EP1573080A2 - Method for making structural elements by machining thick plates - Google Patents

Method for making structural elements by machining thick plates

Info

Publication number
EP1573080A2
EP1573080A2 EP03813619A EP03813619A EP1573080A2 EP 1573080 A2 EP1573080 A2 EP 1573080A2 EP 03813619 A EP03813619 A EP 03813619A EP 03813619 A EP03813619 A EP 03813619A EP 1573080 A2 EP1573080 A2 EP 1573080A2
Authority
EP
European Patent Office
Prior art keywords
sheet
machined
machining
alloy
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03813619A
Other languages
German (de)
French (fr)
Other versions
EP1573080B1 (en
Inventor
Fabrice Heymes
David Godard
Timothy Warner
Julien Boselli
Raphael Muzzolini
Sjoerd Van Der Veen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Pechiney Rhenalu SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0215997A external-priority patent/FR2848480B1/en
Application filed by Pechiney Rhenalu SAS filed Critical Pechiney Rhenalu SAS
Publication of EP1573080A2 publication Critical patent/EP1573080A2/en
Application granted granted Critical
Publication of EP1573080B1 publication Critical patent/EP1573080B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent

Definitions

  • the present invention relates to the manufacture of structural elements from a heat-treated alloy, in particular from an aluminum alloy, by machining thick sheets. These structural elements can be used in aeronautical construction.
  • sheets of thickness typically between 10 mm and 40 mm are used (here called “medium sheet”), which are in the metallurgical state corresponding to the final use of the structural element, and stiffens them by fixing, for example by riveting, stiffeners constituted by extruded profiles, for example profiles of section "T”.
  • the stiffeners are machined directly into a sheet of greater thickness, typically between 30 mm and 200 mm, which is also in a metallurgical state corresponding to the final use of the structural element.
  • the second approach suffers from other drawbacks.
  • the thick sheet is found before machining in the metallurgical state corresponding to its final use, because according to the state of the art, no thermomechanical treatment is carried out after machining. More particularly, this final metallurgical state was obtained by dissolution and quenching.
  • two physical mechanisms limit the rate of quenching in a thick sheet: the thermal conductivity of the material which constitutes said thick sheet, and the heat exchange between the surface and of the sheet and the quenching medium.
  • the mechanical properties of the toughened thick sheet vary depending on the thickness. As a result, certain mechanical characteristics become worse when moving away from the surface of the sheet.
  • machining therefore removes the zones in which the hardened sheet shows the best mechanical characteristics, and the stress on the structural element under service conditions involves zones of metal whose mechanical properties can be fairly variable depending on the depth from the area near the initial surface of the sheet.
  • the calculation of the structures is, as a precaution, carried out on the basis of models which are fairly conservative of the real performance of the part, said models being typically based on the mechanical characteristics of the zones of the sheet which are distant from the surface and therefore have the mechanical characteristics the weakest. This prevents, when sizing the parts, from making the most of the real properties of the material.
  • Patent EP 578 607 seeks to optimize the process for quenching extruded profiles by individual or group control of water spray nozzles; such a device, controlled by computer, makes it possible in principle to adapt the positions of the nozzles to each profile, but the development remains empirical.
  • Patent EP 695 590 develops a similar idea for the quenching of sheets.
  • Patent application WO 98/42885 (Aluminum Company of America) describes a combined process of water quenching and air quenching to reduce the deformation of thin sheets during quenching, and to improve their static mechanical characteristics.
  • French patent 1.503835 (Atomic Energy Commission) proposes to increase the quenching speed when the part is immersed in a cold liquid by the application of a thin layer with low thermal conductivity which limits the vaporization of the quenching medium.
  • French patent 2,524,001 Patent Rhenalu proposes to apply to certain faces of the product a coating which conducts heat less well than the underlying metal. By this improved control of the cooling rate, one would be able to avoid altering the properties of use of the product.
  • This fairly cumbersome process has several drawbacks. It is limited to sheets or profiles of substantially constant thickness; in the case of aluminum alloys, this thickness should not exceed approximately 15 mm.
  • the coatings proposed in this patent risk polluting the quenching liquid tank.
  • the object of the invention is to present a new method of manufacturing machined metal parts suitable for use as structural elements, or of blanks for such parts, which makes it possible to improve the compromise between the static mechanical characteristics (limit of elasticity, tensile strength, elongation at break) and tolerance to damage (especially toughness) in the volume of the part and to minimize the distortions induced during quenching, and which can be implemented with a cost of particularly advantageous operation.
  • the applicant has invented a new integrated process which makes it possible to manufacture, from thick sheets, machined structural elements of large dimension, with excellent dimensional tolerances, and having improved mechanical characteristics.
  • the present invention provides a new manufacturing method which makes it possible to obtain machined parts having a better compromise between the minimum values of static mechanical characteristics (conventional yield strength, elongation at break, tensile strength) and the tolerance for damage. , compared to similar shaped parts produced by a process according to the state of the art.
  • the variation of the mechanical characteristics within the part is smaller, compared to a machined part of analogous shape produced by a method according to the prior art.
  • a first object of the invention is a process for manufacturing a machined metal part, comprising a) the manufacture of a metal sheet by a process comprising, a1) the casting of a rolling plate, optionally followed by a homogenization, a2) one or more hot or cold rolling operations, possibly separated from one or more reheating operations, to obtain a sheet, a3) possibly one or more sheet cutting or finishing operations, b) the pre-machining of said sheet on one or both sides to obtain a pre-machined blank, c) a solution treatment of said pre-machined blank, d) a quenching treatment.
  • This process can optionally be followed by one or more of the following steps e) controlled traction, f) tempering, g) cutting.
  • a second object is the use of a metal part obtained by said process as a structural element in aeronautical construction.
  • a third object is an aluminum alloy structural element for aeronautical construction obtained by said method. Description of the figures
  • FIG. 1 shows the dimensions and the sampling plan for pre-machined thick sheets according to the invention, as explained in Example 1.
  • FIG. 2 shows the test tube used for the characterization of the mechanical properties of the product.
  • Figures 3 and 4 schematically show a pre-machined blank according to the invention.
  • FIG. 5 schematically shows the shape of a pre-machined thick sheet and the sampling plan of pre-machined thick sheet (fig. 5a) or not (fig. 5b), as explained in example 2.
  • FIG. 6 schematically shows the shape of a pre-machined thick sheet and the sampling plan for pre-machined thick sheets (FIG. 6a) or not (FIG. 6b), as explained in Example 3.
  • the static mechanical characteristics that is to say the tensile strength R m , the elastic limit R p o, 2 , and the elongation at break A, are determined by a tensile test according to standard EN 10002-1, the place and direction of specimen collection being defined in standard EN 485-1.
  • the tenacity Kic was measured according to standard ASTM E 399.
  • the curve R is determined according to standard ASTM 561-98. From the curve R, one calculates the critical stress intensity factor Kc, ie the intensity factor which causes the instability of the crack. We also calculate the intensity factor of stress Kc D , by assigning to the critical load the initial length of the crack, at the beginning of the monotonous loading.
  • Ka PP designates the Kco corresponding to the test piece which was used to make the R curve test.
  • the resistance to exfoliating corrosion was determined according to the EXCO test described in standard ASTM G34-72.
  • machining includes any material removal process such as turning, milling, drilling, reaming, tapping, EDM, grinding, polishing.
  • structural element refers to an element used in mechanical construction for which the static and / or dynamic mechanical characteristics are of particular importance for the performance and integrity of the structure, and for which a calculation of the structure is generally prescribed or performed. It is typically a mechanical part, the failure of which is likely to endanger the safety of said construction, of its users, of its users or of others.
  • these structural elements include in particular the elements that make up the fuselage (such as the fuselage skin), the stiffeners or bulkheads, bulkheads, fuselage (circumferential frames), the wings (such as the wing skin), the stiffeners (stringers or stiffeners), the ribs (ribs) and spars (spars)) and the empennage composed in particular of horizontal and vertical stabilizers (horizontal or vertical stabilizers), as well as the floor profiles (floor beams), the seat rails (seat tracks) and the doors.
  • this pre-machined blank has a profile consisting of one or more channels. These channels can be parallel to the rolling direction, but other orientations are possible, for example a diagonal orientation. If consideration is given to pulling after quenching, this profile is advantageously parallel to the rolling direction and substantially constant over its length, but other types of profiles are possible.
  • the blank can be in a horizontal position, in a vertical position, or in any other position.
  • the quenching can be carried out by immersion in a quenching medium, by spraying, or by any other suitable means.
  • Said soaking medium can be water or another medium such as glycol; its temperature can be chosen between its solidification point and its boiling point, knowing that the ambient temperature (around 20 ° C) may be suitable.
  • the process according to the invention comprises a) the manufacture of a metal sheet by a process comprising a) casting a rolling plate, optionally followed by homogenization, a2) one or more hot or cold rolling operations cold, possibly separated from one or more reheating operations, to obtain a sheet, a3) optionally one or more operations for cutting or finishing the sheet, b) pre-machining said sheet on one or both sides to obtain a pre-machined blank, c) a solution treatment for said pre-machined blank, d) a quenching treatment.
  • the blank thus obtained can be subjected to one or more of the following steps: e) controlled traction, f) tempering, g) cutting.
  • steps a) to d) that is to say after quenching, and advantageously after controlled traction (if there is one) and after tempering (s' there is one)
  • the pre-machined blank can be subjected to other machining operations to obtain a machined metal part, it being understood that the shape of the blank must be compatible with that of the target machined part.
  • the shape of said channels of the blank must be chosen so as to minimize the deformation on quenching of the blank, and to optimize the mechanical characteristics of the final machined part. It is preferred that one of the two faces of the blank is flat. In this case, it is preferred that during the horizontal quenching, the machined channels of the sheet are oriented downwards.
  • a length between 50 mm and 1000 mm, and preferably between 50 mm and 500 mm at the start and at the end of the sheet does not include machined channels and has a substantially constant thickness (this part devoid of machined channels being called "heel"), in order to allow correct grip of the traction jaws.
  • Said traction is advantageously carried out so as to lead to a permanent elongation of between 0.5% and 5%. A minimum value greater than 1.0 or even greater than 1.5% is preferred for this permanent elongation.
  • said blank advantageously comprises between the heels and the central zone having machined channels a transition zone whose thickness decreases from the heel towards the central zone having machined channels. It is advantageous that this heel as well as the transition zone are trimmed after the controlled traction, either mechanically, for example by sawing or shearing, or by other known means such as the laser beam or the liquid jet. However, this heel can also be kept at least partially, for example to facilitate the assembly of the structural elements.
  • the method according to the invention can be advantageously applied to sheets of metal alloys with structural hardening, in particular to aluminum alloys with structural hardening, and more particularly to alloys of the 2xxx, 6xxx and
  • the sheets include the following alloying elements (in% by mass): Zn 5.5 - 11 Mg 1.5 - 3 Cu 1.0 - 3.0.
  • the zinc content is between 8 and 11%.
  • the alloy also comprises elements which can form dispersoids, that is to say one or more elements selected from the group consisting of Zr, Se, Hf, La, Ti, Ce, Nd, Eu, Gd, Tb, Dy, Ho, Er, Y, Yb, the content of each of the said elements, if selected, being between 0.02 and 0.7
  • alloys of the 7xxx series the alloys 7449, 7349, 7049, 7050, 7055, 7040 and 7150 are particularly preferred.
  • the sheets are advantageously large, that is to say a length greater than 2000 mm and preferably greater than 5000 mm, a width greater than 600 mm and preferably greater than 1200 mm. They advantageously have, before machining, a thickness greater than 15 mm, preferably greater than 30 mm and even more preferably greater than 50 mm.
  • a thick sheet of 7449 aluminum alloy with a thickness of the order of 100 to 110 mm, leading to a pre-machined blank with a maximum thickness of the order of 90 to 100 mm.
  • a thick sheet with a thickness of the order of 30 to 60 mm is used for the manufacture of a structural element for wing skin with integrated stiffener, leading to a pre-machined blank of a maximum thickness of the order of 25 to 55 mm.
  • the problem linked to the gradients of the mechanical properties hardly arises below a thickness of about fifteen to twenty millimeters.
  • the advantages provided by the present invention are therefore significant for thicknesses greater than approximately 30 to 40 mm, that is to say in particular for the manufacture of structural wing elements.
  • the machining operations for forming the blank from the thick sheet and for manufacturing the finished part from the blank can be carried out at high speed, i.e. with a speed of at least 5000 revolutions per minute, and preferably greater than 10,000 revolutions per minute.
  • the method according to the invention makes it possible to make the most of the chips and scraps generated during machining. To this end, their mixing with other metallic or non-metallic materials should be avoided, including with other alloys of the same type.
  • the method according to the invention in order to be able to be operated with the lowest possible cost, encourages machining to be carried out in the factory of the sheet metal manufacturer or under its industrial control, and the availability of scrap and chips , in particular in 2xxx and 7xxx alloys, perfectly identified and resulting from a known process, leads to the possibility of being able to recycle larger fractions of the chips in the manufacture of heavy sheets in 2xxx and 7xxx alloys for aeronautical application.
  • the applicant has thus been able to incorporate up to 40% of machining chips in the process according to the invention, using methods of processing the collected chips and the liquid metal which are known to man. of career.
  • the incorporation of at least 5% of selectively collected chips has been found to be possible in almost all cases, and a level of at least 15% is preferred.
  • the metal parts obtained by the process according to the invention can be used as a structural element in aeronautical construction.
  • the invention makes it possible to produce wing panels, fuselage elements, side members, ribs or central wing boxes.
  • the method according to the invention has many advantages over known methods. In particular, it allows the manufacture of parts having an improved compromise between tolerance to damage and static mechanical characteristics.
  • a person skilled in the art can adapt the metallurgical state of the pre-machined blank to the targeted properties of the finished part, in order to favor gain in static mechanical characteristics or in damage tolerance, or to improve both types of characteristics at the same time. For example, the applicant was able to obtain with the 7449 alloy finished parts having an improvement of 20 to 25% in the Kic toughness, without any degradation of the static mechanical characteristics.
  • Block 3 has not been prefabricated.
  • the three blocks were dissolved for 4 hours at 472 ° C with a temperature rise of 4 hours, and quenched by vertical immersion in stirred cold water, the ribs being oriented perpendicular to the surface of the water.
  • the blocks were then cut according to the cutting plan shown in Figure 2.
  • Some of the specimens thus obtained were subjected to a tempering treatment of 48 h at 120 ° C to bring them to the T6 state.
  • Other specimens were subjected to a controlled traction with a permanent elongation of 2%, and then to the same treatment of income as the other specimens, to put them in the state T651.
  • the toughness in the pre-machined blank according to the invention increases by approximately 10 MPa m compared to a part according to the prior art, which corresponds to a gain of approximately 20 to 25%, without any degradation on static mechanical characteristics.
  • the sheet was dissolved and then quenched by vertical immersion in agitated cold water, the ribs being oriented parallel to the surface of the water.
  • the sheet was then subjected to controlled traction with a permanent elongation of 2% observed in the pre-machined area and zero elongation in the solid areas.
  • a block was then taken from the pre-machined area as well as a block from the non-machined area for characterization. Drafts were taken from the non-machined block and subjected to controlled traction with a permanent elongation of 2 to 2.5%.
  • the toughness in plane stress Ka Pp (L . ⁇ ) in the pre-machined blank according to the invention increases by approximately 14 MPaVm compared to a part according to the prior art, which corresponds to a gain of approximately 20 to 25%, without any degradation on the static mechanical characteristics.
  • Example 3 In a 7449 alloy sheet (composition: Zn 8.8%, Cu 1.8%, Mg 1.8%, Zr 0.12%, Si 0.04%, Fe 0.06%, Mn 0, 01%, Ti 0.03%) with a thickness of 90 mm gross hot rolling, but riveted and trimmed, a sheet of dimensions 9,950 mm (L direction) x 2,000 mm (TL direction) was cut into the full thickness ). This sheet was cut lengthwise (direction L) so as to obtain a first sheet of dimensions 9950 mm (direction L) x 775 mm (direction TL) and a second sheet of dimensions 9950 mm (direction L) x 1225 mm ( sense TL).
  • the full thickness sheet and the pre-machined sheet were dissolved and then quenched by vertical immersion in agitated cold water, the ribs being oriented parallel to the surface of the water.
  • the two sheets were then subjected to controlled traction with a permanent elongation of 2 to 2.5% (observed in the pre-machined zone for the pre-machined sheet).
  • a block was then taken from the pre-machined sheet as well as a block from the full thickness sheet for characterization. Samples were taken according to the cutting plan in Figure 6. Several incomes were applied in order to assess the gains linked to pre-machining.
  • the characterizations carried out in the pre-machined web and at 1/8 of a thickness below the surface of the full sheet are listed in Table 6.
  • the toughness in plane stress according to the orientation LT (K aPP ( - ⁇ )) in the pre-machined blank according to the invention increases between 8 and 18 MPaVm according to the income practiced compared to a part according to the prior art , which corresponds to a gain of approximately 10 to 25%, without any degradation on the static mechanical characteristics and the exfoliating corrosion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Metal Rolling (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Abstract

The invention concerns a method for making a machined metal part comprising making a metal plate, pre-machining said plate on one or both sides to obtain a pre-machined blank, solution heat-treating said pre-machined blank, hardening, optionally followed by controlled traction. Such a part can be used as structural element in aeronautics.

Description

PROCEDE DE FABRICATION D'ELEMENTS DE STRUCTURE PAR USINAGE DE TOLES EPAISSES PROCESS FOR MANUFACTURING STRUCTURAL ELEMENTS BY MACHINING THICK SHEETS
Domaine technique de l'inventionTechnical field of the invention
La présente invention concerne la fabrication d'éléments de structure en alliage à traitement thermique, notamment en alliage d'aluminium, par usinage de tôles épaisses. Ces éléments de structure peuvent être utilisés en construction aéronautique.The present invention relates to the manufacture of structural elements from a heat-treated alloy, in particular from an aluminum alloy, by machining thick sheets. These structural elements can be used in aeronautical construction.
Etat de la techniqueState of the art
Afin d'obtenir des éléments de structure d'avions caractérisés par une excellente tenue mécanique, on utilise actuellement principalement deux approches différentes :In order to obtain structural elements of aircraft characterized by excellent mechanical strength, two different approaches are currently used:
Selon une première approche, on utilise des tôles d'épaisseur typiquement comprise entre 10 mm et 40 mm (appelée ici « tôle moyenne »), qui se trouvent dans l'état métallurgique correspondant à l'utilisation finale de l'élément structural, et les raidit en fixant, par exemple par rivetage, des raidisseurs constitués par des profilés filés, par exemple des profilés de section " T ".According to a first approach, sheets of thickness typically between 10 mm and 40 mm are used (here called “medium sheet”), which are in the metallurgical state corresponding to the final use of the structural element, and stiffens them by fixing, for example by riveting, stiffeners constituted by extruded profiles, for example profiles of section "T".
Selon une seconde approche, on usine les raidisseurs directement dans une tôle d'une épaisseur plus importante, typiquement entre 30 mm et 200 mm, qui se trouve également dans un état métallurgique correspondant à l'utilisation finale de l'élément structural.According to a second approach, the stiffeners are machined directly into a sheet of greater thickness, typically between 30 mm and 200 mm, which is also in a metallurgical state corresponding to the final use of the structural element.
La réalisation d'un élément de structure par assemblage de tôles moyennes et de profilés nécessite un très grand nombre d'opérations de rivetage qui, effectuées dans les conditions de fiabilité nécessaires pour un élément structural aéronautique, représentent un coût important. La réalisation d'un élément structural intégré par usinage d'une tôle épaisse consomme certes beaucoup plus de métal, car une fraction importante de la tôle épaisse est réduite en copeaux, mais en contrepartie elle permet de réduire au minimum les opérations de rivetage qui coûtent cher.The production of a structural element by assembling medium sheets and profiles requires a very large number of riveting operations which, carried out under the conditions of reliability necessary for an aeronautical structural element, represent a significant cost. The realization of an integrated structural element by machining a thick sheet certainly consumes a lot more metal, because a significant fraction of the sheet thick is reduced to chips, but in return it makes it possible to minimize riveting operations which are expensive.
La disponibilité de techniques d'usinage à grande vitesse (high speed machining), de l'ordre de 5 000 à 15 000 tours par minute, modifie sensiblement les données économiques du choix du mode de conception, car la durée de l'opération d'usinage se trouve fortement réduite, permettant en même temps d'envisager l'usinage de formes de plus en plus complexes dans des conditions économiquement accessibles. Ceci est vrai à la fois pour des pièces de taille de l'ordre du mètre, et pour des pièces de très grande taille, pouvant atteindre plus de 20 m de longueur et plus de 3 m de largeur.The availability of high speed machining techniques, of the order of 5,000 to 15,000 revolutions per minute, significantly modifies the economic data of the choice of design mode, because the duration of the operation d machining is greatly reduced, making it possible at the same time to envisage the machining of increasingly complex shapes under economically accessible conditions. This is true both for pieces of size on the order of a meter, and for pieces of very large size, which can reach more than 20 m in length and more than 3 m in width.
La seconde approche souffre toutefois d'autres inconvénients. La tôle épaisse se trouve avant usinage dans l'état métallurgique correspondant à son utilisation finale, car selon l'état de la technique, on n'effectue pas de traitement thermomécanique après usinage. Plus particulièrement, cet état métallurgique final a été obtenu par mise en solution et trempe. Or, deux mécanismes physiques limitent la vitesse de trempe dans une tôle épaisse : la conductivité thermique du matériau qui constitue ladite tôle épaisse, et l'échange thermique entre la surface et de la tôle et le milieu trempant. Il en résulte que les propriétés mécaniques de la tôle épaisse trempée varient en fonction de l'épaisseur. De ce fait, certaines caractéristiques mécaniques deviennent moins bonnes lorsque l'on s'éloigne de la surface de la tôle. Selon l'état de la technique, l'usinage enlève donc les zones dans lesquelles la tôle trempée montre les meilleures caractéristiques mécaniques, et la sollicitation de l'élément structural dans les conditions de service fait intervenir des zones de métal dont les propriétés mécaniques peuvent être assez variables en fonction de la profondeur par rapport à la zone proche de la surface initiale de la tôle. Le calcul des structures est, par précaution, effectué sur la base de modèles assez conservateurs des performances réelles de la pièce, lesdits modèles étant typiquement basés sur les caractéristiques mécaniques des zones de la tôle qui sont éloignées de la surface et présentent donc les caractéristiques mécaniques les plus faibles. Cela empêche, lors du dimensionnement des pièces, de tirer le meilleur parti des propriétés réelles du matériau. Un autre inconvénient de ce procédé selon l'état de la technique réside dans le fait que les tôles fortes trempées peuvent, même après traction contrôlée, enfermer des contraintes résiduelles qui entraînent une déformation des pièces lors de l'usinage. Selon une troisième approche, on fabrique des éléments structuraux avec raidisseurs intégrés directement par filage. Cette approche souffre de plusieurs inconvénients, et n'est guère utilisée. Afin d'obtenir des profilés de largeur suffisamment importante, il faut utiliser des presses à filer très puissantes dont le coût d'exploitation est très élevé. La largeur maximale que l'on peut ainsi atteindre reste bien inférieure à la largeur d'une tôle laminée habituelle. Par ailleurs, certains alliages se prêtent mal au filage. Et finalement, la microstructure d'une pièce filée, et plus particulièrement d'un profilé filé, n'est pas homogène, ni sur la section du profilé ni sur la longueur du profilé.The second approach, however, suffers from other drawbacks. The thick sheet is found before machining in the metallurgical state corresponding to its final use, because according to the state of the art, no thermomechanical treatment is carried out after machining. More particularly, this final metallurgical state was obtained by dissolution and quenching. However, two physical mechanisms limit the rate of quenching in a thick sheet: the thermal conductivity of the material which constitutes said thick sheet, and the heat exchange between the surface and of the sheet and the quenching medium. As a result, the mechanical properties of the toughened thick sheet vary depending on the thickness. As a result, certain mechanical characteristics become worse when moving away from the surface of the sheet. According to the state of the art, machining therefore removes the zones in which the hardened sheet shows the best mechanical characteristics, and the stress on the structural element under service conditions involves zones of metal whose mechanical properties can be fairly variable depending on the depth from the area near the initial surface of the sheet. The calculation of the structures is, as a precaution, carried out on the basis of models which are fairly conservative of the real performance of the part, said models being typically based on the mechanical characteristics of the zones of the sheet which are distant from the surface and therefore have the mechanical characteristics the weakest. This prevents, when sizing the parts, from making the most of the real properties of the material. Another disadvantage of this process according to the state of the art lies in the fact that strong hardened sheets can, even after controlled traction, enclose residual stresses which cause deformation of the parts during machining. According to a third approach, structural elements are manufactured with stiffeners integrated directly by spinning. This approach suffers from several drawbacks, and is hardly used. In order to obtain profiles of sufficiently large width, it is necessary to use very powerful spinning presses whose operating cost is very high. The maximum width that can thus be achieved remains much less than the width of a conventional rolled sheet. In addition, certain alloys do not lend themselves well to spinning. And finally, the microstructure of a extruded part, and more particularly of a extruded profile, is not homogeneous, neither over the section of the profile nor over the length of the profile.
Divers moyens ont été proposés pour contrôler les distorsions du produit ou ses propriétés mécaniques.Various means have been proposed for controlling the distortions of the product or its mechanical properties.
Plusieurs brevets cherchent à optimiser le procédé de trempe afin de minimiser les déformations des produits métallurgiques lors de leur trempe. Ces procédés cherchent en général à compenser la déformation par un refroidissant inhomogène lors de la trempe. Le brevet allemand DE 955 042 (Friedrichshϋtte Aktiengesellschaft) décrit un procédé de trempe horizontale dans lequel les bords de la tôle sont refroidis plus fortement que le centre, et la face inférieure plus fortement que la face supérieure. Le brevet EP 578 607 cherche à optimiser le procédé de trempe de profilés filés par un pilotage individuel ou groupé des buses de pulvérisation d'eau ; un tel dispositif, piloté par ordinateur, permet en principe d'adapter les positions des buses à chaque profilé, mais la mise au point reste empirique. Le brevet EP 695 590 développe une idée analogue pour la trempe de tôles.Several patents seek to optimize the quenching process in order to minimize the deformation of the metallurgical products during their quenching. These processes generally seek to compensate for the deformation by an inhomogeneous coolant during quenching. German patent DE 955 042 (Friedrichshϋtte Aktiengesellschaft) describes a horizontal quenching process in which the edges of the sheet are cooled more strongly than the center, and the lower face more strongly than the upper face. Patent EP 578 607 seeks to optimize the process for quenching extruded profiles by individual or group control of water spray nozzles; such a device, controlled by computer, makes it possible in principle to adapt the positions of the nozzles to each profile, but the development remains empirical. Patent EP 695 590 develops a similar idea for the quenching of sheets.
La demande de brevet WO 98/42885 (Aluminum Company of America) décrit un procédé combiné de trempe à l'eau et de trempe à l'air pour diminuer la déformation des tôles minces à la trempe, et pour améliorer leurs caractéristiques mécaniques statiques.Patent application WO 98/42885 (Aluminum Company of America) describes a combined process of water quenching and air quenching to reduce the deformation of thin sheets during quenching, and to improve their static mechanical characteristics.
Le brevet français 1,503835 (Commissariat à l'Energie Atomique) propose d'augmenter la vitesse de trempe lors de l'immersion de la pièce dans un liquide froid par l'application d'une couche mince à faible conductivité thermique qui limite la vaporisation du milieu de trempe.French patent 1.503835 (Atomic Energy Commission) proposes to increase the quenching speed when the part is immersed in a cold liquid by the application of a thin layer with low thermal conductivity which limits the vaporization of the quenching medium.
Le brevet français 2 524 001 (Pechiney Rhenalu) propose d'appliquer sur certaines faces du produit un revêtement qui conduit la chaleur moins bien que le métal sous- jacent. Par ce contrôle amélioré de la vitesse de refroidissement, on serait capable d'éviter d'altérer les propriétés d'emploi du produit. Ce procédé assez lourd a plusieurs inconvénients. Il est limité aux tôles ou profilés d'épaisseur sensiblement constante ; dans le cas des alliages d'aluminium, cette épaisseur ne devrait pas dépasser environ 15 mm. Les revêtements proposés dans ce brevet risquent de polluer le réservoir de liquide de trempe.French patent 2,524,001 (Pechiney Rhenalu) proposes to apply to certain faces of the product a coating which conducts heat less well than the underlying metal. By this improved control of the cooling rate, one would be able to avoid altering the properties of use of the product. This fairly cumbersome process has several drawbacks. It is limited to sheets or profiles of substantially constant thickness; in the case of aluminum alloys, this thickness should not exceed approximately 15 mm. The coatings proposed in this patent risk polluting the quenching liquid tank.
D'autres approches cherchent à diminuer la sensibilité des alliages d'aluminium à la trempe.Other approaches seek to reduce the sensitivity of aluminum alloys to quenching.
Aucun de ces procédés ne résout le problème de la variation des propriétés mécaniques en fonction de l'épaisseur qui est liée aux gradients thermiques présentes lors de la trempe.None of these methods solves the problem of the variation of the mechanical properties as a function of the thickness which is linked to the thermal gradients present during the quenching.
Objet de l'inventionSubject of the invention
L'invention a pour but de présenter un nouveau procédé de fabrication de pièces métalliques usinées aptes à servir comme éléments de structure, ou d'ébauches pour de telles pièces, qui permet d'améliorer le compromis entre les caractéristiques mécaniques statiques (limite d'élasticité, résistance à la traction, allongement à la rupture) et la tolérance aux dommages (notamment la ténacité) dans le volume de la pièce et de minimiser les distorsions induites lors de la trempe, et qui peut être mis en œuvre avec un coût d'exploitation particulièrement avantageux.The object of the invention is to present a new method of manufacturing machined metal parts suitable for use as structural elements, or of blanks for such parts, which makes it possible to improve the compromise between the static mechanical characteristics (limit of elasticity, tensile strength, elongation at break) and tolerance to damage (especially toughness) in the volume of the part and to minimize the distortions induced during quenching, and which can be implemented with a cost of particularly advantageous operation.
Au lieu de chercher à améliorer des étapes isolées des procédés de fabrication, la demanderesse a inventé un nouveau procédé intégré qui permet de fabriquer à partir de tôles épaisses des éléments de structure usinés de grande dimension, avec d'excellentes tolérances dimensionnelles, et présentant des caractéristiques mécaniques améliorées. La présente invention propose un procédé de fabrication nouveau qui permet d'obtenir des pièces usinées présentant un meilleur compromis entre les valeurs minimales des caractéristiques mécaniques statiques (limite conventionnelle d'élasticité, allongement à rupture, résistance à la traction) et la tolérance aux dommages, comparé à des pièces de forme analogues produites par un procédé selon l'état de la technique. Dans une variante du procédé selon l'invention, la variation des caractéristiques mécaniques au sein de la pièce est plus faible, par rapport à une pièce usinée de forme analogue élaborée par un procédé selon l'état de la technique.Instead of seeking to improve isolated stages of the manufacturing processes, the applicant has invented a new integrated process which makes it possible to manufacture, from thick sheets, machined structural elements of large dimension, with excellent dimensional tolerances, and having improved mechanical characteristics. The present invention provides a new manufacturing method which makes it possible to obtain machined parts having a better compromise between the minimum values of static mechanical characteristics (conventional yield strength, elongation at break, tensile strength) and the tolerance for damage. , compared to similar shaped parts produced by a process according to the state of the art. In a variant of the method according to the invention, the variation of the mechanical characteristics within the part is smaller, compared to a machined part of analogous shape produced by a method according to the prior art.
Un premier objet de l'invention est un procédé de fabrication d'une pièce métallique usinée, comportant a) la fabrication d'une tôle métallique par un procédé comportant , al) la coulée d'une plaque de laminage, suivie éventuellement d'une homogénéisation, a2) une ou plusieurs opérations de laminage à chaud ou à froid, éventuellement séparées d'une ou plusieurs opérations de réchauffage, pour obtenir une tôle, a3) éventuellement une ou plusieurs opérations de découpe ou finition de la tôle, b) le préusinage de ladite tôle sur l'une ou les deux faces pour obtenir une ébauche préusinée, c) un traitement de mise en solution de ladite ébauche préusinée, d) un traitement de trempe.A first object of the invention is a process for manufacturing a machined metal part, comprising a) the manufacture of a metal sheet by a process comprising, a1) the casting of a rolling plate, optionally followed by a homogenization, a2) one or more hot or cold rolling operations, possibly separated from one or more reheating operations, to obtain a sheet, a3) possibly one or more sheet cutting or finishing operations, b) the pre-machining of said sheet on one or both sides to obtain a pre-machined blank, c) a solution treatment of said pre-machined blank, d) a quenching treatment.
Ce procédé peut être éventuellement suivi d'une ou plusieurs des étapes suivantes e) traction contrôlée, f) revenu, g) découpe.This process can optionally be followed by one or more of the following steps e) controlled traction, f) tempering, g) cutting.
Un deuxième objet est l'utilisation d'une pièce métallique obtenue par ledit procédé comme élément de structure dans la construction aéronautique.A second object is the use of a metal part obtained by said process as a structural element in aeronautical construction.
Un troisième objet est un élément de structure en alliage d'aluminium pour construction aéronautique obtenu par ledit procédé. Description des figuresA third object is an aluminum alloy structural element for aeronautical construction obtained by said method. Description of the figures
La figure 1 montre les dimensions et le plan d'échantillonnage de tôles épaisses préusinées selon l'invention, comme expliqué dans l'exemple 1. La figure 2 montre l'éprouvette utilisée pour la caractérisation des propriétés mécaniques du produit.FIG. 1 shows the dimensions and the sampling plan for pre-machined thick sheets according to the invention, as explained in Example 1. FIG. 2 shows the test tube used for the characterization of the mechanical properties of the product.
Les figures 3 et 4 montrent schématiquement une ébauche préusinée selon l'invention.Figures 3 and 4 schematically show a pre-machined blank according to the invention.
La figure 5 montre schématiquement la forme d'une tôle épaisse préusinée et le plan d'échantillonnage de tôles épaisses préusinées (fig. 5a) ou non (fig. 5b), comme expliqué dans 1 ' exemple 2.FIG. 5 schematically shows the shape of a pre-machined thick sheet and the sampling plan of pre-machined thick sheet (fig. 5a) or not (fig. 5b), as explained in example 2.
La figure 6 montre schématiquement la forme d'une tôle épaisse préusinée et le plan d'échantillonnage de tôles épaisses préusinées (figure 6a) ou non (fig. 6b), comme expliqué dans l'exemple 3.FIG. 6 schematically shows the shape of a pre-machined thick sheet and the sampling plan for pre-machined thick sheets (FIG. 6a) or not (FIG. 6b), as explained in Example 3.
Description détaillée de l'inventionDetailed description of the invention
a) Tenninologiea) Tenninology
Sauf mention contraire, toutes les indications relatives à la composition chimique des alliages sont exprimées en pourcent massique. Par conséquent, dans une expression mathématique, « 0,4 Zn » signifie : 0,4 fois la teneur en zinc, exprimée en pourcent massique ; cela s'applique mutatis mutandis aux autres éléments chimiques. La désignation des alliages suit les règles de The Aluminum Association, connues de l'homme du métier. Les états métallurgiques sont définis dans la norme européenne EN 515. La composition chimique d'alliages d'aluminium normalisés est définie par exemple dans la norme EN 573-3. Sauf mention contraire, les caractéristiques mécaniques statiques, c'est-à-dire la résistance à la rupture Rm, la limite élastique Rpo,2, et l'allongement à la rupture A, sont déterminées par un essai de traction selon la norme EN 10002-1, l'endroit et le sens du prélèvement des éprouvettes étant définis dans la norme EN 485-1. La ténacité Kic a été mesurée selon la norme ASTM E 399. La courbe R est déterminée selon la norme ASTM 561-98. A partir de la courbe R, on calcule le facteur d'intensité de contrainte critique Kc , c'est à dire le facteur d'intensité qui provoque l'instabilité de la fissure. On calcule également le facteur d'intensité de contrainte KcD, en affectant à la charge critique la longueur initiale de la fissure, au début du chargement monotone. Ces deux valeurs sont calculées pour une éprouvette de forme voulue. KaPP désigne le Kco correspondant à l'éprouvette ayant servi à faire le test de courbe R. La résistance à la corrosion exfoliante a été déterminée selon l'essai EXCO décrit dans la norme ASTM G34-72.Unless otherwise stated, all information relating to the chemical composition of the alloys is expressed in percent by mass. Consequently, in a mathematical expression, "0.4 Zn" means: 0.4 times the zinc content, expressed in percent by mass; this applies mutatis mutandis to other chemical elements. The designation of the alloys follows the rules of The Aluminum Association, known to those skilled in the art. The metallurgical states are defined in European standard EN 515. The chemical composition of standardized aluminum alloys is defined for example in standard EN 573-3. Unless otherwise stated, the static mechanical characteristics, that is to say the tensile strength R m , the elastic limit R p o, 2 , and the elongation at break A, are determined by a tensile test according to standard EN 10002-1, the place and direction of specimen collection being defined in standard EN 485-1. The tenacity Kic was measured according to standard ASTM E 399. The curve R is determined according to standard ASTM 561-98. From the curve R, one calculates the critical stress intensity factor Kc, ie the intensity factor which causes the instability of the crack. We also calculate the intensity factor of stress Kc D , by assigning to the critical load the initial length of the crack, at the beginning of the monotonous loading. These two values are calculated for a test piece of desired shape. Ka PP designates the Kco corresponding to the test piece which was used to make the R curve test. The resistance to exfoliating corrosion was determined according to the EXCO test described in standard ASTM G34-72.
Sauf mention contraire, les définitions de la norme européenne EN 12258-1 s'appliquent. Contrairement à la terminologie de cette norme EN 12258-1, on appelle ici « tôle mince » une tôle d'une épaisseur de dépassant pas 6 mm, « tôle moyenne » une tôle d'une épaisseur comprise entre 6 mm et environ 20 à 30 mm, et « tôle épaisse » une tôle d'une épaisseur typiquement supérieure à 30 mm.Unless otherwise stated, the definitions of European standard EN 12258-1 apply. Contrary to the terminology of this standard EN 12258-1, here we call “thin sheet” a sheet with a thickness exceeding 6 mm, “medium sheet” a sheet with a thickness between 6 mm and about 20 to 30 mm, and "thick sheet" a sheet typically thicker than 30 mm.
Le terme « usinage » comprend tout procédé d'enlèvement de matière tel que le tournage, le fraisage, le perçage, l'alésage, le taraudage, l'éleçtroérosion, la rectification, le polissage. Le terme « élément de structure » se réfère à un élément utilisé en construction mécanique pour lequel les caractéristiques mécaniques statiques et / ou dynamiques ont une importance particulière pour la performance et l'intégrité de la structure, et pour lequel un calcul de la structure est généralement prescrit ou effectué. Il s'agit typiquement d'une pièce mécanique dont la défaillance est susceptible de mettre en danger la sécurité de ladite construction, de ses utilisateurs, des ses usagers ou d' autrui. Pour un avion, ces éléments de structure comprennent notamment les éléments qui composent le fuselage (tels que la peau de fuselage (fuselage skin en anglais), les raidisseurs ou lisses de fuselage (stringers), les cloisons étanches (bulkheads), les cadres de fuselage (circumferential frames), les ailes (tels que la peau de voilure (wing skin), les raidisseurs (stringers ou stiffeners), les nervures (ribs) et longerons (spars)) et l'empennage composé notamment de stabilisateurs horizontaux et verticaux (horizontal or vertical stabilisers), ainsi que les profilés de plancher (floor beams), les rails de sièges (seat tracks) et les portes.The term "machining" includes any material removal process such as turning, milling, drilling, reaming, tapping, EDM, grinding, polishing. The term “structural element” refers to an element used in mechanical construction for which the static and / or dynamic mechanical characteristics are of particular importance for the performance and integrity of the structure, and for which a calculation of the structure is generally prescribed or performed. It is typically a mechanical part, the failure of which is likely to endanger the safety of said construction, of its users, of its users or of others. For an aircraft, these structural elements include in particular the elements that make up the fuselage (such as the fuselage skin), the stiffeners or bulkheads, bulkheads, fuselage (circumferential frames), the wings (such as the wing skin), the stiffeners (stringers or stiffeners), the ribs (ribs) and spars (spars)) and the empennage composed in particular of horizontal and vertical stabilizers (horizontal or vertical stabilizers), as well as the floor profiles (floor beams), the seat rails (seat tracks) and the doors.
b) Description de l'invention et de quelques modes de réalisations particuliers Selon l'invention, le problème est résolu en trempant non pas la tôle épaisse dans laquelle sera ensuite usiné la pièce métallique visée, mais une ébauche déjà préusinée. Le préusinage peut conduire à une forme plus ou moins proche de la forme finale visée. Dans une réalisation préférée de l'invention, cette ébauche préusinée présente un profil constitué par un ou plusieurs canaux. Ces canaux peuvent être parallèles au sens de laminage, mais d'autres orientations sont possibles, par exemple une orientation en diagonale. Si on envisage d'effectuer une traction après la trempe, ce profil est avantageusement parallèle au sens de laminage et sensiblement constant sur sa longueur, mais d'autres types de profils sont possibles.b) Description of the invention and of some particular embodiments According to the invention, the problem is solved by not dipping the thick sheet in which the targeted metal part will then be machined, but a pre-machined blank. The pre-machining can lead to a shape more or less close to the final target shape. In a preferred embodiment of the invention, this pre-machined blank has a profile consisting of one or more channels. These channels can be parallel to the rolling direction, but other orientations are possible, for example a diagonal orientation. If consideration is given to pulling after quenching, this profile is advantageously parallel to the rolling direction and substantially constant over its length, but other types of profiles are possible.
Lors de la trempe, l'ébauche peut se trouver en position horizontale, en position verticale, ou en toute autre position. La trempe peut être réalisé par immersion dans un milieu trempant, par aspersion, ou par tout autre moyen approprié. Ledit milieu trempant peut être de l'eau ou un autre milieu tel que le glycol ; sa température peut être choisie entre son point de solidification et son point d'ébullition, sachant que la température ambiante (environ 20 °C) peut convenir.During quenching, the blank can be in a horizontal position, in a vertical position, or in any other position. The quenching can be carried out by immersion in a quenching medium, by spraying, or by any other suitable means. Said soaking medium can be water or another medium such as glycol; its temperature can be chosen between its solidification point and its boiling point, knowing that the ambient temperature (around 20 ° C) may be suitable.
Le procédé selon l'invention comporte a) la fabrication d'une tôle métallique par un procédé comportant al) la coulée d'une plaque de laminage, suivie éventuellement d'une homogénéisation, a2) une ou plusieurs opérations de laminage à chaud ou à froid, éventuellement séparées d'une ou plusieurs opérations de réchauffage, pour obtenir une tôle, a3) éventuellement une ou plusieurs opérations de découpe ou finition de la tôle, b) le préusinage de ladite tôle sur l'une ou les deux faces pour obtenir une ébauche préusinée, c) un traitement de mise en solution de ladite ébauche préusinée, d) un traitement de trempe.The process according to the invention comprises a) the manufacture of a metal sheet by a process comprising a) casting a rolling plate, optionally followed by homogenization, a2) one or more hot or cold rolling operations cold, possibly separated from one or more reheating operations, to obtain a sheet, a3) optionally one or more operations for cutting or finishing the sheet, b) pre-machining said sheet on one or both sides to obtain a pre-machined blank, c) a solution treatment for said pre-machined blank, d) a quenching treatment.
L'ébauche ainsi obtenue peut être soumise à une ou plusieurs des étapes suivantes : e) traction contrôlée, f) revenu, g) découpe. A l'issue de ce procédé représenté par les étapes a) à d), c'est-à-dire après la trempe, et avantageusement après la traction contrôlée (s'il y en a une) et apès le revenu (s'il y en a un), l'ébauche préusinée peut être soumise à d'autres opérations d'usinage pour obtenir une pièce métallique usinée, étant entendu que la forme de l'ébauche doit être compatible avec celle de la pièce usinée visée. Par ailleurs, la forme desdits canaux de l'ébauche doit être choisie de façon à minimiser la déformation à la trempe de l'ébauche, et à optimiser les caractéristiques mécaniques de la pièce usinée finale. Il est préféré qu'une des deux faces de l'ébauche soit plate. Dans ce cas, il est préféré que lors de la trempe horizontale, les canaux usinées de la tôle soient orientés vers le bas.The blank thus obtained can be subjected to one or more of the following steps: e) controlled traction, f) tempering, g) cutting. At the end of this process represented by steps a) to d), that is to say after quenching, and advantageously after controlled traction (if there is one) and after tempering (s' there is one), the pre-machined blank can be subjected to other machining operations to obtain a machined metal part, it being understood that the shape of the blank must be compatible with that of the target machined part. Furthermore, the shape of said channels of the blank must be chosen so as to minimize the deformation on quenching of the blank, and to optimize the mechanical characteristics of the final machined part. It is preferred that one of the two faces of the blank is flat. In this case, it is preferred that during the horizontal quenching, the machined channels of the sheet are oriented downwards.
Dans la plupart des cas, il sera nécessaire de soumettre l'ébauche préusinée à une traction contrôlée. Pour ce faire, il est avantageux de prévoir lors du préusinage de l'ébauche qu'une longueur comprise entre 50 mm et 1000 mm, et préférentiellement comprise entre 50 mm et 500 mm en début et à la fin de la tôle ne comporte pas de canaux usinés et a une épaisseur sensiblement constante (cette partie dépourvue de canaux usinés étant appelée « talon »), afin de permettre une prise correcte des mors de traction. Ladite traction est avantageusement effectuée de façon à conduire à un allongement permanent compris entre 0,5 % et 5 %. On préfère une valeur minimale supérieure à 1,0 ou même supérieure à 1,5% pour cet allongement permanent. On peut maintenir, pendant au moins une partie de la durée de la traction, un appui transversal sur l'une au moins des faces de la tôle, par exemple par application d'un ou plusieurs rouleaux sur la tôle, lesdits rouleaux pouvant éventuellement être mobiles longitudinalement sur la face de la tôle. Cela est décrit, pour une tôle non usinée, dans le brevet US 6,216,521 de la demanderesse.In most cases, it will be necessary to subject the pre-machined blank to controlled traction. To do this, it is advantageous to provide during the pre-machining of the blank that a length between 50 mm and 1000 mm, and preferably between 50 mm and 500 mm at the start and at the end of the sheet does not include machined channels and has a substantially constant thickness (this part devoid of machined channels being called "heel"), in order to allow correct grip of the traction jaws. Said traction is advantageously carried out so as to lead to a permanent elongation of between 0.5% and 5%. A minimum value greater than 1.0 or even greater than 1.5% is preferred for this permanent elongation. It is possible to maintain, for at least part of the duration of the traction, a transverse support on at least one of the faces of the sheet, for example by applying one or more rollers to the sheet, said rollers possibly being able to be movable longitudinally on the face of the sheet. This is described, for a non-machined sheet, in US patent 6,216,521 of the applicant.
Dans un mode de réalisation préféré impliquant une traction contrôlée de l'ébauche, ladite ébauche comporte avantageusement entre les talons et la zone centrale possédant des canaux usinés une zone de transition dont l'épaisseur décroît du talon vers la zone centrale possédant des canaux usinés. Il est avantageux que ce talon ainsi que la zone de transition soient éboutés après la traction contrôlée, soit mécaniquement, par exemple par sciage ou cisaillage, soit par d'autres moyens connus tels que le faisceau laser ou le jet liquide. Mais on peut aussi conserver au moins partiellement ce talon, par exemple pour faciliter l'assemblage des éléments de structure.In a preferred embodiment involving controlled traction of the blank, said blank advantageously comprises between the heels and the central zone having machined channels a transition zone whose thickness decreases from the heel towards the central zone having machined channels. It is advantageous that this heel as well as the transition zone are trimmed after the controlled traction, either mechanically, for example by sawing or shearing, or by other known means such as the laser beam or the liquid jet. However, this heel can also be kept at least partially, for example to facilitate the assembly of the structural elements.
Le procédé selon l'invention peut être appliqué avantageusement aux tôles en alliages métalliques à durcissement structural, notamment aux alliages d'aluminium à durcissement structural, et plus particulièrement aux alliages des séries 2xxx, 6xxx etThe method according to the invention can be advantageously applied to sheets of metal alloys with structural hardening, in particular to aluminum alloys with structural hardening, and more particularly to alloys of the 2xxx, 6xxx and
7xxx. Dans un mode de réalisation particulier, les tôles comprennent les éléments d'alliage suivants (en % massiques) : Zn 5,5 - 11 Mg 1,5 - 3 Cu 1,0 - 3,0.7xxx. In a particular embodiment, the sheets include the following alloying elements (in% by mass): Zn 5.5 - 11 Mg 1.5 - 3 Cu 1.0 - 3.0.
Dans une variante de ce mode de réalisation particulier, la teneur en zinc est comprise entre 8 et 11%. Dans d'autres variantes, l'alliage comprend en plus des éléments pouvant former des dispersoïdes, c'est-à-dire un ou plusieurs éléments sélectionnés dans le groupe composé de Zr, Se, Hf, La, Ti, Ce, Nd, Eu, Gd, Tb, Dy, Ho, Er, Y, Yb, la teneur de chacun desdits éléments, s'il est sélectionné, étant comprise entre 0,02 et 0,7In a variant of this particular embodiment, the zinc content is between 8 and 11%. In other variants, the alloy also comprises elements which can form dispersoids, that is to say one or more elements selected from the group consisting of Zr, Se, Hf, La, Ti, Ce, Nd, Eu, Gd, Tb, Dy, Ho, Er, Y, Yb, the content of each of the said elements, if selected, being between 0.02 and 0.7
%, et la teneur totale de ces éléments ne dépassant pas, de manière préférée, 2 %. Parmi les alliages de la série 7xxx, les alliages 7449, 7349, 7049, 7050, 7055, 7040 et 7150 sont particulièrement préférés.%, and the total content of these elements preferably not exceeding 2%. Among the alloys of the 7xxx series, the alloys 7449, 7349, 7049, 7050, 7055, 7040 and 7150 are particularly preferred.
Les tôles sont avantageusement de grande taille, c'est-à-dire d'une longueur supérieure à 2000 mm et préférentiellement supérieure à 5000 mm, d'une largeur supérieure à 600 mm et préférentiellement supérieure à 1200 mm. Elles ont avantageusement, avant usinage, une épaisseur supérieure à 15 mm, préférentiellement supérieure à 30 mm et encore plus préférentiellement supérieure à 50 mm.The sheets are advantageously large, that is to say a length greater than 2000 mm and preferably greater than 5000 mm, a width greater than 600 mm and preferably greater than 1200 mm. They advantageously have, before machining, a thickness greater than 15 mm, preferably greater than 30 mm and even more preferably greater than 50 mm.
Dans un mode de réalisation avantageux, on utilise pour la fabrication d'un élément de structure à raidisseurs intégrés pour la voilure d'un avion civil de grande capacité une tôle épaisse en alliage d'aluminium 7449 d'une épaisseur de l'ordre de 100 à 110 mm, conduisant à une ébauche préusinée d'une épaisseur maximale de l'ordre de 90 à 100 mm.In an advantageous embodiment, for the manufacture of a structural element with integrated stiffeners for the wing of a large civil aircraft, a thick sheet of 7449 aluminum alloy with a thickness of the order of 100 to 110 mm, leading to a pre-machined blank with a maximum thickness of the order of 90 to 100 mm.
Dans un autre mode de réalisation avantageux, on utilise pour la fabrication d'un élément de structure pour peau de voilure à raidisseur intégrés une tôle épaisse d'une épaisseur de l'ordre de 30 à 60 mm, conduisant à une ébauche préusinée d'une épaisseur maximale de l'ordre de 25 à 55 mm. Dans les alliages d'aluminium à traitement thermique, pour des épaisseurs faibles, le problème lié aux gradients des propriétés mécaniques ne se pose guère en dessous d'une épaisseur de quinze à vingt millimètres environ. Les avantages que procure la présente invention sont donc importants pour des épaisseurs supérieures à environ 30 à 40 mm, c'est-à-dire notamment pour la fabrication d'éléments structuraux de voilure.In another advantageous embodiment, a thick sheet with a thickness of the order of 30 to 60 mm is used for the manufacture of a structural element for wing skin with integrated stiffener, leading to a pre-machined blank of a maximum thickness of the order of 25 to 55 mm. In aluminum alloys with heat treatment, for small thicknesses, the problem linked to the gradients of the mechanical properties hardly arises below a thickness of about fifteen to twenty millimeters. The advantages provided by the present invention are therefore significant for thicknesses greater than approximately 30 to 40 mm, that is to say in particular for the manufacture of structural wing elements.
Les opérations d'usinage pour former l'ébauche à partir de la tôle épaisse et pour fabriquer la pièce finie à partir de l'ébauche peuvent être effectuées à grande vitesse, c'est-à-dire avec une vitesse d'au moins 5000 tours par minute, et préférentiellement supérieur à 10 000 tours par minute. Le procédé selon l'invention permet de valoriser au mieux les copeaux et chutes générés lors de l'usinage. A cette fin, il convient d'éviter leur mélange avec d'autres matériaux métalliques ou non-métalliques, y compris avec d'autres alliages du même type. A titre d'exemple, dans le cas des alliages d'aluminium, il n'est pas souhaitable de mélanger les alliages du groupe 2xxx avec ceux du groupe 7xxx (désignation selon EN 573-1), et à l'intérieur du groupe 7xxx par exemple, il est préférable de séparer les alliages tels que le 7449 et le 7010 ; ceci nécessite une gestion rigoureuse des copeaux que le fabricant de la tôle forte est mieux à même d'assurer qu'un atelier d'usinage multi-matériaux. Le procédé selon l'invention, pour pouvoir être exploité avec un coût aussi bas que possible, encourage à ce que l'usinage soit effectué dans l'usine du fabricant de la tôle ou sous son contrôle industriel, et la disponibilité de chutes et copeaux, notamment en alliages 2xxx et 7xxx, parfaitement identifiés et issus d'un procédé connu, conduit à la possibilité de pouvoir recycler des fractions plus importantes des copeaux dans la fabrication de tôles fortes en alliages 2xxx et 7xxx pour application aéronautique. Pour certains alliages et produits, la demanderesse a pu ainsi incorporer jusqu'à 40 % de copeaux d'usinage dans le procédé selon l'invention, en utilisant des méthodes de traitement des copeaux collectés et du métal liquide qui sont connus de l'homme du métier. L'incorporation d'au moins 5 % de copeaux sélectivement collectés s'est avérée possible dans pratiquement tous les cas, et un taux d'au moins 15 % est préféré. Les pièces métalliques obtenues par le procédé selon l'invention peuvent être utilisées comme élément de structure dans la construction aéronautique. A titre d'exemple , l'invention permet de réaliser des panneaux de voilure, éléments de fuselage, longerons, nervures ou caissons centraux d'ailes.The machining operations for forming the blank from the thick sheet and for manufacturing the finished part from the blank can be carried out at high speed, i.e. with a speed of at least 5000 revolutions per minute, and preferably greater than 10,000 revolutions per minute. The method according to the invention makes it possible to make the most of the chips and scraps generated during machining. To this end, their mixing with other metallic or non-metallic materials should be avoided, including with other alloys of the same type. For example, in the case of aluminum alloys, it is not desirable to mix the alloys of group 2xxx with those of group 7xxx (designation according to EN 573-1), and within group 7xxx for example, it is preferable to separate the alloys such as 7449 and 7010; this requires rigorous chip management as the manufacturer of the heavy plate is better able to ensure than a multi-material machine shop. The method according to the invention, in order to be able to be operated with the lowest possible cost, encourages machining to be carried out in the factory of the sheet metal manufacturer or under its industrial control, and the availability of scrap and chips , in particular in 2xxx and 7xxx alloys, perfectly identified and resulting from a known process, leads to the possibility of being able to recycle larger fractions of the chips in the manufacture of heavy sheets in 2xxx and 7xxx alloys for aeronautical application. For certain alloys and products, the applicant has thus been able to incorporate up to 40% of machining chips in the process according to the invention, using methods of processing the collected chips and the liquid metal which are known to man. of career. The incorporation of at least 5% of selectively collected chips has been found to be possible in almost all cases, and a level of at least 15% is preferred. The metal parts obtained by the process according to the invention can be used as a structural element in aeronautical construction. By way of example, the invention makes it possible to produce wing panels, fuselage elements, side members, ribs or central wing boxes.
Le procédé selon l'invention a de nombreux avantages par rapport aux procédés connus. Notamment, il permet la fabrication de pièces présentant un compromis amélioré entre la tolérance aux dommages et les caractéristiques mécaniques statiques. L'homme du métier peut adapter l'état métallurgique de l'ébauche préusinée aux propriétés visées de la pièce finie, pour privilégier un gain en caractéristiques mécaniques statiques ou en tolérance aux dommages, ou pour améliorer les deux types de caractéristiques à la fois. A titre d'exemple, la demanderesse a pu obtenir avec l'alliage 7449 des pièces finies présentant une amélioration de 20 à 25 % de la ténacité Kic, sans aucune dégradation des caractéristiques mécaniques statiques. De même, par rapport au Kapp(L-τ) mesuré sur une tôle pleine à 1/8 d'épaisseur, on trouve sur une ébauche selon l'invention, mesuré entre au fond d'un canal à une profondeur d'environ 1/8 d'épaisseur, une amélioration d'environ 20 à 25%. Sur une tôle en alliage 7449, on a ainsi pu atteindre une valeur de app(L-τ) d'au moins 90 MPa m, et même d'au moins 95 MPaVm (éprouvette de type CT avec W = 75 mm selon ASTM E561-98), avec des valeurs de Rm(D mesurées en traction dépassant 550 MPa.The method according to the invention has many advantages over known methods. In particular, it allows the manufacture of parts having an improved compromise between tolerance to damage and static mechanical characteristics. A person skilled in the art can adapt the metallurgical state of the pre-machined blank to the targeted properties of the finished part, in order to favor gain in static mechanical characteristics or in damage tolerance, or to improve both types of characteristics at the same time. For example, the applicant was able to obtain with the 7449 alloy finished parts having an improvement of 20 to 25% in the Kic toughness, without any degradation of the static mechanical characteristics. Likewise, compared to the K app ( L -τ) measured on a solid sheet 1/8 thick, we find on a blank according to the invention, measured between the bottom of a channel at a depth of about 1/8 thick, an improvement of around 20 to 25%. On a 7449 alloy sheet, it was thus possible to reach a value of app ( L -τ) of at least 90 MPa m, and even at least 95 MPaVm (CT type test piece with W = 75 mm according to ASTM E561 -98), with values of R m (D measured in tension exceeding 550 MPa.
L'invention sera mieux comprise à l'aide des exemples, qui n'ont toutefois pas de caractère limitatif. Dans chacun de ces trois exemples, le repérage des échantillons est indépendant des autres, c'est-à-dire il n'y a pas de relation entre l'échantillon A de l'exemple 1, l'échantillon A de l'exemple 2, et l'échantillon A de l'exemple 3.The invention will be better understood with the aid of the examples, which however are not limiting. In each of these three examples, the location of the samples is independent of the others, that is to say there is no relation between sample A of example 1, sample A of example 2, and sample A of example 3.
Exemple 1Example 1
Dans une tôle en alliage 7449 (composition : Zn 8,52 %, Cu 1,97 % , Mg 2,17 %, Zr 0,11 %, Si 0,05 %, Fe 0,09 %, Mn 0,03 %, Ti 0,03 %) d'une épaisseur de 101,6 mm brute de laminage à chaud, mais rivée et éboutée, on a découpé dans la pleine épaisseur trois blocs de dimension 600 mm (sens L) x 700 mm (sens TL). On a effectué un surfaçage symétrique de 10,5 mm pour obtenir des blocs d'une épaisseur de 80,5 mm. Après détourage des faces latérales, on a préusiné dans les blocs 1 et 2 des nervures selon la figure 1, avec les dimensions suivantes (voir Tableau 1) :In a 7449 alloy sheet (composition: Zn 8.52%, Cu 1.97%, Mg 2.17%, Zr 0.11%, Si 0.05%, Fe 0.09%, Mn 0.03% , Ti 0.03%) with a thickness of 101.6 mm gross hot rolling, but riveted and trimmed, we cut in the full thickness three blocks of dimension 600 mm (direction L) x 700 mm (direction TL ). A symmetrical 10.5 mm surfacing was carried out to obtain blocks with a thickness of 80.5 mm. After trimming the lateral faces, ribs according to FIG. 1 were pre-machined in blocks 1 and 2, with the following dimensions (see Table 1):
Tableau 1Table 1
Le bloc 3 n'a pas été préusiné.Block 3 has not been prefabricated.
Les trois blocs ont été mis en solution pendant 4 heures à 472 °C avec une montée en température de 4 heures, et trempés par immersion verticale dans de l'eau froide agitée, les nervures étant orientées perpendiculairement à la surface de l'eau. On a ensuite découpé les blocs selon le plan de découpe montré sur la figure 2. Certaines des spécimens ainsi obtenus ont été soumis à un traitement de revenu de 48 h à 120 °C pour les mettre à l'état T6. D'autres spécimens ont été soumis à une traction contrôlée avec un allongement permanent de 2 %, et ensuite au même traitement de revenu que les autres spécimens, pour les mettre à l'état T651.The three blocks were dissolved for 4 hours at 472 ° C with a temperature rise of 4 hours, and quenched by vertical immersion in stirred cold water, the ribs being oriented perpendicular to the surface of the water. The blocks were then cut according to the cutting plan shown in Figure 2. Some of the specimens thus obtained were subjected to a tempering treatment of 48 h at 120 ° C to bring them to the T6 state. Other specimens were subjected to a controlled traction with a permanent elongation of 2%, and then to the same treatment of income as the other specimens, to put them in the state T651.
Ensuite, on a déterminé les caractéristiques mécaniques. Les résultats sont rassemblés dans le tableau 2.Then, the mechanical characteristics were determined. The results are collated in Table 2.
Tableau 2Table 2
On constate que la ténacité dans l'ébauche préusinée selon l'invention augmente d'environ 10 MPa m par rapport à une pièce selon l'art antérieur, ce qui correspond à un gain d'environ 20 à 25 %, sans aucune dégradation sur les caractéristiques mécaniques statiques.It is noted that the toughness in the pre-machined blank according to the invention increases by approximately 10 MPa m compared to a part according to the prior art, which corresponds to a gain of approximately 20 to 25%, without any degradation on static mechanical characteristics.
Exemple 2Example 2
Dans une tôle en alliage 7050 (composition : Zn 6,2 %, Cu 2,1 % , Mg 2,2 %, Zr 0,09In a 7050 alloy sheet (composition: Zn 6.2%, Cu 2.1%, Mg 2.2%, Zr 0.09
%, Si 0,04 %, Fe 0,09 %, Mn 0,01 %, Ti 0,03 %) d'une épaisseur de 95 mm brute de laminage à chaud, mais rivée et éboutée, on a découpé dans la pleine épaisseur une tôle de dimensions 8945 mm (sens L) x 1870 mm (sens TL). On a effectué un surfaçage symétrique de 2,5 mm pour obtenir une tôle d'une épaisseur de 90 mm. On a alors usiné des nervures dans le sens L sur une longueur de 7705 mm (repère 15) centrée dans la tôle laissant une zone pleine (repères 16 et 17) à chaque extrémité (voir Figure 3). La géométrie de la section pré-usinée est décrite dans la figure 4, avec les dimensions indiquées dans le Tableau 3.%, Si 0.04%, Fe 0.09%, Mn 0.01%, Ti 0.03%) with a thickness of 95 mm gross of hot rolling, but riveted and trimmed, a sheet of dimensions 8,945 mm (direction L) x 1,870 mm (direction TL) was cut into the full thickness. A 2.5 mm symmetrical surfacing was carried out to obtain a sheet with a thickness of 90 mm. Ribs were then machined in the L direction over a length of 7705 mm (item 15) centered in the sheet leaving a solid area (items 16 and 17) at each end (see Figure 3). The geometry of the pre-machined section is described in Figure 4, with the dimensions indicated in Table 3.
Tableau 3Table 3
La tôle a été mise en solution et puis trempée par immersion verticale dans de l'eau froide agitée, les nervures étant orientées parallèlement à la surface de l'eau. La tôle a alors été soumise à une traction contrôlée avec un allongement permanent de 2 % observé dans la zone pré-usiné et un allongement nul dans les zones pleines. On a ensuite prélevé un bloc dans la zone pré-usinée ainsi qu'un bloc dans la zone non-usinée pour caractérisation. Des ébauches ont été prélevées dans le bloc non-usiné et soumises à une traction contrôlée avec un allongement permanent de 2 à 2.5%. Une cinétique de revenu par mesure de dureté Nickers a permis de déterminer les revenus au pic qui ont été pratiqués sur la partie pré-usinée et la partie pleine (respectivement 36h à 130°C et 24h à 130°C). Des prélèvements ont été pris selon le plan de découpe de la Figure 5. Les caractéristiques mécaniques obtenues dans le voile du pré-usiné et dans la tôle pleine sont répertoriées dans le tableau 4. Le Kapp a été mesuré sur des éprouvettes de type CT avec un W égal à 75 mm (selon ASTM E561-98). Tableau 4The sheet was dissolved and then quenched by vertical immersion in agitated cold water, the ribs being oriented parallel to the surface of the water. The sheet was then subjected to controlled traction with a permanent elongation of 2% observed in the pre-machined area and zero elongation in the solid areas. A block was then taken from the pre-machined area as well as a block from the non-machined area for characterization. Drafts were taken from the non-machined block and subjected to controlled traction with a permanent elongation of 2 to 2.5%. An income kinetics by Nickers hardness measurement made it possible to determine the peak incomes which were practiced on the pre-machined part and the full part (respectively 36h at 130 ° C and 24h at 130 ° C). Samples were taken according to the cutting plan in Figure 5. The mechanical characteristics obtained in the pre-machined web and in the full sheet are listed in Table 4. The K app was measured on CT type test pieces with a W equal to 75 mm (according to ASTM E561-98). Table 4
On constate que la ténacité en contrainte plane KaPp (L.τ) dans l'ébauche préusinée selon l'invention augmente d'environ 14 MPaVm par rapport à une pièce selon l'art antérieur, ce qui correspond à un gain d'environ 20 à 25 %, sans aucune dégradation sur les caractéristiques mécaniques statiques.It is noted that the toughness in plane stress Ka Pp (L .τ) in the pre-machined blank according to the invention increases by approximately 14 MPaVm compared to a part according to the prior art, which corresponds to a gain of approximately 20 to 25%, without any degradation on the static mechanical characteristics.
Exemple 3 Dans une tôle en alliage 7449 (composition : Zn 8,8 %, Cu 1,8 % , Mg 1,8 %, Zr 0,12 %, Si 0,04 %, Fe 0,06 %, Mn 0,01 %, Ti 0,03 %) d'une épaisseur de 90 mm brute de laminage à chaud, mais rivée et éboutée, on a découpé dans la pleine épaisseur une tôle de dimensions 9950 mm (sens L) x 2000 mm (sens TL). Cette tôle a été découpée dans la longueur (sens L) de façon à obtenir une première tôle de dimensions 9950 mm (sens L) x 775 mm (sens TL) et une seconde tôle de dimensions 9950 mm (sens L) x 1225 mm (sens TL). Pour cette seconde tôle, on a alors usiné des nervures dans le sens L sur une longueur de 8400 mm centré dans la tôle laissant une zone pleine à chaque extrémité (voir Figure 3). La géométrie de la section pré-usinée est décrite dans la Figure 4, avec les dimensions indiquées dans le Tableau 3. Tableau 5Example 3 In a 7449 alloy sheet (composition: Zn 8.8%, Cu 1.8%, Mg 1.8%, Zr 0.12%, Si 0.04%, Fe 0.06%, Mn 0, 01%, Ti 0.03%) with a thickness of 90 mm gross hot rolling, but riveted and trimmed, a sheet of dimensions 9,950 mm (L direction) x 2,000 mm (TL direction) was cut into the full thickness ). This sheet was cut lengthwise (direction L) so as to obtain a first sheet of dimensions 9950 mm (direction L) x 775 mm (direction TL) and a second sheet of dimensions 9950 mm (direction L) x 1225 mm ( sense TL). For this second sheet, we then machined ribs in the L direction over a length of 8400 mm centered in the sheet leaving a solid area at each end (see Figure 3). The geometry of the pre-machined section is described in Figure 4, with the dimensions indicated in Table 3. Table 5
La tôle de pleine épaisseur et la tôle pré-usinée ont été mises en solution puis trempées par immersion verticale dans de l'eau froide agitée, les nervures étant orientées parallèlement à la surface de l'eau. Les deux tôles ont alors été soumises à une traction contrôlée avec un allongement permanent de 2 à 2.5 % (observé dans la zone pré-usiné pour la tôle pré-usinée). On a ensuite prélevé un bloc dans la tôle pré-usinée ainsi qu'un bloc dans la tôle de pleine épaisseur pour caractérisation. Des prélèvements ont été pris selon le plan de découpe de la Figure 6. Plusieurs revenus ont été appliqués afin d'évaluer les gains liés au pré-usinage. Les caractérisations effectuées dans le voile du pré-usiné et à 1/8 d'épaisseur sous la surface de la tôle pleine sont répertoriées dans le tableau 6.The full thickness sheet and the pre-machined sheet were dissolved and then quenched by vertical immersion in agitated cold water, the ribs being oriented parallel to the surface of the water. The two sheets were then subjected to controlled traction with a permanent elongation of 2 to 2.5% (observed in the pre-machined zone for the pre-machined sheet). A block was then taken from the pre-machined sheet as well as a block from the full thickness sheet for characterization. Samples were taken according to the cutting plan in Figure 6. Several incomes were applied in order to assess the gains linked to pre-machining. The characterizations carried out in the pre-machined web and at 1/8 of a thickness below the surface of the full sheet are listed in Table 6.
Tableau 6Table 6
La même éprouvette que celle décrite dans l'exemple 2 a été utilisée pour les mesures de ténacité. The same test tube as that described in Example 2 was used for the toughness measurements.
On constate que la ténacité en contrainte plane selon l'orientation L-T (KaPP ( -τ)) dans l'ébauche préusinée selon l'invention augmente entre 8 et 18 MPaVm selon le revenu pratiqué par rapport à une pièce selon l'art antérieur, ce qui correspond à un gain d'environ 10 à 25 %, sans aucune dégradation sur les caractéristiques mécaniques statiques et la corrosion exfoliante. It is noted that the toughness in plane stress according to the orientation LT (K aPP ( )) in the pre-machined blank according to the invention increases between 8 and 18 MPaVm according to the income practiced compared to a part according to the prior art , which corresponds to a gain of approximately 10 to 25%, without any degradation on the static mechanical characteristics and the exfoliating corrosion.

Claims

REVENDICATIONS
1) Procédé de fabrication d'une pièce métallique usinée, comportant a) la fabrication d'une tôle métallique en alliage à traitement thermique par un procédé comportant al) la coulée d'une plaque de laminage, suivie éventuellement d'une homogénéisation, a2) une ou plusieurs opérations de laminage à chaud ou à froid, éventuellement séparées d'une ou plusieurs opérations de réchauffage, pour obtenir une tôle, a3) éventuellement une ou plusieurs opérations de découpe ou finition de la tôle, b) le préusinage de ladite tôle sur l'une ou les deux faces pour obtenir une ébauche préusinée, c) un traitement de mise en solution de ladite ébauche préusinée, d) un traitement de trempe.1) Process for manufacturing a machined metal part, comprising a) manufacturing a metal sheet of heat-treated alloy by a process comprising a1) casting a rolling plate, optionally followed by homogenization, a2 ) one or more hot or cold rolling operations, possibly separate from one or more reheating operations, to obtain a sheet, a3) possibly one or more cutting or finishing operations of the sheet, b) the pre-machining of said sheet on one or both sides to obtain a pre-machined blank, c) a solution treatment of said pre-machined blank, d) a quenching treatment.
2) Procédé selon la revendication 1, comportant en plus, après le traitement de trempe, une ou plusieurs des étapes suivantes : e) traction contrôlée, f) revenu, g) découpe.2) Method according to claim 1, further comprising, after the quenching treatment, one or more of the following steps: e) controlled traction, f) tempering, g) cutting.
3) Procédé selon la revendication 1, caractérisé en ce que la tôle est en alliage d'aluminium.3) Method according to claim 1, characterized in that the sheet is made of aluminum alloy.
4) Procédé selon la revendication 3, caractérisé en ce que l'alliage d'aluminium est un alliage de la série 2xxx, 6xxx ou 7xxx.4) Method according to claim 3, characterized in that the aluminum alloy is an alloy of the 2xxx, 6xxx or 7xxx series.
5) Procédé selon une quelconque des revendications 1 à 3, caractérisé en ce que l'alliage comprend entre 5,5 et 11 % (massiques) de zinc (préférentiellement au moins 8 %), entre 1,5 et 3 % de magnésium, et entre 1,0 et 3,0 de cuivre. 6) Procédé selon une quelconque des revendications 1 à 5, caractérisée en ce que le profil est constitué d'un ou plusieurs canaux parallèles au sens de laminage.5) Method according to any one of claims 1 to 3, characterized in that the alloy comprises between 5.5 and 11% (mass) of zinc (preferably at least 8%), between 1.5 and 3% of magnesium, and between 1.0 and 3.0 copper. 6) Method according to any one of claims 1 to 5, characterized in that the profile consists of one or more channels parallel to the rolling direction.
7) Procédé selon la revendication 6, caractérisé en ce que le profil est sensiblement constant sur sa longueur.7) Method according to claim 6, characterized in that the profile is substantially constant over its length.
8) Procédé selon une quelconque des revendications 1 à 7, caractérisé en ce que l'usinage est effectué avec une vitesse d'au moins 5000 tours par minute, et préférentiellement supérieur à 10000 tours par minute.8) Method according to any one of claims 1 to 7, characterized in that the machining is carried out with a speed of at least 5000 revolutions per minute, and preferably greater than 10000 revolutions per minute.
9) Procédé selon une quelconque des revendications 1 à 8, caractérisé que la pièce obtenue est soumise à une ou plusieurs nouvelles opérations d'usinage ou de perçage après la trempe ou après la traction contrôlée.9) Method according to any one of claims 1 to 8, characterized that the part obtained is subjected to one or more new machining or drilling operations after quenching or after controlled traction.
10) Procédé selon une quelconque des revendications 1 à 9, caractérisé en ce que la traction contrôlée est effectuée de façon à conduire à un allongement permanent compris entre 0,5 % et 5 %.10) Method according to any one of claims 1 to 9, characterized in that the controlled traction is carried out so as to lead to a permanent elongation of between 0.5% and 5%.
11) Procédé selon une quelconque des revendications 1 à 10, caractérisé en ce que la découpe est effectuée mécaniquement par cisaillage ou sciage, par faisceau laser ou par jet liquide.11) Method according to any one of claims 1 to 10, characterized in that the cutting is carried out mechanically by shearing or sawing, by laser beam or by liquid jet.
12) Procédé selon une quelconque des revendications 1 à 11, caractérisé en ce que le lit de fusion est constitué d'au moins 5 % et préférentiellement d'au moins 15 % de copeaux d'usinage.12) Method according to any one of claims 1 to 11, characterized in that the fusion bed consists of at least 5% and preferably at least 15% of machining chips.
13) Procédé selon une quelconque des revendications 1 à 12, caractérisé en ce que une longueur comprise entre 50 mm et 1000 mm, et préférentiellement comprise entre 50 mm et 500 mm en début et à la fin de la tôle ne comporte pas de profil et a une épaisseur sensiblement constante. 14) Procédé selon la revendication 13, caractérisé en ce que la tôle comporte entre les talons dépourvus de canaux usinés et la zone centrale possédant des canaux usinés une zone de transition dont l'épaisseur décroît du talon dépourvu de canaux usinés vers la zone centrale possédant des canaux usinés.13) Method according to any one of claims 1 to 12, characterized in that a length between 50 mm and 1000 mm, and preferably between 50 mm and 500 mm at the beginning and at the end of the sheet does not have a profile and has a substantially constant thickness. 14) Method according to claim 13, characterized in that the sheet comprises between the heels without machined channels and the central zone having machined channels a transition zone whose thickness decreases from the heel without machined channels towards the central zone having machined channels.
15) Procédé selon une quelconque des revendications 1 à 14, caractérisé en ce que la tôle a une largeur supérieure à 60 cm et préférentiellement supérieure à 120 cm.15) Method according to any one of claims 1 to 14, characterized in that the sheet has a width greater than 60 cm and preferably greater than 120 cm.
16) Procédé selon une quelconque des revendications 1 à 15, caractérisé en ce que la tôle a une longueur supérieure à 200 cm et préférentiellement supérieure à 500 cm.16) Method according to any one of claims 1 to 15, characterized in that the sheet has a length greater than 200 cm and preferably greater than 500 cm.
17) Procédé selon une quelconque des revendications 1 à 16, caractérisée en ce que la tôle à, avant usinage, une épaisseur supérieure à 15 mm et préférentiellement supérieure à 30 mm.17) Method according to any one of claims 1 to 16, characterized in that the sheet, before machining, a thickness greater than 15 mm and preferably greater than 30 mm.
18) Procédé selon une quelconque des revendications 1 à 17, caractérisé en ce que le talon non usiné et la zone de transition sont éboutés après la traction contrôlée.18) Method according to any one of claims 1 to 17, characterized in that the non-machined heel and the transition zone are trimmed after the controlled traction.
19) Procédé selon une quelconque des revendications 1 à 18, caractérisé en ce qu'en effectue la traction contrôlée entre deux mors jusqu'à un allongement permanent contrôlé de plus de 0.5 % et de préférence de plus de 1%, et qu'on maintient, pendant au moins une partie de la durée de la traction, un appui transversal sur l'une au moins des faces de la tôle.19) Method according to any one of claims 1 to 18, characterized in that it performs controlled traction between two jaws until a controlled permanent elongation of more than 0.5% and preferably more than 1%, and that maintains, for at least part of the duration of the traction, a transverse support on at least one of the faces of the sheet.
20) Procédé selon la revendication 19, caractérisée en ce que l'allongement permanent est supérieur à 1,5 %.20) Method according to claim 19, characterized in that the permanent elongation is greater than 1.5%.
21) Procédé selon une quelconque de revendications 19 ou 20, caractérisé en ce que l'appui sur la face ou les faces de la tôle est réalisé par un ou plusieurs rouleaux soumis à un effort d' application sur la tôle. 22) Procédé selon la revendication 21, caractérisé en ce que les rouleaux sont mobiles longitudinalement sur la face de la tôle.21) Method according to any one of claims 19 or 20, characterized in that the support on the face or faces of the sheet is produced by one or more rollers subjected to an application force on the sheet. 22) Method according to claim 21, characterized in that the rollers are movable longitudinally on the face of the sheet.
23) Pièce métallique usinée susceptible d'être obtenue par le procédé selon une quelconque des revendications 1 à 22.23) Machined metal part capable of being obtained by the method according to any one of claims 1 to 22.
24) Pièce métallique usinée selon la revendication 23, caractérisée en ce que ladite tôle est en alliage 7449 et montre au fond d'un canal usiné :24) Machined metal part according to claim 23, characterized in that said sheet is of alloy 7449 and shows at the bottom of a machined channel:
- une valeur de KaPP(L-τ) de 90 MPaVm, et préférentiellement même de 90 MPaVm (éprouvette de type CT avec W = 75 mm selon ASTM E561 -98), eta value of Ka PP ( L -τ) of 90 MPaVm, and preferably even of 90 MPaVm (CT type test piece with W = 75 mm according to ASTM E561 -98), and
- une valeur de Rm(L) mesurée en traction supérieure à 550 MPa.- a value of R m ( L ) measured in tension greater than 550 MPa.
25) Utilisation d'une pièce métallique susceptible d'être obtenue par le procédé selon une quelconque des revendications 1 à 22 comme élément de structure dans la construction aéronautique.25) Use of a metal part capable of being obtained by the method according to any one of claims 1 to 22 as a structural element in aeronautical construction.
26) Utilisation d'une pièce métallique en alliage d'aluminium susceptible d'être obtenue par le procédé selon une quelconque des revendications 1 à 22 comme panneau de voilure, élément de fuselage, longeron, nervure ou caisson central d'aile.26) Use of a metallic piece of aluminum alloy capable of being obtained by the method according to any one of claims 1 to 22 as wing panel, fuselage element, spar, rib or central wing box.
27) Elément de structure en alliage d'aluminium pour construction aéronautique susceptible d'être obtenu par le procédé selon une quelconque des revendications 1 à 22. 27) Structural element in aluminum alloy for aeronautical construction capable of being obtained by the method according to any one of claims 1 to 22.
EP03813619A 2002-12-17 2003-12-17 Method for making structural elements by machining thick plates Expired - Lifetime EP1573080B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR0215997A FR2848480B1 (en) 2002-12-17 2002-12-17 METHOD OF MANUFACTURING STRUCTURAL ELEMENTS BY MACHINING THICK TOLES
FR0215997 2002-12-17
US44699303P 2003-02-13 2003-02-13
US446993P 2003-02-13
PCT/FR2003/003753 WO2004056501A2 (en) 2002-12-17 2003-12-17 Method for making structural elements by machining thick plates

Publications (2)

Publication Number Publication Date
EP1573080A2 true EP1573080A2 (en) 2005-09-14
EP1573080B1 EP1573080B1 (en) 2010-10-27

Family

ID=32683898

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03813619A Expired - Lifetime EP1573080B1 (en) 2002-12-17 2003-12-17 Method for making structural elements by machining thick plates

Country Status (7)

Country Link
EP (1) EP1573080B1 (en)
JP (1) JP2006510808A (en)
AU (1) AU2003300632A1 (en)
BR (1) BR0317336B1 (en)
CA (1) CA2508534C (en)
RU (1) RU2341585C2 (en)
WO (1) WO2004056501A2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2425902C2 (en) * 2005-02-10 2011-08-10 АЛКАН РОЛЛД ПРОДАКТС-РЕЙВЕНСВУД ЭлЭлСи Al-Zn-Cu-Mg ALLOYS ON BASE OF ALUMINIUM, PROCEDURES FOR THEIR PRODUCTION AND IMPLEMENTATION
FR2900160B1 (en) * 2006-04-21 2008-05-30 Alcan Rhenalu Sa METHOD FOR MANUFACTURING A STRUCTURAL ELEMENT FOR AERONAUTICAL CONSTRUCTION COMPRISING A DIFFERENTIAL NUT
JP5345056B2 (en) * 2006-06-30 2013-11-20 コンステリウム ロールド プロダクツ−レイヴンズウッド,エルエルシー Heat-treatable high-strength aluminum alloy
US9314826B2 (en) 2009-01-16 2016-04-19 Aleris Rolled Products Germany Gmbh Method for the manufacture of an aluminium alloy plate product having low levels of residual stress
RU2524291C2 (en) * 2009-01-16 2014-07-27 Алерис Алюминум Кобленц Гмбх Production of board from aluminium alloy with high residual strain
CN102179422B (en) * 2010-12-29 2013-03-27 山东华盛荣镁业科技有限公司 Method for preparing metal plane plate
CN102303064A (en) * 2011-09-13 2012-01-04 王辉 Trapezoidal teeth dual-roller extrusion steel plate forming machine device
FR2997706B1 (en) * 2012-11-08 2014-11-07 Constellium France METHOD FOR MANUFACTURING A VARIABLE THICKNESS STRUCTURE ELEMENT FOR AERONAUTICAL CONSTRUCTION
JP6093192B2 (en) * 2013-01-25 2017-03-08 三菱航空機株式会社 Aircraft fuselage panel, aircraft wing
KR102055051B1 (en) 2015-05-08 2019-12-11 노벨리스 인크. Impact Heat Treatment of Aluminum Alloy Articles
RU2621499C2 (en) * 2015-11-17 2017-06-06 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Method for producing castings of high-strength aluminium-based alloys
KR102227325B1 (en) 2016-10-17 2021-03-15 노벨리스 인크. Metal sheet with custom-tuned properties
FR3059578B1 (en) 2016-12-07 2019-06-28 Constellium Issoire METHOD FOR MANUFACTURING A STRUCTURE ELEMENT
CA3125048A1 (en) 2019-06-03 2021-02-18 Novelis Inc. Ultra-high strength aluminum alloy products and methods of making the same
RU2771167C1 (en) * 2021-06-10 2022-04-27 Акционерное общество "Государственный Рязанский приборный завод" (АО "ГРПЗ") Method for manufacturing an aluminum wrought alloy casing

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263954A (en) * 1986-05-08 1987-11-16 Nippon Light Metal Co Ltd Manufacture of heat-treatment-type aluminum alloy sheet for drawing
JPH086160B2 (en) * 1987-10-28 1996-01-24 日産自動車株式会社 Method for manufacturing conical tubular member
JP2510729B2 (en) * 1989-07-12 1996-06-26 日産自動車株式会社 Method for manufacturing heat-treatable aluminum alloy member
JPH083139B2 (en) * 1990-11-22 1996-01-17 日本鋼管株式会社 Method for manufacturing thick and complex heat-treating aluminum alloy member
FR2744136B1 (en) * 1996-01-25 1998-03-06 Pechiney Rhenalu THICK ALZNMGCU ALLOY PRODUCTS WITH IMPROVED PROPERTIES
JPH10298692A (en) * 1997-04-22 1998-11-10 Sky Alum Co Ltd Frame-shaped member with high strength and high precision, and its production
JP3764274B2 (en) * 1998-06-04 2006-04-05 Jfe条鋼株式会社 Free-cutting hot-worked steel material and rough profile, manufacturing methods thereof, free-cutting hot-worked product, and manufacturing method thereof
FR2802946B1 (en) * 1999-12-28 2002-02-15 Pechiney Rhenalu AL-CU-MG ALLOY AIRCRAFT STRUCTURAL ELEMENT

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004056501A3 *

Also Published As

Publication number Publication date
RU2341585C2 (en) 2008-12-20
BR0317336B1 (en) 2013-07-09
RU2005122471A (en) 2006-02-10
AU2003300632A8 (en) 2004-07-14
JP2006510808A (en) 2006-03-30
WO2004056501A2 (en) 2004-07-08
WO2004056501A3 (en) 2004-08-19
BR0317336A (en) 2005-11-08
EP1573080B1 (en) 2010-10-27
CA2508534A1 (en) 2004-07-08
CA2508534C (en) 2011-06-21
AU2003300632A1 (en) 2004-07-14

Similar Documents

Publication Publication Date Title
CA2508534C (en) Method for making structural elements by machining thick plates
FR2848480A1 (en) Aluminum alloy aeronautical structural element fabrication involves machining of thick sheets
CA2836531C (en) Aluminum magnesium lithium alloy having improved toughness
EP2364378B1 (en) Products in aluminium-copper-lithium alloy
EP2010689B1 (en) Method for fabrication of a structural element for aeronautical construction including a differential work hardening
CA2560672C (en) Structural element for aircraft engineering exhibiting a variation of performance characteristics
FR2902442A1 (en) ALLOY OF AA6XXX SERIES WITH HIGH DAMAGE TO AEROSPACE INDUSTRY
EP1809779B1 (en) High-strength aluminium alloy products and method for the production thereof
EP2429752B1 (en) Method of assembling parts made of an aluminum alloy by welding, comprising cold deformation followed by the post-welding tempering of the entire welded area ; corresponding assembly
FR2907467A1 (en) PROCESS FOR MANUFACTURING ALUMINUM ALLOY PRODUCTS OF THE AA2000 SERIES AND PRODUCTS MANUFACTURED THEREBY
FR2907796A1 (en) ALUMINUM ALLOY PRODUCTS OF THE AA7000 SERIES AND METHOD FOR MANUFACTURING THE SAME
CA2528614C (en) Products made from al/zn/mg/cu alloys with improved compromise between static mechanical properties and tolerance to damage
EP1544315B1 (en) Wrought product in the form of a rolled plate and structural part for aircraft in Al-Zn-Cu-Mg alloy
CA3006346A1 (en) Highly rigid thin sheet metal for car body
Wang et al. Microstructure and mechanical properties of Al− Mg− Si alloy U-shaped profile
EP3610048B1 (en) Low-density aluminium-copper-lithium alloy products
EP1544316A2 (en) Thick sheet made of Al-Zn-Cu-Mg recrystallised alloy with low Zirconium content
EP3362584A1 (en) Thin sheets made from aluminium-magnesium-zirconium alloys for aerospace applications

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050428

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCAN RHENALU

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60334731

Country of ref document: DE

Date of ref document: 20101209

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: NOVAGRAAF SWITZERLAND S.A.

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101027

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2355234

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110324

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110127

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110228

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

BERE Be: lapsed

Owner name: ALCAN RHENALU

Effective date: 20101231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110128

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NOVAGRAAF SWITZERLAND SA;CHEMIN DE L'ECHO 3;1213 ONEX (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

26N No opposition filed

Effective date: 20110728

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60334731

Country of ref document: DE

Effective date: 20110728

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: NOVAGRAAF INTERNATIONAL SA

Ref country code: CH

Ref legal event code: PUE

Owner name: CONSTELLIUM FRANCE SAS

Free format text: ALCAN RHENALU#7, PLACE DU CHANCELIER ADENAUER#75116 PARIS (FR) -TRANSFER TO- CONSTELLIUM FRANCE SAS#40-44, RUE WASHINGTON#75008 PARIS (FR)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60334731

Country of ref document: DE

Representative=s name: BEETZ & PARTNER PATENT- UND RECHTSANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60334731

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENT- UND RECHTSANWAELTE, DE

Effective date: 20120622

Ref country code: DE

Ref legal event code: R081

Ref document number: 60334731

Country of ref document: DE

Owner name: CONSTELLIUM FRANCE, FR

Free format text: FORMER OWNER: ALCAN RHENALU, PARIS, FR

Effective date: 20120622

Ref country code: DE

Ref legal event code: R082

Ref document number: 60334731

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB, DE

Effective date: 20120622

Ref country code: DE

Ref legal event code: R082

Ref document number: 60334731

Country of ref document: DE

Representative=s name: BEETZ & PARTNER PATENT- UND RECHTSANWAELTE, DE

Effective date: 20120622

Ref country code: DE

Ref legal event code: R082

Ref document number: 60334731

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENTANWAELTE, DE

Effective date: 20120622

Ref country code: DE

Ref legal event code: R081

Ref document number: 60334731

Country of ref document: DE

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER: ALCAN RHENALU, PARIS, FR

Effective date: 20120622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110428

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101027

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: CONSTELLIUM FRANCE

Effective date: 20130205

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: CONSTELLIUM ISSOIRE, FR

Effective date: 20150915

Ref country code: FR

Ref legal event code: CA

Effective date: 20150915

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER: CONSTELLIUM FRANCE SAS, FR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60334731

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENT- UND RECHTSANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 60334731

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 60334731

Country of ref document: DE

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER: CONSTELLIUM FRANCE, PARIS, FR

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: CONSTELLIUM ISSOIRE

Effective date: 20161010

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20161227

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20161222

Year of fee payment: 14

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20170710

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171217

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191226

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191227

Year of fee payment: 17

Ref country code: DE

Payment date: 20191231

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20191231

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60334731

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201217

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701