corresponding method and a circuit
EP4154026B1 (en) Method for determining the state of an electrical switchgear, monitoring unit for an electrical switchgear, and electrical switchgear
DE102021210273A1 (en) Method for determining the opening time of a switch
DE69826134T2 (en) Control and monitoring device for the opening or the closing of an electrical actuating element
DE10251656B3 (en) Switchgear contact device loading determination method using electromagnetic radiation emitted by arcing upon contact operation
EP1212768B1 (en) Device for measuring the internal pressure and conditioning the voltage and current of vacuum interrupters and a method therefor
DE19937074C1 (en) Drive arrangement for a switch of medium or high voltage and method for moving a first contact piece
EP3631832B1 (en) Electromechanical relay for determining the position of an armature
DE102020203187A1 (en) Switching arrangement and method for connecting capacitor banks
DD227805B1 (en) METHOD AND ARRANGEMENT FOR ASSESSING THE FUNCTIONALITY OF SWITCH CHAMBERS
DE10352527B3 (en) Determining state of switchgear contact assembly from electromagnetic arcing radiation, compares initiation instant of electromagnetic emission with timing mark measurement
WO2023088619A1 (en) Mechanical switch
DE102017111960B4 (en) Electromechanical relay for determining a position of an anchor
WO2024056418A1 (en) Method for actuating an electromechanical switching element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050620

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REF Corresponds to:

Ref document number: 50307262

Country of ref document: DE

Date of ref document: 20070621

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080212

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151214

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160219

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50307262

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170701